xref: /linux/include/linux/sched.h (revision fea966f7564205fcf5919af9bde031e753419c96)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
27 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
28 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
29 #define CLONE_NEWNET		0x40000000	/* New network namespace */
30 #define CLONE_IO		0x80000000	/* Clone io context */
31 
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL		0
36 #define SCHED_FIFO		1
37 #define SCHED_RR		2
38 #define SCHED_BATCH		3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE		5
41 
42 #ifdef __KERNEL__
43 
44 struct sched_param {
45 	int sched_priority;
46 };
47 
48 #include <asm/param.h>	/* for HZ */
49 
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62 
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67 
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rculist.h>
81 #include <linux/rtmutex.h>
82 
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 
93 #include <asm/processor.h>
94 
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct fs_struct;
100 struct bts_context;
101 struct perf_counter_context;
102 
103 /*
104  * List of flags we want to share for kernel threads,
105  * if only because they are not used by them anyway.
106  */
107 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
108 
109 /*
110  * These are the constant used to fake the fixed-point load-average
111  * counting. Some notes:
112  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
113  *    a load-average precision of 10 bits integer + 11 bits fractional
114  *  - if you want to count load-averages more often, you need more
115  *    precision, or rounding will get you. With 2-second counting freq,
116  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
117  *    11 bit fractions.
118  */
119 extern unsigned long avenrun[];		/* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
121 
122 #define FSHIFT		11		/* nr of bits of precision */
123 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
124 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
125 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5		2014		/* 1/exp(5sec/5min) */
127 #define EXP_15		2037		/* 1/exp(5sec/15min) */
128 
129 #define CALC_LOAD(load,exp,n) \
130 	load *= exp; \
131 	load += n*(FIXED_1-exp); \
132 	load >>= FSHIFT;
133 
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern void calc_global_load(void);
142 extern u64 cpu_nr_migrations(int cpu);
143 
144 extern unsigned long get_parent_ip(unsigned long addr);
145 
146 struct seq_file;
147 struct cfs_rq;
148 struct task_group;
149 #ifdef CONFIG_SCHED_DEBUG
150 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
151 extern void proc_sched_set_task(struct task_struct *p);
152 extern void
153 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
154 #else
155 static inline void
156 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
157 {
158 }
159 static inline void proc_sched_set_task(struct task_struct *p)
160 {
161 }
162 static inline void
163 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
164 {
165 }
166 #endif
167 
168 extern unsigned long long time_sync_thresh;
169 
170 /*
171  * Task state bitmask. NOTE! These bits are also
172  * encoded in fs/proc/array.c: get_task_state().
173  *
174  * We have two separate sets of flags: task->state
175  * is about runnability, while task->exit_state are
176  * about the task exiting. Confusing, but this way
177  * modifying one set can't modify the other one by
178  * mistake.
179  */
180 #define TASK_RUNNING		0
181 #define TASK_INTERRUPTIBLE	1
182 #define TASK_UNINTERRUPTIBLE	2
183 #define __TASK_STOPPED		4
184 #define __TASK_TRACED		8
185 /* in tsk->exit_state */
186 #define EXIT_ZOMBIE		16
187 #define EXIT_DEAD		32
188 /* in tsk->state again */
189 #define TASK_DEAD		64
190 #define TASK_WAKEKILL		128
191 
192 /* Convenience macros for the sake of set_task_state */
193 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
194 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
195 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
196 
197 /* Convenience macros for the sake of wake_up */
198 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
199 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
200 
201 /* get_task_state() */
202 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
203 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
204 				 __TASK_TRACED)
205 
206 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
207 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
208 #define task_is_stopped_or_traced(task)	\
209 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
210 #define task_contributes_to_load(task)	\
211 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
212 				 (task->flags & PF_FREEZING) == 0)
213 
214 #define __set_task_state(tsk, state_value)		\
215 	do { (tsk)->state = (state_value); } while (0)
216 #define set_task_state(tsk, state_value)		\
217 	set_mb((tsk)->state, (state_value))
218 
219 /*
220  * set_current_state() includes a barrier so that the write of current->state
221  * is correctly serialised wrt the caller's subsequent test of whether to
222  * actually sleep:
223  *
224  *	set_current_state(TASK_UNINTERRUPTIBLE);
225  *	if (do_i_need_to_sleep())
226  *		schedule();
227  *
228  * If the caller does not need such serialisation then use __set_current_state()
229  */
230 #define __set_current_state(state_value)			\
231 	do { current->state = (state_value); } while (0)
232 #define set_current_state(state_value)		\
233 	set_mb(current->state, (state_value))
234 
235 /* Task command name length */
236 #define TASK_COMM_LEN 16
237 
238 #include <linux/spinlock.h>
239 
240 /*
241  * This serializes "schedule()" and also protects
242  * the run-queue from deletions/modifications (but
243  * _adding_ to the beginning of the run-queue has
244  * a separate lock).
245  */
246 extern rwlock_t tasklist_lock;
247 extern spinlock_t mmlist_lock;
248 
249 struct task_struct;
250 
251 extern void sched_init(void);
252 extern void sched_init_smp(void);
253 extern asmlinkage void schedule_tail(struct task_struct *prev);
254 extern void init_idle(struct task_struct *idle, int cpu);
255 extern void init_idle_bootup_task(struct task_struct *idle);
256 
257 extern int runqueue_is_locked(void);
258 extern void task_rq_unlock_wait(struct task_struct *p);
259 
260 extern cpumask_var_t nohz_cpu_mask;
261 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
262 extern int select_nohz_load_balancer(int cpu);
263 extern int get_nohz_load_balancer(void);
264 #else
265 static inline int select_nohz_load_balancer(int cpu)
266 {
267 	return 0;
268 }
269 #endif
270 
271 /*
272  * Only dump TASK_* tasks. (0 for all tasks)
273  */
274 extern void show_state_filter(unsigned long state_filter);
275 
276 static inline void show_state(void)
277 {
278 	show_state_filter(0);
279 }
280 
281 extern void show_regs(struct pt_regs *);
282 
283 /*
284  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
285  * task), SP is the stack pointer of the first frame that should be shown in the back
286  * trace (or NULL if the entire call-chain of the task should be shown).
287  */
288 extern void show_stack(struct task_struct *task, unsigned long *sp);
289 
290 void io_schedule(void);
291 long io_schedule_timeout(long timeout);
292 
293 extern void cpu_init (void);
294 extern void trap_init(void);
295 extern void update_process_times(int user);
296 extern void scheduler_tick(void);
297 
298 extern void sched_show_task(struct task_struct *p);
299 
300 #ifdef CONFIG_DETECT_SOFTLOCKUP
301 extern void softlockup_tick(void);
302 extern void touch_softlockup_watchdog(void);
303 extern void touch_all_softlockup_watchdogs(void);
304 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
305 				    struct file *filp, void __user *buffer,
306 				    size_t *lenp, loff_t *ppos);
307 extern unsigned int  softlockup_panic;
308 extern int softlockup_thresh;
309 #else
310 static inline void softlockup_tick(void)
311 {
312 }
313 static inline void touch_softlockup_watchdog(void)
314 {
315 }
316 static inline void touch_all_softlockup_watchdogs(void)
317 {
318 }
319 #endif
320 
321 #ifdef CONFIG_DETECT_HUNG_TASK
322 extern unsigned int  sysctl_hung_task_panic;
323 extern unsigned long sysctl_hung_task_check_count;
324 extern unsigned long sysctl_hung_task_timeout_secs;
325 extern unsigned long sysctl_hung_task_warnings;
326 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
327 					 struct file *filp, void __user *buffer,
328 					 size_t *lenp, loff_t *ppos);
329 #endif
330 
331 /* Attach to any functions which should be ignored in wchan output. */
332 #define __sched		__attribute__((__section__(".sched.text")))
333 
334 /* Linker adds these: start and end of __sched functions */
335 extern char __sched_text_start[], __sched_text_end[];
336 
337 /* Is this address in the __sched functions? */
338 extern int in_sched_functions(unsigned long addr);
339 
340 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
341 extern signed long schedule_timeout(signed long timeout);
342 extern signed long schedule_timeout_interruptible(signed long timeout);
343 extern signed long schedule_timeout_killable(signed long timeout);
344 extern signed long schedule_timeout_uninterruptible(signed long timeout);
345 asmlinkage void __schedule(void);
346 asmlinkage void schedule(void);
347 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
348 
349 struct nsproxy;
350 struct user_namespace;
351 
352 /*
353  * Default maximum number of active map areas, this limits the number of vmas
354  * per mm struct. Users can overwrite this number by sysctl but there is a
355  * problem.
356  *
357  * When a program's coredump is generated as ELF format, a section is created
358  * per a vma. In ELF, the number of sections is represented in unsigned short.
359  * This means the number of sections should be smaller than 65535 at coredump.
360  * Because the kernel adds some informative sections to a image of program at
361  * generating coredump, we need some margin. The number of extra sections is
362  * 1-3 now and depends on arch. We use "5" as safe margin, here.
363  */
364 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
365 #define DEFAULT_MAX_MAP_COUNT	(USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
366 
367 extern int sysctl_max_map_count;
368 
369 #include <linux/aio.h>
370 
371 extern unsigned long
372 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
373 		       unsigned long, unsigned long);
374 extern unsigned long
375 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
376 			  unsigned long len, unsigned long pgoff,
377 			  unsigned long flags);
378 extern void arch_unmap_area(struct mm_struct *, unsigned long);
379 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
380 
381 #if USE_SPLIT_PTLOCKS
382 /*
383  * The mm counters are not protected by its page_table_lock,
384  * so must be incremented atomically.
385  */
386 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
387 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
388 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
389 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
390 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
391 
392 #else  /* !USE_SPLIT_PTLOCKS */
393 /*
394  * The mm counters are protected by its page_table_lock,
395  * so can be incremented directly.
396  */
397 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
398 #define get_mm_counter(mm, member) ((mm)->_##member)
399 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
400 #define inc_mm_counter(mm, member) (mm)->_##member++
401 #define dec_mm_counter(mm, member) (mm)->_##member--
402 
403 #endif /* !USE_SPLIT_PTLOCKS */
404 
405 #define get_mm_rss(mm)					\
406 	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
407 #define update_hiwater_rss(mm)	do {			\
408 	unsigned long _rss = get_mm_rss(mm);		\
409 	if ((mm)->hiwater_rss < _rss)			\
410 		(mm)->hiwater_rss = _rss;		\
411 } while (0)
412 #define update_hiwater_vm(mm)	do {			\
413 	if ((mm)->hiwater_vm < (mm)->total_vm)		\
414 		(mm)->hiwater_vm = (mm)->total_vm;	\
415 } while (0)
416 
417 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
418 {
419 	return max(mm->hiwater_rss, get_mm_rss(mm));
420 }
421 
422 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
423 {
424 	return max(mm->hiwater_vm, mm->total_vm);
425 }
426 
427 extern void set_dumpable(struct mm_struct *mm, int value);
428 extern int get_dumpable(struct mm_struct *mm);
429 
430 /* mm flags */
431 /* dumpable bits */
432 #define MMF_DUMPABLE      0  /* core dump is permitted */
433 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
434 #define MMF_DUMPABLE_BITS 2
435 
436 /* coredump filter bits */
437 #define MMF_DUMP_ANON_PRIVATE	2
438 #define MMF_DUMP_ANON_SHARED	3
439 #define MMF_DUMP_MAPPED_PRIVATE	4
440 #define MMF_DUMP_MAPPED_SHARED	5
441 #define MMF_DUMP_ELF_HEADERS	6
442 #define MMF_DUMP_HUGETLB_PRIVATE 7
443 #define MMF_DUMP_HUGETLB_SHARED  8
444 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
445 #define MMF_DUMP_FILTER_BITS	7
446 #define MMF_DUMP_FILTER_MASK \
447 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
448 #define MMF_DUMP_FILTER_DEFAULT \
449 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
450 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
451 
452 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
453 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
454 #else
455 # define MMF_DUMP_MASK_DEFAULT_ELF	0
456 #endif
457 
458 struct sighand_struct {
459 	atomic_t		count;
460 	struct k_sigaction	action[_NSIG];
461 	spinlock_t		siglock;
462 	wait_queue_head_t	signalfd_wqh;
463 };
464 
465 struct pacct_struct {
466 	int			ac_flag;
467 	long			ac_exitcode;
468 	unsigned long		ac_mem;
469 	cputime_t		ac_utime, ac_stime;
470 	unsigned long		ac_minflt, ac_majflt;
471 };
472 
473 /**
474  * struct task_cputime - collected CPU time counts
475  * @utime:		time spent in user mode, in &cputime_t units
476  * @stime:		time spent in kernel mode, in &cputime_t units
477  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
478  *
479  * This structure groups together three kinds of CPU time that are
480  * tracked for threads and thread groups.  Most things considering
481  * CPU time want to group these counts together and treat all three
482  * of them in parallel.
483  */
484 struct task_cputime {
485 	cputime_t utime;
486 	cputime_t stime;
487 	unsigned long long sum_exec_runtime;
488 };
489 /* Alternate field names when used to cache expirations. */
490 #define prof_exp	stime
491 #define virt_exp	utime
492 #define sched_exp	sum_exec_runtime
493 
494 #define INIT_CPUTIME	\
495 	(struct task_cputime) {					\
496 		.utime = cputime_zero,				\
497 		.stime = cputime_zero,				\
498 		.sum_exec_runtime = 0,				\
499 	}
500 
501 /*
502  * Disable preemption until the scheduler is running.
503  * Reset by start_kernel()->sched_init()->init_idle().
504  *
505  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
506  * before the scheduler is active -- see should_resched().
507  */
508 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
509 
510 /**
511  * struct thread_group_cputimer - thread group interval timer counts
512  * @cputime:		thread group interval timers.
513  * @running:		non-zero when there are timers running and
514  * 			@cputime receives updates.
515  * @lock:		lock for fields in this struct.
516  *
517  * This structure contains the version of task_cputime, above, that is
518  * used for thread group CPU timer calculations.
519  */
520 struct thread_group_cputimer {
521 	struct task_cputime cputime;
522 	int running;
523 	spinlock_t lock;
524 };
525 
526 /*
527  * NOTE! "signal_struct" does not have it's own
528  * locking, because a shared signal_struct always
529  * implies a shared sighand_struct, so locking
530  * sighand_struct is always a proper superset of
531  * the locking of signal_struct.
532  */
533 struct signal_struct {
534 	atomic_t		count;
535 	atomic_t		live;
536 
537 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
538 
539 	/* current thread group signal load-balancing target: */
540 	struct task_struct	*curr_target;
541 
542 	/* shared signal handling: */
543 	struct sigpending	shared_pending;
544 
545 	/* thread group exit support */
546 	int			group_exit_code;
547 	/* overloaded:
548 	 * - notify group_exit_task when ->count is equal to notify_count
549 	 * - everyone except group_exit_task is stopped during signal delivery
550 	 *   of fatal signals, group_exit_task processes the signal.
551 	 */
552 	int			notify_count;
553 	struct task_struct	*group_exit_task;
554 
555 	/* thread group stop support, overloads group_exit_code too */
556 	int			group_stop_count;
557 	unsigned int		flags; /* see SIGNAL_* flags below */
558 
559 	/* POSIX.1b Interval Timers */
560 	struct list_head posix_timers;
561 
562 	/* ITIMER_REAL timer for the process */
563 	struct hrtimer real_timer;
564 	struct pid *leader_pid;
565 	ktime_t it_real_incr;
566 
567 	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
568 	cputime_t it_prof_expires, it_virt_expires;
569 	cputime_t it_prof_incr, it_virt_incr;
570 
571 	/*
572 	 * Thread group totals for process CPU timers.
573 	 * See thread_group_cputimer(), et al, for details.
574 	 */
575 	struct thread_group_cputimer cputimer;
576 
577 	/* Earliest-expiration cache. */
578 	struct task_cputime cputime_expires;
579 
580 	struct list_head cpu_timers[3];
581 
582 	struct pid *tty_old_pgrp;
583 
584 	/* boolean value for session group leader */
585 	int leader;
586 
587 	struct tty_struct *tty; /* NULL if no tty */
588 
589 	/*
590 	 * Cumulative resource counters for dead threads in the group,
591 	 * and for reaped dead child processes forked by this group.
592 	 * Live threads maintain their own counters and add to these
593 	 * in __exit_signal, except for the group leader.
594 	 */
595 	cputime_t utime, stime, cutime, cstime;
596 	cputime_t gtime;
597 	cputime_t cgtime;
598 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
599 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
600 	unsigned long inblock, oublock, cinblock, coublock;
601 	struct task_io_accounting ioac;
602 
603 	/*
604 	 * Cumulative ns of schedule CPU time fo dead threads in the
605 	 * group, not including a zombie group leader, (This only differs
606 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
607 	 * other than jiffies.)
608 	 */
609 	unsigned long long sum_sched_runtime;
610 
611 	/*
612 	 * We don't bother to synchronize most readers of this at all,
613 	 * because there is no reader checking a limit that actually needs
614 	 * to get both rlim_cur and rlim_max atomically, and either one
615 	 * alone is a single word that can safely be read normally.
616 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
617 	 * protect this instead of the siglock, because they really
618 	 * have no need to disable irqs.
619 	 */
620 	struct rlimit rlim[RLIM_NLIMITS];
621 
622 #ifdef CONFIG_BSD_PROCESS_ACCT
623 	struct pacct_struct pacct;	/* per-process accounting information */
624 #endif
625 #ifdef CONFIG_TASKSTATS
626 	struct taskstats *stats;
627 #endif
628 #ifdef CONFIG_AUDIT
629 	unsigned audit_tty;
630 	struct tty_audit_buf *tty_audit_buf;
631 #endif
632 };
633 
634 /* Context switch must be unlocked if interrupts are to be enabled */
635 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
636 # define __ARCH_WANT_UNLOCKED_CTXSW
637 #endif
638 
639 /*
640  * Bits in flags field of signal_struct.
641  */
642 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
643 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
644 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
645 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
646 /*
647  * Pending notifications to parent.
648  */
649 #define SIGNAL_CLD_STOPPED	0x00000010
650 #define SIGNAL_CLD_CONTINUED	0x00000020
651 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
652 
653 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
654 
655 /* If true, all threads except ->group_exit_task have pending SIGKILL */
656 static inline int signal_group_exit(const struct signal_struct *sig)
657 {
658 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
659 		(sig->group_exit_task != NULL);
660 }
661 
662 /*
663  * Some day this will be a full-fledged user tracking system..
664  */
665 struct user_struct {
666 	atomic_t __count;	/* reference count */
667 	atomic_t processes;	/* How many processes does this user have? */
668 	atomic_t files;		/* How many open files does this user have? */
669 	atomic_t sigpending;	/* How many pending signals does this user have? */
670 #ifdef CONFIG_INOTIFY_USER
671 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
673 #endif
674 #ifdef CONFIG_EPOLL
675 	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
676 #endif
677 #ifdef CONFIG_POSIX_MQUEUE
678 	/* protected by mq_lock	*/
679 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
680 #endif
681 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
682 
683 #ifdef CONFIG_KEYS
684 	struct key *uid_keyring;	/* UID specific keyring */
685 	struct key *session_keyring;	/* UID's default session keyring */
686 #endif
687 
688 	/* Hash table maintenance information */
689 	struct hlist_node uidhash_node;
690 	uid_t uid;
691 	struct user_namespace *user_ns;
692 
693 #ifdef CONFIG_USER_SCHED
694 	struct task_group *tg;
695 #ifdef CONFIG_SYSFS
696 	struct kobject kobj;
697 	struct delayed_work work;
698 #endif
699 #endif
700 
701 #ifdef CONFIG_PERF_COUNTERS
702 	atomic_long_t locked_vm;
703 #endif
704 };
705 
706 extern int uids_sysfs_init(void);
707 
708 extern struct user_struct *find_user(uid_t);
709 
710 extern struct user_struct root_user;
711 #define INIT_USER (&root_user)
712 
713 
714 struct backing_dev_info;
715 struct reclaim_state;
716 
717 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
718 struct sched_info {
719 	/* cumulative counters */
720 	unsigned long pcount;	      /* # of times run on this cpu */
721 	unsigned long long run_delay; /* time spent waiting on a runqueue */
722 
723 	/* timestamps */
724 	unsigned long long last_arrival,/* when we last ran on a cpu */
725 			   last_queued;	/* when we were last queued to run */
726 #ifdef CONFIG_SCHEDSTATS
727 	/* BKL stats */
728 	unsigned int bkl_count;
729 #endif
730 };
731 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
732 
733 #ifdef CONFIG_TASK_DELAY_ACCT
734 struct task_delay_info {
735 	spinlock_t	lock;
736 	unsigned int	flags;	/* Private per-task flags */
737 
738 	/* For each stat XXX, add following, aligned appropriately
739 	 *
740 	 * struct timespec XXX_start, XXX_end;
741 	 * u64 XXX_delay;
742 	 * u32 XXX_count;
743 	 *
744 	 * Atomicity of updates to XXX_delay, XXX_count protected by
745 	 * single lock above (split into XXX_lock if contention is an issue).
746 	 */
747 
748 	/*
749 	 * XXX_count is incremented on every XXX operation, the delay
750 	 * associated with the operation is added to XXX_delay.
751 	 * XXX_delay contains the accumulated delay time in nanoseconds.
752 	 */
753 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
754 	u64 blkio_delay;	/* wait for sync block io completion */
755 	u64 swapin_delay;	/* wait for swapin block io completion */
756 	u32 blkio_count;	/* total count of the number of sync block */
757 				/* io operations performed */
758 	u32 swapin_count;	/* total count of the number of swapin block */
759 				/* io operations performed */
760 
761 	struct timespec freepages_start, freepages_end;
762 	u64 freepages_delay;	/* wait for memory reclaim */
763 	u32 freepages_count;	/* total count of memory reclaim */
764 };
765 #endif	/* CONFIG_TASK_DELAY_ACCT */
766 
767 static inline int sched_info_on(void)
768 {
769 #ifdef CONFIG_SCHEDSTATS
770 	return 1;
771 #elif defined(CONFIG_TASK_DELAY_ACCT)
772 	extern int delayacct_on;
773 	return delayacct_on;
774 #else
775 	return 0;
776 #endif
777 }
778 
779 enum cpu_idle_type {
780 	CPU_IDLE,
781 	CPU_NOT_IDLE,
782 	CPU_NEWLY_IDLE,
783 	CPU_MAX_IDLE_TYPES
784 };
785 
786 /*
787  * sched-domains (multiprocessor balancing) declarations:
788  */
789 
790 /*
791  * Increase resolution of nice-level calculations:
792  */
793 #define SCHED_LOAD_SHIFT	10
794 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
795 
796 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
797 
798 #ifdef CONFIG_SMP
799 #define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
800 #define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
801 #define SD_BALANCE_EXEC		4	/* Balance on exec */
802 #define SD_BALANCE_FORK		8	/* Balance on fork, clone */
803 #define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
804 #define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
805 #define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
806 #define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
807 #define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
808 #define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
809 #define SD_SERIALIZE		1024	/* Only a single load balancing instance */
810 #define SD_WAKE_IDLE_FAR	2048	/* Gain latency sacrificing cache hit */
811 
812 enum powersavings_balance_level {
813 	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
814 	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
815 					 * first for long running threads
816 					 */
817 	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
818 					 * cpu package for power savings
819 					 */
820 	MAX_POWERSAVINGS_BALANCE_LEVELS
821 };
822 
823 extern int sched_mc_power_savings, sched_smt_power_savings;
824 
825 static inline int sd_balance_for_mc_power(void)
826 {
827 	if (sched_smt_power_savings)
828 		return SD_POWERSAVINGS_BALANCE;
829 
830 	return 0;
831 }
832 
833 static inline int sd_balance_for_package_power(void)
834 {
835 	if (sched_mc_power_savings | sched_smt_power_savings)
836 		return SD_POWERSAVINGS_BALANCE;
837 
838 	return 0;
839 }
840 
841 /*
842  * Optimise SD flags for power savings:
843  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
844  * Keep default SD flags if sched_{smt,mc}_power_saving=0
845  */
846 
847 static inline int sd_power_saving_flags(void)
848 {
849 	if (sched_mc_power_savings | sched_smt_power_savings)
850 		return SD_BALANCE_NEWIDLE;
851 
852 	return 0;
853 }
854 
855 struct sched_group {
856 	struct sched_group *next;	/* Must be a circular list */
857 
858 	/*
859 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
860 	 * single CPU. This is read only (except for setup, hotplug CPU).
861 	 * Note : Never change cpu_power without recompute its reciprocal
862 	 */
863 	unsigned int __cpu_power;
864 	/*
865 	 * reciprocal value of cpu_power to avoid expensive divides
866 	 * (see include/linux/reciprocal_div.h)
867 	 */
868 	u32 reciprocal_cpu_power;
869 
870 	/*
871 	 * The CPUs this group covers.
872 	 *
873 	 * NOTE: this field is variable length. (Allocated dynamically
874 	 * by attaching extra space to the end of the structure,
875 	 * depending on how many CPUs the kernel has booted up with)
876 	 *
877 	 * It is also be embedded into static data structures at build
878 	 * time. (See 'struct static_sched_group' in kernel/sched.c)
879 	 */
880 	unsigned long cpumask[0];
881 };
882 
883 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
884 {
885 	return to_cpumask(sg->cpumask);
886 }
887 
888 enum sched_domain_level {
889 	SD_LV_NONE = 0,
890 	SD_LV_SIBLING,
891 	SD_LV_MC,
892 	SD_LV_CPU,
893 	SD_LV_NODE,
894 	SD_LV_ALLNODES,
895 	SD_LV_MAX
896 };
897 
898 struct sched_domain_attr {
899 	int relax_domain_level;
900 };
901 
902 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
903 	.relax_domain_level = -1,			\
904 }
905 
906 struct sched_domain {
907 	/* These fields must be setup */
908 	struct sched_domain *parent;	/* top domain must be null terminated */
909 	struct sched_domain *child;	/* bottom domain must be null terminated */
910 	struct sched_group *groups;	/* the balancing groups of the domain */
911 	unsigned long min_interval;	/* Minimum balance interval ms */
912 	unsigned long max_interval;	/* Maximum balance interval ms */
913 	unsigned int busy_factor;	/* less balancing by factor if busy */
914 	unsigned int imbalance_pct;	/* No balance until over watermark */
915 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
916 	unsigned int busy_idx;
917 	unsigned int idle_idx;
918 	unsigned int newidle_idx;
919 	unsigned int wake_idx;
920 	unsigned int forkexec_idx;
921 	int flags;			/* See SD_* */
922 	enum sched_domain_level level;
923 
924 	/* Runtime fields. */
925 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
926 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
927 	unsigned int nr_balance_failed; /* initialise to 0 */
928 
929 	u64 last_update;
930 
931 #ifdef CONFIG_SCHEDSTATS
932 	/* load_balance() stats */
933 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
934 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
935 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
936 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
937 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
938 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
939 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
940 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
941 
942 	/* Active load balancing */
943 	unsigned int alb_count;
944 	unsigned int alb_failed;
945 	unsigned int alb_pushed;
946 
947 	/* SD_BALANCE_EXEC stats */
948 	unsigned int sbe_count;
949 	unsigned int sbe_balanced;
950 	unsigned int sbe_pushed;
951 
952 	/* SD_BALANCE_FORK stats */
953 	unsigned int sbf_count;
954 	unsigned int sbf_balanced;
955 	unsigned int sbf_pushed;
956 
957 	/* try_to_wake_up() stats */
958 	unsigned int ttwu_wake_remote;
959 	unsigned int ttwu_move_affine;
960 	unsigned int ttwu_move_balance;
961 #endif
962 #ifdef CONFIG_SCHED_DEBUG
963 	char *name;
964 #endif
965 
966 	/*
967 	 * Span of all CPUs in this domain.
968 	 *
969 	 * NOTE: this field is variable length. (Allocated dynamically
970 	 * by attaching extra space to the end of the structure,
971 	 * depending on how many CPUs the kernel has booted up with)
972 	 *
973 	 * It is also be embedded into static data structures at build
974 	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
975 	 */
976 	unsigned long span[0];
977 };
978 
979 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
980 {
981 	return to_cpumask(sd->span);
982 }
983 
984 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
985 				    struct sched_domain_attr *dattr_new);
986 
987 /* Test a flag in parent sched domain */
988 static inline int test_sd_parent(struct sched_domain *sd, int flag)
989 {
990 	if (sd->parent && (sd->parent->flags & flag))
991 		return 1;
992 
993 	return 0;
994 }
995 
996 #else /* CONFIG_SMP */
997 
998 struct sched_domain_attr;
999 
1000 static inline void
1001 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1002 			struct sched_domain_attr *dattr_new)
1003 {
1004 }
1005 #endif	/* !CONFIG_SMP */
1006 
1007 struct io_context;			/* See blkdev.h */
1008 
1009 
1010 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011 extern void prefetch_stack(struct task_struct *t);
1012 #else
1013 static inline void prefetch_stack(struct task_struct *t) { }
1014 #endif
1015 
1016 struct audit_context;		/* See audit.c */
1017 struct mempolicy;
1018 struct pipe_inode_info;
1019 struct uts_namespace;
1020 
1021 struct rq;
1022 struct sched_domain;
1023 
1024 struct sched_class {
1025 	const struct sched_class *next;
1026 
1027 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1028 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1029 	void (*yield_task) (struct rq *rq);
1030 
1031 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1032 
1033 	struct task_struct * (*pick_next_task) (struct rq *rq);
1034 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1035 
1036 #ifdef CONFIG_SMP
1037 	int  (*select_task_rq)(struct task_struct *p, int sync);
1038 
1039 	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1040 			struct rq *busiest, unsigned long max_load_move,
1041 			struct sched_domain *sd, enum cpu_idle_type idle,
1042 			int *all_pinned, int *this_best_prio);
1043 
1044 	int (*move_one_task) (struct rq *this_rq, int this_cpu,
1045 			      struct rq *busiest, struct sched_domain *sd,
1046 			      enum cpu_idle_type idle);
1047 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1048 	int (*needs_post_schedule) (struct rq *this_rq);
1049 	void (*post_schedule) (struct rq *this_rq);
1050 	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1051 
1052 	void (*set_cpus_allowed)(struct task_struct *p,
1053 				 const struct cpumask *newmask);
1054 
1055 	void (*rq_online)(struct rq *rq);
1056 	void (*rq_offline)(struct rq *rq);
1057 #endif
1058 
1059 	void (*set_curr_task) (struct rq *rq);
1060 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1061 	void (*task_new) (struct rq *rq, struct task_struct *p);
1062 
1063 	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1064 			       int running);
1065 	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1066 			     int running);
1067 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1068 			     int oldprio, int running);
1069 
1070 #ifdef CONFIG_FAIR_GROUP_SCHED
1071 	void (*moved_group) (struct task_struct *p);
1072 #endif
1073 };
1074 
1075 struct load_weight {
1076 	unsigned long weight, inv_weight;
1077 };
1078 
1079 /*
1080  * CFS stats for a schedulable entity (task, task-group etc)
1081  *
1082  * Current field usage histogram:
1083  *
1084  *     4 se->block_start
1085  *     4 se->run_node
1086  *     4 se->sleep_start
1087  *     6 se->load.weight
1088  */
1089 struct sched_entity {
1090 	struct load_weight	load;		/* for load-balancing */
1091 	struct rb_node		run_node;
1092 	struct list_head	group_node;
1093 	unsigned int		on_rq;
1094 
1095 	u64			exec_start;
1096 	u64			sum_exec_runtime;
1097 	u64			vruntime;
1098 	u64			prev_sum_exec_runtime;
1099 
1100 	u64			last_wakeup;
1101 	u64			avg_overlap;
1102 
1103 	u64			nr_migrations;
1104 
1105 	u64			start_runtime;
1106 	u64			avg_wakeup;
1107 
1108 #ifdef CONFIG_SCHEDSTATS
1109 	u64			wait_start;
1110 	u64			wait_max;
1111 	u64			wait_count;
1112 	u64			wait_sum;
1113 
1114 	u64			sleep_start;
1115 	u64			sleep_max;
1116 	s64			sum_sleep_runtime;
1117 
1118 	u64			block_start;
1119 	u64			block_max;
1120 	u64			exec_max;
1121 	u64			slice_max;
1122 
1123 	u64			nr_migrations_cold;
1124 	u64			nr_failed_migrations_affine;
1125 	u64			nr_failed_migrations_running;
1126 	u64			nr_failed_migrations_hot;
1127 	u64			nr_forced_migrations;
1128 	u64			nr_forced2_migrations;
1129 
1130 	u64			nr_wakeups;
1131 	u64			nr_wakeups_sync;
1132 	u64			nr_wakeups_migrate;
1133 	u64			nr_wakeups_local;
1134 	u64			nr_wakeups_remote;
1135 	u64			nr_wakeups_affine;
1136 	u64			nr_wakeups_affine_attempts;
1137 	u64			nr_wakeups_passive;
1138 	u64			nr_wakeups_idle;
1139 #endif
1140 
1141 #ifdef CONFIG_FAIR_GROUP_SCHED
1142 	struct sched_entity	*parent;
1143 	/* rq on which this entity is (to be) queued: */
1144 	struct cfs_rq		*cfs_rq;
1145 	/* rq "owned" by this entity/group: */
1146 	struct cfs_rq		*my_q;
1147 #endif
1148 };
1149 
1150 struct sched_rt_entity {
1151 	struct list_head run_list;
1152 	unsigned long timeout;
1153 	unsigned int time_slice;
1154 	int nr_cpus_allowed;
1155 
1156 	struct sched_rt_entity *back;
1157 #ifdef CONFIG_RT_GROUP_SCHED
1158 	struct sched_rt_entity	*parent;
1159 	/* rq on which this entity is (to be) queued: */
1160 	struct rt_rq		*rt_rq;
1161 	/* rq "owned" by this entity/group: */
1162 	struct rt_rq		*my_q;
1163 #endif
1164 };
1165 
1166 struct task_struct {
1167 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1168 	void *stack;
1169 	atomic_t usage;
1170 	unsigned int flags;	/* per process flags, defined below */
1171 	unsigned int ptrace;
1172 
1173 	int lock_depth;		/* BKL lock depth */
1174 
1175 #ifdef CONFIG_SMP
1176 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1177 	int oncpu;
1178 #endif
1179 #endif
1180 
1181 	int prio, static_prio, normal_prio;
1182 	unsigned int rt_priority;
1183 	const struct sched_class *sched_class;
1184 	struct sched_entity se;
1185 	struct sched_rt_entity rt;
1186 
1187 #ifdef CONFIG_PREEMPT_NOTIFIERS
1188 	/* list of struct preempt_notifier: */
1189 	struct hlist_head preempt_notifiers;
1190 #endif
1191 
1192 	/*
1193 	 * fpu_counter contains the number of consecutive context switches
1194 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1195 	 * saving becomes unlazy to save the trap. This is an unsigned char
1196 	 * so that after 256 times the counter wraps and the behavior turns
1197 	 * lazy again; this to deal with bursty apps that only use FPU for
1198 	 * a short time
1199 	 */
1200 	unsigned char fpu_counter;
1201 	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1202 #ifdef CONFIG_BLK_DEV_IO_TRACE
1203 	unsigned int btrace_seq;
1204 #endif
1205 
1206 	unsigned int policy;
1207 	cpumask_t cpus_allowed;
1208 
1209 #ifdef CONFIG_PREEMPT_RCU
1210 	int rcu_read_lock_nesting;
1211 	int rcu_flipctr_idx;
1212 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1213 
1214 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1215 	struct sched_info sched_info;
1216 #endif
1217 
1218 	struct list_head tasks;
1219 	struct plist_node pushable_tasks;
1220 
1221 	struct mm_struct *mm, *active_mm;
1222 
1223 /* task state */
1224 	struct linux_binfmt *binfmt;
1225 	int exit_state;
1226 	int exit_code, exit_signal;
1227 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1228 	/* ??? */
1229 	unsigned int personality;
1230 	unsigned did_exec:1;
1231 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1232 				 * execve */
1233 	pid_t pid;
1234 	pid_t tgid;
1235 
1236 	/* Canary value for the -fstack-protector gcc feature */
1237 	unsigned long stack_canary;
1238 
1239 	/*
1240 	 * pointers to (original) parent process, youngest child, younger sibling,
1241 	 * older sibling, respectively.  (p->father can be replaced with
1242 	 * p->real_parent->pid)
1243 	 */
1244 	struct task_struct *real_parent; /* real parent process */
1245 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1246 	/*
1247 	 * children/sibling forms the list of my natural children
1248 	 */
1249 	struct list_head children;	/* list of my children */
1250 	struct list_head sibling;	/* linkage in my parent's children list */
1251 	struct task_struct *group_leader;	/* threadgroup leader */
1252 
1253 	/*
1254 	 * ptraced is the list of tasks this task is using ptrace on.
1255 	 * This includes both natural children and PTRACE_ATTACH targets.
1256 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1257 	 */
1258 	struct list_head ptraced;
1259 	struct list_head ptrace_entry;
1260 
1261 	/*
1262 	 * This is the tracer handle for the ptrace BTS extension.
1263 	 * This field actually belongs to the ptracer task.
1264 	 */
1265 	struct bts_context *bts;
1266 
1267 	/* PID/PID hash table linkage. */
1268 	struct pid_link pids[PIDTYPE_MAX];
1269 	struct list_head thread_group;
1270 
1271 	struct completion *vfork_done;		/* for vfork() */
1272 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1273 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1274 
1275 	cputime_t utime, stime, utimescaled, stimescaled;
1276 	cputime_t gtime;
1277 	cputime_t prev_utime, prev_stime;
1278 	unsigned long nvcsw, nivcsw; /* context switch counts */
1279 	struct timespec start_time; 		/* monotonic time */
1280 	struct timespec real_start_time;	/* boot based time */
1281 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1282 	unsigned long min_flt, maj_flt;
1283 
1284 	struct task_cputime cputime_expires;
1285 	struct list_head cpu_timers[3];
1286 
1287 /* process credentials */
1288 	const struct cred *real_cred;	/* objective and real subjective task
1289 					 * credentials (COW) */
1290 	const struct cred *cred;	/* effective (overridable) subjective task
1291 					 * credentials (COW) */
1292 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1293 					 * credential calculations
1294 					 * (notably. ptrace) */
1295 
1296 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1297 				     - access with [gs]et_task_comm (which lock
1298 				       it with task_lock())
1299 				     - initialized normally by flush_old_exec */
1300 /* file system info */
1301 	int link_count, total_link_count;
1302 #ifdef CONFIG_SYSVIPC
1303 /* ipc stuff */
1304 	struct sysv_sem sysvsem;
1305 #endif
1306 #ifdef CONFIG_DETECT_HUNG_TASK
1307 /* hung task detection */
1308 	unsigned long last_switch_count;
1309 #endif
1310 /* CPU-specific state of this task */
1311 	struct thread_struct thread;
1312 /* filesystem information */
1313 	struct fs_struct *fs;
1314 /* open file information */
1315 	struct files_struct *files;
1316 /* namespaces */
1317 	struct nsproxy *nsproxy;
1318 /* signal handlers */
1319 	struct signal_struct *signal;
1320 	struct sighand_struct *sighand;
1321 
1322 	sigset_t blocked, real_blocked;
1323 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1324 	struct sigpending pending;
1325 
1326 	unsigned long sas_ss_sp;
1327 	size_t sas_ss_size;
1328 	int (*notifier)(void *priv);
1329 	void *notifier_data;
1330 	sigset_t *notifier_mask;
1331 	struct audit_context *audit_context;
1332 #ifdef CONFIG_AUDITSYSCALL
1333 	uid_t loginuid;
1334 	unsigned int sessionid;
1335 #endif
1336 	seccomp_t seccomp;
1337 
1338 /* Thread group tracking */
1339    	u32 parent_exec_id;
1340    	u32 self_exec_id;
1341 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1342  * mempolicy */
1343 	spinlock_t alloc_lock;
1344 
1345 #ifdef CONFIG_GENERIC_HARDIRQS
1346 	/* IRQ handler threads */
1347 	struct irqaction *irqaction;
1348 #endif
1349 
1350 	/* Protection of the PI data structures: */
1351 	spinlock_t pi_lock;
1352 
1353 #ifdef CONFIG_RT_MUTEXES
1354 	/* PI waiters blocked on a rt_mutex held by this task */
1355 	struct plist_head pi_waiters;
1356 	/* Deadlock detection and priority inheritance handling */
1357 	struct rt_mutex_waiter *pi_blocked_on;
1358 #endif
1359 
1360 #ifdef CONFIG_DEBUG_MUTEXES
1361 	/* mutex deadlock detection */
1362 	struct mutex_waiter *blocked_on;
1363 #endif
1364 #ifdef CONFIG_TRACE_IRQFLAGS
1365 	unsigned int irq_events;
1366 	int hardirqs_enabled;
1367 	unsigned long hardirq_enable_ip;
1368 	unsigned int hardirq_enable_event;
1369 	unsigned long hardirq_disable_ip;
1370 	unsigned int hardirq_disable_event;
1371 	int softirqs_enabled;
1372 	unsigned long softirq_disable_ip;
1373 	unsigned int softirq_disable_event;
1374 	unsigned long softirq_enable_ip;
1375 	unsigned int softirq_enable_event;
1376 	int hardirq_context;
1377 	int softirq_context;
1378 #endif
1379 #ifdef CONFIG_LOCKDEP
1380 # define MAX_LOCK_DEPTH 48UL
1381 	u64 curr_chain_key;
1382 	int lockdep_depth;
1383 	unsigned int lockdep_recursion;
1384 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1385 	gfp_t lockdep_reclaim_gfp;
1386 #endif
1387 
1388 /* journalling filesystem info */
1389 	void *journal_info;
1390 
1391 /* stacked block device info */
1392 	struct bio *bio_list, **bio_tail;
1393 
1394 /* VM state */
1395 	struct reclaim_state *reclaim_state;
1396 
1397 	struct backing_dev_info *backing_dev_info;
1398 
1399 	struct io_context *io_context;
1400 
1401 	unsigned long ptrace_message;
1402 	siginfo_t *last_siginfo; /* For ptrace use.  */
1403 	struct task_io_accounting ioac;
1404 #if defined(CONFIG_TASK_XACCT)
1405 	u64 acct_rss_mem1;	/* accumulated rss usage */
1406 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1407 	cputime_t acct_timexpd;	/* stime + utime since last update */
1408 #endif
1409 #ifdef CONFIG_CPUSETS
1410 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1411 	int cpuset_mem_spread_rotor;
1412 #endif
1413 #ifdef CONFIG_CGROUPS
1414 	/* Control Group info protected by css_set_lock */
1415 	struct css_set *cgroups;
1416 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1417 	struct list_head cg_list;
1418 #endif
1419 #ifdef CONFIG_FUTEX
1420 	struct robust_list_head __user *robust_list;
1421 #ifdef CONFIG_COMPAT
1422 	struct compat_robust_list_head __user *compat_robust_list;
1423 #endif
1424 	struct list_head pi_state_list;
1425 	struct futex_pi_state *pi_state_cache;
1426 #endif
1427 #ifdef CONFIG_PERF_COUNTERS
1428 	struct perf_counter_context *perf_counter_ctxp;
1429 	struct mutex perf_counter_mutex;
1430 	struct list_head perf_counter_list;
1431 #endif
1432 #ifdef CONFIG_NUMA
1433 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1434 	short il_next;
1435 #endif
1436 	atomic_t fs_excl;	/* holding fs exclusive resources */
1437 	struct rcu_head rcu;
1438 
1439 	/*
1440 	 * cache last used pipe for splice
1441 	 */
1442 	struct pipe_inode_info *splice_pipe;
1443 #ifdef	CONFIG_TASK_DELAY_ACCT
1444 	struct task_delay_info *delays;
1445 #endif
1446 #ifdef CONFIG_FAULT_INJECTION
1447 	int make_it_fail;
1448 #endif
1449 	struct prop_local_single dirties;
1450 #ifdef CONFIG_LATENCYTOP
1451 	int latency_record_count;
1452 	struct latency_record latency_record[LT_SAVECOUNT];
1453 #endif
1454 	/*
1455 	 * time slack values; these are used to round up poll() and
1456 	 * select() etc timeout values. These are in nanoseconds.
1457 	 */
1458 	unsigned long timer_slack_ns;
1459 	unsigned long default_timer_slack_ns;
1460 
1461 	struct list_head	*scm_work_list;
1462 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1463 	/* Index of current stored adress in ret_stack */
1464 	int curr_ret_stack;
1465 	/* Stack of return addresses for return function tracing */
1466 	struct ftrace_ret_stack	*ret_stack;
1467 	/* time stamp for last schedule */
1468 	unsigned long long ftrace_timestamp;
1469 	/*
1470 	 * Number of functions that haven't been traced
1471 	 * because of depth overrun.
1472 	 */
1473 	atomic_t trace_overrun;
1474 	/* Pause for the tracing */
1475 	atomic_t tracing_graph_pause;
1476 #endif
1477 #ifdef CONFIG_TRACING
1478 	/* state flags for use by tracers */
1479 	unsigned long trace;
1480 	/* bitmask of trace recursion */
1481 	unsigned long trace_recursion;
1482 #endif /* CONFIG_TRACING */
1483 };
1484 
1485 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1486 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1487 
1488 /*
1489  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1490  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1491  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1492  * values are inverted: lower p->prio value means higher priority.
1493  *
1494  * The MAX_USER_RT_PRIO value allows the actual maximum
1495  * RT priority to be separate from the value exported to
1496  * user-space.  This allows kernel threads to set their
1497  * priority to a value higher than any user task. Note:
1498  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1499  */
1500 
1501 #define MAX_USER_RT_PRIO	100
1502 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1503 
1504 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1505 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1506 
1507 static inline int rt_prio(int prio)
1508 {
1509 	if (unlikely(prio < MAX_RT_PRIO))
1510 		return 1;
1511 	return 0;
1512 }
1513 
1514 static inline int rt_task(struct task_struct *p)
1515 {
1516 	return rt_prio(p->prio);
1517 }
1518 
1519 static inline struct pid *task_pid(struct task_struct *task)
1520 {
1521 	return task->pids[PIDTYPE_PID].pid;
1522 }
1523 
1524 static inline struct pid *task_tgid(struct task_struct *task)
1525 {
1526 	return task->group_leader->pids[PIDTYPE_PID].pid;
1527 }
1528 
1529 /*
1530  * Without tasklist or rcu lock it is not safe to dereference
1531  * the result of task_pgrp/task_session even if task == current,
1532  * we can race with another thread doing sys_setsid/sys_setpgid.
1533  */
1534 static inline struct pid *task_pgrp(struct task_struct *task)
1535 {
1536 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1537 }
1538 
1539 static inline struct pid *task_session(struct task_struct *task)
1540 {
1541 	return task->group_leader->pids[PIDTYPE_SID].pid;
1542 }
1543 
1544 struct pid_namespace;
1545 
1546 /*
1547  * the helpers to get the task's different pids as they are seen
1548  * from various namespaces
1549  *
1550  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1551  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1552  *                     current.
1553  * task_xid_nr_ns()  : id seen from the ns specified;
1554  *
1555  * set_task_vxid()   : assigns a virtual id to a task;
1556  *
1557  * see also pid_nr() etc in include/linux/pid.h
1558  */
1559 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1560 			struct pid_namespace *ns);
1561 
1562 static inline pid_t task_pid_nr(struct task_struct *tsk)
1563 {
1564 	return tsk->pid;
1565 }
1566 
1567 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1568 					struct pid_namespace *ns)
1569 {
1570 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1571 }
1572 
1573 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1574 {
1575 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1576 }
1577 
1578 
1579 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1580 {
1581 	return tsk->tgid;
1582 }
1583 
1584 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1585 
1586 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1587 {
1588 	return pid_vnr(task_tgid(tsk));
1589 }
1590 
1591 
1592 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1593 					struct pid_namespace *ns)
1594 {
1595 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1596 }
1597 
1598 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1599 {
1600 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1601 }
1602 
1603 
1604 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1605 					struct pid_namespace *ns)
1606 {
1607 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1608 }
1609 
1610 static inline pid_t task_session_vnr(struct task_struct *tsk)
1611 {
1612 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1613 }
1614 
1615 /* obsolete, do not use */
1616 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1617 {
1618 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1619 }
1620 
1621 /**
1622  * pid_alive - check that a task structure is not stale
1623  * @p: Task structure to be checked.
1624  *
1625  * Test if a process is not yet dead (at most zombie state)
1626  * If pid_alive fails, then pointers within the task structure
1627  * can be stale and must not be dereferenced.
1628  */
1629 static inline int pid_alive(struct task_struct *p)
1630 {
1631 	return p->pids[PIDTYPE_PID].pid != NULL;
1632 }
1633 
1634 /**
1635  * is_global_init - check if a task structure is init
1636  * @tsk: Task structure to be checked.
1637  *
1638  * Check if a task structure is the first user space task the kernel created.
1639  */
1640 static inline int is_global_init(struct task_struct *tsk)
1641 {
1642 	return tsk->pid == 1;
1643 }
1644 
1645 /*
1646  * is_container_init:
1647  * check whether in the task is init in its own pid namespace.
1648  */
1649 extern int is_container_init(struct task_struct *tsk);
1650 
1651 extern struct pid *cad_pid;
1652 
1653 extern void free_task(struct task_struct *tsk);
1654 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1655 
1656 extern void __put_task_struct(struct task_struct *t);
1657 
1658 static inline void put_task_struct(struct task_struct *t)
1659 {
1660 	if (atomic_dec_and_test(&t->usage))
1661 		__put_task_struct(t);
1662 }
1663 
1664 extern cputime_t task_utime(struct task_struct *p);
1665 extern cputime_t task_stime(struct task_struct *p);
1666 extern cputime_t task_gtime(struct task_struct *p);
1667 
1668 /*
1669  * Per process flags
1670  */
1671 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1672 					/* Not implemented yet, only for 486*/
1673 #define PF_STARTING	0x00000002	/* being created */
1674 #define PF_EXITING	0x00000004	/* getting shut down */
1675 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1676 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1677 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1678 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1679 #define PF_DUMPCORE	0x00000200	/* dumped core */
1680 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1681 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1682 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1683 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1684 #define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1685 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1686 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1687 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1688 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1689 #define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1690 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1691 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1692 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1693 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1694 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1695 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1696 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1697 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1698 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1699 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1700 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1701 
1702 /*
1703  * Only the _current_ task can read/write to tsk->flags, but other
1704  * tasks can access tsk->flags in readonly mode for example
1705  * with tsk_used_math (like during threaded core dumping).
1706  * There is however an exception to this rule during ptrace
1707  * or during fork: the ptracer task is allowed to write to the
1708  * child->flags of its traced child (same goes for fork, the parent
1709  * can write to the child->flags), because we're guaranteed the
1710  * child is not running and in turn not changing child->flags
1711  * at the same time the parent does it.
1712  */
1713 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1714 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1715 #define clear_used_math() clear_stopped_child_used_math(current)
1716 #define set_used_math() set_stopped_child_used_math(current)
1717 #define conditional_stopped_child_used_math(condition, child) \
1718 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1719 #define conditional_used_math(condition) \
1720 	conditional_stopped_child_used_math(condition, current)
1721 #define copy_to_stopped_child_used_math(child) \
1722 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1725 #define used_math() tsk_used_math(current)
1726 
1727 #ifdef CONFIG_SMP
1728 extern int set_cpus_allowed_ptr(struct task_struct *p,
1729 				const struct cpumask *new_mask);
1730 #else
1731 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1732 				       const struct cpumask *new_mask)
1733 {
1734 	if (!cpumask_test_cpu(0, new_mask))
1735 		return -EINVAL;
1736 	return 0;
1737 }
1738 #endif
1739 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1740 {
1741 	return set_cpus_allowed_ptr(p, &new_mask);
1742 }
1743 
1744 /*
1745  * Architectures can set this to 1 if they have specified
1746  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1747  * but then during bootup it turns out that sched_clock()
1748  * is reliable after all:
1749  */
1750 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1751 extern int sched_clock_stable;
1752 #endif
1753 
1754 extern unsigned long long sched_clock(void);
1755 
1756 extern void sched_clock_init(void);
1757 extern u64 sched_clock_cpu(int cpu);
1758 
1759 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1760 static inline void sched_clock_tick(void)
1761 {
1762 }
1763 
1764 static inline void sched_clock_idle_sleep_event(void)
1765 {
1766 }
1767 
1768 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1769 {
1770 }
1771 #else
1772 extern void sched_clock_tick(void);
1773 extern void sched_clock_idle_sleep_event(void);
1774 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1775 #endif
1776 
1777 /*
1778  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1779  * clock constructed from sched_clock():
1780  */
1781 extern unsigned long long cpu_clock(int cpu);
1782 
1783 extern unsigned long long
1784 task_sched_runtime(struct task_struct *task);
1785 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1786 
1787 /* sched_exec is called by processes performing an exec */
1788 #ifdef CONFIG_SMP
1789 extern void sched_exec(void);
1790 #else
1791 #define sched_exec()   {}
1792 #endif
1793 
1794 extern void sched_clock_idle_sleep_event(void);
1795 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1796 
1797 #ifdef CONFIG_HOTPLUG_CPU
1798 extern void idle_task_exit(void);
1799 #else
1800 static inline void idle_task_exit(void) {}
1801 #endif
1802 
1803 extern void sched_idle_next(void);
1804 
1805 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1806 extern void wake_up_idle_cpu(int cpu);
1807 #else
1808 static inline void wake_up_idle_cpu(int cpu) { }
1809 #endif
1810 
1811 extern unsigned int sysctl_sched_latency;
1812 extern unsigned int sysctl_sched_min_granularity;
1813 extern unsigned int sysctl_sched_wakeup_granularity;
1814 extern unsigned int sysctl_sched_shares_ratelimit;
1815 extern unsigned int sysctl_sched_shares_thresh;
1816 #ifdef CONFIG_SCHED_DEBUG
1817 extern unsigned int sysctl_sched_child_runs_first;
1818 extern unsigned int sysctl_sched_features;
1819 extern unsigned int sysctl_sched_migration_cost;
1820 extern unsigned int sysctl_sched_nr_migrate;
1821 extern unsigned int sysctl_timer_migration;
1822 
1823 int sched_nr_latency_handler(struct ctl_table *table, int write,
1824 		struct file *file, void __user *buffer, size_t *length,
1825 		loff_t *ppos);
1826 #endif
1827 #ifdef CONFIG_SCHED_DEBUG
1828 static inline unsigned int get_sysctl_timer_migration(void)
1829 {
1830 	return sysctl_timer_migration;
1831 }
1832 #else
1833 static inline unsigned int get_sysctl_timer_migration(void)
1834 {
1835 	return 1;
1836 }
1837 #endif
1838 extern unsigned int sysctl_sched_rt_period;
1839 extern int sysctl_sched_rt_runtime;
1840 
1841 int sched_rt_handler(struct ctl_table *table, int write,
1842 		struct file *filp, void __user *buffer, size_t *lenp,
1843 		loff_t *ppos);
1844 
1845 extern unsigned int sysctl_sched_compat_yield;
1846 
1847 #ifdef CONFIG_RT_MUTEXES
1848 extern int rt_mutex_getprio(struct task_struct *p);
1849 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1850 extern void rt_mutex_adjust_pi(struct task_struct *p);
1851 #else
1852 static inline int rt_mutex_getprio(struct task_struct *p)
1853 {
1854 	return p->normal_prio;
1855 }
1856 # define rt_mutex_adjust_pi(p)		do { } while (0)
1857 #endif
1858 
1859 extern void set_user_nice(struct task_struct *p, long nice);
1860 extern int task_prio(const struct task_struct *p);
1861 extern int task_nice(const struct task_struct *p);
1862 extern int can_nice(const struct task_struct *p, const int nice);
1863 extern int task_curr(const struct task_struct *p);
1864 extern int idle_cpu(int cpu);
1865 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1866 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1867 				      struct sched_param *);
1868 extern struct task_struct *idle_task(int cpu);
1869 extern struct task_struct *curr_task(int cpu);
1870 extern void set_curr_task(int cpu, struct task_struct *p);
1871 
1872 void yield(void);
1873 
1874 /*
1875  * The default (Linux) execution domain.
1876  */
1877 extern struct exec_domain	default_exec_domain;
1878 
1879 union thread_union {
1880 	struct thread_info thread_info;
1881 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1882 };
1883 
1884 #ifndef __HAVE_ARCH_KSTACK_END
1885 static inline int kstack_end(void *addr)
1886 {
1887 	/* Reliable end of stack detection:
1888 	 * Some APM bios versions misalign the stack
1889 	 */
1890 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1891 }
1892 #endif
1893 
1894 extern union thread_union init_thread_union;
1895 extern struct task_struct init_task;
1896 
1897 extern struct   mm_struct init_mm;
1898 
1899 extern struct pid_namespace init_pid_ns;
1900 
1901 /*
1902  * find a task by one of its numerical ids
1903  *
1904  * find_task_by_pid_ns():
1905  *      finds a task by its pid in the specified namespace
1906  * find_task_by_vpid():
1907  *      finds a task by its virtual pid
1908  *
1909  * see also find_vpid() etc in include/linux/pid.h
1910  */
1911 
1912 extern struct task_struct *find_task_by_vpid(pid_t nr);
1913 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1914 		struct pid_namespace *ns);
1915 
1916 extern void __set_special_pids(struct pid *pid);
1917 
1918 /* per-UID process charging. */
1919 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1920 static inline struct user_struct *get_uid(struct user_struct *u)
1921 {
1922 	atomic_inc(&u->__count);
1923 	return u;
1924 }
1925 extern void free_uid(struct user_struct *);
1926 extern void release_uids(struct user_namespace *ns);
1927 
1928 #include <asm/current.h>
1929 
1930 extern void do_timer(unsigned long ticks);
1931 
1932 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1933 extern int wake_up_process(struct task_struct *tsk);
1934 extern void wake_up_new_task(struct task_struct *tsk,
1935 				unsigned long clone_flags);
1936 #ifdef CONFIG_SMP
1937  extern void kick_process(struct task_struct *tsk);
1938 #else
1939  static inline void kick_process(struct task_struct *tsk) { }
1940 #endif
1941 extern void sched_fork(struct task_struct *p, int clone_flags);
1942 extern void sched_dead(struct task_struct *p);
1943 
1944 extern void proc_caches_init(void);
1945 extern void flush_signals(struct task_struct *);
1946 extern void __flush_signals(struct task_struct *);
1947 extern void ignore_signals(struct task_struct *);
1948 extern void flush_signal_handlers(struct task_struct *, int force_default);
1949 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1950 
1951 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1952 {
1953 	unsigned long flags;
1954 	int ret;
1955 
1956 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1957 	ret = dequeue_signal(tsk, mask, info);
1958 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1959 
1960 	return ret;
1961 }
1962 
1963 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1964 			      sigset_t *mask);
1965 extern void unblock_all_signals(void);
1966 extern void release_task(struct task_struct * p);
1967 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1968 extern int force_sigsegv(int, struct task_struct *);
1969 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1970 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1971 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1972 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1973 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1974 extern int kill_pid(struct pid *pid, int sig, int priv);
1975 extern int kill_proc_info(int, struct siginfo *, pid_t);
1976 extern int do_notify_parent(struct task_struct *, int);
1977 extern void force_sig(int, struct task_struct *);
1978 extern void force_sig_specific(int, struct task_struct *);
1979 extern int send_sig(int, struct task_struct *, int);
1980 extern void zap_other_threads(struct task_struct *p);
1981 extern struct sigqueue *sigqueue_alloc(void);
1982 extern void sigqueue_free(struct sigqueue *);
1983 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
1984 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1985 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1986 
1987 static inline int kill_cad_pid(int sig, int priv)
1988 {
1989 	return kill_pid(cad_pid, sig, priv);
1990 }
1991 
1992 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
1993 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1994 #define SEND_SIG_PRIV	((struct siginfo *) 1)
1995 #define SEND_SIG_FORCED	((struct siginfo *) 2)
1996 
1997 static inline int is_si_special(const struct siginfo *info)
1998 {
1999 	return info <= SEND_SIG_FORCED;
2000 }
2001 
2002 /* True if we are on the alternate signal stack.  */
2003 
2004 static inline int on_sig_stack(unsigned long sp)
2005 {
2006 	return (sp - current->sas_ss_sp < current->sas_ss_size);
2007 }
2008 
2009 static inline int sas_ss_flags(unsigned long sp)
2010 {
2011 	return (current->sas_ss_size == 0 ? SS_DISABLE
2012 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2013 }
2014 
2015 /*
2016  * Routines for handling mm_structs
2017  */
2018 extern struct mm_struct * mm_alloc(void);
2019 
2020 /* mmdrop drops the mm and the page tables */
2021 extern void __mmdrop(struct mm_struct *);
2022 static inline void mmdrop(struct mm_struct * mm)
2023 {
2024 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2025 		__mmdrop(mm);
2026 }
2027 
2028 /* mmput gets rid of the mappings and all user-space */
2029 extern void mmput(struct mm_struct *);
2030 /* Grab a reference to a task's mm, if it is not already going away */
2031 extern struct mm_struct *get_task_mm(struct task_struct *task);
2032 /* Remove the current tasks stale references to the old mm_struct */
2033 extern void mm_release(struct task_struct *, struct mm_struct *);
2034 /* Allocate a new mm structure and copy contents from tsk->mm */
2035 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2036 
2037 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2038 			struct task_struct *, struct pt_regs *);
2039 extern void flush_thread(void);
2040 extern void exit_thread(void);
2041 
2042 extern void exit_files(struct task_struct *);
2043 extern void __cleanup_signal(struct signal_struct *);
2044 extern void __cleanup_sighand(struct sighand_struct *);
2045 
2046 extern void exit_itimers(struct signal_struct *);
2047 extern void flush_itimer_signals(void);
2048 
2049 extern NORET_TYPE void do_group_exit(int);
2050 
2051 extern void daemonize(const char *, ...);
2052 extern int allow_signal(int);
2053 extern int disallow_signal(int);
2054 
2055 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2056 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2057 struct task_struct *fork_idle(int);
2058 
2059 extern void set_task_comm(struct task_struct *tsk, char *from);
2060 extern char *get_task_comm(char *to, struct task_struct *tsk);
2061 
2062 #ifdef CONFIG_SMP
2063 extern void wait_task_context_switch(struct task_struct *p);
2064 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2065 #else
2066 static inline void wait_task_context_switch(struct task_struct *p) {}
2067 static inline unsigned long wait_task_inactive(struct task_struct *p,
2068 					       long match_state)
2069 {
2070 	return 1;
2071 }
2072 #endif
2073 
2074 #define next_task(p) \
2075 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2076 
2077 #define for_each_process(p) \
2078 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2079 
2080 extern bool is_single_threaded(struct task_struct *);
2081 
2082 /*
2083  * Careful: do_each_thread/while_each_thread is a double loop so
2084  *          'break' will not work as expected - use goto instead.
2085  */
2086 #define do_each_thread(g, t) \
2087 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2088 
2089 #define while_each_thread(g, t) \
2090 	while ((t = next_thread(t)) != g)
2091 
2092 /* de_thread depends on thread_group_leader not being a pid based check */
2093 #define thread_group_leader(p)	(p == p->group_leader)
2094 
2095 /* Do to the insanities of de_thread it is possible for a process
2096  * to have the pid of the thread group leader without actually being
2097  * the thread group leader.  For iteration through the pids in proc
2098  * all we care about is that we have a task with the appropriate
2099  * pid, we don't actually care if we have the right task.
2100  */
2101 static inline int has_group_leader_pid(struct task_struct *p)
2102 {
2103 	return p->pid == p->tgid;
2104 }
2105 
2106 static inline
2107 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2108 {
2109 	return p1->tgid == p2->tgid;
2110 }
2111 
2112 static inline struct task_struct *next_thread(const struct task_struct *p)
2113 {
2114 	return list_entry_rcu(p->thread_group.next,
2115 			      struct task_struct, thread_group);
2116 }
2117 
2118 static inline int thread_group_empty(struct task_struct *p)
2119 {
2120 	return list_empty(&p->thread_group);
2121 }
2122 
2123 #define delay_group_leader(p) \
2124 		(thread_group_leader(p) && !thread_group_empty(p))
2125 
2126 static inline int task_detached(struct task_struct *p)
2127 {
2128 	return p->exit_signal == -1;
2129 }
2130 
2131 /*
2132  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2133  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2134  * pins the final release of task.io_context.  Also protects ->cpuset and
2135  * ->cgroup.subsys[].
2136  *
2137  * Nests both inside and outside of read_lock(&tasklist_lock).
2138  * It must not be nested with write_lock_irq(&tasklist_lock),
2139  * neither inside nor outside.
2140  */
2141 static inline void task_lock(struct task_struct *p)
2142 {
2143 	spin_lock(&p->alloc_lock);
2144 }
2145 
2146 static inline void task_unlock(struct task_struct *p)
2147 {
2148 	spin_unlock(&p->alloc_lock);
2149 }
2150 
2151 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2152 							unsigned long *flags);
2153 
2154 static inline void unlock_task_sighand(struct task_struct *tsk,
2155 						unsigned long *flags)
2156 {
2157 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2158 }
2159 
2160 #ifndef __HAVE_THREAD_FUNCTIONS
2161 
2162 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2163 #define task_stack_page(task)	((task)->stack)
2164 
2165 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2166 {
2167 	*task_thread_info(p) = *task_thread_info(org);
2168 	task_thread_info(p)->task = p;
2169 }
2170 
2171 static inline unsigned long *end_of_stack(struct task_struct *p)
2172 {
2173 	return (unsigned long *)(task_thread_info(p) + 1);
2174 }
2175 
2176 #endif
2177 
2178 static inline int object_is_on_stack(void *obj)
2179 {
2180 	void *stack = task_stack_page(current);
2181 
2182 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2183 }
2184 
2185 extern void thread_info_cache_init(void);
2186 
2187 #ifdef CONFIG_DEBUG_STACK_USAGE
2188 static inline unsigned long stack_not_used(struct task_struct *p)
2189 {
2190 	unsigned long *n = end_of_stack(p);
2191 
2192 	do { 	/* Skip over canary */
2193 		n++;
2194 	} while (!*n);
2195 
2196 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2197 }
2198 #endif
2199 
2200 /* set thread flags in other task's structures
2201  * - see asm/thread_info.h for TIF_xxxx flags available
2202  */
2203 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2204 {
2205 	set_ti_thread_flag(task_thread_info(tsk), flag);
2206 }
2207 
2208 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2209 {
2210 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2211 }
2212 
2213 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2214 {
2215 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2216 }
2217 
2218 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2219 {
2220 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2221 }
2222 
2223 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2224 {
2225 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2226 }
2227 
2228 static inline void set_tsk_need_resched(struct task_struct *tsk)
2229 {
2230 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2231 }
2232 
2233 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2234 {
2235 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2236 }
2237 
2238 static inline int test_tsk_need_resched(struct task_struct *tsk)
2239 {
2240 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2241 }
2242 
2243 static inline int restart_syscall(void)
2244 {
2245 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2246 	return -ERESTARTNOINTR;
2247 }
2248 
2249 static inline int signal_pending(struct task_struct *p)
2250 {
2251 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2252 }
2253 
2254 extern int __fatal_signal_pending(struct task_struct *p);
2255 
2256 static inline int fatal_signal_pending(struct task_struct *p)
2257 {
2258 	return signal_pending(p) && __fatal_signal_pending(p);
2259 }
2260 
2261 static inline int signal_pending_state(long state, struct task_struct *p)
2262 {
2263 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2264 		return 0;
2265 	if (!signal_pending(p))
2266 		return 0;
2267 
2268 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2269 }
2270 
2271 static inline int need_resched(void)
2272 {
2273 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2274 }
2275 
2276 /*
2277  * cond_resched() and cond_resched_lock(): latency reduction via
2278  * explicit rescheduling in places that are safe. The return
2279  * value indicates whether a reschedule was done in fact.
2280  * cond_resched_lock() will drop the spinlock before scheduling,
2281  * cond_resched_softirq() will enable bhs before scheduling.
2282  */
2283 extern int _cond_resched(void);
2284 #ifdef CONFIG_PREEMPT_BKL
2285 static inline int cond_resched(void)
2286 {
2287 	return 0;
2288 }
2289 #else
2290 static inline int cond_resched(void)
2291 {
2292 	return _cond_resched();
2293 }
2294 #endif
2295 extern int cond_resched_lock(spinlock_t * lock);
2296 extern int cond_resched_softirq(void);
2297 static inline int cond_resched_bkl(void)
2298 {
2299 	return _cond_resched();
2300 }
2301 
2302 /*
2303  * Does a critical section need to be broken due to another
2304  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2305  * but a general need for low latency)
2306  */
2307 static inline int spin_needbreak(spinlock_t *lock)
2308 {
2309 #ifdef CONFIG_PREEMPT
2310 	return spin_is_contended(lock);
2311 #else
2312 	return 0;
2313 #endif
2314 }
2315 
2316 /*
2317  * Thread group CPU time accounting.
2318  */
2319 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2320 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2321 
2322 static inline void thread_group_cputime_init(struct signal_struct *sig)
2323 {
2324 	sig->cputimer.cputime = INIT_CPUTIME;
2325 	spin_lock_init(&sig->cputimer.lock);
2326 	sig->cputimer.running = 0;
2327 }
2328 
2329 static inline void thread_group_cputime_free(struct signal_struct *sig)
2330 {
2331 }
2332 
2333 /*
2334  * Reevaluate whether the task has signals pending delivery.
2335  * Wake the task if so.
2336  * This is required every time the blocked sigset_t changes.
2337  * callers must hold sighand->siglock.
2338  */
2339 extern void recalc_sigpending_and_wake(struct task_struct *t);
2340 extern void recalc_sigpending(void);
2341 
2342 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2343 
2344 /*
2345  * Wrappers for p->thread_info->cpu access. No-op on UP.
2346  */
2347 #ifdef CONFIG_SMP
2348 
2349 static inline unsigned int task_cpu(const struct task_struct *p)
2350 {
2351 	return task_thread_info(p)->cpu;
2352 }
2353 
2354 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2355 
2356 #else
2357 
2358 static inline unsigned int task_cpu(const struct task_struct *p)
2359 {
2360 	return 0;
2361 }
2362 
2363 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2364 {
2365 }
2366 
2367 #endif /* CONFIG_SMP */
2368 
2369 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2370 
2371 #ifdef CONFIG_TRACING
2372 extern void
2373 __trace_special(void *__tr, void *__data,
2374 		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2375 #else
2376 static inline void
2377 __trace_special(void *__tr, void *__data,
2378 		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2379 {
2380 }
2381 #endif
2382 
2383 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2384 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2385 
2386 extern void normalize_rt_tasks(void);
2387 
2388 #ifdef CONFIG_GROUP_SCHED
2389 
2390 extern struct task_group init_task_group;
2391 #ifdef CONFIG_USER_SCHED
2392 extern struct task_group root_task_group;
2393 extern void set_tg_uid(struct user_struct *user);
2394 #endif
2395 
2396 extern struct task_group *sched_create_group(struct task_group *parent);
2397 extern void sched_destroy_group(struct task_group *tg);
2398 extern void sched_move_task(struct task_struct *tsk);
2399 #ifdef CONFIG_FAIR_GROUP_SCHED
2400 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2401 extern unsigned long sched_group_shares(struct task_group *tg);
2402 #endif
2403 #ifdef CONFIG_RT_GROUP_SCHED
2404 extern int sched_group_set_rt_runtime(struct task_group *tg,
2405 				      long rt_runtime_us);
2406 extern long sched_group_rt_runtime(struct task_group *tg);
2407 extern int sched_group_set_rt_period(struct task_group *tg,
2408 				      long rt_period_us);
2409 extern long sched_group_rt_period(struct task_group *tg);
2410 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2411 #endif
2412 #endif
2413 
2414 extern int task_can_switch_user(struct user_struct *up,
2415 					struct task_struct *tsk);
2416 
2417 #ifdef CONFIG_TASK_XACCT
2418 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2419 {
2420 	tsk->ioac.rchar += amt;
2421 }
2422 
2423 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2424 {
2425 	tsk->ioac.wchar += amt;
2426 }
2427 
2428 static inline void inc_syscr(struct task_struct *tsk)
2429 {
2430 	tsk->ioac.syscr++;
2431 }
2432 
2433 static inline void inc_syscw(struct task_struct *tsk)
2434 {
2435 	tsk->ioac.syscw++;
2436 }
2437 #else
2438 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2439 {
2440 }
2441 
2442 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2443 {
2444 }
2445 
2446 static inline void inc_syscr(struct task_struct *tsk)
2447 {
2448 }
2449 
2450 static inline void inc_syscw(struct task_struct *tsk)
2451 {
2452 }
2453 #endif
2454 
2455 #ifndef TASK_SIZE_OF
2456 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2457 #endif
2458 
2459 /*
2460  * Call the function if the target task is executing on a CPU right now:
2461  */
2462 extern void task_oncpu_function_call(struct task_struct *p,
2463 				     void (*func) (void *info), void *info);
2464 
2465 
2466 #ifdef CONFIG_MM_OWNER
2467 extern void mm_update_next_owner(struct mm_struct *mm);
2468 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2469 #else
2470 static inline void mm_update_next_owner(struct mm_struct *mm)
2471 {
2472 }
2473 
2474 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2475 {
2476 }
2477 #endif /* CONFIG_MM_OWNER */
2478 
2479 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2480 
2481 #endif /* __KERNEL__ */
2482 
2483 #endif
2484