1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 struct core_thread { 76 struct task_struct *task; 77 struct core_thread *next; 78 }; 79 80 struct core_state { 81 atomic_t nr_threads; 82 struct core_thread dumper; 83 struct completion startup; 84 }; 85 86 /* 87 * NOTE! "signal_struct" does not have its own 88 * locking, because a shared signal_struct always 89 * implies a shared sighand_struct, so locking 90 * sighand_struct is always a proper superset of 91 * the locking of signal_struct. 92 */ 93 struct signal_struct { 94 refcount_t sigcnt; 95 atomic_t live; 96 int nr_threads; 97 struct list_head thread_head; 98 99 wait_queue_head_t wait_chldexit; /* for wait4() */ 100 101 /* current thread group signal load-balancing target: */ 102 struct task_struct *curr_target; 103 104 /* shared signal handling: */ 105 struct sigpending shared_pending; 106 107 /* For collecting multiprocess signals during fork */ 108 struct hlist_head multiprocess; 109 110 /* thread group exit support */ 111 int group_exit_code; 112 /* notify group_exec_task when notify_count is less or equal to 0 */ 113 int notify_count; 114 struct task_struct *group_exec_task; 115 116 /* thread group stop support, overloads group_exit_code too */ 117 int group_stop_count; 118 unsigned int flags; /* see SIGNAL_* flags below */ 119 120 struct core_state *core_state; /* coredumping support */ 121 122 /* 123 * PR_SET_CHILD_SUBREAPER marks a process, like a service 124 * manager, to re-parent orphan (double-forking) child processes 125 * to this process instead of 'init'. The service manager is 126 * able to receive SIGCHLD signals and is able to investigate 127 * the process until it calls wait(). All children of this 128 * process will inherit a flag if they should look for a 129 * child_subreaper process at exit. 130 */ 131 unsigned int is_child_subreaper:1; 132 unsigned int has_child_subreaper:1; 133 134 #ifdef CONFIG_POSIX_TIMERS 135 136 /* POSIX.1b Interval Timers */ 137 int posix_timer_id; 138 struct list_head posix_timers; 139 140 /* ITIMER_REAL timer for the process */ 141 struct hrtimer real_timer; 142 ktime_t it_real_incr; 143 144 /* 145 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 146 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 147 * values are defined to 0 and 1 respectively 148 */ 149 struct cpu_itimer it[2]; 150 151 /* 152 * Thread group totals for process CPU timers. 153 * See thread_group_cputimer(), et al, for details. 154 */ 155 struct thread_group_cputimer cputimer; 156 157 #endif 158 /* Empty if CONFIG_POSIX_TIMERS=n */ 159 struct posix_cputimers posix_cputimers; 160 161 /* PID/PID hash table linkage. */ 162 struct pid *pids[PIDTYPE_MAX]; 163 164 #ifdef CONFIG_NO_HZ_FULL 165 atomic_t tick_dep_mask; 166 #endif 167 168 struct pid *tty_old_pgrp; 169 170 /* boolean value for session group leader */ 171 int leader; 172 173 struct tty_struct *tty; /* NULL if no tty */ 174 175 #ifdef CONFIG_SCHED_AUTOGROUP 176 struct autogroup *autogroup; 177 #endif 178 /* 179 * Cumulative resource counters for dead threads in the group, 180 * and for reaped dead child processes forked by this group. 181 * Live threads maintain their own counters and add to these 182 * in __exit_signal, except for the group leader. 183 */ 184 seqlock_t stats_lock; 185 u64 utime, stime, cutime, cstime; 186 u64 gtime; 187 u64 cgtime; 188 struct prev_cputime prev_cputime; 189 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 190 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 191 unsigned long inblock, oublock, cinblock, coublock; 192 unsigned long maxrss, cmaxrss; 193 struct task_io_accounting ioac; 194 195 /* 196 * Cumulative ns of schedule CPU time fo dead threads in the 197 * group, not including a zombie group leader, (This only differs 198 * from jiffies_to_ns(utime + stime) if sched_clock uses something 199 * other than jiffies.) 200 */ 201 unsigned long long sum_sched_runtime; 202 203 /* 204 * We don't bother to synchronize most readers of this at all, 205 * because there is no reader checking a limit that actually needs 206 * to get both rlim_cur and rlim_max atomically, and either one 207 * alone is a single word that can safely be read normally. 208 * getrlimit/setrlimit use task_lock(current->group_leader) to 209 * protect this instead of the siglock, because they really 210 * have no need to disable irqs. 211 */ 212 struct rlimit rlim[RLIM_NLIMITS]; 213 214 #ifdef CONFIG_BSD_PROCESS_ACCT 215 struct pacct_struct pacct; /* per-process accounting information */ 216 #endif 217 #ifdef CONFIG_TASKSTATS 218 struct taskstats *stats; 219 #endif 220 #ifdef CONFIG_AUDIT 221 unsigned audit_tty; 222 struct tty_audit_buf *tty_audit_buf; 223 #endif 224 225 /* 226 * Thread is the potential origin of an oom condition; kill first on 227 * oom 228 */ 229 bool oom_flag_origin; 230 short oom_score_adj; /* OOM kill score adjustment */ 231 short oom_score_adj_min; /* OOM kill score adjustment min value. 232 * Only settable by CAP_SYS_RESOURCE. */ 233 struct mm_struct *oom_mm; /* recorded mm when the thread group got 234 * killed by the oom killer */ 235 236 struct mutex cred_guard_mutex; /* guard against foreign influences on 237 * credential calculations 238 * (notably. ptrace) 239 * Deprecated do not use in new code. 240 * Use exec_update_lock instead. 241 */ 242 struct rw_semaphore exec_update_lock; /* Held while task_struct is 243 * being updated during exec, 244 * and may have inconsistent 245 * permissions. 246 */ 247 } __randomize_layout; 248 249 /* 250 * Bits in flags field of signal_struct. 251 */ 252 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 253 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 254 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 255 /* 256 * Pending notifications to parent. 257 */ 258 #define SIGNAL_CLD_STOPPED 0x00000010 259 #define SIGNAL_CLD_CONTINUED 0x00000020 260 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 261 262 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 263 264 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 265 SIGNAL_STOP_CONTINUED) 266 267 static inline void signal_set_stop_flags(struct signal_struct *sig, 268 unsigned int flags) 269 { 270 WARN_ON(sig->flags & SIGNAL_GROUP_EXIT); 271 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 272 } 273 274 extern void flush_signals(struct task_struct *); 275 extern void ignore_signals(struct task_struct *); 276 extern void flush_signal_handlers(struct task_struct *, int force_default); 277 extern int dequeue_signal(struct task_struct *task, sigset_t *mask, 278 kernel_siginfo_t *info, enum pid_type *type); 279 280 static inline int kernel_dequeue_signal(void) 281 { 282 struct task_struct *task = current; 283 kernel_siginfo_t __info; 284 enum pid_type __type; 285 int ret; 286 287 spin_lock_irq(&task->sighand->siglock); 288 ret = dequeue_signal(task, &task->blocked, &__info, &__type); 289 spin_unlock_irq(&task->sighand->siglock); 290 291 return ret; 292 } 293 294 static inline void kernel_signal_stop(void) 295 { 296 spin_lock_irq(¤t->sighand->siglock); 297 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 298 set_special_state(TASK_STOPPED); 299 spin_unlock_irq(¤t->sighand->siglock); 300 301 schedule(); 302 } 303 #ifdef __ia64__ 304 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 305 #else 306 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 307 #endif 308 309 int force_sig_fault_to_task(int sig, int code, void __user *addr 310 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 311 , struct task_struct *t); 312 int force_sig_fault(int sig, int code, void __user *addr 313 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 314 int send_sig_fault(int sig, int code, void __user *addr 315 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 316 , struct task_struct *t); 317 318 int force_sig_mceerr(int code, void __user *, short); 319 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 320 321 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 322 int force_sig_pkuerr(void __user *addr, u32 pkey); 323 int send_sig_perf(void __user *addr, u32 type, u64 sig_data); 324 325 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 326 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno); 327 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 328 struct task_struct *t); 329 int force_sig_seccomp(int syscall, int reason, bool force_coredump); 330 331 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 332 extern void force_sigsegv(int sig); 333 extern int force_sig_info(struct kernel_siginfo *); 334 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 335 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 336 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 337 const struct cred *); 338 extern int kill_pgrp(struct pid *pid, int sig, int priv); 339 extern int kill_pid(struct pid *pid, int sig, int priv); 340 extern __must_check bool do_notify_parent(struct task_struct *, int); 341 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 342 extern void force_sig(int); 343 extern void force_fatal_sig(int); 344 extern void force_exit_sig(int); 345 extern int send_sig(int, struct task_struct *, int); 346 extern int zap_other_threads(struct task_struct *p); 347 extern struct sigqueue *sigqueue_alloc(void); 348 extern void sigqueue_free(struct sigqueue *); 349 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 350 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 351 352 static inline void clear_notify_signal(void) 353 { 354 clear_thread_flag(TIF_NOTIFY_SIGNAL); 355 smp_mb__after_atomic(); 356 } 357 358 /* 359 * Returns 'true' if kick_process() is needed to force a transition from 360 * user -> kernel to guarantee expedient run of TWA_SIGNAL based task_work. 361 */ 362 static inline bool __set_notify_signal(struct task_struct *task) 363 { 364 return !test_and_set_tsk_thread_flag(task, TIF_NOTIFY_SIGNAL) && 365 !wake_up_state(task, TASK_INTERRUPTIBLE); 366 } 367 368 /* 369 * Called to break out of interruptible wait loops, and enter the 370 * exit_to_user_mode_loop(). 371 */ 372 static inline void set_notify_signal(struct task_struct *task) 373 { 374 if (__set_notify_signal(task)) 375 kick_process(task); 376 } 377 378 static inline int restart_syscall(void) 379 { 380 set_tsk_thread_flag(current, TIF_SIGPENDING); 381 return -ERESTARTNOINTR; 382 } 383 384 static inline int task_sigpending(struct task_struct *p) 385 { 386 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 387 } 388 389 static inline int signal_pending(struct task_struct *p) 390 { 391 /* 392 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 393 * behavior in terms of ensuring that we break out of wait loops 394 * so that notify signal callbacks can be processed. 395 */ 396 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 397 return 1; 398 return task_sigpending(p); 399 } 400 401 static inline int __fatal_signal_pending(struct task_struct *p) 402 { 403 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 404 } 405 406 static inline int fatal_signal_pending(struct task_struct *p) 407 { 408 return task_sigpending(p) && __fatal_signal_pending(p); 409 } 410 411 static inline int signal_pending_state(unsigned int state, struct task_struct *p) 412 { 413 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 414 return 0; 415 if (!signal_pending(p)) 416 return 0; 417 418 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 419 } 420 421 /* 422 * This should only be used in fault handlers to decide whether we 423 * should stop the current fault routine to handle the signals 424 * instead, especially with the case where we've got interrupted with 425 * a VM_FAULT_RETRY. 426 */ 427 static inline bool fault_signal_pending(vm_fault_t fault_flags, 428 struct pt_regs *regs) 429 { 430 return unlikely((fault_flags & VM_FAULT_RETRY) && 431 (fatal_signal_pending(current) || 432 (user_mode(regs) && signal_pending(current)))); 433 } 434 435 /* 436 * Reevaluate whether the task has signals pending delivery. 437 * Wake the task if so. 438 * This is required every time the blocked sigset_t changes. 439 * callers must hold sighand->siglock. 440 */ 441 extern void recalc_sigpending_and_wake(struct task_struct *t); 442 extern void recalc_sigpending(void); 443 extern void calculate_sigpending(void); 444 445 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 446 447 static inline void signal_wake_up(struct task_struct *t, bool resume) 448 { 449 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 450 } 451 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 452 { 453 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 454 } 455 456 void task_join_group_stop(struct task_struct *task); 457 458 #ifdef TIF_RESTORE_SIGMASK 459 /* 460 * Legacy restore_sigmask accessors. These are inefficient on 461 * SMP architectures because they require atomic operations. 462 */ 463 464 /** 465 * set_restore_sigmask() - make sure saved_sigmask processing gets done 466 * 467 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 468 * will run before returning to user mode, to process the flag. For 469 * all callers, TIF_SIGPENDING is already set or it's no harm to set 470 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 471 * arch code will notice on return to user mode, in case those bits 472 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 473 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 474 */ 475 static inline void set_restore_sigmask(void) 476 { 477 set_thread_flag(TIF_RESTORE_SIGMASK); 478 } 479 480 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 481 { 482 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 483 } 484 485 static inline void clear_restore_sigmask(void) 486 { 487 clear_thread_flag(TIF_RESTORE_SIGMASK); 488 } 489 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 490 { 491 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 492 } 493 static inline bool test_restore_sigmask(void) 494 { 495 return test_thread_flag(TIF_RESTORE_SIGMASK); 496 } 497 static inline bool test_and_clear_restore_sigmask(void) 498 { 499 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 500 } 501 502 #else /* TIF_RESTORE_SIGMASK */ 503 504 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 505 static inline void set_restore_sigmask(void) 506 { 507 current->restore_sigmask = true; 508 } 509 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 510 { 511 task->restore_sigmask = false; 512 } 513 static inline void clear_restore_sigmask(void) 514 { 515 current->restore_sigmask = false; 516 } 517 static inline bool test_restore_sigmask(void) 518 { 519 return current->restore_sigmask; 520 } 521 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 522 { 523 return task->restore_sigmask; 524 } 525 static inline bool test_and_clear_restore_sigmask(void) 526 { 527 if (!current->restore_sigmask) 528 return false; 529 current->restore_sigmask = false; 530 return true; 531 } 532 #endif 533 534 static inline void restore_saved_sigmask(void) 535 { 536 if (test_and_clear_restore_sigmask()) 537 __set_current_blocked(¤t->saved_sigmask); 538 } 539 540 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 541 542 static inline void restore_saved_sigmask_unless(bool interrupted) 543 { 544 if (interrupted) 545 WARN_ON(!signal_pending(current)); 546 else 547 restore_saved_sigmask(); 548 } 549 550 static inline sigset_t *sigmask_to_save(void) 551 { 552 sigset_t *res = ¤t->blocked; 553 if (unlikely(test_restore_sigmask())) 554 res = ¤t->saved_sigmask; 555 return res; 556 } 557 558 static inline int kill_cad_pid(int sig, int priv) 559 { 560 return kill_pid(cad_pid, sig, priv); 561 } 562 563 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 564 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 565 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 566 567 static inline int __on_sig_stack(unsigned long sp) 568 { 569 #ifdef CONFIG_STACK_GROWSUP 570 return sp >= current->sas_ss_sp && 571 sp - current->sas_ss_sp < current->sas_ss_size; 572 #else 573 return sp > current->sas_ss_sp && 574 sp - current->sas_ss_sp <= current->sas_ss_size; 575 #endif 576 } 577 578 /* 579 * True if we are on the alternate signal stack. 580 */ 581 static inline int on_sig_stack(unsigned long sp) 582 { 583 /* 584 * If the signal stack is SS_AUTODISARM then, by construction, we 585 * can't be on the signal stack unless user code deliberately set 586 * SS_AUTODISARM when we were already on it. 587 * 588 * This improves reliability: if user state gets corrupted such that 589 * the stack pointer points very close to the end of the signal stack, 590 * then this check will enable the signal to be handled anyway. 591 */ 592 if (current->sas_ss_flags & SS_AUTODISARM) 593 return 0; 594 595 return __on_sig_stack(sp); 596 } 597 598 static inline int sas_ss_flags(unsigned long sp) 599 { 600 if (!current->sas_ss_size) 601 return SS_DISABLE; 602 603 return on_sig_stack(sp) ? SS_ONSTACK : 0; 604 } 605 606 static inline void sas_ss_reset(struct task_struct *p) 607 { 608 p->sas_ss_sp = 0; 609 p->sas_ss_size = 0; 610 p->sas_ss_flags = SS_DISABLE; 611 } 612 613 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 614 { 615 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 616 #ifdef CONFIG_STACK_GROWSUP 617 return current->sas_ss_sp; 618 #else 619 return current->sas_ss_sp + current->sas_ss_size; 620 #endif 621 return sp; 622 } 623 624 extern void __cleanup_sighand(struct sighand_struct *); 625 extern void flush_itimer_signals(void); 626 627 #define tasklist_empty() \ 628 list_empty(&init_task.tasks) 629 630 #define next_task(p) \ 631 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 632 633 #define for_each_process(p) \ 634 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 635 636 extern bool current_is_single_threaded(void); 637 638 /* 639 * Careful: do_each_thread/while_each_thread is a double loop so 640 * 'break' will not work as expected - use goto instead. 641 */ 642 #define do_each_thread(g, t) \ 643 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 644 645 #define while_each_thread(g, t) \ 646 while ((t = next_thread(t)) != g) 647 648 #define __for_each_thread(signal, t) \ 649 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 650 651 #define for_each_thread(p, t) \ 652 __for_each_thread((p)->signal, t) 653 654 /* Careful: this is a double loop, 'break' won't work as expected. */ 655 #define for_each_process_thread(p, t) \ 656 for_each_process(p) for_each_thread(p, t) 657 658 typedef int (*proc_visitor)(struct task_struct *p, void *data); 659 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 660 661 static inline 662 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 663 { 664 struct pid *pid; 665 if (type == PIDTYPE_PID) 666 pid = task_pid(task); 667 else 668 pid = task->signal->pids[type]; 669 return pid; 670 } 671 672 static inline struct pid *task_tgid(struct task_struct *task) 673 { 674 return task->signal->pids[PIDTYPE_TGID]; 675 } 676 677 /* 678 * Without tasklist or RCU lock it is not safe to dereference 679 * the result of task_pgrp/task_session even if task == current, 680 * we can race with another thread doing sys_setsid/sys_setpgid. 681 */ 682 static inline struct pid *task_pgrp(struct task_struct *task) 683 { 684 return task->signal->pids[PIDTYPE_PGID]; 685 } 686 687 static inline struct pid *task_session(struct task_struct *task) 688 { 689 return task->signal->pids[PIDTYPE_SID]; 690 } 691 692 static inline int get_nr_threads(struct task_struct *task) 693 { 694 return task->signal->nr_threads; 695 } 696 697 static inline bool thread_group_leader(struct task_struct *p) 698 { 699 return p->exit_signal >= 0; 700 } 701 702 static inline 703 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 704 { 705 return p1->signal == p2->signal; 706 } 707 708 static inline struct task_struct *next_thread(const struct task_struct *p) 709 { 710 return list_entry_rcu(p->thread_group.next, 711 struct task_struct, thread_group); 712 } 713 714 static inline int thread_group_empty(struct task_struct *p) 715 { 716 return list_empty(&p->thread_group); 717 } 718 719 #define delay_group_leader(p) \ 720 (thread_group_leader(p) && !thread_group_empty(p)) 721 722 extern bool thread_group_exited(struct pid *pid); 723 724 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 725 unsigned long *flags); 726 727 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 728 unsigned long *flags) 729 { 730 struct sighand_struct *ret; 731 732 ret = __lock_task_sighand(task, flags); 733 (void)__cond_lock(&task->sighand->siglock, ret); 734 return ret; 735 } 736 737 static inline void unlock_task_sighand(struct task_struct *task, 738 unsigned long *flags) 739 { 740 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 741 } 742 743 #ifdef CONFIG_LOCKDEP 744 extern void lockdep_assert_task_sighand_held(struct task_struct *task); 745 #else 746 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { } 747 #endif 748 749 static inline unsigned long task_rlimit(const struct task_struct *task, 750 unsigned int limit) 751 { 752 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 753 } 754 755 static inline unsigned long task_rlimit_max(const struct task_struct *task, 756 unsigned int limit) 757 { 758 return READ_ONCE(task->signal->rlim[limit].rlim_max); 759 } 760 761 static inline unsigned long rlimit(unsigned int limit) 762 { 763 return task_rlimit(current, limit); 764 } 765 766 static inline unsigned long rlimit_max(unsigned int limit) 767 { 768 return task_rlimit_max(current, limit); 769 } 770 771 #endif /* _LINUX_SCHED_SIGNAL_H */ 772