1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 struct core_thread { 76 struct task_struct *task; 77 struct core_thread *next; 78 }; 79 80 struct core_state { 81 atomic_t nr_threads; 82 struct core_thread dumper; 83 struct completion startup; 84 }; 85 86 /* 87 * NOTE! "signal_struct" does not have its own 88 * locking, because a shared signal_struct always 89 * implies a shared sighand_struct, so locking 90 * sighand_struct is always a proper superset of 91 * the locking of signal_struct. 92 */ 93 struct signal_struct { 94 refcount_t sigcnt; 95 atomic_t live; 96 int nr_threads; 97 struct list_head thread_head; 98 99 wait_queue_head_t wait_chldexit; /* for wait4() */ 100 101 /* current thread group signal load-balancing target: */ 102 struct task_struct *curr_target; 103 104 /* shared signal handling: */ 105 struct sigpending shared_pending; 106 107 /* For collecting multiprocess signals during fork */ 108 struct hlist_head multiprocess; 109 110 /* thread group exit support */ 111 int group_exit_code; 112 /* overloaded: 113 * - notify group_exit_task when ->count is equal to notify_count 114 * - everyone except group_exit_task is stopped during signal delivery 115 * of fatal signals, group_exit_task processes the signal. 116 */ 117 int notify_count; 118 struct task_struct *group_exit_task; 119 120 /* thread group stop support, overloads group_exit_code too */ 121 int group_stop_count; 122 unsigned int flags; /* see SIGNAL_* flags below */ 123 124 struct core_state *core_state; /* coredumping support */ 125 126 /* 127 * PR_SET_CHILD_SUBREAPER marks a process, like a service 128 * manager, to re-parent orphan (double-forking) child processes 129 * to this process instead of 'init'. The service manager is 130 * able to receive SIGCHLD signals and is able to investigate 131 * the process until it calls wait(). All children of this 132 * process will inherit a flag if they should look for a 133 * child_subreaper process at exit. 134 */ 135 unsigned int is_child_subreaper:1; 136 unsigned int has_child_subreaper:1; 137 138 #ifdef CONFIG_POSIX_TIMERS 139 140 /* POSIX.1b Interval Timers */ 141 int posix_timer_id; 142 struct list_head posix_timers; 143 144 /* ITIMER_REAL timer for the process */ 145 struct hrtimer real_timer; 146 ktime_t it_real_incr; 147 148 /* 149 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 150 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 151 * values are defined to 0 and 1 respectively 152 */ 153 struct cpu_itimer it[2]; 154 155 /* 156 * Thread group totals for process CPU timers. 157 * See thread_group_cputimer(), et al, for details. 158 */ 159 struct thread_group_cputimer cputimer; 160 161 #endif 162 /* Empty if CONFIG_POSIX_TIMERS=n */ 163 struct posix_cputimers posix_cputimers; 164 165 /* PID/PID hash table linkage. */ 166 struct pid *pids[PIDTYPE_MAX]; 167 168 #ifdef CONFIG_NO_HZ_FULL 169 atomic_t tick_dep_mask; 170 #endif 171 172 struct pid *tty_old_pgrp; 173 174 /* boolean value for session group leader */ 175 int leader; 176 177 struct tty_struct *tty; /* NULL if no tty */ 178 179 #ifdef CONFIG_SCHED_AUTOGROUP 180 struct autogroup *autogroup; 181 #endif 182 /* 183 * Cumulative resource counters for dead threads in the group, 184 * and for reaped dead child processes forked by this group. 185 * Live threads maintain their own counters and add to these 186 * in __exit_signal, except for the group leader. 187 */ 188 seqlock_t stats_lock; 189 u64 utime, stime, cutime, cstime; 190 u64 gtime; 191 u64 cgtime; 192 struct prev_cputime prev_cputime; 193 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 194 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 195 unsigned long inblock, oublock, cinblock, coublock; 196 unsigned long maxrss, cmaxrss; 197 struct task_io_accounting ioac; 198 199 /* 200 * Cumulative ns of schedule CPU time fo dead threads in the 201 * group, not including a zombie group leader, (This only differs 202 * from jiffies_to_ns(utime + stime) if sched_clock uses something 203 * other than jiffies.) 204 */ 205 unsigned long long sum_sched_runtime; 206 207 /* 208 * We don't bother to synchronize most readers of this at all, 209 * because there is no reader checking a limit that actually needs 210 * to get both rlim_cur and rlim_max atomically, and either one 211 * alone is a single word that can safely be read normally. 212 * getrlimit/setrlimit use task_lock(current->group_leader) to 213 * protect this instead of the siglock, because they really 214 * have no need to disable irqs. 215 */ 216 struct rlimit rlim[RLIM_NLIMITS]; 217 218 #ifdef CONFIG_BSD_PROCESS_ACCT 219 struct pacct_struct pacct; /* per-process accounting information */ 220 #endif 221 #ifdef CONFIG_TASKSTATS 222 struct taskstats *stats; 223 #endif 224 #ifdef CONFIG_AUDIT 225 unsigned audit_tty; 226 struct tty_audit_buf *tty_audit_buf; 227 #endif 228 229 /* 230 * Thread is the potential origin of an oom condition; kill first on 231 * oom 232 */ 233 bool oom_flag_origin; 234 short oom_score_adj; /* OOM kill score adjustment */ 235 short oom_score_adj_min; /* OOM kill score adjustment min value. 236 * Only settable by CAP_SYS_RESOURCE. */ 237 struct mm_struct *oom_mm; /* recorded mm when the thread group got 238 * killed by the oom killer */ 239 240 struct mutex cred_guard_mutex; /* guard against foreign influences on 241 * credential calculations 242 * (notably. ptrace) 243 * Deprecated do not use in new code. 244 * Use exec_update_lock instead. 245 */ 246 struct rw_semaphore exec_update_lock; /* Held while task_struct is 247 * being updated during exec, 248 * and may have inconsistent 249 * permissions. 250 */ 251 } __randomize_layout; 252 253 /* 254 * Bits in flags field of signal_struct. 255 */ 256 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 257 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 258 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 259 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 260 /* 261 * Pending notifications to parent. 262 */ 263 #define SIGNAL_CLD_STOPPED 0x00000010 264 #define SIGNAL_CLD_CONTINUED 0x00000020 265 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 266 267 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 268 269 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 270 SIGNAL_STOP_CONTINUED) 271 272 static inline void signal_set_stop_flags(struct signal_struct *sig, 273 unsigned int flags) 274 { 275 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 276 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 277 } 278 279 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 280 static inline int signal_group_exit(const struct signal_struct *sig) 281 { 282 return (sig->flags & SIGNAL_GROUP_EXIT) || 283 (sig->group_exit_task != NULL); 284 } 285 286 extern void flush_signals(struct task_struct *); 287 extern void ignore_signals(struct task_struct *); 288 extern void flush_signal_handlers(struct task_struct *, int force_default); 289 extern int dequeue_signal(struct task_struct *task, 290 sigset_t *mask, kernel_siginfo_t *info); 291 292 static inline int kernel_dequeue_signal(void) 293 { 294 struct task_struct *task = current; 295 kernel_siginfo_t __info; 296 int ret; 297 298 spin_lock_irq(&task->sighand->siglock); 299 ret = dequeue_signal(task, &task->blocked, &__info); 300 spin_unlock_irq(&task->sighand->siglock); 301 302 return ret; 303 } 304 305 static inline void kernel_signal_stop(void) 306 { 307 spin_lock_irq(¤t->sighand->siglock); 308 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 309 set_special_state(TASK_STOPPED); 310 spin_unlock_irq(¤t->sighand->siglock); 311 312 schedule(); 313 } 314 #ifdef __ia64__ 315 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 316 #else 317 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 318 #endif 319 320 int force_sig_fault_to_task(int sig, int code, void __user *addr 321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 322 , struct task_struct *t); 323 int force_sig_fault(int sig, int code, void __user *addr 324 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 325 int send_sig_fault(int sig, int code, void __user *addr 326 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 327 , struct task_struct *t); 328 329 int force_sig_mceerr(int code, void __user *, short); 330 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 331 332 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 333 int force_sig_pkuerr(void __user *addr, u32 pkey); 334 int force_sig_perf(void __user *addr, u32 type, u64 sig_data); 335 336 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 337 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno); 338 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 339 struct task_struct *t); 340 int force_sig_seccomp(int syscall, int reason, bool force_coredump); 341 342 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 343 extern void force_sigsegv(int sig); 344 extern int force_sig_info(struct kernel_siginfo *); 345 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 346 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 347 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 348 const struct cred *); 349 extern int kill_pgrp(struct pid *pid, int sig, int priv); 350 extern int kill_pid(struct pid *pid, int sig, int priv); 351 extern __must_check bool do_notify_parent(struct task_struct *, int); 352 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 353 extern void force_sig(int); 354 extern void force_fatal_sig(int); 355 extern void force_exit_sig(int); 356 extern int send_sig(int, struct task_struct *, int); 357 extern int zap_other_threads(struct task_struct *p); 358 extern struct sigqueue *sigqueue_alloc(void); 359 extern void sigqueue_free(struct sigqueue *); 360 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 361 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 362 363 static inline int restart_syscall(void) 364 { 365 set_tsk_thread_flag(current, TIF_SIGPENDING); 366 return -ERESTARTNOINTR; 367 } 368 369 static inline int task_sigpending(struct task_struct *p) 370 { 371 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 372 } 373 374 static inline int signal_pending(struct task_struct *p) 375 { 376 /* 377 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 378 * behavior in terms of ensuring that we break out of wait loops 379 * so that notify signal callbacks can be processed. 380 */ 381 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 382 return 1; 383 return task_sigpending(p); 384 } 385 386 static inline int __fatal_signal_pending(struct task_struct *p) 387 { 388 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 389 } 390 391 static inline int fatal_signal_pending(struct task_struct *p) 392 { 393 return task_sigpending(p) && __fatal_signal_pending(p); 394 } 395 396 static inline int signal_pending_state(unsigned int state, struct task_struct *p) 397 { 398 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 399 return 0; 400 if (!signal_pending(p)) 401 return 0; 402 403 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 404 } 405 406 /* 407 * This should only be used in fault handlers to decide whether we 408 * should stop the current fault routine to handle the signals 409 * instead, especially with the case where we've got interrupted with 410 * a VM_FAULT_RETRY. 411 */ 412 static inline bool fault_signal_pending(vm_fault_t fault_flags, 413 struct pt_regs *regs) 414 { 415 return unlikely((fault_flags & VM_FAULT_RETRY) && 416 (fatal_signal_pending(current) || 417 (user_mode(regs) && signal_pending(current)))); 418 } 419 420 /* 421 * Reevaluate whether the task has signals pending delivery. 422 * Wake the task if so. 423 * This is required every time the blocked sigset_t changes. 424 * callers must hold sighand->siglock. 425 */ 426 extern void recalc_sigpending_and_wake(struct task_struct *t); 427 extern void recalc_sigpending(void); 428 extern void calculate_sigpending(void); 429 430 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 431 432 static inline void signal_wake_up(struct task_struct *t, bool resume) 433 { 434 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 435 } 436 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 437 { 438 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 439 } 440 441 void task_join_group_stop(struct task_struct *task); 442 443 #ifdef TIF_RESTORE_SIGMASK 444 /* 445 * Legacy restore_sigmask accessors. These are inefficient on 446 * SMP architectures because they require atomic operations. 447 */ 448 449 /** 450 * set_restore_sigmask() - make sure saved_sigmask processing gets done 451 * 452 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 453 * will run before returning to user mode, to process the flag. For 454 * all callers, TIF_SIGPENDING is already set or it's no harm to set 455 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 456 * arch code will notice on return to user mode, in case those bits 457 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 458 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 459 */ 460 static inline void set_restore_sigmask(void) 461 { 462 set_thread_flag(TIF_RESTORE_SIGMASK); 463 } 464 465 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 466 { 467 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 468 } 469 470 static inline void clear_restore_sigmask(void) 471 { 472 clear_thread_flag(TIF_RESTORE_SIGMASK); 473 } 474 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 475 { 476 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 477 } 478 static inline bool test_restore_sigmask(void) 479 { 480 return test_thread_flag(TIF_RESTORE_SIGMASK); 481 } 482 static inline bool test_and_clear_restore_sigmask(void) 483 { 484 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 485 } 486 487 #else /* TIF_RESTORE_SIGMASK */ 488 489 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 490 static inline void set_restore_sigmask(void) 491 { 492 current->restore_sigmask = true; 493 } 494 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 495 { 496 task->restore_sigmask = false; 497 } 498 static inline void clear_restore_sigmask(void) 499 { 500 current->restore_sigmask = false; 501 } 502 static inline bool test_restore_sigmask(void) 503 { 504 return current->restore_sigmask; 505 } 506 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 507 { 508 return task->restore_sigmask; 509 } 510 static inline bool test_and_clear_restore_sigmask(void) 511 { 512 if (!current->restore_sigmask) 513 return false; 514 current->restore_sigmask = false; 515 return true; 516 } 517 #endif 518 519 static inline void restore_saved_sigmask(void) 520 { 521 if (test_and_clear_restore_sigmask()) 522 __set_current_blocked(¤t->saved_sigmask); 523 } 524 525 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 526 527 static inline void restore_saved_sigmask_unless(bool interrupted) 528 { 529 if (interrupted) 530 WARN_ON(!signal_pending(current)); 531 else 532 restore_saved_sigmask(); 533 } 534 535 static inline sigset_t *sigmask_to_save(void) 536 { 537 sigset_t *res = ¤t->blocked; 538 if (unlikely(test_restore_sigmask())) 539 res = ¤t->saved_sigmask; 540 return res; 541 } 542 543 static inline int kill_cad_pid(int sig, int priv) 544 { 545 return kill_pid(cad_pid, sig, priv); 546 } 547 548 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 549 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 550 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 551 552 static inline int __on_sig_stack(unsigned long sp) 553 { 554 #ifdef CONFIG_STACK_GROWSUP 555 return sp >= current->sas_ss_sp && 556 sp - current->sas_ss_sp < current->sas_ss_size; 557 #else 558 return sp > current->sas_ss_sp && 559 sp - current->sas_ss_sp <= current->sas_ss_size; 560 #endif 561 } 562 563 /* 564 * True if we are on the alternate signal stack. 565 */ 566 static inline int on_sig_stack(unsigned long sp) 567 { 568 /* 569 * If the signal stack is SS_AUTODISARM then, by construction, we 570 * can't be on the signal stack unless user code deliberately set 571 * SS_AUTODISARM when we were already on it. 572 * 573 * This improves reliability: if user state gets corrupted such that 574 * the stack pointer points very close to the end of the signal stack, 575 * then this check will enable the signal to be handled anyway. 576 */ 577 if (current->sas_ss_flags & SS_AUTODISARM) 578 return 0; 579 580 return __on_sig_stack(sp); 581 } 582 583 static inline int sas_ss_flags(unsigned long sp) 584 { 585 if (!current->sas_ss_size) 586 return SS_DISABLE; 587 588 return on_sig_stack(sp) ? SS_ONSTACK : 0; 589 } 590 591 static inline void sas_ss_reset(struct task_struct *p) 592 { 593 p->sas_ss_sp = 0; 594 p->sas_ss_size = 0; 595 p->sas_ss_flags = SS_DISABLE; 596 } 597 598 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 599 { 600 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 601 #ifdef CONFIG_STACK_GROWSUP 602 return current->sas_ss_sp; 603 #else 604 return current->sas_ss_sp + current->sas_ss_size; 605 #endif 606 return sp; 607 } 608 609 extern void __cleanup_sighand(struct sighand_struct *); 610 extern void flush_itimer_signals(void); 611 612 #define tasklist_empty() \ 613 list_empty(&init_task.tasks) 614 615 #define next_task(p) \ 616 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 617 618 #define for_each_process(p) \ 619 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 620 621 extern bool current_is_single_threaded(void); 622 623 /* 624 * Careful: do_each_thread/while_each_thread is a double loop so 625 * 'break' will not work as expected - use goto instead. 626 */ 627 #define do_each_thread(g, t) \ 628 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 629 630 #define while_each_thread(g, t) \ 631 while ((t = next_thread(t)) != g) 632 633 #define __for_each_thread(signal, t) \ 634 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 635 636 #define for_each_thread(p, t) \ 637 __for_each_thread((p)->signal, t) 638 639 /* Careful: this is a double loop, 'break' won't work as expected. */ 640 #define for_each_process_thread(p, t) \ 641 for_each_process(p) for_each_thread(p, t) 642 643 typedef int (*proc_visitor)(struct task_struct *p, void *data); 644 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 645 646 static inline 647 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 648 { 649 struct pid *pid; 650 if (type == PIDTYPE_PID) 651 pid = task_pid(task); 652 else 653 pid = task->signal->pids[type]; 654 return pid; 655 } 656 657 static inline struct pid *task_tgid(struct task_struct *task) 658 { 659 return task->signal->pids[PIDTYPE_TGID]; 660 } 661 662 /* 663 * Without tasklist or RCU lock it is not safe to dereference 664 * the result of task_pgrp/task_session even if task == current, 665 * we can race with another thread doing sys_setsid/sys_setpgid. 666 */ 667 static inline struct pid *task_pgrp(struct task_struct *task) 668 { 669 return task->signal->pids[PIDTYPE_PGID]; 670 } 671 672 static inline struct pid *task_session(struct task_struct *task) 673 { 674 return task->signal->pids[PIDTYPE_SID]; 675 } 676 677 static inline int get_nr_threads(struct task_struct *task) 678 { 679 return task->signal->nr_threads; 680 } 681 682 static inline bool thread_group_leader(struct task_struct *p) 683 { 684 return p->exit_signal >= 0; 685 } 686 687 static inline 688 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 689 { 690 return p1->signal == p2->signal; 691 } 692 693 static inline struct task_struct *next_thread(const struct task_struct *p) 694 { 695 return list_entry_rcu(p->thread_group.next, 696 struct task_struct, thread_group); 697 } 698 699 static inline int thread_group_empty(struct task_struct *p) 700 { 701 return list_empty(&p->thread_group); 702 } 703 704 #define delay_group_leader(p) \ 705 (thread_group_leader(p) && !thread_group_empty(p)) 706 707 extern bool thread_group_exited(struct pid *pid); 708 709 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 710 unsigned long *flags); 711 712 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 713 unsigned long *flags) 714 { 715 struct sighand_struct *ret; 716 717 ret = __lock_task_sighand(task, flags); 718 (void)__cond_lock(&task->sighand->siglock, ret); 719 return ret; 720 } 721 722 static inline void unlock_task_sighand(struct task_struct *task, 723 unsigned long *flags) 724 { 725 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 726 } 727 728 #ifdef CONFIG_LOCKDEP 729 extern void lockdep_assert_task_sighand_held(struct task_struct *task); 730 #else 731 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { } 732 #endif 733 734 static inline unsigned long task_rlimit(const struct task_struct *task, 735 unsigned int limit) 736 { 737 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 738 } 739 740 static inline unsigned long task_rlimit_max(const struct task_struct *task, 741 unsigned int limit) 742 { 743 return READ_ONCE(task->signal->rlim[limit].rlim_max); 744 } 745 746 static inline unsigned long rlimit(unsigned int limit) 747 { 748 return task_rlimit(current, limit); 749 } 750 751 static inline unsigned long rlimit_max(unsigned int limit) 752 { 753 return task_rlimit_max(current, limit); 754 } 755 756 #endif /* _LINUX_SCHED_SIGNAL_H */ 757