1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6 /* 7 * cloning flags: 8 */ 9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27 28 /* 29 * Scheduling policies 30 */ 31 #define SCHED_NORMAL 0 32 #define SCHED_FIFO 1 33 #define SCHED_RR 2 34 #define SCHED_BATCH 3 35 36 #ifdef __KERNEL__ 37 38 struct sched_param { 39 int sched_priority; 40 }; 41 42 #include <asm/param.h> /* for HZ */ 43 44 #include <linux/capability.h> 45 #include <linux/threads.h> 46 #include <linux/kernel.h> 47 #include <linux/types.h> 48 #include <linux/timex.h> 49 #include <linux/jiffies.h> 50 #include <linux/rbtree.h> 51 #include <linux/thread_info.h> 52 #include <linux/cpumask.h> 53 #include <linux/errno.h> 54 #include <linux/nodemask.h> 55 56 #include <asm/system.h> 57 #include <asm/semaphore.h> 58 #include <asm/page.h> 59 #include <asm/ptrace.h> 60 #include <asm/mmu.h> 61 #include <asm/cputime.h> 62 63 #include <linux/smp.h> 64 #include <linux/sem.h> 65 #include <linux/signal.h> 66 #include <linux/securebits.h> 67 #include <linux/fs_struct.h> 68 #include <linux/compiler.h> 69 #include <linux/completion.h> 70 #include <linux/pid.h> 71 #include <linux/percpu.h> 72 #include <linux/topology.h> 73 #include <linux/seccomp.h> 74 #include <linux/rcupdate.h> 75 #include <linux/futex.h> 76 77 #include <linux/time.h> 78 #include <linux/param.h> 79 #include <linux/resource.h> 80 #include <linux/timer.h> 81 #include <linux/hrtimer.h> 82 83 #include <asm/processor.h> 84 85 struct exec_domain; 86 87 /* 88 * List of flags we want to share for kernel threads, 89 * if only because they are not used by them anyway. 90 */ 91 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 92 93 /* 94 * These are the constant used to fake the fixed-point load-average 95 * counting. Some notes: 96 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 97 * a load-average precision of 10 bits integer + 11 bits fractional 98 * - if you want to count load-averages more often, you need more 99 * precision, or rounding will get you. With 2-second counting freq, 100 * the EXP_n values would be 1981, 2034 and 2043 if still using only 101 * 11 bit fractions. 102 */ 103 extern unsigned long avenrun[]; /* Load averages */ 104 105 #define FSHIFT 11 /* nr of bits of precision */ 106 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 107 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 108 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 109 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 110 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 111 112 #define CALC_LOAD(load,exp,n) \ 113 load *= exp; \ 114 load += n*(FIXED_1-exp); \ 115 load >>= FSHIFT; 116 117 extern unsigned long total_forks; 118 extern int nr_threads; 119 extern int last_pid; 120 DECLARE_PER_CPU(unsigned long, process_counts); 121 extern int nr_processes(void); 122 extern unsigned long nr_running(void); 123 extern unsigned long nr_uninterruptible(void); 124 extern unsigned long nr_active(void); 125 extern unsigned long nr_iowait(void); 126 127 128 /* 129 * Task state bitmask. NOTE! These bits are also 130 * encoded in fs/proc/array.c: get_task_state(). 131 * 132 * We have two separate sets of flags: task->state 133 * is about runnability, while task->exit_state are 134 * about the task exiting. Confusing, but this way 135 * modifying one set can't modify the other one by 136 * mistake. 137 */ 138 #define TASK_RUNNING 0 139 #define TASK_INTERRUPTIBLE 1 140 #define TASK_UNINTERRUPTIBLE 2 141 #define TASK_STOPPED 4 142 #define TASK_TRACED 8 143 /* in tsk->exit_state */ 144 #define EXIT_ZOMBIE 16 145 #define EXIT_DEAD 32 146 /* in tsk->state again */ 147 #define TASK_NONINTERACTIVE 64 148 149 #define __set_task_state(tsk, state_value) \ 150 do { (tsk)->state = (state_value); } while (0) 151 #define set_task_state(tsk, state_value) \ 152 set_mb((tsk)->state, (state_value)) 153 154 /* 155 * set_current_state() includes a barrier so that the write of current->state 156 * is correctly serialised wrt the caller's subsequent test of whether to 157 * actually sleep: 158 * 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (do_i_need_to_sleep()) 161 * schedule(); 162 * 163 * If the caller does not need such serialisation then use __set_current_state() 164 */ 165 #define __set_current_state(state_value) \ 166 do { current->state = (state_value); } while (0) 167 #define set_current_state(state_value) \ 168 set_mb(current->state, (state_value)) 169 170 /* Task command name length */ 171 #define TASK_COMM_LEN 16 172 173 #include <linux/spinlock.h> 174 175 /* 176 * This serializes "schedule()" and also protects 177 * the run-queue from deletions/modifications (but 178 * _adding_ to the beginning of the run-queue has 179 * a separate lock). 180 */ 181 extern rwlock_t tasklist_lock; 182 extern spinlock_t mmlist_lock; 183 184 typedef struct task_struct task_t; 185 186 extern void sched_init(void); 187 extern void sched_init_smp(void); 188 extern void init_idle(task_t *idle, int cpu); 189 190 extern cpumask_t nohz_cpu_mask; 191 192 extern void show_state(void); 193 extern void show_regs(struct pt_regs *); 194 195 /* 196 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 197 * task), SP is the stack pointer of the first frame that should be shown in the back 198 * trace (or NULL if the entire call-chain of the task should be shown). 199 */ 200 extern void show_stack(struct task_struct *task, unsigned long *sp); 201 202 void io_schedule(void); 203 long io_schedule_timeout(long timeout); 204 205 extern void cpu_init (void); 206 extern void trap_init(void); 207 extern void update_process_times(int user); 208 extern void scheduler_tick(void); 209 210 #ifdef CONFIG_DETECT_SOFTLOCKUP 211 extern void softlockup_tick(void); 212 extern void spawn_softlockup_task(void); 213 extern void touch_softlockup_watchdog(void); 214 #else 215 static inline void softlockup_tick(void) 216 { 217 } 218 static inline void spawn_softlockup_task(void) 219 { 220 } 221 static inline void touch_softlockup_watchdog(void) 222 { 223 } 224 #endif 225 226 227 /* Attach to any functions which should be ignored in wchan output. */ 228 #define __sched __attribute__((__section__(".sched.text"))) 229 /* Is this address in the __sched functions? */ 230 extern int in_sched_functions(unsigned long addr); 231 232 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 233 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 234 extern signed long schedule_timeout_interruptible(signed long timeout); 235 extern signed long schedule_timeout_uninterruptible(signed long timeout); 236 asmlinkage void schedule(void); 237 238 struct namespace; 239 240 /* Maximum number of active map areas.. This is a random (large) number */ 241 #define DEFAULT_MAX_MAP_COUNT 65536 242 243 extern int sysctl_max_map_count; 244 245 #include <linux/aio.h> 246 247 extern unsigned long 248 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 249 unsigned long, unsigned long); 250 extern unsigned long 251 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 252 unsigned long len, unsigned long pgoff, 253 unsigned long flags); 254 extern void arch_unmap_area(struct mm_struct *, unsigned long); 255 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 256 257 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 258 /* 259 * The mm counters are not protected by its page_table_lock, 260 * so must be incremented atomically. 261 */ 262 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 263 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 264 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 265 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 266 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 267 typedef atomic_long_t mm_counter_t; 268 269 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 270 /* 271 * The mm counters are protected by its page_table_lock, 272 * so can be incremented directly. 273 */ 274 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 275 #define get_mm_counter(mm, member) ((mm)->_##member) 276 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 277 #define inc_mm_counter(mm, member) (mm)->_##member++ 278 #define dec_mm_counter(mm, member) (mm)->_##member-- 279 typedef unsigned long mm_counter_t; 280 281 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 282 283 #define get_mm_rss(mm) \ 284 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 285 #define update_hiwater_rss(mm) do { \ 286 unsigned long _rss = get_mm_rss(mm); \ 287 if ((mm)->hiwater_rss < _rss) \ 288 (mm)->hiwater_rss = _rss; \ 289 } while (0) 290 #define update_hiwater_vm(mm) do { \ 291 if ((mm)->hiwater_vm < (mm)->total_vm) \ 292 (mm)->hiwater_vm = (mm)->total_vm; \ 293 } while (0) 294 295 struct mm_struct { 296 struct vm_area_struct * mmap; /* list of VMAs */ 297 struct rb_root mm_rb; 298 struct vm_area_struct * mmap_cache; /* last find_vma result */ 299 unsigned long (*get_unmapped_area) (struct file *filp, 300 unsigned long addr, unsigned long len, 301 unsigned long pgoff, unsigned long flags); 302 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 303 unsigned long mmap_base; /* base of mmap area */ 304 unsigned long task_size; /* size of task vm space */ 305 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 306 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 307 pgd_t * pgd; 308 atomic_t mm_users; /* How many users with user space? */ 309 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 310 int map_count; /* number of VMAs */ 311 struct rw_semaphore mmap_sem; 312 spinlock_t page_table_lock; /* Protects page tables and some counters */ 313 314 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 315 * together off init_mm.mmlist, and are protected 316 * by mmlist_lock 317 */ 318 319 /* Special counters, in some configurations protected by the 320 * page_table_lock, in other configurations by being atomic. 321 */ 322 mm_counter_t _file_rss; 323 mm_counter_t _anon_rss; 324 325 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 326 unsigned long hiwater_vm; /* High-water virtual memory usage */ 327 328 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 329 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 330 unsigned long start_code, end_code, start_data, end_data; 331 unsigned long start_brk, brk, start_stack; 332 unsigned long arg_start, arg_end, env_start, env_end; 333 334 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 335 336 unsigned dumpable:2; 337 cpumask_t cpu_vm_mask; 338 339 /* Architecture-specific MM context */ 340 mm_context_t context; 341 342 /* Token based thrashing protection. */ 343 unsigned long swap_token_time; 344 char recent_pagein; 345 346 /* coredumping support */ 347 int core_waiters; 348 struct completion *core_startup_done, core_done; 349 350 /* aio bits */ 351 rwlock_t ioctx_list_lock; 352 struct kioctx *ioctx_list; 353 }; 354 355 struct sighand_struct { 356 atomic_t count; 357 struct k_sigaction action[_NSIG]; 358 spinlock_t siglock; 359 }; 360 361 /* 362 * NOTE! "signal_struct" does not have it's own 363 * locking, because a shared signal_struct always 364 * implies a shared sighand_struct, so locking 365 * sighand_struct is always a proper superset of 366 * the locking of signal_struct. 367 */ 368 struct signal_struct { 369 atomic_t count; 370 atomic_t live; 371 372 wait_queue_head_t wait_chldexit; /* for wait4() */ 373 374 /* current thread group signal load-balancing target: */ 375 task_t *curr_target; 376 377 /* shared signal handling: */ 378 struct sigpending shared_pending; 379 380 /* thread group exit support */ 381 int group_exit_code; 382 /* overloaded: 383 * - notify group_exit_task when ->count is equal to notify_count 384 * - everyone except group_exit_task is stopped during signal delivery 385 * of fatal signals, group_exit_task processes the signal. 386 */ 387 struct task_struct *group_exit_task; 388 int notify_count; 389 390 /* thread group stop support, overloads group_exit_code too */ 391 int group_stop_count; 392 unsigned int flags; /* see SIGNAL_* flags below */ 393 394 /* POSIX.1b Interval Timers */ 395 struct list_head posix_timers; 396 397 /* ITIMER_REAL timer for the process */ 398 struct hrtimer real_timer; 399 struct task_struct *tsk; 400 ktime_t it_real_incr; 401 402 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 403 cputime_t it_prof_expires, it_virt_expires; 404 cputime_t it_prof_incr, it_virt_incr; 405 406 /* job control IDs */ 407 pid_t pgrp; 408 pid_t tty_old_pgrp; 409 pid_t session; 410 /* boolean value for session group leader */ 411 int leader; 412 413 struct tty_struct *tty; /* NULL if no tty */ 414 415 /* 416 * Cumulative resource counters for dead threads in the group, 417 * and for reaped dead child processes forked by this group. 418 * Live threads maintain their own counters and add to these 419 * in __exit_signal, except for the group leader. 420 */ 421 cputime_t utime, stime, cutime, cstime; 422 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 423 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 424 425 /* 426 * Cumulative ns of scheduled CPU time for dead threads in the 427 * group, not including a zombie group leader. (This only differs 428 * from jiffies_to_ns(utime + stime) if sched_clock uses something 429 * other than jiffies.) 430 */ 431 unsigned long long sched_time; 432 433 /* 434 * We don't bother to synchronize most readers of this at all, 435 * because there is no reader checking a limit that actually needs 436 * to get both rlim_cur and rlim_max atomically, and either one 437 * alone is a single word that can safely be read normally. 438 * getrlimit/setrlimit use task_lock(current->group_leader) to 439 * protect this instead of the siglock, because they really 440 * have no need to disable irqs. 441 */ 442 struct rlimit rlim[RLIM_NLIMITS]; 443 444 struct list_head cpu_timers[3]; 445 446 /* keep the process-shared keyrings here so that they do the right 447 * thing in threads created with CLONE_THREAD */ 448 #ifdef CONFIG_KEYS 449 struct key *session_keyring; /* keyring inherited over fork */ 450 struct key *process_keyring; /* keyring private to this process */ 451 #endif 452 }; 453 454 /* Context switch must be unlocked if interrupts are to be enabled */ 455 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 456 # define __ARCH_WANT_UNLOCKED_CTXSW 457 #endif 458 459 /* 460 * Bits in flags field of signal_struct. 461 */ 462 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 463 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 464 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 465 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 466 467 468 /* 469 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 470 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 471 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 472 * values are inverted: lower p->prio value means higher priority. 473 * 474 * The MAX_USER_RT_PRIO value allows the actual maximum 475 * RT priority to be separate from the value exported to 476 * user-space. This allows kernel threads to set their 477 * priority to a value higher than any user task. Note: 478 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 479 */ 480 481 #define MAX_USER_RT_PRIO 100 482 #define MAX_RT_PRIO MAX_USER_RT_PRIO 483 484 #define MAX_PRIO (MAX_RT_PRIO + 40) 485 486 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 487 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) 488 489 /* 490 * Some day this will be a full-fledged user tracking system.. 491 */ 492 struct user_struct { 493 atomic_t __count; /* reference count */ 494 atomic_t processes; /* How many processes does this user have? */ 495 atomic_t files; /* How many open files does this user have? */ 496 atomic_t sigpending; /* How many pending signals does this user have? */ 497 #ifdef CONFIG_INOTIFY_USER 498 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 499 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 500 #endif 501 /* protected by mq_lock */ 502 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 503 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 504 505 #ifdef CONFIG_KEYS 506 struct key *uid_keyring; /* UID specific keyring */ 507 struct key *session_keyring; /* UID's default session keyring */ 508 #endif 509 510 /* Hash table maintenance information */ 511 struct list_head uidhash_list; 512 uid_t uid; 513 }; 514 515 extern struct user_struct *find_user(uid_t); 516 517 extern struct user_struct root_user; 518 #define INIT_USER (&root_user) 519 520 typedef struct prio_array prio_array_t; 521 struct backing_dev_info; 522 struct reclaim_state; 523 524 #ifdef CONFIG_SCHEDSTATS 525 struct sched_info { 526 /* cumulative counters */ 527 unsigned long cpu_time, /* time spent on the cpu */ 528 run_delay, /* time spent waiting on a runqueue */ 529 pcnt; /* # of timeslices run on this cpu */ 530 531 /* timestamps */ 532 unsigned long last_arrival, /* when we last ran on a cpu */ 533 last_queued; /* when we were last queued to run */ 534 }; 535 536 extern struct file_operations proc_schedstat_operations; 537 #endif 538 539 enum idle_type 540 { 541 SCHED_IDLE, 542 NOT_IDLE, 543 NEWLY_IDLE, 544 MAX_IDLE_TYPES 545 }; 546 547 /* 548 * sched-domains (multiprocessor balancing) declarations: 549 */ 550 #ifdef CONFIG_SMP 551 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 552 553 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 554 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 555 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 556 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 557 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 558 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 559 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 560 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 561 562 struct sched_group { 563 struct sched_group *next; /* Must be a circular list */ 564 cpumask_t cpumask; 565 566 /* 567 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 568 * single CPU. This is read only (except for setup, hotplug CPU). 569 */ 570 unsigned long cpu_power; 571 }; 572 573 struct sched_domain { 574 /* These fields must be setup */ 575 struct sched_domain *parent; /* top domain must be null terminated */ 576 struct sched_group *groups; /* the balancing groups of the domain */ 577 cpumask_t span; /* span of all CPUs in this domain */ 578 unsigned long min_interval; /* Minimum balance interval ms */ 579 unsigned long max_interval; /* Maximum balance interval ms */ 580 unsigned int busy_factor; /* less balancing by factor if busy */ 581 unsigned int imbalance_pct; /* No balance until over watermark */ 582 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 583 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 584 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 585 unsigned int busy_idx; 586 unsigned int idle_idx; 587 unsigned int newidle_idx; 588 unsigned int wake_idx; 589 unsigned int forkexec_idx; 590 int flags; /* See SD_* */ 591 592 /* Runtime fields. */ 593 unsigned long last_balance; /* init to jiffies. units in jiffies */ 594 unsigned int balance_interval; /* initialise to 1. units in ms. */ 595 unsigned int nr_balance_failed; /* initialise to 0 */ 596 597 #ifdef CONFIG_SCHEDSTATS 598 /* load_balance() stats */ 599 unsigned long lb_cnt[MAX_IDLE_TYPES]; 600 unsigned long lb_failed[MAX_IDLE_TYPES]; 601 unsigned long lb_balanced[MAX_IDLE_TYPES]; 602 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 603 unsigned long lb_gained[MAX_IDLE_TYPES]; 604 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 605 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 606 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 607 608 /* Active load balancing */ 609 unsigned long alb_cnt; 610 unsigned long alb_failed; 611 unsigned long alb_pushed; 612 613 /* SD_BALANCE_EXEC stats */ 614 unsigned long sbe_cnt; 615 unsigned long sbe_balanced; 616 unsigned long sbe_pushed; 617 618 /* SD_BALANCE_FORK stats */ 619 unsigned long sbf_cnt; 620 unsigned long sbf_balanced; 621 unsigned long sbf_pushed; 622 623 /* try_to_wake_up() stats */ 624 unsigned long ttwu_wake_remote; 625 unsigned long ttwu_move_affine; 626 unsigned long ttwu_move_balance; 627 #endif 628 }; 629 630 extern void partition_sched_domains(cpumask_t *partition1, 631 cpumask_t *partition2); 632 633 /* 634 * Maximum cache size the migration-costs auto-tuning code will 635 * search from: 636 */ 637 extern unsigned int max_cache_size; 638 639 #endif /* CONFIG_SMP */ 640 641 642 struct io_context; /* See blkdev.h */ 643 void exit_io_context(void); 644 struct cpuset; 645 646 #define NGROUPS_SMALL 32 647 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 648 struct group_info { 649 int ngroups; 650 atomic_t usage; 651 gid_t small_block[NGROUPS_SMALL]; 652 int nblocks; 653 gid_t *blocks[0]; 654 }; 655 656 /* 657 * get_group_info() must be called with the owning task locked (via task_lock()) 658 * when task != current. The reason being that the vast majority of callers are 659 * looking at current->group_info, which can not be changed except by the 660 * current task. Changing current->group_info requires the task lock, too. 661 */ 662 #define get_group_info(group_info) do { \ 663 atomic_inc(&(group_info)->usage); \ 664 } while (0) 665 666 #define put_group_info(group_info) do { \ 667 if (atomic_dec_and_test(&(group_info)->usage)) \ 668 groups_free(group_info); \ 669 } while (0) 670 671 extern struct group_info *groups_alloc(int gidsetsize); 672 extern void groups_free(struct group_info *group_info); 673 extern int set_current_groups(struct group_info *group_info); 674 extern int groups_search(struct group_info *group_info, gid_t grp); 675 /* access the groups "array" with this macro */ 676 #define GROUP_AT(gi, i) \ 677 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 678 679 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 680 extern void prefetch_stack(struct task_struct*); 681 #else 682 static inline void prefetch_stack(struct task_struct *t) { } 683 #endif 684 685 struct audit_context; /* See audit.c */ 686 struct mempolicy; 687 struct pipe_inode_info; 688 689 enum sleep_type { 690 SLEEP_NORMAL, 691 SLEEP_NONINTERACTIVE, 692 SLEEP_INTERACTIVE, 693 SLEEP_INTERRUPTED, 694 }; 695 696 struct task_struct { 697 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 698 struct thread_info *thread_info; 699 atomic_t usage; 700 unsigned long flags; /* per process flags, defined below */ 701 unsigned long ptrace; 702 703 int lock_depth; /* BKL lock depth */ 704 705 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 706 int oncpu; 707 #endif 708 int prio, static_prio; 709 struct list_head run_list; 710 prio_array_t *array; 711 712 unsigned short ioprio; 713 unsigned int btrace_seq; 714 715 unsigned long sleep_avg; 716 unsigned long long timestamp, last_ran; 717 unsigned long long sched_time; /* sched_clock time spent running */ 718 enum sleep_type sleep_type; 719 720 unsigned long policy; 721 cpumask_t cpus_allowed; 722 unsigned int time_slice, first_time_slice; 723 724 #ifdef CONFIG_SCHEDSTATS 725 struct sched_info sched_info; 726 #endif 727 728 struct list_head tasks; 729 /* 730 * ptrace_list/ptrace_children forms the list of my children 731 * that were stolen by a ptracer. 732 */ 733 struct list_head ptrace_children; 734 struct list_head ptrace_list; 735 736 struct mm_struct *mm, *active_mm; 737 738 /* task state */ 739 struct linux_binfmt *binfmt; 740 long exit_state; 741 int exit_code, exit_signal; 742 int pdeath_signal; /* The signal sent when the parent dies */ 743 /* ??? */ 744 unsigned long personality; 745 unsigned did_exec:1; 746 pid_t pid; 747 pid_t tgid; 748 /* 749 * pointers to (original) parent process, youngest child, younger sibling, 750 * older sibling, respectively. (p->father can be replaced with 751 * p->parent->pid) 752 */ 753 struct task_struct *real_parent; /* real parent process (when being debugged) */ 754 struct task_struct *parent; /* parent process */ 755 /* 756 * children/sibling forms the list of my children plus the 757 * tasks I'm ptracing. 758 */ 759 struct list_head children; /* list of my children */ 760 struct list_head sibling; /* linkage in my parent's children list */ 761 struct task_struct *group_leader; /* threadgroup leader */ 762 763 /* PID/PID hash table linkage. */ 764 struct pid_link pids[PIDTYPE_MAX]; 765 struct list_head thread_group; 766 767 struct completion *vfork_done; /* for vfork() */ 768 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 769 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 770 771 unsigned long rt_priority; 772 cputime_t utime, stime; 773 unsigned long nvcsw, nivcsw; /* context switch counts */ 774 struct timespec start_time; 775 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 776 unsigned long min_flt, maj_flt; 777 778 cputime_t it_prof_expires, it_virt_expires; 779 unsigned long long it_sched_expires; 780 struct list_head cpu_timers[3]; 781 782 /* process credentials */ 783 uid_t uid,euid,suid,fsuid; 784 gid_t gid,egid,sgid,fsgid; 785 struct group_info *group_info; 786 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 787 unsigned keep_capabilities:1; 788 struct user_struct *user; 789 #ifdef CONFIG_KEYS 790 struct key *request_key_auth; /* assumed request_key authority */ 791 struct key *thread_keyring; /* keyring private to this thread */ 792 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 793 #endif 794 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 795 char comm[TASK_COMM_LEN]; /* executable name excluding path 796 - access with [gs]et_task_comm (which lock 797 it with task_lock()) 798 - initialized normally by flush_old_exec */ 799 /* file system info */ 800 int link_count, total_link_count; 801 /* ipc stuff */ 802 struct sysv_sem sysvsem; 803 /* CPU-specific state of this task */ 804 struct thread_struct thread; 805 /* filesystem information */ 806 struct fs_struct *fs; 807 /* open file information */ 808 struct files_struct *files; 809 /* namespace */ 810 struct namespace *namespace; 811 /* signal handlers */ 812 struct signal_struct *signal; 813 struct sighand_struct *sighand; 814 815 sigset_t blocked, real_blocked; 816 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 817 struct sigpending pending; 818 819 unsigned long sas_ss_sp; 820 size_t sas_ss_size; 821 int (*notifier)(void *priv); 822 void *notifier_data; 823 sigset_t *notifier_mask; 824 825 void *security; 826 struct audit_context *audit_context; 827 seccomp_t seccomp; 828 829 /* Thread group tracking */ 830 u32 parent_exec_id; 831 u32 self_exec_id; 832 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 833 spinlock_t alloc_lock; 834 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 835 spinlock_t proc_lock; 836 837 #ifdef CONFIG_DEBUG_MUTEXES 838 /* mutex deadlock detection */ 839 struct mutex_waiter *blocked_on; 840 #endif 841 842 /* journalling filesystem info */ 843 void *journal_info; 844 845 /* VM state */ 846 struct reclaim_state *reclaim_state; 847 848 struct dentry *proc_dentry; 849 struct backing_dev_info *backing_dev_info; 850 851 struct io_context *io_context; 852 853 unsigned long ptrace_message; 854 siginfo_t *last_siginfo; /* For ptrace use. */ 855 /* 856 * current io wait handle: wait queue entry to use for io waits 857 * If this thread is processing aio, this points at the waitqueue 858 * inside the currently handled kiocb. It may be NULL (i.e. default 859 * to a stack based synchronous wait) if its doing sync IO. 860 */ 861 wait_queue_t *io_wait; 862 /* i/o counters(bytes read/written, #syscalls */ 863 u64 rchar, wchar, syscr, syscw; 864 #if defined(CONFIG_BSD_PROCESS_ACCT) 865 u64 acct_rss_mem1; /* accumulated rss usage */ 866 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 867 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 868 #endif 869 #ifdef CONFIG_NUMA 870 struct mempolicy *mempolicy; 871 short il_next; 872 #endif 873 #ifdef CONFIG_CPUSETS 874 struct cpuset *cpuset; 875 nodemask_t mems_allowed; 876 int cpuset_mems_generation; 877 int cpuset_mem_spread_rotor; 878 #endif 879 struct robust_list_head __user *robust_list; 880 #ifdef CONFIG_COMPAT 881 struct compat_robust_list_head __user *compat_robust_list; 882 #endif 883 884 atomic_t fs_excl; /* holding fs exclusive resources */ 885 struct rcu_head rcu; 886 887 /* 888 * cache last used pipe for splice 889 */ 890 struct pipe_inode_info *splice_pipe; 891 }; 892 893 static inline pid_t process_group(struct task_struct *tsk) 894 { 895 return tsk->signal->pgrp; 896 } 897 898 /** 899 * pid_alive - check that a task structure is not stale 900 * @p: Task structure to be checked. 901 * 902 * Test if a process is not yet dead (at most zombie state) 903 * If pid_alive fails, then pointers within the task structure 904 * can be stale and must not be dereferenced. 905 */ 906 static inline int pid_alive(struct task_struct *p) 907 { 908 return p->pids[PIDTYPE_PID].pid != NULL; 909 } 910 911 extern void free_task(struct task_struct *tsk); 912 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 913 914 extern void __put_task_struct(struct task_struct *t); 915 916 static inline void put_task_struct(struct task_struct *t) 917 { 918 if (atomic_dec_and_test(&t->usage)) 919 __put_task_struct(t); 920 } 921 922 /* 923 * Per process flags 924 */ 925 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 926 /* Not implemented yet, only for 486*/ 927 #define PF_STARTING 0x00000002 /* being created */ 928 #define PF_EXITING 0x00000004 /* getting shut down */ 929 #define PF_DEAD 0x00000008 /* Dead */ 930 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 931 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 932 #define PF_DUMPCORE 0x00000200 /* dumped core */ 933 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 934 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 935 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 936 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 937 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 938 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 939 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 940 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 941 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 942 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 943 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 944 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 945 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 946 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 947 #define PF_SWAPWRITE 0x01000000 /* Allowed to write to swap */ 948 #define PF_SPREAD_PAGE 0x04000000 /* Spread page cache over cpuset */ 949 #define PF_SPREAD_SLAB 0x08000000 /* Spread some slab caches over cpuset */ 950 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 951 952 /* 953 * Only the _current_ task can read/write to tsk->flags, but other 954 * tasks can access tsk->flags in readonly mode for example 955 * with tsk_used_math (like during threaded core dumping). 956 * There is however an exception to this rule during ptrace 957 * or during fork: the ptracer task is allowed to write to the 958 * child->flags of its traced child (same goes for fork, the parent 959 * can write to the child->flags), because we're guaranteed the 960 * child is not running and in turn not changing child->flags 961 * at the same time the parent does it. 962 */ 963 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 964 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 965 #define clear_used_math() clear_stopped_child_used_math(current) 966 #define set_used_math() set_stopped_child_used_math(current) 967 #define conditional_stopped_child_used_math(condition, child) \ 968 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 969 #define conditional_used_math(condition) \ 970 conditional_stopped_child_used_math(condition, current) 971 #define copy_to_stopped_child_used_math(child) \ 972 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 973 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 974 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 975 #define used_math() tsk_used_math(current) 976 977 #ifdef CONFIG_SMP 978 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 979 #else 980 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 981 { 982 if (!cpu_isset(0, new_mask)) 983 return -EINVAL; 984 return 0; 985 } 986 #endif 987 988 extern unsigned long long sched_clock(void); 989 extern unsigned long long current_sched_time(const task_t *current_task); 990 991 /* sched_exec is called by processes performing an exec */ 992 #ifdef CONFIG_SMP 993 extern void sched_exec(void); 994 #else 995 #define sched_exec() {} 996 #endif 997 998 #ifdef CONFIG_HOTPLUG_CPU 999 extern void idle_task_exit(void); 1000 #else 1001 static inline void idle_task_exit(void) {} 1002 #endif 1003 1004 extern void sched_idle_next(void); 1005 extern void set_user_nice(task_t *p, long nice); 1006 extern int task_prio(const task_t *p); 1007 extern int task_nice(const task_t *p); 1008 extern int can_nice(const task_t *p, const int nice); 1009 extern int task_curr(const task_t *p); 1010 extern int idle_cpu(int cpu); 1011 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1012 extern task_t *idle_task(int cpu); 1013 extern task_t *curr_task(int cpu); 1014 extern void set_curr_task(int cpu, task_t *p); 1015 1016 void yield(void); 1017 1018 /* 1019 * The default (Linux) execution domain. 1020 */ 1021 extern struct exec_domain default_exec_domain; 1022 1023 union thread_union { 1024 struct thread_info thread_info; 1025 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1026 }; 1027 1028 #ifndef __HAVE_ARCH_KSTACK_END 1029 static inline int kstack_end(void *addr) 1030 { 1031 /* Reliable end of stack detection: 1032 * Some APM bios versions misalign the stack 1033 */ 1034 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1035 } 1036 #endif 1037 1038 extern union thread_union init_thread_union; 1039 extern struct task_struct init_task; 1040 1041 extern struct mm_struct init_mm; 1042 1043 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1044 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1045 extern void set_special_pids(pid_t session, pid_t pgrp); 1046 extern void __set_special_pids(pid_t session, pid_t pgrp); 1047 1048 /* per-UID process charging. */ 1049 extern struct user_struct * alloc_uid(uid_t); 1050 static inline struct user_struct *get_uid(struct user_struct *u) 1051 { 1052 atomic_inc(&u->__count); 1053 return u; 1054 } 1055 extern void free_uid(struct user_struct *); 1056 extern void switch_uid(struct user_struct *); 1057 1058 #include <asm/current.h> 1059 1060 extern void do_timer(struct pt_regs *); 1061 1062 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1063 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1064 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1065 unsigned long clone_flags)); 1066 #ifdef CONFIG_SMP 1067 extern void kick_process(struct task_struct *tsk); 1068 #else 1069 static inline void kick_process(struct task_struct *tsk) { } 1070 #endif 1071 extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); 1072 extern void FASTCALL(sched_exit(task_t * p)); 1073 1074 extern int in_group_p(gid_t); 1075 extern int in_egroup_p(gid_t); 1076 1077 extern void proc_caches_init(void); 1078 extern void flush_signals(struct task_struct *); 1079 extern void flush_signal_handlers(struct task_struct *, int force_default); 1080 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1081 1082 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1083 { 1084 unsigned long flags; 1085 int ret; 1086 1087 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1088 ret = dequeue_signal(tsk, mask, info); 1089 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1090 1091 return ret; 1092 } 1093 1094 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1095 sigset_t *mask); 1096 extern void unblock_all_signals(void); 1097 extern void release_task(struct task_struct * p); 1098 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1099 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1100 extern int force_sigsegv(int, struct task_struct *); 1101 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1102 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1103 extern int kill_pg_info(int, struct siginfo *, pid_t); 1104 extern int kill_proc_info(int, struct siginfo *, pid_t); 1105 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t); 1106 extern void do_notify_parent(struct task_struct *, int); 1107 extern void force_sig(int, struct task_struct *); 1108 extern void force_sig_specific(int, struct task_struct *); 1109 extern int send_sig(int, struct task_struct *, int); 1110 extern void zap_other_threads(struct task_struct *p); 1111 extern int kill_pg(pid_t, int, int); 1112 extern int kill_proc(pid_t, int, int); 1113 extern struct sigqueue *sigqueue_alloc(void); 1114 extern void sigqueue_free(struct sigqueue *); 1115 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1116 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1117 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1118 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1119 1120 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1121 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1122 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1123 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1124 1125 static inline int is_si_special(const struct siginfo *info) 1126 { 1127 return info <= SEND_SIG_FORCED; 1128 } 1129 1130 /* True if we are on the alternate signal stack. */ 1131 1132 static inline int on_sig_stack(unsigned long sp) 1133 { 1134 return (sp - current->sas_ss_sp < current->sas_ss_size); 1135 } 1136 1137 static inline int sas_ss_flags(unsigned long sp) 1138 { 1139 return (current->sas_ss_size == 0 ? SS_DISABLE 1140 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1141 } 1142 1143 /* 1144 * Routines for handling mm_structs 1145 */ 1146 extern struct mm_struct * mm_alloc(void); 1147 1148 /* mmdrop drops the mm and the page tables */ 1149 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1150 static inline void mmdrop(struct mm_struct * mm) 1151 { 1152 if (atomic_dec_and_test(&mm->mm_count)) 1153 __mmdrop(mm); 1154 } 1155 1156 /* mmput gets rid of the mappings and all user-space */ 1157 extern void mmput(struct mm_struct *); 1158 /* Grab a reference to a task's mm, if it is not already going away */ 1159 extern struct mm_struct *get_task_mm(struct task_struct *task); 1160 /* Remove the current tasks stale references to the old mm_struct */ 1161 extern void mm_release(struct task_struct *, struct mm_struct *); 1162 1163 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1164 extern void flush_thread(void); 1165 extern void exit_thread(void); 1166 1167 extern void exit_files(struct task_struct *); 1168 extern void __cleanup_signal(struct signal_struct *); 1169 extern void __cleanup_sighand(struct sighand_struct *); 1170 extern void exit_itimers(struct signal_struct *); 1171 1172 extern NORET_TYPE void do_group_exit(int); 1173 1174 extern void daemonize(const char *, ...); 1175 extern int allow_signal(int); 1176 extern int disallow_signal(int); 1177 extern task_t *child_reaper; 1178 1179 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1180 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1181 task_t *fork_idle(int); 1182 1183 extern void set_task_comm(struct task_struct *tsk, char *from); 1184 extern void get_task_comm(char *to, struct task_struct *tsk); 1185 1186 #ifdef CONFIG_SMP 1187 extern void wait_task_inactive(task_t * p); 1188 #else 1189 #define wait_task_inactive(p) do { } while (0) 1190 #endif 1191 1192 #define remove_parent(p) list_del_init(&(p)->sibling) 1193 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1194 1195 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1196 1197 #define for_each_process(p) \ 1198 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1199 1200 /* 1201 * Careful: do_each_thread/while_each_thread is a double loop so 1202 * 'break' will not work as expected - use goto instead. 1203 */ 1204 #define do_each_thread(g, t) \ 1205 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1206 1207 #define while_each_thread(g, t) \ 1208 while ((t = next_thread(t)) != g) 1209 1210 /* de_thread depends on thread_group_leader not being a pid based check */ 1211 #define thread_group_leader(p) (p == p->group_leader) 1212 1213 static inline task_t *next_thread(const task_t *p) 1214 { 1215 return list_entry(rcu_dereference(p->thread_group.next), 1216 task_t, thread_group); 1217 } 1218 1219 static inline int thread_group_empty(task_t *p) 1220 { 1221 return list_empty(&p->thread_group); 1222 } 1223 1224 #define delay_group_leader(p) \ 1225 (thread_group_leader(p) && !thread_group_empty(p)) 1226 1227 /* 1228 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1229 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1230 * pins the final release of task.io_context. Also protects ->cpuset. 1231 * 1232 * Nests both inside and outside of read_lock(&tasklist_lock). 1233 * It must not be nested with write_lock_irq(&tasklist_lock), 1234 * neither inside nor outside. 1235 */ 1236 static inline void task_lock(struct task_struct *p) 1237 { 1238 spin_lock(&p->alloc_lock); 1239 } 1240 1241 static inline void task_unlock(struct task_struct *p) 1242 { 1243 spin_unlock(&p->alloc_lock); 1244 } 1245 1246 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1247 unsigned long *flags); 1248 1249 static inline void unlock_task_sighand(struct task_struct *tsk, 1250 unsigned long *flags) 1251 { 1252 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1253 } 1254 1255 #ifndef __HAVE_THREAD_FUNCTIONS 1256 1257 #define task_thread_info(task) (task)->thread_info 1258 #define task_stack_page(task) ((void*)((task)->thread_info)) 1259 1260 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1261 { 1262 *task_thread_info(p) = *task_thread_info(org); 1263 task_thread_info(p)->task = p; 1264 } 1265 1266 static inline unsigned long *end_of_stack(struct task_struct *p) 1267 { 1268 return (unsigned long *)(p->thread_info + 1); 1269 } 1270 1271 #endif 1272 1273 /* set thread flags in other task's structures 1274 * - see asm/thread_info.h for TIF_xxxx flags available 1275 */ 1276 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1277 { 1278 set_ti_thread_flag(task_thread_info(tsk), flag); 1279 } 1280 1281 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1282 { 1283 clear_ti_thread_flag(task_thread_info(tsk), flag); 1284 } 1285 1286 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1287 { 1288 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1289 } 1290 1291 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1292 { 1293 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1294 } 1295 1296 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1297 { 1298 return test_ti_thread_flag(task_thread_info(tsk), flag); 1299 } 1300 1301 static inline void set_tsk_need_resched(struct task_struct *tsk) 1302 { 1303 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1304 } 1305 1306 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1307 { 1308 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1309 } 1310 1311 static inline int signal_pending(struct task_struct *p) 1312 { 1313 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1314 } 1315 1316 static inline int need_resched(void) 1317 { 1318 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1319 } 1320 1321 /* 1322 * cond_resched() and cond_resched_lock(): latency reduction via 1323 * explicit rescheduling in places that are safe. The return 1324 * value indicates whether a reschedule was done in fact. 1325 * cond_resched_lock() will drop the spinlock before scheduling, 1326 * cond_resched_softirq() will enable bhs before scheduling. 1327 */ 1328 extern int cond_resched(void); 1329 extern int cond_resched_lock(spinlock_t * lock); 1330 extern int cond_resched_softirq(void); 1331 1332 /* 1333 * Does a critical section need to be broken due to another 1334 * task waiting?: 1335 */ 1336 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1337 # define need_lockbreak(lock) ((lock)->break_lock) 1338 #else 1339 # define need_lockbreak(lock) 0 1340 #endif 1341 1342 /* 1343 * Does a critical section need to be broken due to another 1344 * task waiting or preemption being signalled: 1345 */ 1346 static inline int lock_need_resched(spinlock_t *lock) 1347 { 1348 if (need_lockbreak(lock) || need_resched()) 1349 return 1; 1350 return 0; 1351 } 1352 1353 /* Reevaluate whether the task has signals pending delivery. 1354 This is required every time the blocked sigset_t changes. 1355 callers must hold sighand->siglock. */ 1356 1357 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1358 extern void recalc_sigpending(void); 1359 1360 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1361 1362 /* 1363 * Wrappers for p->thread_info->cpu access. No-op on UP. 1364 */ 1365 #ifdef CONFIG_SMP 1366 1367 static inline unsigned int task_cpu(const struct task_struct *p) 1368 { 1369 return task_thread_info(p)->cpu; 1370 } 1371 1372 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1373 { 1374 task_thread_info(p)->cpu = cpu; 1375 } 1376 1377 #else 1378 1379 static inline unsigned int task_cpu(const struct task_struct *p) 1380 { 1381 return 0; 1382 } 1383 1384 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1385 { 1386 } 1387 1388 #endif /* CONFIG_SMP */ 1389 1390 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1391 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1392 #else 1393 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1394 { 1395 mm->mmap_base = TASK_UNMAPPED_BASE; 1396 mm->get_unmapped_area = arch_get_unmapped_area; 1397 mm->unmap_area = arch_unmap_area; 1398 } 1399 #endif 1400 1401 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1402 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1403 1404 extern void normalize_rt_tasks(void); 1405 1406 #ifdef CONFIG_PM 1407 /* 1408 * Check if a process has been frozen 1409 */ 1410 static inline int frozen(struct task_struct *p) 1411 { 1412 return p->flags & PF_FROZEN; 1413 } 1414 1415 /* 1416 * Check if there is a request to freeze a process 1417 */ 1418 static inline int freezing(struct task_struct *p) 1419 { 1420 return p->flags & PF_FREEZE; 1421 } 1422 1423 /* 1424 * Request that a process be frozen 1425 * FIXME: SMP problem. We may not modify other process' flags! 1426 */ 1427 static inline void freeze(struct task_struct *p) 1428 { 1429 p->flags |= PF_FREEZE; 1430 } 1431 1432 /* 1433 * Wake up a frozen process 1434 */ 1435 static inline int thaw_process(struct task_struct *p) 1436 { 1437 if (frozen(p)) { 1438 p->flags &= ~PF_FROZEN; 1439 wake_up_process(p); 1440 return 1; 1441 } 1442 return 0; 1443 } 1444 1445 /* 1446 * freezing is complete, mark process as frozen 1447 */ 1448 static inline void frozen_process(struct task_struct *p) 1449 { 1450 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1451 } 1452 1453 extern void refrigerator(void); 1454 extern int freeze_processes(void); 1455 extern void thaw_processes(void); 1456 1457 static inline int try_to_freeze(void) 1458 { 1459 if (freezing(current)) { 1460 refrigerator(); 1461 return 1; 1462 } else 1463 return 0; 1464 } 1465 #else 1466 static inline int frozen(struct task_struct *p) { return 0; } 1467 static inline int freezing(struct task_struct *p) { return 0; } 1468 static inline void freeze(struct task_struct *p) { BUG(); } 1469 static inline int thaw_process(struct task_struct *p) { return 1; } 1470 static inline void frozen_process(struct task_struct *p) { BUG(); } 1471 1472 static inline void refrigerator(void) {} 1473 static inline int freeze_processes(void) { BUG(); return 0; } 1474 static inline void thaw_processes(void) {} 1475 1476 static inline int try_to_freeze(void) { return 0; } 1477 1478 #endif /* CONFIG_PM */ 1479 #endif /* __KERNEL__ */ 1480 1481 #endif 1482