1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 13 /* 14 * Types defining task->signal and task->sighand and APIs using them: 15 */ 16 17 struct sighand_struct { 18 refcount_t count; 19 struct k_sigaction action[_NSIG]; 20 spinlock_t siglock; 21 wait_queue_head_t signalfd_wqh; 22 }; 23 24 /* 25 * Per-process accounting stats: 26 */ 27 struct pacct_struct { 28 int ac_flag; 29 long ac_exitcode; 30 unsigned long ac_mem; 31 u64 ac_utime, ac_stime; 32 unsigned long ac_minflt, ac_majflt; 33 }; 34 35 struct cpu_itimer { 36 u64 expires; 37 u64 incr; 38 }; 39 40 /* 41 * This is the atomic variant of task_cputime, which can be used for 42 * storing and updating task_cputime statistics without locking. 43 */ 44 struct task_cputime_atomic { 45 atomic64_t utime; 46 atomic64_t stime; 47 atomic64_t sum_exec_runtime; 48 }; 49 50 #define INIT_CPUTIME_ATOMIC \ 51 (struct task_cputime_atomic) { \ 52 .utime = ATOMIC64_INIT(0), \ 53 .stime = ATOMIC64_INIT(0), \ 54 .sum_exec_runtime = ATOMIC64_INIT(0), \ 55 } 56 /** 57 * struct thread_group_cputimer - thread group interval timer counts 58 * @cputime_atomic: atomic thread group interval timers. 59 * @running: true when there are timers running and 60 * @cputime_atomic receives updates. 61 * @checking_timer: true when a thread in the group is in the 62 * process of checking for thread group timers. 63 * 64 * This structure contains the version of task_cputime, above, that is 65 * used for thread group CPU timer calculations. 66 */ 67 struct thread_group_cputimer { 68 struct task_cputime_atomic cputime_atomic; 69 bool running; 70 bool checking_timer; 71 }; 72 73 struct multiprocess_signals { 74 sigset_t signal; 75 struct hlist_node node; 76 }; 77 78 /* 79 * NOTE! "signal_struct" does not have its own 80 * locking, because a shared signal_struct always 81 * implies a shared sighand_struct, so locking 82 * sighand_struct is always a proper superset of 83 * the locking of signal_struct. 84 */ 85 struct signal_struct { 86 refcount_t sigcnt; 87 atomic_t live; 88 int nr_threads; 89 struct list_head thread_head; 90 91 wait_queue_head_t wait_chldexit; /* for wait4() */ 92 93 /* current thread group signal load-balancing target: */ 94 struct task_struct *curr_target; 95 96 /* shared signal handling: */ 97 struct sigpending shared_pending; 98 99 /* For collecting multiprocess signals during fork */ 100 struct hlist_head multiprocess; 101 102 /* thread group exit support */ 103 int group_exit_code; 104 /* overloaded: 105 * - notify group_exit_task when ->count is equal to notify_count 106 * - everyone except group_exit_task is stopped during signal delivery 107 * of fatal signals, group_exit_task processes the signal. 108 */ 109 int notify_count; 110 struct task_struct *group_exit_task; 111 112 /* thread group stop support, overloads group_exit_code too */ 113 int group_stop_count; 114 unsigned int flags; /* see SIGNAL_* flags below */ 115 116 /* 117 * PR_SET_CHILD_SUBREAPER marks a process, like a service 118 * manager, to re-parent orphan (double-forking) child processes 119 * to this process instead of 'init'. The service manager is 120 * able to receive SIGCHLD signals and is able to investigate 121 * the process until it calls wait(). All children of this 122 * process will inherit a flag if they should look for a 123 * child_subreaper process at exit. 124 */ 125 unsigned int is_child_subreaper:1; 126 unsigned int has_child_subreaper:1; 127 128 #ifdef CONFIG_POSIX_TIMERS 129 130 /* POSIX.1b Interval Timers */ 131 int posix_timer_id; 132 struct list_head posix_timers; 133 134 /* ITIMER_REAL timer for the process */ 135 struct hrtimer real_timer; 136 ktime_t it_real_incr; 137 138 /* 139 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 140 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 141 * values are defined to 0 and 1 respectively 142 */ 143 struct cpu_itimer it[2]; 144 145 /* 146 * Thread group totals for process CPU timers. 147 * See thread_group_cputimer(), et al, for details. 148 */ 149 struct thread_group_cputimer cputimer; 150 151 /* Earliest-expiration cache. */ 152 struct task_cputime cputime_expires; 153 154 struct list_head cpu_timers[3]; 155 156 #endif 157 158 /* PID/PID hash table linkage. */ 159 struct pid *pids[PIDTYPE_MAX]; 160 161 #ifdef CONFIG_NO_HZ_FULL 162 atomic_t tick_dep_mask; 163 #endif 164 165 struct pid *tty_old_pgrp; 166 167 /* boolean value for session group leader */ 168 int leader; 169 170 struct tty_struct *tty; /* NULL if no tty */ 171 172 #ifdef CONFIG_SCHED_AUTOGROUP 173 struct autogroup *autogroup; 174 #endif 175 /* 176 * Cumulative resource counters for dead threads in the group, 177 * and for reaped dead child processes forked by this group. 178 * Live threads maintain their own counters and add to these 179 * in __exit_signal, except for the group leader. 180 */ 181 seqlock_t stats_lock; 182 u64 utime, stime, cutime, cstime; 183 u64 gtime; 184 u64 cgtime; 185 struct prev_cputime prev_cputime; 186 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 187 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 188 unsigned long inblock, oublock, cinblock, coublock; 189 unsigned long maxrss, cmaxrss; 190 struct task_io_accounting ioac; 191 192 /* 193 * Cumulative ns of schedule CPU time fo dead threads in the 194 * group, not including a zombie group leader, (This only differs 195 * from jiffies_to_ns(utime + stime) if sched_clock uses something 196 * other than jiffies.) 197 */ 198 unsigned long long sum_sched_runtime; 199 200 /* 201 * We don't bother to synchronize most readers of this at all, 202 * because there is no reader checking a limit that actually needs 203 * to get both rlim_cur and rlim_max atomically, and either one 204 * alone is a single word that can safely be read normally. 205 * getrlimit/setrlimit use task_lock(current->group_leader) to 206 * protect this instead of the siglock, because they really 207 * have no need to disable irqs. 208 */ 209 struct rlimit rlim[RLIM_NLIMITS]; 210 211 #ifdef CONFIG_BSD_PROCESS_ACCT 212 struct pacct_struct pacct; /* per-process accounting information */ 213 #endif 214 #ifdef CONFIG_TASKSTATS 215 struct taskstats *stats; 216 #endif 217 #ifdef CONFIG_AUDIT 218 unsigned audit_tty; 219 struct tty_audit_buf *tty_audit_buf; 220 #endif 221 222 /* 223 * Thread is the potential origin of an oom condition; kill first on 224 * oom 225 */ 226 bool oom_flag_origin; 227 short oom_score_adj; /* OOM kill score adjustment */ 228 short oom_score_adj_min; /* OOM kill score adjustment min value. 229 * Only settable by CAP_SYS_RESOURCE. */ 230 struct mm_struct *oom_mm; /* recorded mm when the thread group got 231 * killed by the oom killer */ 232 233 struct mutex cred_guard_mutex; /* guard against foreign influences on 234 * credential calculations 235 * (notably. ptrace) */ 236 } __randomize_layout; 237 238 /* 239 * Bits in flags field of signal_struct. 240 */ 241 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 242 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 243 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 244 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 245 /* 246 * Pending notifications to parent. 247 */ 248 #define SIGNAL_CLD_STOPPED 0x00000010 249 #define SIGNAL_CLD_CONTINUED 0x00000020 250 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 251 252 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 253 254 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 255 SIGNAL_STOP_CONTINUED) 256 257 static inline void signal_set_stop_flags(struct signal_struct *sig, 258 unsigned int flags) 259 { 260 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 261 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 262 } 263 264 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 265 static inline int signal_group_exit(const struct signal_struct *sig) 266 { 267 return (sig->flags & SIGNAL_GROUP_EXIT) || 268 (sig->group_exit_task != NULL); 269 } 270 271 extern void flush_signals(struct task_struct *); 272 extern void ignore_signals(struct task_struct *); 273 extern void flush_signal_handlers(struct task_struct *, int force_default); 274 extern int dequeue_signal(struct task_struct *task, 275 sigset_t *mask, kernel_siginfo_t *info); 276 277 static inline int kernel_dequeue_signal(void) 278 { 279 struct task_struct *task = current; 280 kernel_siginfo_t __info; 281 int ret; 282 283 spin_lock_irq(&task->sighand->siglock); 284 ret = dequeue_signal(task, &task->blocked, &__info); 285 spin_unlock_irq(&task->sighand->siglock); 286 287 return ret; 288 } 289 290 static inline void kernel_signal_stop(void) 291 { 292 spin_lock_irq(¤t->sighand->siglock); 293 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 294 set_special_state(TASK_STOPPED); 295 spin_unlock_irq(¤t->sighand->siglock); 296 297 schedule(); 298 } 299 #ifdef __ARCH_SI_TRAPNO 300 # define ___ARCH_SI_TRAPNO(_a1) , _a1 301 #else 302 # define ___ARCH_SI_TRAPNO(_a1) 303 #endif 304 #ifdef __ia64__ 305 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 306 #else 307 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 308 #endif 309 310 int force_sig_fault_to_task(int sig, int code, void __user *addr 311 ___ARCH_SI_TRAPNO(int trapno) 312 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 313 , struct task_struct *t); 314 int force_sig_fault(int sig, int code, void __user *addr 315 ___ARCH_SI_TRAPNO(int trapno) 316 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 317 int send_sig_fault(int sig, int code, void __user *addr 318 ___ARCH_SI_TRAPNO(int trapno) 319 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 320 , struct task_struct *t); 321 322 int force_sig_mceerr(int code, void __user *, short); 323 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 324 325 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 326 int force_sig_pkuerr(void __user *addr, u32 pkey); 327 328 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 329 330 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 331 extern void force_sigsegv(int sig); 332 extern int force_sig_info(struct kernel_siginfo *); 333 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 334 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 335 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 336 const struct cred *); 337 extern int kill_pgrp(struct pid *pid, int sig, int priv); 338 extern int kill_pid(struct pid *pid, int sig, int priv); 339 extern __must_check bool do_notify_parent(struct task_struct *, int); 340 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 341 extern void force_sig(int); 342 extern int send_sig(int, struct task_struct *, int); 343 extern int zap_other_threads(struct task_struct *p); 344 extern struct sigqueue *sigqueue_alloc(void); 345 extern void sigqueue_free(struct sigqueue *); 346 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 347 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 348 349 static inline int restart_syscall(void) 350 { 351 set_tsk_thread_flag(current, TIF_SIGPENDING); 352 return -ERESTARTNOINTR; 353 } 354 355 static inline int signal_pending(struct task_struct *p) 356 { 357 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 358 } 359 360 static inline int __fatal_signal_pending(struct task_struct *p) 361 { 362 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 363 } 364 365 static inline int fatal_signal_pending(struct task_struct *p) 366 { 367 return signal_pending(p) && __fatal_signal_pending(p); 368 } 369 370 static inline int signal_pending_state(long state, struct task_struct *p) 371 { 372 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 373 return 0; 374 if (!signal_pending(p)) 375 return 0; 376 377 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 378 } 379 380 /* 381 * Reevaluate whether the task has signals pending delivery. 382 * Wake the task if so. 383 * This is required every time the blocked sigset_t changes. 384 * callers must hold sighand->siglock. 385 */ 386 extern void recalc_sigpending_and_wake(struct task_struct *t); 387 extern void recalc_sigpending(void); 388 extern void calculate_sigpending(void); 389 390 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 391 392 static inline void signal_wake_up(struct task_struct *t, bool resume) 393 { 394 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 395 } 396 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 397 { 398 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 399 } 400 401 void task_join_group_stop(struct task_struct *task); 402 403 #ifdef TIF_RESTORE_SIGMASK 404 /* 405 * Legacy restore_sigmask accessors. These are inefficient on 406 * SMP architectures because they require atomic operations. 407 */ 408 409 /** 410 * set_restore_sigmask() - make sure saved_sigmask processing gets done 411 * 412 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 413 * will run before returning to user mode, to process the flag. For 414 * all callers, TIF_SIGPENDING is already set or it's no harm to set 415 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 416 * arch code will notice on return to user mode, in case those bits 417 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 418 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 419 */ 420 static inline void set_restore_sigmask(void) 421 { 422 set_thread_flag(TIF_RESTORE_SIGMASK); 423 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 424 } 425 426 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 427 { 428 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 429 } 430 431 static inline void clear_restore_sigmask(void) 432 { 433 clear_thread_flag(TIF_RESTORE_SIGMASK); 434 } 435 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 436 { 437 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 438 } 439 static inline bool test_restore_sigmask(void) 440 { 441 return test_thread_flag(TIF_RESTORE_SIGMASK); 442 } 443 static inline bool test_and_clear_restore_sigmask(void) 444 { 445 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 446 } 447 448 #else /* TIF_RESTORE_SIGMASK */ 449 450 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 451 static inline void set_restore_sigmask(void) 452 { 453 current->restore_sigmask = true; 454 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 455 } 456 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 457 { 458 task->restore_sigmask = false; 459 } 460 static inline void clear_restore_sigmask(void) 461 { 462 current->restore_sigmask = false; 463 } 464 static inline bool test_restore_sigmask(void) 465 { 466 return current->restore_sigmask; 467 } 468 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 469 { 470 return task->restore_sigmask; 471 } 472 static inline bool test_and_clear_restore_sigmask(void) 473 { 474 if (!current->restore_sigmask) 475 return false; 476 current->restore_sigmask = false; 477 return true; 478 } 479 #endif 480 481 static inline void restore_saved_sigmask(void) 482 { 483 if (test_and_clear_restore_sigmask()) 484 __set_current_blocked(¤t->saved_sigmask); 485 } 486 487 static inline sigset_t *sigmask_to_save(void) 488 { 489 sigset_t *res = ¤t->blocked; 490 if (unlikely(test_restore_sigmask())) 491 res = ¤t->saved_sigmask; 492 return res; 493 } 494 495 static inline int kill_cad_pid(int sig, int priv) 496 { 497 return kill_pid(cad_pid, sig, priv); 498 } 499 500 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 501 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 502 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 503 504 /* 505 * True if we are on the alternate signal stack. 506 */ 507 static inline int on_sig_stack(unsigned long sp) 508 { 509 /* 510 * If the signal stack is SS_AUTODISARM then, by construction, we 511 * can't be on the signal stack unless user code deliberately set 512 * SS_AUTODISARM when we were already on it. 513 * 514 * This improves reliability: if user state gets corrupted such that 515 * the stack pointer points very close to the end of the signal stack, 516 * then this check will enable the signal to be handled anyway. 517 */ 518 if (current->sas_ss_flags & SS_AUTODISARM) 519 return 0; 520 521 #ifdef CONFIG_STACK_GROWSUP 522 return sp >= current->sas_ss_sp && 523 sp - current->sas_ss_sp < current->sas_ss_size; 524 #else 525 return sp > current->sas_ss_sp && 526 sp - current->sas_ss_sp <= current->sas_ss_size; 527 #endif 528 } 529 530 static inline int sas_ss_flags(unsigned long sp) 531 { 532 if (!current->sas_ss_size) 533 return SS_DISABLE; 534 535 return on_sig_stack(sp) ? SS_ONSTACK : 0; 536 } 537 538 static inline void sas_ss_reset(struct task_struct *p) 539 { 540 p->sas_ss_sp = 0; 541 p->sas_ss_size = 0; 542 p->sas_ss_flags = SS_DISABLE; 543 } 544 545 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 546 { 547 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 548 #ifdef CONFIG_STACK_GROWSUP 549 return current->sas_ss_sp; 550 #else 551 return current->sas_ss_sp + current->sas_ss_size; 552 #endif 553 return sp; 554 } 555 556 extern void __cleanup_sighand(struct sighand_struct *); 557 extern void flush_itimer_signals(void); 558 559 #define tasklist_empty() \ 560 list_empty(&init_task.tasks) 561 562 #define next_task(p) \ 563 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 564 565 #define for_each_process(p) \ 566 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 567 568 extern bool current_is_single_threaded(void); 569 570 /* 571 * Careful: do_each_thread/while_each_thread is a double loop so 572 * 'break' will not work as expected - use goto instead. 573 */ 574 #define do_each_thread(g, t) \ 575 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 576 577 #define while_each_thread(g, t) \ 578 while ((t = next_thread(t)) != g) 579 580 #define __for_each_thread(signal, t) \ 581 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 582 583 #define for_each_thread(p, t) \ 584 __for_each_thread((p)->signal, t) 585 586 /* Careful: this is a double loop, 'break' won't work as expected. */ 587 #define for_each_process_thread(p, t) \ 588 for_each_process(p) for_each_thread(p, t) 589 590 typedef int (*proc_visitor)(struct task_struct *p, void *data); 591 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 592 593 static inline 594 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 595 { 596 struct pid *pid; 597 if (type == PIDTYPE_PID) 598 pid = task_pid(task); 599 else 600 pid = task->signal->pids[type]; 601 return pid; 602 } 603 604 static inline struct pid *task_tgid(struct task_struct *task) 605 { 606 return task->signal->pids[PIDTYPE_TGID]; 607 } 608 609 /* 610 * Without tasklist or RCU lock it is not safe to dereference 611 * the result of task_pgrp/task_session even if task == current, 612 * we can race with another thread doing sys_setsid/sys_setpgid. 613 */ 614 static inline struct pid *task_pgrp(struct task_struct *task) 615 { 616 return task->signal->pids[PIDTYPE_PGID]; 617 } 618 619 static inline struct pid *task_session(struct task_struct *task) 620 { 621 return task->signal->pids[PIDTYPE_SID]; 622 } 623 624 static inline int get_nr_threads(struct task_struct *task) 625 { 626 return task->signal->nr_threads; 627 } 628 629 static inline bool thread_group_leader(struct task_struct *p) 630 { 631 return p->exit_signal >= 0; 632 } 633 634 /* Do to the insanities of de_thread it is possible for a process 635 * to have the pid of the thread group leader without actually being 636 * the thread group leader. For iteration through the pids in proc 637 * all we care about is that we have a task with the appropriate 638 * pid, we don't actually care if we have the right task. 639 */ 640 static inline bool has_group_leader_pid(struct task_struct *p) 641 { 642 return task_pid(p) == task_tgid(p); 643 } 644 645 static inline 646 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 647 { 648 return p1->signal == p2->signal; 649 } 650 651 static inline struct task_struct *next_thread(const struct task_struct *p) 652 { 653 return list_entry_rcu(p->thread_group.next, 654 struct task_struct, thread_group); 655 } 656 657 static inline int thread_group_empty(struct task_struct *p) 658 { 659 return list_empty(&p->thread_group); 660 } 661 662 #define delay_group_leader(p) \ 663 (thread_group_leader(p) && !thread_group_empty(p)) 664 665 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 666 unsigned long *flags); 667 668 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 669 unsigned long *flags) 670 { 671 struct sighand_struct *ret; 672 673 ret = __lock_task_sighand(task, flags); 674 (void)__cond_lock(&task->sighand->siglock, ret); 675 return ret; 676 } 677 678 static inline void unlock_task_sighand(struct task_struct *task, 679 unsigned long *flags) 680 { 681 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 682 } 683 684 static inline unsigned long task_rlimit(const struct task_struct *task, 685 unsigned int limit) 686 { 687 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 688 } 689 690 static inline unsigned long task_rlimit_max(const struct task_struct *task, 691 unsigned int limit) 692 { 693 return READ_ONCE(task->signal->rlim[limit].rlim_max); 694 } 695 696 static inline unsigned long rlimit(unsigned int limit) 697 { 698 return task_rlimit(current, limit); 699 } 700 701 static inline unsigned long rlimit_max(unsigned int limit) 702 { 703 return task_rlimit_max(current, limit); 704 } 705 706 #endif /* _LINUX_SCHED_SIGNAL_H */ 707