1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_SIGNAL_H 3 #define _LINUX_SCHED_SIGNAL_H 4 5 #include <linux/rculist.h> 6 #include <linux/signal.h> 7 #include <linux/sched.h> 8 #include <linux/sched/jobctl.h> 9 #include <linux/sched/task.h> 10 #include <linux/cred.h> 11 #include <linux/refcount.h> 12 #include <linux/posix-timers.h> 13 #include <linux/mm_types.h> 14 #include <asm/ptrace.h> 15 16 /* 17 * Types defining task->signal and task->sighand and APIs using them: 18 */ 19 20 struct sighand_struct { 21 spinlock_t siglock; 22 refcount_t count; 23 wait_queue_head_t signalfd_wqh; 24 struct k_sigaction action[_NSIG]; 25 }; 26 27 /* 28 * Per-process accounting stats: 29 */ 30 struct pacct_struct { 31 int ac_flag; 32 long ac_exitcode; 33 unsigned long ac_mem; 34 u64 ac_utime, ac_stime; 35 unsigned long ac_minflt, ac_majflt; 36 }; 37 38 struct cpu_itimer { 39 u64 expires; 40 u64 incr; 41 }; 42 43 /* 44 * This is the atomic variant of task_cputime, which can be used for 45 * storing and updating task_cputime statistics without locking. 46 */ 47 struct task_cputime_atomic { 48 atomic64_t utime; 49 atomic64_t stime; 50 atomic64_t sum_exec_runtime; 51 }; 52 53 #define INIT_CPUTIME_ATOMIC \ 54 (struct task_cputime_atomic) { \ 55 .utime = ATOMIC64_INIT(0), \ 56 .stime = ATOMIC64_INIT(0), \ 57 .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59 /** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66 struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68 }; 69 70 struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73 }; 74 75 /* 76 * NOTE! "signal_struct" does not have its own 77 * locking, because a shared signal_struct always 78 * implies a shared sighand_struct, so locking 79 * sighand_struct is always a proper superset of 80 * the locking of signal_struct. 81 */ 82 struct signal_struct { 83 refcount_t sigcnt; 84 atomic_t live; 85 int nr_threads; 86 struct list_head thread_head; 87 88 wait_queue_head_t wait_chldexit; /* for wait4() */ 89 90 /* current thread group signal load-balancing target: */ 91 struct task_struct *curr_target; 92 93 /* shared signal handling: */ 94 struct sigpending shared_pending; 95 96 /* For collecting multiprocess signals during fork */ 97 struct hlist_head multiprocess; 98 99 /* thread group exit support */ 100 int group_exit_code; 101 /* overloaded: 102 * - notify group_exit_task when ->count is equal to notify_count 103 * - everyone except group_exit_task is stopped during signal delivery 104 * of fatal signals, group_exit_task processes the signal. 105 */ 106 int notify_count; 107 struct task_struct *group_exit_task; 108 109 /* thread group stop support, overloads group_exit_code too */ 110 int group_stop_count; 111 unsigned int flags; /* see SIGNAL_* flags below */ 112 113 /* 114 * PR_SET_CHILD_SUBREAPER marks a process, like a service 115 * manager, to re-parent orphan (double-forking) child processes 116 * to this process instead of 'init'. The service manager is 117 * able to receive SIGCHLD signals and is able to investigate 118 * the process until it calls wait(). All children of this 119 * process will inherit a flag if they should look for a 120 * child_subreaper process at exit. 121 */ 122 unsigned int is_child_subreaper:1; 123 unsigned int has_child_subreaper:1; 124 125 #ifdef CONFIG_POSIX_TIMERS 126 127 /* POSIX.1b Interval Timers */ 128 int posix_timer_id; 129 struct list_head posix_timers; 130 131 /* ITIMER_REAL timer for the process */ 132 struct hrtimer real_timer; 133 ktime_t it_real_incr; 134 135 /* 136 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 137 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 138 * values are defined to 0 and 1 respectively 139 */ 140 struct cpu_itimer it[2]; 141 142 /* 143 * Thread group totals for process CPU timers. 144 * See thread_group_cputimer(), et al, for details. 145 */ 146 struct thread_group_cputimer cputimer; 147 148 #endif 149 /* Empty if CONFIG_POSIX_TIMERS=n */ 150 struct posix_cputimers posix_cputimers; 151 152 /* PID/PID hash table linkage. */ 153 struct pid *pids[PIDTYPE_MAX]; 154 155 #ifdef CONFIG_NO_HZ_FULL 156 atomic_t tick_dep_mask; 157 #endif 158 159 struct pid *tty_old_pgrp; 160 161 /* boolean value for session group leader */ 162 int leader; 163 164 struct tty_struct *tty; /* NULL if no tty */ 165 166 #ifdef CONFIG_SCHED_AUTOGROUP 167 struct autogroup *autogroup; 168 #endif 169 /* 170 * Cumulative resource counters for dead threads in the group, 171 * and for reaped dead child processes forked by this group. 172 * Live threads maintain their own counters and add to these 173 * in __exit_signal, except for the group leader. 174 */ 175 seqlock_t stats_lock; 176 u64 utime, stime, cutime, cstime; 177 u64 gtime; 178 u64 cgtime; 179 struct prev_cputime prev_cputime; 180 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 181 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 182 unsigned long inblock, oublock, cinblock, coublock; 183 unsigned long maxrss, cmaxrss; 184 struct task_io_accounting ioac; 185 186 /* 187 * Cumulative ns of schedule CPU time fo dead threads in the 188 * group, not including a zombie group leader, (This only differs 189 * from jiffies_to_ns(utime + stime) if sched_clock uses something 190 * other than jiffies.) 191 */ 192 unsigned long long sum_sched_runtime; 193 194 /* 195 * We don't bother to synchronize most readers of this at all, 196 * because there is no reader checking a limit that actually needs 197 * to get both rlim_cur and rlim_max atomically, and either one 198 * alone is a single word that can safely be read normally. 199 * getrlimit/setrlimit use task_lock(current->group_leader) to 200 * protect this instead of the siglock, because they really 201 * have no need to disable irqs. 202 */ 203 struct rlimit rlim[RLIM_NLIMITS]; 204 205 #ifdef CONFIG_BSD_PROCESS_ACCT 206 struct pacct_struct pacct; /* per-process accounting information */ 207 #endif 208 #ifdef CONFIG_TASKSTATS 209 struct taskstats *stats; 210 #endif 211 #ifdef CONFIG_AUDIT 212 unsigned audit_tty; 213 struct tty_audit_buf *tty_audit_buf; 214 #endif 215 216 /* 217 * Thread is the potential origin of an oom condition; kill first on 218 * oom 219 */ 220 bool oom_flag_origin; 221 short oom_score_adj; /* OOM kill score adjustment */ 222 short oom_score_adj_min; /* OOM kill score adjustment min value. 223 * Only settable by CAP_SYS_RESOURCE. */ 224 struct mm_struct *oom_mm; /* recorded mm when the thread group got 225 * killed by the oom killer */ 226 227 struct mutex cred_guard_mutex; /* guard against foreign influences on 228 * credential calculations 229 * (notably. ptrace) 230 * Deprecated do not use in new code. 231 * Use exec_update_lock instead. 232 */ 233 struct rw_semaphore exec_update_lock; /* Held while task_struct is 234 * being updated during exec, 235 * and may have inconsistent 236 * permissions. 237 */ 238 } __randomize_layout; 239 240 /* 241 * Bits in flags field of signal_struct. 242 */ 243 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 244 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 245 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 246 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 247 /* 248 * Pending notifications to parent. 249 */ 250 #define SIGNAL_CLD_STOPPED 0x00000010 251 #define SIGNAL_CLD_CONTINUED 0x00000020 252 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 253 254 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 255 256 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 257 SIGNAL_STOP_CONTINUED) 258 259 static inline void signal_set_stop_flags(struct signal_struct *sig, 260 unsigned int flags) 261 { 262 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 263 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 264 } 265 266 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 267 static inline int signal_group_exit(const struct signal_struct *sig) 268 { 269 return (sig->flags & SIGNAL_GROUP_EXIT) || 270 (sig->group_exit_task != NULL); 271 } 272 273 extern void flush_signals(struct task_struct *); 274 extern void ignore_signals(struct task_struct *); 275 extern void flush_signal_handlers(struct task_struct *, int force_default); 276 extern int dequeue_signal(struct task_struct *task, 277 sigset_t *mask, kernel_siginfo_t *info); 278 279 static inline int kernel_dequeue_signal(void) 280 { 281 struct task_struct *task = current; 282 kernel_siginfo_t __info; 283 int ret; 284 285 spin_lock_irq(&task->sighand->siglock); 286 ret = dequeue_signal(task, &task->blocked, &__info); 287 spin_unlock_irq(&task->sighand->siglock); 288 289 return ret; 290 } 291 292 static inline void kernel_signal_stop(void) 293 { 294 spin_lock_irq(¤t->sighand->siglock); 295 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 296 set_special_state(TASK_STOPPED); 297 spin_unlock_irq(¤t->sighand->siglock); 298 299 schedule(); 300 } 301 #ifdef __ARCH_SI_TRAPNO 302 # define ___ARCH_SI_TRAPNO(_a1) , _a1 303 #else 304 # define ___ARCH_SI_TRAPNO(_a1) 305 #endif 306 #ifdef __ia64__ 307 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 308 #else 309 # define ___ARCH_SI_IA64(_a1, _a2, _a3) 310 #endif 311 312 int force_sig_fault_to_task(int sig, int code, void __user *addr 313 ___ARCH_SI_TRAPNO(int trapno) 314 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 315 , struct task_struct *t); 316 int force_sig_fault(int sig, int code, void __user *addr 317 ___ARCH_SI_TRAPNO(int trapno) 318 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 319 int send_sig_fault(int sig, int code, void __user *addr 320 ___ARCH_SI_TRAPNO(int trapno) 321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 322 , struct task_struct *t); 323 324 int force_sig_mceerr(int code, void __user *, short); 325 int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 326 327 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 328 int force_sig_pkuerr(void __user *addr, u32 pkey); 329 int force_sig_perf(void __user *addr, u32 type, u64 sig_data); 330 331 int force_sig_ptrace_errno_trap(int errno, void __user *addr); 332 333 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 334 extern void force_sigsegv(int sig); 335 extern int force_sig_info(struct kernel_siginfo *); 336 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 337 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 338 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, 339 const struct cred *); 340 extern int kill_pgrp(struct pid *pid, int sig, int priv); 341 extern int kill_pid(struct pid *pid, int sig, int priv); 342 extern __must_check bool do_notify_parent(struct task_struct *, int); 343 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 344 extern void force_sig(int); 345 extern int send_sig(int, struct task_struct *, int); 346 extern int zap_other_threads(struct task_struct *p); 347 extern struct sigqueue *sigqueue_alloc(void); 348 extern void sigqueue_free(struct sigqueue *); 349 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 350 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 351 352 static inline int restart_syscall(void) 353 { 354 set_tsk_thread_flag(current, TIF_SIGPENDING); 355 return -ERESTARTNOINTR; 356 } 357 358 static inline int task_sigpending(struct task_struct *p) 359 { 360 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 361 } 362 363 static inline int signal_pending(struct task_struct *p) 364 { 365 /* 366 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 367 * behavior in terms of ensuring that we break out of wait loops 368 * so that notify signal callbacks can be processed. 369 */ 370 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) 371 return 1; 372 return task_sigpending(p); 373 } 374 375 static inline int __fatal_signal_pending(struct task_struct *p) 376 { 377 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 378 } 379 380 static inline int fatal_signal_pending(struct task_struct *p) 381 { 382 return task_sigpending(p) && __fatal_signal_pending(p); 383 } 384 385 static inline int signal_pending_state(long state, struct task_struct *p) 386 { 387 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 388 return 0; 389 if (!signal_pending(p)) 390 return 0; 391 392 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 393 } 394 395 /* 396 * This should only be used in fault handlers to decide whether we 397 * should stop the current fault routine to handle the signals 398 * instead, especially with the case where we've got interrupted with 399 * a VM_FAULT_RETRY. 400 */ 401 static inline bool fault_signal_pending(vm_fault_t fault_flags, 402 struct pt_regs *regs) 403 { 404 return unlikely((fault_flags & VM_FAULT_RETRY) && 405 (fatal_signal_pending(current) || 406 (user_mode(regs) && signal_pending(current)))); 407 } 408 409 /* 410 * Reevaluate whether the task has signals pending delivery. 411 * Wake the task if so. 412 * This is required every time the blocked sigset_t changes. 413 * callers must hold sighand->siglock. 414 */ 415 extern void recalc_sigpending_and_wake(struct task_struct *t); 416 extern void recalc_sigpending(void); 417 extern void calculate_sigpending(void); 418 419 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 420 421 static inline void signal_wake_up(struct task_struct *t, bool resume) 422 { 423 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 424 } 425 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 426 { 427 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 428 } 429 430 void task_join_group_stop(struct task_struct *task); 431 432 #ifdef TIF_RESTORE_SIGMASK 433 /* 434 * Legacy restore_sigmask accessors. These are inefficient on 435 * SMP architectures because they require atomic operations. 436 */ 437 438 /** 439 * set_restore_sigmask() - make sure saved_sigmask processing gets done 440 * 441 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 442 * will run before returning to user mode, to process the flag. For 443 * all callers, TIF_SIGPENDING is already set or it's no harm to set 444 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 445 * arch code will notice on return to user mode, in case those bits 446 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 447 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 448 */ 449 static inline void set_restore_sigmask(void) 450 { 451 set_thread_flag(TIF_RESTORE_SIGMASK); 452 } 453 454 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 455 { 456 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 457 } 458 459 static inline void clear_restore_sigmask(void) 460 { 461 clear_thread_flag(TIF_RESTORE_SIGMASK); 462 } 463 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 464 { 465 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 466 } 467 static inline bool test_restore_sigmask(void) 468 { 469 return test_thread_flag(TIF_RESTORE_SIGMASK); 470 } 471 static inline bool test_and_clear_restore_sigmask(void) 472 { 473 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 474 } 475 476 #else /* TIF_RESTORE_SIGMASK */ 477 478 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 479 static inline void set_restore_sigmask(void) 480 { 481 current->restore_sigmask = true; 482 } 483 static inline void clear_tsk_restore_sigmask(struct task_struct *task) 484 { 485 task->restore_sigmask = false; 486 } 487 static inline void clear_restore_sigmask(void) 488 { 489 current->restore_sigmask = false; 490 } 491 static inline bool test_restore_sigmask(void) 492 { 493 return current->restore_sigmask; 494 } 495 static inline bool test_tsk_restore_sigmask(struct task_struct *task) 496 { 497 return task->restore_sigmask; 498 } 499 static inline bool test_and_clear_restore_sigmask(void) 500 { 501 if (!current->restore_sigmask) 502 return false; 503 current->restore_sigmask = false; 504 return true; 505 } 506 #endif 507 508 static inline void restore_saved_sigmask(void) 509 { 510 if (test_and_clear_restore_sigmask()) 511 __set_current_blocked(¤t->saved_sigmask); 512 } 513 514 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 515 516 static inline void restore_saved_sigmask_unless(bool interrupted) 517 { 518 if (interrupted) 519 WARN_ON(!signal_pending(current)); 520 else 521 restore_saved_sigmask(); 522 } 523 524 static inline sigset_t *sigmask_to_save(void) 525 { 526 sigset_t *res = ¤t->blocked; 527 if (unlikely(test_restore_sigmask())) 528 res = ¤t->saved_sigmask; 529 return res; 530 } 531 532 static inline int kill_cad_pid(int sig, int priv) 533 { 534 return kill_pid(cad_pid, sig, priv); 535 } 536 537 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 538 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) 539 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) 540 541 /* 542 * True if we are on the alternate signal stack. 543 */ 544 static inline int on_sig_stack(unsigned long sp) 545 { 546 /* 547 * If the signal stack is SS_AUTODISARM then, by construction, we 548 * can't be on the signal stack unless user code deliberately set 549 * SS_AUTODISARM when we were already on it. 550 * 551 * This improves reliability: if user state gets corrupted such that 552 * the stack pointer points very close to the end of the signal stack, 553 * then this check will enable the signal to be handled anyway. 554 */ 555 if (current->sas_ss_flags & SS_AUTODISARM) 556 return 0; 557 558 #ifdef CONFIG_STACK_GROWSUP 559 return sp >= current->sas_ss_sp && 560 sp - current->sas_ss_sp < current->sas_ss_size; 561 #else 562 return sp > current->sas_ss_sp && 563 sp - current->sas_ss_sp <= current->sas_ss_size; 564 #endif 565 } 566 567 static inline int sas_ss_flags(unsigned long sp) 568 { 569 if (!current->sas_ss_size) 570 return SS_DISABLE; 571 572 return on_sig_stack(sp) ? SS_ONSTACK : 0; 573 } 574 575 static inline void sas_ss_reset(struct task_struct *p) 576 { 577 p->sas_ss_sp = 0; 578 p->sas_ss_size = 0; 579 p->sas_ss_flags = SS_DISABLE; 580 } 581 582 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 583 { 584 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 585 #ifdef CONFIG_STACK_GROWSUP 586 return current->sas_ss_sp; 587 #else 588 return current->sas_ss_sp + current->sas_ss_size; 589 #endif 590 return sp; 591 } 592 593 extern void __cleanup_sighand(struct sighand_struct *); 594 extern void flush_itimer_signals(void); 595 596 #define tasklist_empty() \ 597 list_empty(&init_task.tasks) 598 599 #define next_task(p) \ 600 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 601 602 #define for_each_process(p) \ 603 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 604 605 extern bool current_is_single_threaded(void); 606 607 /* 608 * Careful: do_each_thread/while_each_thread is a double loop so 609 * 'break' will not work as expected - use goto instead. 610 */ 611 #define do_each_thread(g, t) \ 612 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 613 614 #define while_each_thread(g, t) \ 615 while ((t = next_thread(t)) != g) 616 617 #define __for_each_thread(signal, t) \ 618 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 619 620 #define for_each_thread(p, t) \ 621 __for_each_thread((p)->signal, t) 622 623 /* Careful: this is a double loop, 'break' won't work as expected. */ 624 #define for_each_process_thread(p, t) \ 625 for_each_process(p) for_each_thread(p, t) 626 627 typedef int (*proc_visitor)(struct task_struct *p, void *data); 628 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 629 630 static inline 631 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 632 { 633 struct pid *pid; 634 if (type == PIDTYPE_PID) 635 pid = task_pid(task); 636 else 637 pid = task->signal->pids[type]; 638 return pid; 639 } 640 641 static inline struct pid *task_tgid(struct task_struct *task) 642 { 643 return task->signal->pids[PIDTYPE_TGID]; 644 } 645 646 /* 647 * Without tasklist or RCU lock it is not safe to dereference 648 * the result of task_pgrp/task_session even if task == current, 649 * we can race with another thread doing sys_setsid/sys_setpgid. 650 */ 651 static inline struct pid *task_pgrp(struct task_struct *task) 652 { 653 return task->signal->pids[PIDTYPE_PGID]; 654 } 655 656 static inline struct pid *task_session(struct task_struct *task) 657 { 658 return task->signal->pids[PIDTYPE_SID]; 659 } 660 661 static inline int get_nr_threads(struct task_struct *task) 662 { 663 return task->signal->nr_threads; 664 } 665 666 static inline bool thread_group_leader(struct task_struct *p) 667 { 668 return p->exit_signal >= 0; 669 } 670 671 static inline 672 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 673 { 674 return p1->signal == p2->signal; 675 } 676 677 static inline struct task_struct *next_thread(const struct task_struct *p) 678 { 679 return list_entry_rcu(p->thread_group.next, 680 struct task_struct, thread_group); 681 } 682 683 static inline int thread_group_empty(struct task_struct *p) 684 { 685 return list_empty(&p->thread_group); 686 } 687 688 #define delay_group_leader(p) \ 689 (thread_group_leader(p) && !thread_group_empty(p)) 690 691 extern bool thread_group_exited(struct pid *pid); 692 693 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, 694 unsigned long *flags); 695 696 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, 697 unsigned long *flags) 698 { 699 struct sighand_struct *ret; 700 701 ret = __lock_task_sighand(task, flags); 702 (void)__cond_lock(&task->sighand->siglock, ret); 703 return ret; 704 } 705 706 static inline void unlock_task_sighand(struct task_struct *task, 707 unsigned long *flags) 708 { 709 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 710 } 711 712 static inline unsigned long task_rlimit(const struct task_struct *task, 713 unsigned int limit) 714 { 715 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 716 } 717 718 static inline unsigned long task_rlimit_max(const struct task_struct *task, 719 unsigned int limit) 720 { 721 return READ_ONCE(task->signal->rlim[limit].rlim_max); 722 } 723 724 static inline unsigned long rlimit(unsigned int limit) 725 { 726 return task_rlimit(current, limit); 727 } 728 729 static inline unsigned long rlimit_max(unsigned int limit) 730 { 731 return task_rlimit_max(current, limit); 732 } 733 734 #endif /* _LINUX_SCHED_SIGNAL_H */ 735