1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 42 #ifdef __KERNEL__ 43 44 struct sched_param { 45 int sched_priority; 46 }; 47 48 #include <asm/param.h> /* for HZ */ 49 50 #include <linux/capability.h> 51 #include <linux/threads.h> 52 #include <linux/kernel.h> 53 #include <linux/types.h> 54 #include <linux/timex.h> 55 #include <linux/jiffies.h> 56 #include <linux/rbtree.h> 57 #include <linux/thread_info.h> 58 #include <linux/cpumask.h> 59 #include <linux/errno.h> 60 #include <linux/nodemask.h> 61 #include <linux/mm_types.h> 62 63 #include <asm/system.h> 64 #include <asm/page.h> 65 #include <asm/ptrace.h> 66 #include <asm/cputime.h> 67 68 #include <linux/smp.h> 69 #include <linux/sem.h> 70 #include <linux/signal.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compiler.h> 73 #include <linux/completion.h> 74 #include <linux/pid.h> 75 #include <linux/percpu.h> 76 #include <linux/topology.h> 77 #include <linux/proportions.h> 78 #include <linux/seccomp.h> 79 #include <linux/rcupdate.h> 80 #include <linux/rtmutex.h> 81 82 #include <linux/time.h> 83 #include <linux/param.h> 84 #include <linux/resource.h> 85 #include <linux/timer.h> 86 #include <linux/hrtimer.h> 87 #include <linux/task_io_accounting.h> 88 #include <linux/kobject.h> 89 #include <linux/latencytop.h> 90 91 #include <asm/processor.h> 92 93 struct mem_cgroup; 94 struct exec_domain; 95 struct futex_pi_state; 96 struct robust_list_head; 97 struct bio; 98 99 /* 100 * List of flags we want to share for kernel threads, 101 * if only because they are not used by them anyway. 102 */ 103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 104 105 /* 106 * These are the constant used to fake the fixed-point load-average 107 * counting. Some notes: 108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 109 * a load-average precision of 10 bits integer + 11 bits fractional 110 * - if you want to count load-averages more often, you need more 111 * precision, or rounding will get you. With 2-second counting freq, 112 * the EXP_n values would be 1981, 2034 and 2043 if still using only 113 * 11 bit fractions. 114 */ 115 extern unsigned long avenrun[]; /* Load averages */ 116 117 #define FSHIFT 11 /* nr of bits of precision */ 118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 121 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 122 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 123 124 #define CALC_LOAD(load,exp,n) \ 125 load *= exp; \ 126 load += n*(FIXED_1-exp); \ 127 load >>= FSHIFT; 128 129 extern unsigned long total_forks; 130 extern int nr_threads; 131 DECLARE_PER_CPU(unsigned long, process_counts); 132 extern int nr_processes(void); 133 extern unsigned long nr_running(void); 134 extern unsigned long nr_uninterruptible(void); 135 extern unsigned long nr_active(void); 136 extern unsigned long nr_iowait(void); 137 extern unsigned long weighted_cpuload(const int cpu); 138 139 struct seq_file; 140 struct cfs_rq; 141 struct task_group; 142 #ifdef CONFIG_SCHED_DEBUG 143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 144 extern void proc_sched_set_task(struct task_struct *p); 145 extern void 146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 147 #else 148 static inline void 149 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 150 { 151 } 152 static inline void proc_sched_set_task(struct task_struct *p) 153 { 154 } 155 static inline void 156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 157 { 158 } 159 #endif 160 161 /* 162 * Task state bitmask. NOTE! These bits are also 163 * encoded in fs/proc/array.c: get_task_state(). 164 * 165 * We have two separate sets of flags: task->state 166 * is about runnability, while task->exit_state are 167 * about the task exiting. Confusing, but this way 168 * modifying one set can't modify the other one by 169 * mistake. 170 */ 171 #define TASK_RUNNING 0 172 #define TASK_INTERRUPTIBLE 1 173 #define TASK_UNINTERRUPTIBLE 2 174 #define __TASK_STOPPED 4 175 #define __TASK_TRACED 8 176 /* in tsk->exit_state */ 177 #define EXIT_ZOMBIE 16 178 #define EXIT_DEAD 32 179 /* in tsk->state again */ 180 #define TASK_DEAD 64 181 #define TASK_WAKEKILL 128 182 183 /* Convenience macros for the sake of set_task_state */ 184 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 185 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 186 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 187 188 /* Convenience macros for the sake of wake_up */ 189 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 190 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 191 192 /* get_task_state() */ 193 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 194 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 195 __TASK_TRACED) 196 197 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 198 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 199 #define task_is_stopped_or_traced(task) \ 200 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 201 #define task_contributes_to_load(task) \ 202 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 203 204 #define __set_task_state(tsk, state_value) \ 205 do { (tsk)->state = (state_value); } while (0) 206 #define set_task_state(tsk, state_value) \ 207 set_mb((tsk)->state, (state_value)) 208 209 /* 210 * set_current_state() includes a barrier so that the write of current->state 211 * is correctly serialised wrt the caller's subsequent test of whether to 212 * actually sleep: 213 * 214 * set_current_state(TASK_UNINTERRUPTIBLE); 215 * if (do_i_need_to_sleep()) 216 * schedule(); 217 * 218 * If the caller does not need such serialisation then use __set_current_state() 219 */ 220 #define __set_current_state(state_value) \ 221 do { current->state = (state_value); } while (0) 222 #define set_current_state(state_value) \ 223 set_mb(current->state, (state_value)) 224 225 /* Task command name length */ 226 #define TASK_COMM_LEN 16 227 228 #include <linux/spinlock.h> 229 230 /* 231 * This serializes "schedule()" and also protects 232 * the run-queue from deletions/modifications (but 233 * _adding_ to the beginning of the run-queue has 234 * a separate lock). 235 */ 236 extern rwlock_t tasklist_lock; 237 extern spinlock_t mmlist_lock; 238 239 struct task_struct; 240 241 extern void sched_init(void); 242 extern void sched_init_smp(void); 243 extern asmlinkage void schedule_tail(struct task_struct *prev); 244 extern void init_idle(struct task_struct *idle, int cpu); 245 extern void init_idle_bootup_task(struct task_struct *idle); 246 247 extern cpumask_t nohz_cpu_mask; 248 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 249 extern int select_nohz_load_balancer(int cpu); 250 #else 251 static inline int select_nohz_load_balancer(int cpu) 252 { 253 return 0; 254 } 255 #endif 256 257 extern unsigned long rt_needs_cpu(int cpu); 258 259 /* 260 * Only dump TASK_* tasks. (0 for all tasks) 261 */ 262 extern void show_state_filter(unsigned long state_filter); 263 264 static inline void show_state(void) 265 { 266 show_state_filter(0); 267 } 268 269 extern void show_regs(struct pt_regs *); 270 271 /* 272 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 273 * task), SP is the stack pointer of the first frame that should be shown in the back 274 * trace (or NULL if the entire call-chain of the task should be shown). 275 */ 276 extern void show_stack(struct task_struct *task, unsigned long *sp); 277 278 void io_schedule(void); 279 long io_schedule_timeout(long timeout); 280 281 extern void cpu_init (void); 282 extern void trap_init(void); 283 extern void account_process_tick(struct task_struct *task, int user); 284 extern void update_process_times(int user); 285 extern void scheduler_tick(void); 286 extern void hrtick_resched(void); 287 288 extern void sched_show_task(struct task_struct *p); 289 290 #ifdef CONFIG_DETECT_SOFTLOCKUP 291 extern void softlockup_tick(void); 292 extern void spawn_softlockup_task(void); 293 extern void touch_softlockup_watchdog(void); 294 extern void touch_all_softlockup_watchdogs(void); 295 extern unsigned long softlockup_thresh; 296 extern unsigned long sysctl_hung_task_check_count; 297 extern unsigned long sysctl_hung_task_timeout_secs; 298 extern unsigned long sysctl_hung_task_warnings; 299 #else 300 static inline void softlockup_tick(void) 301 { 302 } 303 static inline void spawn_softlockup_task(void) 304 { 305 } 306 static inline void touch_softlockup_watchdog(void) 307 { 308 } 309 static inline void touch_all_softlockup_watchdogs(void) 310 { 311 } 312 #endif 313 314 315 /* Attach to any functions which should be ignored in wchan output. */ 316 #define __sched __attribute__((__section__(".sched.text"))) 317 318 /* Linker adds these: start and end of __sched functions */ 319 extern char __sched_text_start[], __sched_text_end[]; 320 321 /* Is this address in the __sched functions? */ 322 extern int in_sched_functions(unsigned long addr); 323 324 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 325 extern signed long schedule_timeout(signed long timeout); 326 extern signed long schedule_timeout_interruptible(signed long timeout); 327 extern signed long schedule_timeout_killable(signed long timeout); 328 extern signed long schedule_timeout_uninterruptible(signed long timeout); 329 asmlinkage void schedule(void); 330 331 struct nsproxy; 332 struct user_namespace; 333 334 /* Maximum number of active map areas.. This is a random (large) number */ 335 #define DEFAULT_MAX_MAP_COUNT 65536 336 337 extern int sysctl_max_map_count; 338 339 #include <linux/aio.h> 340 341 extern unsigned long 342 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 343 unsigned long, unsigned long); 344 extern unsigned long 345 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 346 unsigned long len, unsigned long pgoff, 347 unsigned long flags); 348 extern void arch_unmap_area(struct mm_struct *, unsigned long); 349 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 350 351 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 352 /* 353 * The mm counters are not protected by its page_table_lock, 354 * so must be incremented atomically. 355 */ 356 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 357 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 358 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 359 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 360 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 361 362 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 363 /* 364 * The mm counters are protected by its page_table_lock, 365 * so can be incremented directly. 366 */ 367 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 368 #define get_mm_counter(mm, member) ((mm)->_##member) 369 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 370 #define inc_mm_counter(mm, member) (mm)->_##member++ 371 #define dec_mm_counter(mm, member) (mm)->_##member-- 372 373 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 374 375 #define get_mm_rss(mm) \ 376 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 377 #define update_hiwater_rss(mm) do { \ 378 unsigned long _rss = get_mm_rss(mm); \ 379 if ((mm)->hiwater_rss < _rss) \ 380 (mm)->hiwater_rss = _rss; \ 381 } while (0) 382 #define update_hiwater_vm(mm) do { \ 383 if ((mm)->hiwater_vm < (mm)->total_vm) \ 384 (mm)->hiwater_vm = (mm)->total_vm; \ 385 } while (0) 386 387 extern void set_dumpable(struct mm_struct *mm, int value); 388 extern int get_dumpable(struct mm_struct *mm); 389 390 /* mm flags */ 391 /* dumpable bits */ 392 #define MMF_DUMPABLE 0 /* core dump is permitted */ 393 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 394 #define MMF_DUMPABLE_BITS 2 395 396 /* coredump filter bits */ 397 #define MMF_DUMP_ANON_PRIVATE 2 398 #define MMF_DUMP_ANON_SHARED 3 399 #define MMF_DUMP_MAPPED_PRIVATE 4 400 #define MMF_DUMP_MAPPED_SHARED 5 401 #define MMF_DUMP_ELF_HEADERS 6 402 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 403 #define MMF_DUMP_FILTER_BITS 5 404 #define MMF_DUMP_FILTER_MASK \ 405 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 406 #define MMF_DUMP_FILTER_DEFAULT \ 407 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 408 409 struct sighand_struct { 410 atomic_t count; 411 struct k_sigaction action[_NSIG]; 412 spinlock_t siglock; 413 wait_queue_head_t signalfd_wqh; 414 }; 415 416 struct pacct_struct { 417 int ac_flag; 418 long ac_exitcode; 419 unsigned long ac_mem; 420 cputime_t ac_utime, ac_stime; 421 unsigned long ac_minflt, ac_majflt; 422 }; 423 424 /* 425 * NOTE! "signal_struct" does not have it's own 426 * locking, because a shared signal_struct always 427 * implies a shared sighand_struct, so locking 428 * sighand_struct is always a proper superset of 429 * the locking of signal_struct. 430 */ 431 struct signal_struct { 432 atomic_t count; 433 atomic_t live; 434 435 wait_queue_head_t wait_chldexit; /* for wait4() */ 436 437 /* current thread group signal load-balancing target: */ 438 struct task_struct *curr_target; 439 440 /* shared signal handling: */ 441 struct sigpending shared_pending; 442 443 /* thread group exit support */ 444 int group_exit_code; 445 /* overloaded: 446 * - notify group_exit_task when ->count is equal to notify_count 447 * - everyone except group_exit_task is stopped during signal delivery 448 * of fatal signals, group_exit_task processes the signal. 449 */ 450 struct task_struct *group_exit_task; 451 int notify_count; 452 453 /* thread group stop support, overloads group_exit_code too */ 454 int group_stop_count; 455 unsigned int flags; /* see SIGNAL_* flags below */ 456 457 /* POSIX.1b Interval Timers */ 458 struct list_head posix_timers; 459 460 /* ITIMER_REAL timer for the process */ 461 struct hrtimer real_timer; 462 struct pid *leader_pid; 463 ktime_t it_real_incr; 464 465 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 466 cputime_t it_prof_expires, it_virt_expires; 467 cputime_t it_prof_incr, it_virt_incr; 468 469 /* job control IDs */ 470 471 /* 472 * pgrp and session fields are deprecated. 473 * use the task_session_Xnr and task_pgrp_Xnr routines below 474 */ 475 476 union { 477 pid_t pgrp __deprecated; 478 pid_t __pgrp; 479 }; 480 481 struct pid *tty_old_pgrp; 482 483 union { 484 pid_t session __deprecated; 485 pid_t __session; 486 }; 487 488 /* boolean value for session group leader */ 489 int leader; 490 491 struct tty_struct *tty; /* NULL if no tty */ 492 493 /* 494 * Cumulative resource counters for dead threads in the group, 495 * and for reaped dead child processes forked by this group. 496 * Live threads maintain their own counters and add to these 497 * in __exit_signal, except for the group leader. 498 */ 499 cputime_t utime, stime, cutime, cstime; 500 cputime_t gtime; 501 cputime_t cgtime; 502 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 503 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 504 unsigned long inblock, oublock, cinblock, coublock; 505 506 /* 507 * Cumulative ns of scheduled CPU time for dead threads in the 508 * group, not including a zombie group leader. (This only differs 509 * from jiffies_to_ns(utime + stime) if sched_clock uses something 510 * other than jiffies.) 511 */ 512 unsigned long long sum_sched_runtime; 513 514 /* 515 * We don't bother to synchronize most readers of this at all, 516 * because there is no reader checking a limit that actually needs 517 * to get both rlim_cur and rlim_max atomically, and either one 518 * alone is a single word that can safely be read normally. 519 * getrlimit/setrlimit use task_lock(current->group_leader) to 520 * protect this instead of the siglock, because they really 521 * have no need to disable irqs. 522 */ 523 struct rlimit rlim[RLIM_NLIMITS]; 524 525 struct list_head cpu_timers[3]; 526 527 /* keep the process-shared keyrings here so that they do the right 528 * thing in threads created with CLONE_THREAD */ 529 #ifdef CONFIG_KEYS 530 struct key *session_keyring; /* keyring inherited over fork */ 531 struct key *process_keyring; /* keyring private to this process */ 532 #endif 533 #ifdef CONFIG_BSD_PROCESS_ACCT 534 struct pacct_struct pacct; /* per-process accounting information */ 535 #endif 536 #ifdef CONFIG_TASKSTATS 537 struct taskstats *stats; 538 #endif 539 #ifdef CONFIG_AUDIT 540 unsigned audit_tty; 541 struct tty_audit_buf *tty_audit_buf; 542 #endif 543 }; 544 545 /* Context switch must be unlocked if interrupts are to be enabled */ 546 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 547 # define __ARCH_WANT_UNLOCKED_CTXSW 548 #endif 549 550 /* 551 * Bits in flags field of signal_struct. 552 */ 553 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 554 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 555 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 556 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 557 /* 558 * Pending notifications to parent. 559 */ 560 #define SIGNAL_CLD_STOPPED 0x00000010 561 #define SIGNAL_CLD_CONTINUED 0x00000020 562 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 563 564 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 565 566 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 567 static inline int signal_group_exit(const struct signal_struct *sig) 568 { 569 return (sig->flags & SIGNAL_GROUP_EXIT) || 570 (sig->group_exit_task != NULL); 571 } 572 573 /* 574 * Some day this will be a full-fledged user tracking system.. 575 */ 576 struct user_struct { 577 atomic_t __count; /* reference count */ 578 atomic_t processes; /* How many processes does this user have? */ 579 atomic_t files; /* How many open files does this user have? */ 580 atomic_t sigpending; /* How many pending signals does this user have? */ 581 #ifdef CONFIG_INOTIFY_USER 582 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 583 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 584 #endif 585 #ifdef CONFIG_POSIX_MQUEUE 586 /* protected by mq_lock */ 587 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 588 #endif 589 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 590 591 #ifdef CONFIG_KEYS 592 struct key *uid_keyring; /* UID specific keyring */ 593 struct key *session_keyring; /* UID's default session keyring */ 594 #endif 595 596 /* Hash table maintenance information */ 597 struct hlist_node uidhash_node; 598 uid_t uid; 599 600 #ifdef CONFIG_USER_SCHED 601 struct task_group *tg; 602 #ifdef CONFIG_SYSFS 603 struct kobject kobj; 604 struct work_struct work; 605 #endif 606 #endif 607 }; 608 609 extern int uids_sysfs_init(void); 610 611 extern struct user_struct *find_user(uid_t); 612 613 extern struct user_struct root_user; 614 #define INIT_USER (&root_user) 615 616 struct backing_dev_info; 617 struct reclaim_state; 618 619 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 620 struct sched_info { 621 /* cumulative counters */ 622 unsigned long pcount; /* # of times run on this cpu */ 623 unsigned long long cpu_time, /* time spent on the cpu */ 624 run_delay; /* time spent waiting on a runqueue */ 625 626 /* timestamps */ 627 unsigned long long last_arrival,/* when we last ran on a cpu */ 628 last_queued; /* when we were last queued to run */ 629 #ifdef CONFIG_SCHEDSTATS 630 /* BKL stats */ 631 unsigned int bkl_count; 632 #endif 633 }; 634 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 635 636 #ifdef CONFIG_SCHEDSTATS 637 extern const struct file_operations proc_schedstat_operations; 638 #endif /* CONFIG_SCHEDSTATS */ 639 640 #ifdef CONFIG_TASK_DELAY_ACCT 641 struct task_delay_info { 642 spinlock_t lock; 643 unsigned int flags; /* Private per-task flags */ 644 645 /* For each stat XXX, add following, aligned appropriately 646 * 647 * struct timespec XXX_start, XXX_end; 648 * u64 XXX_delay; 649 * u32 XXX_count; 650 * 651 * Atomicity of updates to XXX_delay, XXX_count protected by 652 * single lock above (split into XXX_lock if contention is an issue). 653 */ 654 655 /* 656 * XXX_count is incremented on every XXX operation, the delay 657 * associated with the operation is added to XXX_delay. 658 * XXX_delay contains the accumulated delay time in nanoseconds. 659 */ 660 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 661 u64 blkio_delay; /* wait for sync block io completion */ 662 u64 swapin_delay; /* wait for swapin block io completion */ 663 u32 blkio_count; /* total count of the number of sync block */ 664 /* io operations performed */ 665 u32 swapin_count; /* total count of the number of swapin block */ 666 /* io operations performed */ 667 }; 668 #endif /* CONFIG_TASK_DELAY_ACCT */ 669 670 static inline int sched_info_on(void) 671 { 672 #ifdef CONFIG_SCHEDSTATS 673 return 1; 674 #elif defined(CONFIG_TASK_DELAY_ACCT) 675 extern int delayacct_on; 676 return delayacct_on; 677 #else 678 return 0; 679 #endif 680 } 681 682 enum cpu_idle_type { 683 CPU_IDLE, 684 CPU_NOT_IDLE, 685 CPU_NEWLY_IDLE, 686 CPU_MAX_IDLE_TYPES 687 }; 688 689 /* 690 * sched-domains (multiprocessor balancing) declarations: 691 */ 692 693 /* 694 * Increase resolution of nice-level calculations: 695 */ 696 #define SCHED_LOAD_SHIFT 10 697 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 698 699 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 700 701 #ifdef CONFIG_SMP 702 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 703 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 704 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 705 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 706 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 707 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 708 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 709 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 710 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 711 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 712 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 713 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 714 715 #define BALANCE_FOR_MC_POWER \ 716 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 717 718 #define BALANCE_FOR_PKG_POWER \ 719 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 720 SD_POWERSAVINGS_BALANCE : 0) 721 722 #define test_sd_parent(sd, flag) ((sd->parent && \ 723 (sd->parent->flags & flag)) ? 1 : 0) 724 725 726 struct sched_group { 727 struct sched_group *next; /* Must be a circular list */ 728 cpumask_t cpumask; 729 730 /* 731 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 732 * single CPU. This is read only (except for setup, hotplug CPU). 733 * Note : Never change cpu_power without recompute its reciprocal 734 */ 735 unsigned int __cpu_power; 736 /* 737 * reciprocal value of cpu_power to avoid expensive divides 738 * (see include/linux/reciprocal_div.h) 739 */ 740 u32 reciprocal_cpu_power; 741 }; 742 743 enum sched_domain_level { 744 SD_LV_NONE = 0, 745 SD_LV_SIBLING, 746 SD_LV_MC, 747 SD_LV_CPU, 748 SD_LV_NODE, 749 SD_LV_ALLNODES, 750 SD_LV_MAX 751 }; 752 753 struct sched_domain_attr { 754 int relax_domain_level; 755 }; 756 757 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 758 .relax_domain_level = -1, \ 759 } 760 761 struct sched_domain { 762 /* These fields must be setup */ 763 struct sched_domain *parent; /* top domain must be null terminated */ 764 struct sched_domain *child; /* bottom domain must be null terminated */ 765 struct sched_group *groups; /* the balancing groups of the domain */ 766 cpumask_t span; /* span of all CPUs in this domain */ 767 int first_cpu; /* cache of the first cpu in this domain */ 768 unsigned long min_interval; /* Minimum balance interval ms */ 769 unsigned long max_interval; /* Maximum balance interval ms */ 770 unsigned int busy_factor; /* less balancing by factor if busy */ 771 unsigned int imbalance_pct; /* No balance until over watermark */ 772 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 773 unsigned int busy_idx; 774 unsigned int idle_idx; 775 unsigned int newidle_idx; 776 unsigned int wake_idx; 777 unsigned int forkexec_idx; 778 int flags; /* See SD_* */ 779 enum sched_domain_level level; 780 781 /* Runtime fields. */ 782 unsigned long last_balance; /* init to jiffies. units in jiffies */ 783 unsigned int balance_interval; /* initialise to 1. units in ms. */ 784 unsigned int nr_balance_failed; /* initialise to 0 */ 785 786 #ifdef CONFIG_SCHEDSTATS 787 /* load_balance() stats */ 788 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 789 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 790 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 791 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 792 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 793 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 794 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 795 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 796 797 /* Active load balancing */ 798 unsigned int alb_count; 799 unsigned int alb_failed; 800 unsigned int alb_pushed; 801 802 /* SD_BALANCE_EXEC stats */ 803 unsigned int sbe_count; 804 unsigned int sbe_balanced; 805 unsigned int sbe_pushed; 806 807 /* SD_BALANCE_FORK stats */ 808 unsigned int sbf_count; 809 unsigned int sbf_balanced; 810 unsigned int sbf_pushed; 811 812 /* try_to_wake_up() stats */ 813 unsigned int ttwu_wake_remote; 814 unsigned int ttwu_move_affine; 815 unsigned int ttwu_move_balance; 816 #endif 817 }; 818 819 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 820 struct sched_domain_attr *dattr_new); 821 extern int arch_reinit_sched_domains(void); 822 823 #endif /* CONFIG_SMP */ 824 825 /* 826 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 827 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 828 * task of nice 0 or enough lower priority tasks to bring up the 829 * weighted_cpuload 830 */ 831 static inline int above_background_load(void) 832 { 833 unsigned long cpu; 834 835 for_each_online_cpu(cpu) { 836 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 837 return 1; 838 } 839 return 0; 840 } 841 842 struct io_context; /* See blkdev.h */ 843 #define NGROUPS_SMALL 32 844 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 845 struct group_info { 846 int ngroups; 847 atomic_t usage; 848 gid_t small_block[NGROUPS_SMALL]; 849 int nblocks; 850 gid_t *blocks[0]; 851 }; 852 853 /* 854 * get_group_info() must be called with the owning task locked (via task_lock()) 855 * when task != current. The reason being that the vast majority of callers are 856 * looking at current->group_info, which can not be changed except by the 857 * current task. Changing current->group_info requires the task lock, too. 858 */ 859 #define get_group_info(group_info) do { \ 860 atomic_inc(&(group_info)->usage); \ 861 } while (0) 862 863 #define put_group_info(group_info) do { \ 864 if (atomic_dec_and_test(&(group_info)->usage)) \ 865 groups_free(group_info); \ 866 } while (0) 867 868 extern struct group_info *groups_alloc(int gidsetsize); 869 extern void groups_free(struct group_info *group_info); 870 extern int set_current_groups(struct group_info *group_info); 871 extern int groups_search(struct group_info *group_info, gid_t grp); 872 /* access the groups "array" with this macro */ 873 #define GROUP_AT(gi, i) \ 874 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 875 876 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 877 extern void prefetch_stack(struct task_struct *t); 878 #else 879 static inline void prefetch_stack(struct task_struct *t) { } 880 #endif 881 882 struct audit_context; /* See audit.c */ 883 struct mempolicy; 884 struct pipe_inode_info; 885 struct uts_namespace; 886 887 struct rq; 888 struct sched_domain; 889 890 struct sched_class { 891 const struct sched_class *next; 892 893 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 894 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 895 void (*yield_task) (struct rq *rq); 896 int (*select_task_rq)(struct task_struct *p, int sync); 897 898 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 899 900 struct task_struct * (*pick_next_task) (struct rq *rq); 901 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 902 903 #ifdef CONFIG_SMP 904 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 905 struct rq *busiest, unsigned long max_load_move, 906 struct sched_domain *sd, enum cpu_idle_type idle, 907 int *all_pinned, int *this_best_prio); 908 909 int (*move_one_task) (struct rq *this_rq, int this_cpu, 910 struct rq *busiest, struct sched_domain *sd, 911 enum cpu_idle_type idle); 912 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 913 void (*post_schedule) (struct rq *this_rq); 914 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 915 #endif 916 917 void (*set_curr_task) (struct rq *rq); 918 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 919 void (*task_new) (struct rq *rq, struct task_struct *p); 920 void (*set_cpus_allowed)(struct task_struct *p, 921 const cpumask_t *newmask); 922 923 void (*join_domain)(struct rq *rq); 924 void (*leave_domain)(struct rq *rq); 925 926 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 927 int running); 928 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 929 int running); 930 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 931 int oldprio, int running); 932 933 #ifdef CONFIG_FAIR_GROUP_SCHED 934 void (*moved_group) (struct task_struct *p); 935 #endif 936 }; 937 938 struct load_weight { 939 unsigned long weight, inv_weight; 940 }; 941 942 /* 943 * CFS stats for a schedulable entity (task, task-group etc) 944 * 945 * Current field usage histogram: 946 * 947 * 4 se->block_start 948 * 4 se->run_node 949 * 4 se->sleep_start 950 * 6 se->load.weight 951 */ 952 struct sched_entity { 953 struct load_weight load; /* for load-balancing */ 954 struct rb_node run_node; 955 struct list_head group_node; 956 unsigned int on_rq; 957 958 u64 exec_start; 959 u64 sum_exec_runtime; 960 u64 vruntime; 961 u64 prev_sum_exec_runtime; 962 963 u64 last_wakeup; 964 u64 avg_overlap; 965 966 #ifdef CONFIG_SCHEDSTATS 967 u64 wait_start; 968 u64 wait_max; 969 u64 wait_count; 970 u64 wait_sum; 971 972 u64 sleep_start; 973 u64 sleep_max; 974 s64 sum_sleep_runtime; 975 976 u64 block_start; 977 u64 block_max; 978 u64 exec_max; 979 u64 slice_max; 980 981 u64 nr_migrations; 982 u64 nr_migrations_cold; 983 u64 nr_failed_migrations_affine; 984 u64 nr_failed_migrations_running; 985 u64 nr_failed_migrations_hot; 986 u64 nr_forced_migrations; 987 u64 nr_forced2_migrations; 988 989 u64 nr_wakeups; 990 u64 nr_wakeups_sync; 991 u64 nr_wakeups_migrate; 992 u64 nr_wakeups_local; 993 u64 nr_wakeups_remote; 994 u64 nr_wakeups_affine; 995 u64 nr_wakeups_affine_attempts; 996 u64 nr_wakeups_passive; 997 u64 nr_wakeups_idle; 998 #endif 999 1000 #ifdef CONFIG_FAIR_GROUP_SCHED 1001 struct sched_entity *parent; 1002 /* rq on which this entity is (to be) queued: */ 1003 struct cfs_rq *cfs_rq; 1004 /* rq "owned" by this entity/group: */ 1005 struct cfs_rq *my_q; 1006 #endif 1007 }; 1008 1009 struct sched_rt_entity { 1010 struct list_head run_list; 1011 unsigned int time_slice; 1012 unsigned long timeout; 1013 int nr_cpus_allowed; 1014 1015 struct sched_rt_entity *back; 1016 #ifdef CONFIG_RT_GROUP_SCHED 1017 struct sched_rt_entity *parent; 1018 /* rq on which this entity is (to be) queued: */ 1019 struct rt_rq *rt_rq; 1020 /* rq "owned" by this entity/group: */ 1021 struct rt_rq *my_q; 1022 #endif 1023 }; 1024 1025 struct task_struct { 1026 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1027 void *stack; 1028 atomic_t usage; 1029 unsigned int flags; /* per process flags, defined below */ 1030 unsigned int ptrace; 1031 1032 int lock_depth; /* BKL lock depth */ 1033 1034 #ifdef CONFIG_SMP 1035 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1036 int oncpu; 1037 #endif 1038 #endif 1039 1040 int prio, static_prio, normal_prio; 1041 const struct sched_class *sched_class; 1042 struct sched_entity se; 1043 struct sched_rt_entity rt; 1044 1045 #ifdef CONFIG_PREEMPT_NOTIFIERS 1046 /* list of struct preempt_notifier: */ 1047 struct hlist_head preempt_notifiers; 1048 #endif 1049 1050 /* 1051 * fpu_counter contains the number of consecutive context switches 1052 * that the FPU is used. If this is over a threshold, the lazy fpu 1053 * saving becomes unlazy to save the trap. This is an unsigned char 1054 * so that after 256 times the counter wraps and the behavior turns 1055 * lazy again; this to deal with bursty apps that only use FPU for 1056 * a short time 1057 */ 1058 unsigned char fpu_counter; 1059 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1060 #ifdef CONFIG_BLK_DEV_IO_TRACE 1061 unsigned int btrace_seq; 1062 #endif 1063 1064 unsigned int policy; 1065 cpumask_t cpus_allowed; 1066 1067 #ifdef CONFIG_PREEMPT_RCU 1068 int rcu_read_lock_nesting; 1069 int rcu_flipctr_idx; 1070 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1071 1072 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1073 struct sched_info sched_info; 1074 #endif 1075 1076 struct list_head tasks; 1077 /* 1078 * ptrace_list/ptrace_children forms the list of my children 1079 * that were stolen by a ptracer. 1080 */ 1081 struct list_head ptrace_children; 1082 struct list_head ptrace_list; 1083 1084 struct mm_struct *mm, *active_mm; 1085 1086 /* task state */ 1087 struct linux_binfmt *binfmt; 1088 int exit_state; 1089 int exit_code, exit_signal; 1090 int pdeath_signal; /* The signal sent when the parent dies */ 1091 /* ??? */ 1092 unsigned int personality; 1093 unsigned did_exec:1; 1094 pid_t pid; 1095 pid_t tgid; 1096 1097 #ifdef CONFIG_CC_STACKPROTECTOR 1098 /* Canary value for the -fstack-protector gcc feature */ 1099 unsigned long stack_canary; 1100 #endif 1101 /* 1102 * pointers to (original) parent process, youngest child, younger sibling, 1103 * older sibling, respectively. (p->father can be replaced with 1104 * p->parent->pid) 1105 */ 1106 struct task_struct *real_parent; /* real parent process (when being debugged) */ 1107 struct task_struct *parent; /* parent process */ 1108 /* 1109 * children/sibling forms the list of my children plus the 1110 * tasks I'm ptracing. 1111 */ 1112 struct list_head children; /* list of my children */ 1113 struct list_head sibling; /* linkage in my parent's children list */ 1114 struct task_struct *group_leader; /* threadgroup leader */ 1115 1116 /* PID/PID hash table linkage. */ 1117 struct pid_link pids[PIDTYPE_MAX]; 1118 struct list_head thread_group; 1119 1120 struct completion *vfork_done; /* for vfork() */ 1121 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1122 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1123 1124 unsigned int rt_priority; 1125 cputime_t utime, stime, utimescaled, stimescaled; 1126 cputime_t gtime; 1127 cputime_t prev_utime, prev_stime; 1128 unsigned long nvcsw, nivcsw; /* context switch counts */ 1129 struct timespec start_time; /* monotonic time */ 1130 struct timespec real_start_time; /* boot based time */ 1131 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1132 unsigned long min_flt, maj_flt; 1133 1134 cputime_t it_prof_expires, it_virt_expires; 1135 unsigned long long it_sched_expires; 1136 struct list_head cpu_timers[3]; 1137 1138 /* process credentials */ 1139 uid_t uid,euid,suid,fsuid; 1140 gid_t gid,egid,sgid,fsgid; 1141 struct group_info *group_info; 1142 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1143 unsigned securebits; 1144 struct user_struct *user; 1145 #ifdef CONFIG_KEYS 1146 struct key *request_key_auth; /* assumed request_key authority */ 1147 struct key *thread_keyring; /* keyring private to this thread */ 1148 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1149 #endif 1150 char comm[TASK_COMM_LEN]; /* executable name excluding path 1151 - access with [gs]et_task_comm (which lock 1152 it with task_lock()) 1153 - initialized normally by flush_old_exec */ 1154 /* file system info */ 1155 int link_count, total_link_count; 1156 #ifdef CONFIG_SYSVIPC 1157 /* ipc stuff */ 1158 struct sysv_sem sysvsem; 1159 #endif 1160 #ifdef CONFIG_DETECT_SOFTLOCKUP 1161 /* hung task detection */ 1162 unsigned long last_switch_timestamp; 1163 unsigned long last_switch_count; 1164 #endif 1165 /* CPU-specific state of this task */ 1166 struct thread_struct thread; 1167 /* filesystem information */ 1168 struct fs_struct *fs; 1169 /* open file information */ 1170 struct files_struct *files; 1171 /* namespaces */ 1172 struct nsproxy *nsproxy; 1173 /* signal handlers */ 1174 struct signal_struct *signal; 1175 struct sighand_struct *sighand; 1176 1177 sigset_t blocked, real_blocked; 1178 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1179 struct sigpending pending; 1180 1181 unsigned long sas_ss_sp; 1182 size_t sas_ss_size; 1183 int (*notifier)(void *priv); 1184 void *notifier_data; 1185 sigset_t *notifier_mask; 1186 #ifdef CONFIG_SECURITY 1187 void *security; 1188 #endif 1189 struct audit_context *audit_context; 1190 #ifdef CONFIG_AUDITSYSCALL 1191 uid_t loginuid; 1192 unsigned int sessionid; 1193 #endif 1194 seccomp_t seccomp; 1195 1196 /* Thread group tracking */ 1197 u32 parent_exec_id; 1198 u32 self_exec_id; 1199 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1200 spinlock_t alloc_lock; 1201 1202 /* Protection of the PI data structures: */ 1203 spinlock_t pi_lock; 1204 1205 #ifdef CONFIG_RT_MUTEXES 1206 /* PI waiters blocked on a rt_mutex held by this task */ 1207 struct plist_head pi_waiters; 1208 /* Deadlock detection and priority inheritance handling */ 1209 struct rt_mutex_waiter *pi_blocked_on; 1210 #endif 1211 1212 #ifdef CONFIG_DEBUG_MUTEXES 1213 /* mutex deadlock detection */ 1214 struct mutex_waiter *blocked_on; 1215 #endif 1216 #ifdef CONFIG_TRACE_IRQFLAGS 1217 unsigned int irq_events; 1218 int hardirqs_enabled; 1219 unsigned long hardirq_enable_ip; 1220 unsigned int hardirq_enable_event; 1221 unsigned long hardirq_disable_ip; 1222 unsigned int hardirq_disable_event; 1223 int softirqs_enabled; 1224 unsigned long softirq_disable_ip; 1225 unsigned int softirq_disable_event; 1226 unsigned long softirq_enable_ip; 1227 unsigned int softirq_enable_event; 1228 int hardirq_context; 1229 int softirq_context; 1230 #endif 1231 #ifdef CONFIG_LOCKDEP 1232 # define MAX_LOCK_DEPTH 48UL 1233 u64 curr_chain_key; 1234 int lockdep_depth; 1235 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1236 unsigned int lockdep_recursion; 1237 #endif 1238 1239 /* journalling filesystem info */ 1240 void *journal_info; 1241 1242 /* stacked block device info */ 1243 struct bio *bio_list, **bio_tail; 1244 1245 /* VM state */ 1246 struct reclaim_state *reclaim_state; 1247 1248 struct backing_dev_info *backing_dev_info; 1249 1250 struct io_context *io_context; 1251 1252 unsigned long ptrace_message; 1253 siginfo_t *last_siginfo; /* For ptrace use. */ 1254 #ifdef CONFIG_TASK_XACCT 1255 /* i/o counters(bytes read/written, #syscalls */ 1256 u64 rchar, wchar, syscr, syscw; 1257 #endif 1258 struct task_io_accounting ioac; 1259 #if defined(CONFIG_TASK_XACCT) 1260 u64 acct_rss_mem1; /* accumulated rss usage */ 1261 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1262 cputime_t acct_stimexpd;/* stime since last update */ 1263 #endif 1264 #ifdef CONFIG_NUMA 1265 struct mempolicy *mempolicy; 1266 short il_next; 1267 #endif 1268 #ifdef CONFIG_CPUSETS 1269 nodemask_t mems_allowed; 1270 int cpuset_mems_generation; 1271 int cpuset_mem_spread_rotor; 1272 #endif 1273 #ifdef CONFIG_CGROUPS 1274 /* Control Group info protected by css_set_lock */ 1275 struct css_set *cgroups; 1276 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1277 struct list_head cg_list; 1278 #endif 1279 #ifdef CONFIG_FUTEX 1280 struct robust_list_head __user *robust_list; 1281 #ifdef CONFIG_COMPAT 1282 struct compat_robust_list_head __user *compat_robust_list; 1283 #endif 1284 struct list_head pi_state_list; 1285 struct futex_pi_state *pi_state_cache; 1286 #endif 1287 atomic_t fs_excl; /* holding fs exclusive resources */ 1288 struct rcu_head rcu; 1289 1290 /* 1291 * cache last used pipe for splice 1292 */ 1293 struct pipe_inode_info *splice_pipe; 1294 #ifdef CONFIG_TASK_DELAY_ACCT 1295 struct task_delay_info *delays; 1296 #endif 1297 #ifdef CONFIG_FAULT_INJECTION 1298 int make_it_fail; 1299 #endif 1300 struct prop_local_single dirties; 1301 #ifdef CONFIG_LATENCYTOP 1302 int latency_record_count; 1303 struct latency_record latency_record[LT_SAVECOUNT]; 1304 #endif 1305 }; 1306 1307 /* 1308 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1309 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1310 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1311 * values are inverted: lower p->prio value means higher priority. 1312 * 1313 * The MAX_USER_RT_PRIO value allows the actual maximum 1314 * RT priority to be separate from the value exported to 1315 * user-space. This allows kernel threads to set their 1316 * priority to a value higher than any user task. Note: 1317 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1318 */ 1319 1320 #define MAX_USER_RT_PRIO 100 1321 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1322 1323 #define MAX_PRIO (MAX_RT_PRIO + 40) 1324 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1325 1326 static inline int rt_prio(int prio) 1327 { 1328 if (unlikely(prio < MAX_RT_PRIO)) 1329 return 1; 1330 return 0; 1331 } 1332 1333 static inline int rt_task(struct task_struct *p) 1334 { 1335 return rt_prio(p->prio); 1336 } 1337 1338 static inline void set_task_session(struct task_struct *tsk, pid_t session) 1339 { 1340 tsk->signal->__session = session; 1341 } 1342 1343 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1344 { 1345 tsk->signal->__pgrp = pgrp; 1346 } 1347 1348 static inline struct pid *task_pid(struct task_struct *task) 1349 { 1350 return task->pids[PIDTYPE_PID].pid; 1351 } 1352 1353 static inline struct pid *task_tgid(struct task_struct *task) 1354 { 1355 return task->group_leader->pids[PIDTYPE_PID].pid; 1356 } 1357 1358 static inline struct pid *task_pgrp(struct task_struct *task) 1359 { 1360 return task->group_leader->pids[PIDTYPE_PGID].pid; 1361 } 1362 1363 static inline struct pid *task_session(struct task_struct *task) 1364 { 1365 return task->group_leader->pids[PIDTYPE_SID].pid; 1366 } 1367 1368 struct pid_namespace; 1369 1370 /* 1371 * the helpers to get the task's different pids as they are seen 1372 * from various namespaces 1373 * 1374 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1375 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1376 * current. 1377 * task_xid_nr_ns() : id seen from the ns specified; 1378 * 1379 * set_task_vxid() : assigns a virtual id to a task; 1380 * 1381 * see also pid_nr() etc in include/linux/pid.h 1382 */ 1383 1384 static inline pid_t task_pid_nr(struct task_struct *tsk) 1385 { 1386 return tsk->pid; 1387 } 1388 1389 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1390 1391 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1392 { 1393 return pid_vnr(task_pid(tsk)); 1394 } 1395 1396 1397 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1398 { 1399 return tsk->tgid; 1400 } 1401 1402 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1403 1404 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1405 { 1406 return pid_vnr(task_tgid(tsk)); 1407 } 1408 1409 1410 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1411 { 1412 return tsk->signal->__pgrp; 1413 } 1414 1415 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1416 1417 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1418 { 1419 return pid_vnr(task_pgrp(tsk)); 1420 } 1421 1422 1423 static inline pid_t task_session_nr(struct task_struct *tsk) 1424 { 1425 return tsk->signal->__session; 1426 } 1427 1428 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1429 1430 static inline pid_t task_session_vnr(struct task_struct *tsk) 1431 { 1432 return pid_vnr(task_session(tsk)); 1433 } 1434 1435 1436 /** 1437 * pid_alive - check that a task structure is not stale 1438 * @p: Task structure to be checked. 1439 * 1440 * Test if a process is not yet dead (at most zombie state) 1441 * If pid_alive fails, then pointers within the task structure 1442 * can be stale and must not be dereferenced. 1443 */ 1444 static inline int pid_alive(struct task_struct *p) 1445 { 1446 return p->pids[PIDTYPE_PID].pid != NULL; 1447 } 1448 1449 /** 1450 * is_global_init - check if a task structure is init 1451 * @tsk: Task structure to be checked. 1452 * 1453 * Check if a task structure is the first user space task the kernel created. 1454 */ 1455 static inline int is_global_init(struct task_struct *tsk) 1456 { 1457 return tsk->pid == 1; 1458 } 1459 1460 /* 1461 * is_container_init: 1462 * check whether in the task is init in its own pid namespace. 1463 */ 1464 extern int is_container_init(struct task_struct *tsk); 1465 1466 extern struct pid *cad_pid; 1467 1468 extern void free_task(struct task_struct *tsk); 1469 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1470 1471 extern void __put_task_struct(struct task_struct *t); 1472 1473 static inline void put_task_struct(struct task_struct *t) 1474 { 1475 if (atomic_dec_and_test(&t->usage)) 1476 __put_task_struct(t); 1477 } 1478 1479 /* 1480 * Per process flags 1481 */ 1482 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1483 /* Not implemented yet, only for 486*/ 1484 #define PF_STARTING 0x00000002 /* being created */ 1485 #define PF_EXITING 0x00000004 /* getting shut down */ 1486 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1487 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1488 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1489 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1490 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1491 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1492 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1493 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1494 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1495 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1496 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1497 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1498 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1499 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1500 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1501 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1502 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1503 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1504 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1505 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1506 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1507 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1508 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1509 1510 /* 1511 * Only the _current_ task can read/write to tsk->flags, but other 1512 * tasks can access tsk->flags in readonly mode for example 1513 * with tsk_used_math (like during threaded core dumping). 1514 * There is however an exception to this rule during ptrace 1515 * or during fork: the ptracer task is allowed to write to the 1516 * child->flags of its traced child (same goes for fork, the parent 1517 * can write to the child->flags), because we're guaranteed the 1518 * child is not running and in turn not changing child->flags 1519 * at the same time the parent does it. 1520 */ 1521 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1522 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1523 #define clear_used_math() clear_stopped_child_used_math(current) 1524 #define set_used_math() set_stopped_child_used_math(current) 1525 #define conditional_stopped_child_used_math(condition, child) \ 1526 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1527 #define conditional_used_math(condition) \ 1528 conditional_stopped_child_used_math(condition, current) 1529 #define copy_to_stopped_child_used_math(child) \ 1530 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1531 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1532 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1533 #define used_math() tsk_used_math(current) 1534 1535 #ifdef CONFIG_SMP 1536 extern int set_cpus_allowed_ptr(struct task_struct *p, 1537 const cpumask_t *new_mask); 1538 #else 1539 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1540 const cpumask_t *new_mask) 1541 { 1542 if (!cpu_isset(0, *new_mask)) 1543 return -EINVAL; 1544 return 0; 1545 } 1546 #endif 1547 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1548 { 1549 return set_cpus_allowed_ptr(p, &new_mask); 1550 } 1551 1552 extern unsigned long long sched_clock(void); 1553 1554 /* 1555 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1556 * clock constructed from sched_clock(): 1557 */ 1558 extern unsigned long long cpu_clock(int cpu); 1559 1560 extern unsigned long long 1561 task_sched_runtime(struct task_struct *task); 1562 1563 /* sched_exec is called by processes performing an exec */ 1564 #ifdef CONFIG_SMP 1565 extern void sched_exec(void); 1566 #else 1567 #define sched_exec() {} 1568 #endif 1569 1570 extern void sched_clock_idle_sleep_event(void); 1571 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1572 1573 #ifdef CONFIG_HOTPLUG_CPU 1574 extern void idle_task_exit(void); 1575 #else 1576 static inline void idle_task_exit(void) {} 1577 #endif 1578 1579 extern void sched_idle_next(void); 1580 1581 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1582 extern void wake_up_idle_cpu(int cpu); 1583 #else 1584 static inline void wake_up_idle_cpu(int cpu) { } 1585 #endif 1586 1587 #ifdef CONFIG_SCHED_DEBUG 1588 extern unsigned int sysctl_sched_latency; 1589 extern unsigned int sysctl_sched_min_granularity; 1590 extern unsigned int sysctl_sched_wakeup_granularity; 1591 extern unsigned int sysctl_sched_child_runs_first; 1592 extern unsigned int sysctl_sched_features; 1593 extern unsigned int sysctl_sched_migration_cost; 1594 extern unsigned int sysctl_sched_nr_migrate; 1595 1596 int sched_nr_latency_handler(struct ctl_table *table, int write, 1597 struct file *file, void __user *buffer, size_t *length, 1598 loff_t *ppos); 1599 #endif 1600 extern unsigned int sysctl_sched_rt_period; 1601 extern int sysctl_sched_rt_runtime; 1602 1603 int sched_rt_handler(struct ctl_table *table, int write, 1604 struct file *filp, void __user *buffer, size_t *lenp, 1605 loff_t *ppos); 1606 1607 extern unsigned int sysctl_sched_compat_yield; 1608 1609 #ifdef CONFIG_RT_MUTEXES 1610 extern int rt_mutex_getprio(struct task_struct *p); 1611 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1612 extern void rt_mutex_adjust_pi(struct task_struct *p); 1613 #else 1614 static inline int rt_mutex_getprio(struct task_struct *p) 1615 { 1616 return p->normal_prio; 1617 } 1618 # define rt_mutex_adjust_pi(p) do { } while (0) 1619 #endif 1620 1621 extern void set_user_nice(struct task_struct *p, long nice); 1622 extern int task_prio(const struct task_struct *p); 1623 extern int task_nice(const struct task_struct *p); 1624 extern int can_nice(const struct task_struct *p, const int nice); 1625 extern int task_curr(const struct task_struct *p); 1626 extern int idle_cpu(int cpu); 1627 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1628 extern struct task_struct *idle_task(int cpu); 1629 extern struct task_struct *curr_task(int cpu); 1630 extern void set_curr_task(int cpu, struct task_struct *p); 1631 1632 void yield(void); 1633 1634 /* 1635 * The default (Linux) execution domain. 1636 */ 1637 extern struct exec_domain default_exec_domain; 1638 1639 union thread_union { 1640 struct thread_info thread_info; 1641 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1642 }; 1643 1644 #ifndef __HAVE_ARCH_KSTACK_END 1645 static inline int kstack_end(void *addr) 1646 { 1647 /* Reliable end of stack detection: 1648 * Some APM bios versions misalign the stack 1649 */ 1650 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1651 } 1652 #endif 1653 1654 extern union thread_union init_thread_union; 1655 extern struct task_struct init_task; 1656 1657 extern struct mm_struct init_mm; 1658 1659 extern struct pid_namespace init_pid_ns; 1660 1661 /* 1662 * find a task by one of its numerical ids 1663 * 1664 * find_task_by_pid_type_ns(): 1665 * it is the most generic call - it finds a task by all id, 1666 * type and namespace specified 1667 * find_task_by_pid_ns(): 1668 * finds a task by its pid in the specified namespace 1669 * find_task_by_vpid(): 1670 * finds a task by its virtual pid 1671 * find_task_by_pid(): 1672 * finds a task by its global pid 1673 * 1674 * see also find_pid() etc in include/linux/pid.h 1675 */ 1676 1677 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1678 struct pid_namespace *ns); 1679 1680 static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr) 1681 { 1682 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns); 1683 } 1684 extern struct task_struct *find_task_by_vpid(pid_t nr); 1685 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1686 struct pid_namespace *ns); 1687 1688 extern void __set_special_pids(struct pid *pid); 1689 1690 /* per-UID process charging. */ 1691 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1692 static inline struct user_struct *get_uid(struct user_struct *u) 1693 { 1694 atomic_inc(&u->__count); 1695 return u; 1696 } 1697 extern void free_uid(struct user_struct *); 1698 extern void switch_uid(struct user_struct *); 1699 extern void release_uids(struct user_namespace *ns); 1700 1701 #include <asm/current.h> 1702 1703 extern void do_timer(unsigned long ticks); 1704 1705 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1706 extern int wake_up_process(struct task_struct *tsk); 1707 extern void wake_up_new_task(struct task_struct *tsk, 1708 unsigned long clone_flags); 1709 #ifdef CONFIG_SMP 1710 extern void kick_process(struct task_struct *tsk); 1711 #else 1712 static inline void kick_process(struct task_struct *tsk) { } 1713 #endif 1714 extern void sched_fork(struct task_struct *p, int clone_flags); 1715 extern void sched_dead(struct task_struct *p); 1716 1717 extern int in_group_p(gid_t); 1718 extern int in_egroup_p(gid_t); 1719 1720 extern void proc_caches_init(void); 1721 extern void flush_signals(struct task_struct *); 1722 extern void ignore_signals(struct task_struct *); 1723 extern void flush_signal_handlers(struct task_struct *, int force_default); 1724 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1725 1726 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1727 { 1728 unsigned long flags; 1729 int ret; 1730 1731 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1732 ret = dequeue_signal(tsk, mask, info); 1733 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1734 1735 return ret; 1736 } 1737 1738 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1739 sigset_t *mask); 1740 extern void unblock_all_signals(void); 1741 extern void release_task(struct task_struct * p); 1742 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1743 extern int force_sigsegv(int, struct task_struct *); 1744 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1745 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1746 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1747 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1748 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1749 extern int kill_pid(struct pid *pid, int sig, int priv); 1750 extern int kill_proc_info(int, struct siginfo *, pid_t); 1751 extern void do_notify_parent(struct task_struct *, int); 1752 extern void force_sig(int, struct task_struct *); 1753 extern void force_sig_specific(int, struct task_struct *); 1754 extern int send_sig(int, struct task_struct *, int); 1755 extern void zap_other_threads(struct task_struct *p); 1756 extern int kill_proc(pid_t, int, int); 1757 extern struct sigqueue *sigqueue_alloc(void); 1758 extern void sigqueue_free(struct sigqueue *); 1759 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1760 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1761 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1762 1763 static inline int kill_cad_pid(int sig, int priv) 1764 { 1765 return kill_pid(cad_pid, sig, priv); 1766 } 1767 1768 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1769 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1770 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1771 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1772 1773 static inline int is_si_special(const struct siginfo *info) 1774 { 1775 return info <= SEND_SIG_FORCED; 1776 } 1777 1778 /* True if we are on the alternate signal stack. */ 1779 1780 static inline int on_sig_stack(unsigned long sp) 1781 { 1782 return (sp - current->sas_ss_sp < current->sas_ss_size); 1783 } 1784 1785 static inline int sas_ss_flags(unsigned long sp) 1786 { 1787 return (current->sas_ss_size == 0 ? SS_DISABLE 1788 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1789 } 1790 1791 /* 1792 * Routines for handling mm_structs 1793 */ 1794 extern struct mm_struct * mm_alloc(void); 1795 1796 /* mmdrop drops the mm and the page tables */ 1797 extern void __mmdrop(struct mm_struct *); 1798 static inline void mmdrop(struct mm_struct * mm) 1799 { 1800 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1801 __mmdrop(mm); 1802 } 1803 1804 /* mmput gets rid of the mappings and all user-space */ 1805 extern void mmput(struct mm_struct *); 1806 /* Grab a reference to a task's mm, if it is not already going away */ 1807 extern struct mm_struct *get_task_mm(struct task_struct *task); 1808 /* Remove the current tasks stale references to the old mm_struct */ 1809 extern void mm_release(struct task_struct *, struct mm_struct *); 1810 /* Allocate a new mm structure and copy contents from tsk->mm */ 1811 extern struct mm_struct *dup_mm(struct task_struct *tsk); 1812 1813 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1814 extern void flush_thread(void); 1815 extern void exit_thread(void); 1816 1817 extern void exit_files(struct task_struct *); 1818 extern void __cleanup_signal(struct signal_struct *); 1819 extern void __cleanup_sighand(struct sighand_struct *); 1820 extern void exit_itimers(struct signal_struct *); 1821 1822 extern NORET_TYPE void do_group_exit(int); 1823 1824 extern void daemonize(const char *, ...); 1825 extern int allow_signal(int); 1826 extern int disallow_signal(int); 1827 1828 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1829 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1830 struct task_struct *fork_idle(int); 1831 1832 extern void set_task_comm(struct task_struct *tsk, char *from); 1833 extern char *get_task_comm(char *to, struct task_struct *tsk); 1834 1835 #ifdef CONFIG_SMP 1836 extern void wait_task_inactive(struct task_struct * p); 1837 #else 1838 #define wait_task_inactive(p) do { } while (0) 1839 #endif 1840 1841 #define remove_parent(p) list_del_init(&(p)->sibling) 1842 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1843 1844 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1845 1846 #define for_each_process(p) \ 1847 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1848 1849 /* 1850 * Careful: do_each_thread/while_each_thread is a double loop so 1851 * 'break' will not work as expected - use goto instead. 1852 */ 1853 #define do_each_thread(g, t) \ 1854 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1855 1856 #define while_each_thread(g, t) \ 1857 while ((t = next_thread(t)) != g) 1858 1859 /* de_thread depends on thread_group_leader not being a pid based check */ 1860 #define thread_group_leader(p) (p == p->group_leader) 1861 1862 /* Do to the insanities of de_thread it is possible for a process 1863 * to have the pid of the thread group leader without actually being 1864 * the thread group leader. For iteration through the pids in proc 1865 * all we care about is that we have a task with the appropriate 1866 * pid, we don't actually care if we have the right task. 1867 */ 1868 static inline int has_group_leader_pid(struct task_struct *p) 1869 { 1870 return p->pid == p->tgid; 1871 } 1872 1873 static inline 1874 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1875 { 1876 return p1->tgid == p2->tgid; 1877 } 1878 1879 static inline struct task_struct *next_thread(const struct task_struct *p) 1880 { 1881 return list_entry(rcu_dereference(p->thread_group.next), 1882 struct task_struct, thread_group); 1883 } 1884 1885 static inline int thread_group_empty(struct task_struct *p) 1886 { 1887 return list_empty(&p->thread_group); 1888 } 1889 1890 #define delay_group_leader(p) \ 1891 (thread_group_leader(p) && !thread_group_empty(p)) 1892 1893 /* 1894 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1895 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1896 * pins the final release of task.io_context. Also protects ->cpuset and 1897 * ->cgroup.subsys[]. 1898 * 1899 * Nests both inside and outside of read_lock(&tasklist_lock). 1900 * It must not be nested with write_lock_irq(&tasklist_lock), 1901 * neither inside nor outside. 1902 */ 1903 static inline void task_lock(struct task_struct *p) 1904 { 1905 spin_lock(&p->alloc_lock); 1906 } 1907 1908 static inline void task_unlock(struct task_struct *p) 1909 { 1910 spin_unlock(&p->alloc_lock); 1911 } 1912 1913 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1914 unsigned long *flags); 1915 1916 static inline void unlock_task_sighand(struct task_struct *tsk, 1917 unsigned long *flags) 1918 { 1919 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1920 } 1921 1922 #ifndef __HAVE_THREAD_FUNCTIONS 1923 1924 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 1925 #define task_stack_page(task) ((task)->stack) 1926 1927 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1928 { 1929 *task_thread_info(p) = *task_thread_info(org); 1930 task_thread_info(p)->task = p; 1931 } 1932 1933 static inline unsigned long *end_of_stack(struct task_struct *p) 1934 { 1935 return (unsigned long *)(task_thread_info(p) + 1); 1936 } 1937 1938 #endif 1939 1940 extern void thread_info_cache_init(void); 1941 1942 /* set thread flags in other task's structures 1943 * - see asm/thread_info.h for TIF_xxxx flags available 1944 */ 1945 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1946 { 1947 set_ti_thread_flag(task_thread_info(tsk), flag); 1948 } 1949 1950 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1951 { 1952 clear_ti_thread_flag(task_thread_info(tsk), flag); 1953 } 1954 1955 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1956 { 1957 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1958 } 1959 1960 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1961 { 1962 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1963 } 1964 1965 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1966 { 1967 return test_ti_thread_flag(task_thread_info(tsk), flag); 1968 } 1969 1970 static inline void set_tsk_need_resched(struct task_struct *tsk) 1971 { 1972 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1973 } 1974 1975 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1976 { 1977 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1978 } 1979 1980 static inline int signal_pending(struct task_struct *p) 1981 { 1982 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1983 } 1984 1985 extern int __fatal_signal_pending(struct task_struct *p); 1986 1987 static inline int fatal_signal_pending(struct task_struct *p) 1988 { 1989 return signal_pending(p) && __fatal_signal_pending(p); 1990 } 1991 1992 static inline int need_resched(void) 1993 { 1994 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1995 } 1996 1997 /* 1998 * cond_resched() and cond_resched_lock(): latency reduction via 1999 * explicit rescheduling in places that are safe. The return 2000 * value indicates whether a reschedule was done in fact. 2001 * cond_resched_lock() will drop the spinlock before scheduling, 2002 * cond_resched_softirq() will enable bhs before scheduling. 2003 */ 2004 #ifdef CONFIG_PREEMPT 2005 static inline int cond_resched(void) 2006 { 2007 return 0; 2008 } 2009 #else 2010 extern int _cond_resched(void); 2011 static inline int cond_resched(void) 2012 { 2013 return _cond_resched(); 2014 } 2015 #endif 2016 extern int cond_resched_lock(spinlock_t * lock); 2017 extern int cond_resched_softirq(void); 2018 2019 /* 2020 * Does a critical section need to be broken due to another 2021 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2022 * but a general need for low latency) 2023 */ 2024 static inline int spin_needbreak(spinlock_t *lock) 2025 { 2026 #ifdef CONFIG_PREEMPT 2027 return spin_is_contended(lock); 2028 #else 2029 return 0; 2030 #endif 2031 } 2032 2033 /* 2034 * Reevaluate whether the task has signals pending delivery. 2035 * Wake the task if so. 2036 * This is required every time the blocked sigset_t changes. 2037 * callers must hold sighand->siglock. 2038 */ 2039 extern void recalc_sigpending_and_wake(struct task_struct *t); 2040 extern void recalc_sigpending(void); 2041 2042 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2043 2044 /* 2045 * Wrappers for p->thread_info->cpu access. No-op on UP. 2046 */ 2047 #ifdef CONFIG_SMP 2048 2049 static inline unsigned int task_cpu(const struct task_struct *p) 2050 { 2051 return task_thread_info(p)->cpu; 2052 } 2053 2054 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2055 2056 #else 2057 2058 static inline unsigned int task_cpu(const struct task_struct *p) 2059 { 2060 return 0; 2061 } 2062 2063 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2064 { 2065 } 2066 2067 #endif /* CONFIG_SMP */ 2068 2069 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 2070 extern void arch_pick_mmap_layout(struct mm_struct *mm); 2071 #else 2072 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 2073 { 2074 mm->mmap_base = TASK_UNMAPPED_BASE; 2075 mm->get_unmapped_area = arch_get_unmapped_area; 2076 mm->unmap_area = arch_unmap_area; 2077 } 2078 #endif 2079 2080 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask); 2081 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2082 2083 extern int sched_mc_power_savings, sched_smt_power_savings; 2084 2085 extern void normalize_rt_tasks(void); 2086 2087 #ifdef CONFIG_GROUP_SCHED 2088 2089 extern struct task_group init_task_group; 2090 #ifdef CONFIG_USER_SCHED 2091 extern struct task_group root_task_group; 2092 #endif 2093 2094 extern struct task_group *sched_create_group(struct task_group *parent); 2095 extern void sched_destroy_group(struct task_group *tg); 2096 extern void sched_move_task(struct task_struct *tsk); 2097 #ifdef CONFIG_FAIR_GROUP_SCHED 2098 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2099 extern unsigned long sched_group_shares(struct task_group *tg); 2100 #endif 2101 #ifdef CONFIG_RT_GROUP_SCHED 2102 extern int sched_group_set_rt_runtime(struct task_group *tg, 2103 long rt_runtime_us); 2104 extern long sched_group_rt_runtime(struct task_group *tg); 2105 extern int sched_group_set_rt_period(struct task_group *tg, 2106 long rt_period_us); 2107 extern long sched_group_rt_period(struct task_group *tg); 2108 #endif 2109 #endif 2110 2111 #ifdef CONFIG_TASK_XACCT 2112 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2113 { 2114 tsk->rchar += amt; 2115 } 2116 2117 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2118 { 2119 tsk->wchar += amt; 2120 } 2121 2122 static inline void inc_syscr(struct task_struct *tsk) 2123 { 2124 tsk->syscr++; 2125 } 2126 2127 static inline void inc_syscw(struct task_struct *tsk) 2128 { 2129 tsk->syscw++; 2130 } 2131 #else 2132 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2133 { 2134 } 2135 2136 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2137 { 2138 } 2139 2140 static inline void inc_syscr(struct task_struct *tsk) 2141 { 2142 } 2143 2144 static inline void inc_syscw(struct task_struct *tsk) 2145 { 2146 } 2147 #endif 2148 2149 #ifdef CONFIG_SMP 2150 void migration_init(void); 2151 #else 2152 static inline void migration_init(void) 2153 { 2154 } 2155 #endif 2156 2157 #ifndef TASK_SIZE_OF 2158 #define TASK_SIZE_OF(tsk) TASK_SIZE 2159 #endif 2160 2161 #ifdef CONFIG_MM_OWNER 2162 extern void mm_update_next_owner(struct mm_struct *mm); 2163 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2164 #else 2165 static inline void mm_update_next_owner(struct mm_struct *mm) 2166 { 2167 } 2168 2169 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2170 { 2171 } 2172 #endif /* CONFIG_MM_OWNER */ 2173 2174 #endif /* __KERNEL__ */ 2175 2176 #endif 2177