xref: /linux/include/linux/sched.h (revision f1b744f65e2f9682347c5faf6377e61e2ab19a67)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT		0x1000
101 #define TASK_STATE_MAX			0x2000
102 
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
107 
108 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109 
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112 
113 /* get_task_state(): */
114 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 					 TASK_PARKED)
118 
119 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120 
121 #define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122 
123 #define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124 
125 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126 
127 /*
128  * Special states are those that do not use the normal wait-loop pattern. See
129  * the comment with set_special_state().
130  */
131 #define is_special_task_state(state)				\
132 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133 
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value)				\
136 	do {								\
137 		WARN_ON_ONCE(is_special_task_state(state_value));	\
138 		current->task_state_change = _THIS_IP_;			\
139 	} while (0)
140 
141 # define debug_special_state_change(state_value)			\
142 	do {								\
143 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
144 		current->task_state_change = _THIS_IP_;			\
145 	} while (0)
146 
147 # define debug_rtlock_wait_set_state()					\
148 	do {								 \
149 		current->saved_state_change = current->task_state_change;\
150 		current->task_state_change = _THIS_IP_;			 \
151 	} while (0)
152 
153 # define debug_rtlock_wait_restore_state()				\
154 	do {								 \
155 		current->task_state_change = current->saved_state_change;\
156 	} while (0)
157 
158 #else
159 # define debug_normal_state_change(cond)	do { } while (0)
160 # define debug_special_state_change(cond)	do { } while (0)
161 # define debug_rtlock_wait_set_state()		do { } while (0)
162 # define debug_rtlock_wait_restore_state()	do { } while (0)
163 #endif
164 
165 /*
166  * set_current_state() includes a barrier so that the write of current->state
167  * is correctly serialised wrt the caller's subsequent test of whether to
168  * actually sleep:
169  *
170  *   for (;;) {
171  *	set_current_state(TASK_UNINTERRUPTIBLE);
172  *	if (CONDITION)
173  *	   break;
174  *
175  *	schedule();
176  *   }
177  *   __set_current_state(TASK_RUNNING);
178  *
179  * If the caller does not need such serialisation (because, for instance, the
180  * CONDITION test and condition change and wakeup are under the same lock) then
181  * use __set_current_state().
182  *
183  * The above is typically ordered against the wakeup, which does:
184  *
185  *   CONDITION = 1;
186  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187  *
188  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189  * accessing p->state.
190  *
191  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194  *
195  * However, with slightly different timing the wakeup TASK_RUNNING store can
196  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197  * a problem either because that will result in one extra go around the loop
198  * and our @cond test will save the day.
199  *
200  * Also see the comments of try_to_wake_up().
201  */
202 #define __set_current_state(state_value)				\
203 	do {								\
204 		debug_normal_state_change((state_value));		\
205 		WRITE_ONCE(current->__state, (state_value));		\
206 	} while (0)
207 
208 #define set_current_state(state_value)					\
209 	do {								\
210 		debug_normal_state_change((state_value));		\
211 		smp_store_mb(current->__state, (state_value));		\
212 	} while (0)
213 
214 /*
215  * set_special_state() should be used for those states when the blocking task
216  * can not use the regular condition based wait-loop. In that case we must
217  * serialize against wakeups such that any possible in-flight TASK_RUNNING
218  * stores will not collide with our state change.
219  */
220 #define set_special_state(state_value)					\
221 	do {								\
222 		unsigned long flags; /* may shadow */			\
223 									\
224 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225 		debug_special_state_change((state_value));		\
226 		WRITE_ONCE(current->__state, (state_value));		\
227 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
228 	} while (0)
229 
230 /*
231  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232  *
233  * RT's spin/rwlock substitutions are state preserving. The state of the
234  * task when blocking on the lock is saved in task_struct::saved_state and
235  * restored after the lock has been acquired.  These operations are
236  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237  * lock related wakeups while the task is blocked on the lock are
238  * redirected to operate on task_struct::saved_state to ensure that these
239  * are not dropped. On restore task_struct::saved_state is set to
240  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241  *
242  * The lock operation looks like this:
243  *
244  *	current_save_and_set_rtlock_wait_state();
245  *	for (;;) {
246  *		if (try_lock())
247  *			break;
248  *		raw_spin_unlock_irq(&lock->wait_lock);
249  *		schedule_rtlock();
250  *		raw_spin_lock_irq(&lock->wait_lock);
251  *		set_current_state(TASK_RTLOCK_WAIT);
252  *	}
253  *	current_restore_rtlock_saved_state();
254  */
255 #define current_save_and_set_rtlock_wait_state()			\
256 	do {								\
257 		lockdep_assert_irqs_disabled();				\
258 		raw_spin_lock(&current->pi_lock);			\
259 		current->saved_state = current->__state;		\
260 		debug_rtlock_wait_set_state();				\
261 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
262 		raw_spin_unlock(&current->pi_lock);			\
263 	} while (0);
264 
265 #define current_restore_rtlock_saved_state()				\
266 	do {								\
267 		lockdep_assert_irqs_disabled();				\
268 		raw_spin_lock(&current->pi_lock);			\
269 		debug_rtlock_wait_restore_state();			\
270 		WRITE_ONCE(current->__state, current->saved_state);	\
271 		current->saved_state = TASK_RUNNING;			\
272 		raw_spin_unlock(&current->pi_lock);			\
273 	} while (0);
274 
275 #define get_current_state()	READ_ONCE(current->__state)
276 
277 /* Task command name length: */
278 #define TASK_COMM_LEN			16
279 
280 extern void scheduler_tick(void);
281 
282 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
283 
284 extern long schedule_timeout(long timeout);
285 extern long schedule_timeout_interruptible(long timeout);
286 extern long schedule_timeout_killable(long timeout);
287 extern long schedule_timeout_uninterruptible(long timeout);
288 extern long schedule_timeout_idle(long timeout);
289 asmlinkage void schedule(void);
290 extern void schedule_preempt_disabled(void);
291 asmlinkage void preempt_schedule_irq(void);
292 #ifdef CONFIG_PREEMPT_RT
293  extern void schedule_rtlock(void);
294 #endif
295 
296 extern int __must_check io_schedule_prepare(void);
297 extern void io_schedule_finish(int token);
298 extern long io_schedule_timeout(long timeout);
299 extern void io_schedule(void);
300 
301 /**
302  * struct prev_cputime - snapshot of system and user cputime
303  * @utime: time spent in user mode
304  * @stime: time spent in system mode
305  * @lock: protects the above two fields
306  *
307  * Stores previous user/system time values such that we can guarantee
308  * monotonicity.
309  */
310 struct prev_cputime {
311 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
312 	u64				utime;
313 	u64				stime;
314 	raw_spinlock_t			lock;
315 #endif
316 };
317 
318 enum vtime_state {
319 	/* Task is sleeping or running in a CPU with VTIME inactive: */
320 	VTIME_INACTIVE = 0,
321 	/* Task is idle */
322 	VTIME_IDLE,
323 	/* Task runs in kernelspace in a CPU with VTIME active: */
324 	VTIME_SYS,
325 	/* Task runs in userspace in a CPU with VTIME active: */
326 	VTIME_USER,
327 	/* Task runs as guests in a CPU with VTIME active: */
328 	VTIME_GUEST,
329 };
330 
331 struct vtime {
332 	seqcount_t		seqcount;
333 	unsigned long long	starttime;
334 	enum vtime_state	state;
335 	unsigned int		cpu;
336 	u64			utime;
337 	u64			stime;
338 	u64			gtime;
339 };
340 
341 /*
342  * Utilization clamp constraints.
343  * @UCLAMP_MIN:	Minimum utilization
344  * @UCLAMP_MAX:	Maximum utilization
345  * @UCLAMP_CNT:	Utilization clamp constraints count
346  */
347 enum uclamp_id {
348 	UCLAMP_MIN = 0,
349 	UCLAMP_MAX,
350 	UCLAMP_CNT
351 };
352 
353 #ifdef CONFIG_SMP
354 extern struct root_domain def_root_domain;
355 extern struct mutex sched_domains_mutex;
356 #endif
357 
358 struct sched_info {
359 #ifdef CONFIG_SCHED_INFO
360 	/* Cumulative counters: */
361 
362 	/* # of times we have run on this CPU: */
363 	unsigned long			pcount;
364 
365 	/* Time spent waiting on a runqueue: */
366 	unsigned long long		run_delay;
367 
368 	/* Timestamps: */
369 
370 	/* When did we last run on a CPU? */
371 	unsigned long long		last_arrival;
372 
373 	/* When were we last queued to run? */
374 	unsigned long long		last_queued;
375 
376 #endif /* CONFIG_SCHED_INFO */
377 };
378 
379 /*
380  * Integer metrics need fixed point arithmetic, e.g., sched/fair
381  * has a few: load, load_avg, util_avg, freq, and capacity.
382  *
383  * We define a basic fixed point arithmetic range, and then formalize
384  * all these metrics based on that basic range.
385  */
386 # define SCHED_FIXEDPOINT_SHIFT		10
387 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
388 
389 /* Increase resolution of cpu_capacity calculations */
390 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
391 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
392 
393 struct load_weight {
394 	unsigned long			weight;
395 	u32				inv_weight;
396 };
397 
398 /**
399  * struct util_est - Estimation utilization of FAIR tasks
400  * @enqueued: instantaneous estimated utilization of a task/cpu
401  * @ewma:     the Exponential Weighted Moving Average (EWMA)
402  *            utilization of a task
403  *
404  * Support data structure to track an Exponential Weighted Moving Average
405  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406  * average each time a task completes an activation. Sample's weight is chosen
407  * so that the EWMA will be relatively insensitive to transient changes to the
408  * task's workload.
409  *
410  * The enqueued attribute has a slightly different meaning for tasks and cpus:
411  * - task:   the task's util_avg at last task dequeue time
412  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413  * Thus, the util_est.enqueued of a task represents the contribution on the
414  * estimated utilization of the CPU where that task is currently enqueued.
415  *
416  * Only for tasks we track a moving average of the past instantaneous
417  * estimated utilization. This allows to absorb sporadic drops in utilization
418  * of an otherwise almost periodic task.
419  *
420  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421  * updates. When a task is dequeued, its util_est should not be updated if its
422  * util_avg has not been updated in the meantime.
423  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425  * for a task) it is safe to use MSB.
426  */
427 struct util_est {
428 	unsigned int			enqueued;
429 	unsigned int			ewma;
430 #define UTIL_EST_WEIGHT_SHIFT		2
431 #define UTIL_AVG_UNCHANGED		0x80000000
432 } __attribute__((__aligned__(sizeof(u64))));
433 
434 /*
435  * The load/runnable/util_avg accumulates an infinite geometric series
436  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437  *
438  * [load_avg definition]
439  *
440  *   load_avg = runnable% * scale_load_down(load)
441  *
442  * [runnable_avg definition]
443  *
444  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445  *
446  * [util_avg definition]
447  *
448  *   util_avg = running% * SCHED_CAPACITY_SCALE
449  *
450  * where runnable% is the time ratio that a sched_entity is runnable and
451  * running% the time ratio that a sched_entity is running.
452  *
453  * For cfs_rq, they are the aggregated values of all runnable and blocked
454  * sched_entities.
455  *
456  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458  * for computing those signals (see update_rq_clock_pelt())
459  *
460  * N.B., the above ratios (runnable% and running%) themselves are in the
461  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462  * to as large a range as necessary. This is for example reflected by
463  * util_avg's SCHED_CAPACITY_SCALE.
464  *
465  * [Overflow issue]
466  *
467  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468  * with the highest load (=88761), always runnable on a single cfs_rq,
469  * and should not overflow as the number already hits PID_MAX_LIMIT.
470  *
471  * For all other cases (including 32-bit kernels), struct load_weight's
472  * weight will overflow first before we do, because:
473  *
474  *    Max(load_avg) <= Max(load.weight)
475  *
476  * Then it is the load_weight's responsibility to consider overflow
477  * issues.
478  */
479 struct sched_avg {
480 	u64				last_update_time;
481 	u64				load_sum;
482 	u64				runnable_sum;
483 	u32				util_sum;
484 	u32				period_contrib;
485 	unsigned long			load_avg;
486 	unsigned long			runnable_avg;
487 	unsigned long			util_avg;
488 	struct util_est			util_est;
489 } ____cacheline_aligned;
490 
491 struct sched_statistics {
492 #ifdef CONFIG_SCHEDSTATS
493 	u64				wait_start;
494 	u64				wait_max;
495 	u64				wait_count;
496 	u64				wait_sum;
497 	u64				iowait_count;
498 	u64				iowait_sum;
499 
500 	u64				sleep_start;
501 	u64				sleep_max;
502 	s64				sum_sleep_runtime;
503 
504 	u64				block_start;
505 	u64				block_max;
506 	s64				sum_block_runtime;
507 
508 	u64				exec_max;
509 	u64				slice_max;
510 
511 	u64				nr_migrations_cold;
512 	u64				nr_failed_migrations_affine;
513 	u64				nr_failed_migrations_running;
514 	u64				nr_failed_migrations_hot;
515 	u64				nr_forced_migrations;
516 
517 	u64				nr_wakeups;
518 	u64				nr_wakeups_sync;
519 	u64				nr_wakeups_migrate;
520 	u64				nr_wakeups_local;
521 	u64				nr_wakeups_remote;
522 	u64				nr_wakeups_affine;
523 	u64				nr_wakeups_affine_attempts;
524 	u64				nr_wakeups_passive;
525 	u64				nr_wakeups_idle;
526 
527 #ifdef CONFIG_SCHED_CORE
528 	u64				core_forceidle_sum;
529 #endif
530 #endif /* CONFIG_SCHEDSTATS */
531 } ____cacheline_aligned;
532 
533 struct sched_entity {
534 	/* For load-balancing: */
535 	struct load_weight		load;
536 	struct rb_node			run_node;
537 	struct list_head		group_node;
538 	unsigned int			on_rq;
539 
540 	u64				exec_start;
541 	u64				sum_exec_runtime;
542 	u64				vruntime;
543 	u64				prev_sum_exec_runtime;
544 
545 	u64				nr_migrations;
546 
547 #ifdef CONFIG_FAIR_GROUP_SCHED
548 	int				depth;
549 	struct sched_entity		*parent;
550 	/* rq on which this entity is (to be) queued: */
551 	struct cfs_rq			*cfs_rq;
552 	/* rq "owned" by this entity/group: */
553 	struct cfs_rq			*my_q;
554 	/* cached value of my_q->h_nr_running */
555 	unsigned long			runnable_weight;
556 #endif
557 
558 #ifdef CONFIG_SMP
559 	/*
560 	 * Per entity load average tracking.
561 	 *
562 	 * Put into separate cache line so it does not
563 	 * collide with read-mostly values above.
564 	 */
565 	struct sched_avg		avg;
566 #endif
567 };
568 
569 struct sched_rt_entity {
570 	struct list_head		run_list;
571 	unsigned long			timeout;
572 	unsigned long			watchdog_stamp;
573 	unsigned int			time_slice;
574 	unsigned short			on_rq;
575 	unsigned short			on_list;
576 
577 	struct sched_rt_entity		*back;
578 #ifdef CONFIG_RT_GROUP_SCHED
579 	struct sched_rt_entity		*parent;
580 	/* rq on which this entity is (to be) queued: */
581 	struct rt_rq			*rt_rq;
582 	/* rq "owned" by this entity/group: */
583 	struct rt_rq			*my_q;
584 #endif
585 } __randomize_layout;
586 
587 struct sched_dl_entity {
588 	struct rb_node			rb_node;
589 
590 	/*
591 	 * Original scheduling parameters. Copied here from sched_attr
592 	 * during sched_setattr(), they will remain the same until
593 	 * the next sched_setattr().
594 	 */
595 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
596 	u64				dl_deadline;	/* Relative deadline of each instance	*/
597 	u64				dl_period;	/* Separation of two instances (period) */
598 	u64				dl_bw;		/* dl_runtime / dl_period		*/
599 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
600 
601 	/*
602 	 * Actual scheduling parameters. Initialized with the values above,
603 	 * they are continuously updated during task execution. Note that
604 	 * the remaining runtime could be < 0 in case we are in overrun.
605 	 */
606 	s64				runtime;	/* Remaining runtime for this instance	*/
607 	u64				deadline;	/* Absolute deadline for this instance	*/
608 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
609 
610 	/*
611 	 * Some bool flags:
612 	 *
613 	 * @dl_throttled tells if we exhausted the runtime. If so, the
614 	 * task has to wait for a replenishment to be performed at the
615 	 * next firing of dl_timer.
616 	 *
617 	 * @dl_boosted tells if we are boosted due to DI. If so we are
618 	 * outside bandwidth enforcement mechanism (but only until we
619 	 * exit the critical section);
620 	 *
621 	 * @dl_yielded tells if task gave up the CPU before consuming
622 	 * all its available runtime during the last job.
623 	 *
624 	 * @dl_non_contending tells if the task is inactive while still
625 	 * contributing to the active utilization. In other words, it
626 	 * indicates if the inactive timer has been armed and its handler
627 	 * has not been executed yet. This flag is useful to avoid race
628 	 * conditions between the inactive timer handler and the wakeup
629 	 * code.
630 	 *
631 	 * @dl_overrun tells if the task asked to be informed about runtime
632 	 * overruns.
633 	 */
634 	unsigned int			dl_throttled      : 1;
635 	unsigned int			dl_yielded        : 1;
636 	unsigned int			dl_non_contending : 1;
637 	unsigned int			dl_overrun	  : 1;
638 
639 	/*
640 	 * Bandwidth enforcement timer. Each -deadline task has its
641 	 * own bandwidth to be enforced, thus we need one timer per task.
642 	 */
643 	struct hrtimer			dl_timer;
644 
645 	/*
646 	 * Inactive timer, responsible for decreasing the active utilization
647 	 * at the "0-lag time". When a -deadline task blocks, it contributes
648 	 * to GRUB's active utilization until the "0-lag time", hence a
649 	 * timer is needed to decrease the active utilization at the correct
650 	 * time.
651 	 */
652 	struct hrtimer inactive_timer;
653 
654 #ifdef CONFIG_RT_MUTEXES
655 	/*
656 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
657 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
658 	 * to (the original one/itself).
659 	 */
660 	struct sched_dl_entity *pi_se;
661 #endif
662 };
663 
664 #ifdef CONFIG_UCLAMP_TASK
665 /* Number of utilization clamp buckets (shorter alias) */
666 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
667 
668 /*
669  * Utilization clamp for a scheduling entity
670  * @value:		clamp value "assigned" to a se
671  * @bucket_id:		bucket index corresponding to the "assigned" value
672  * @active:		the se is currently refcounted in a rq's bucket
673  * @user_defined:	the requested clamp value comes from user-space
674  *
675  * The bucket_id is the index of the clamp bucket matching the clamp value
676  * which is pre-computed and stored to avoid expensive integer divisions from
677  * the fast path.
678  *
679  * The active bit is set whenever a task has got an "effective" value assigned,
680  * which can be different from the clamp value "requested" from user-space.
681  * This allows to know a task is refcounted in the rq's bucket corresponding
682  * to the "effective" bucket_id.
683  *
684  * The user_defined bit is set whenever a task has got a task-specific clamp
685  * value requested from userspace, i.e. the system defaults apply to this task
686  * just as a restriction. This allows to relax default clamps when a less
687  * restrictive task-specific value has been requested, thus allowing to
688  * implement a "nice" semantic. For example, a task running with a 20%
689  * default boost can still drop its own boosting to 0%.
690  */
691 struct uclamp_se {
692 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
693 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
694 	unsigned int active		: 1;
695 	unsigned int user_defined	: 1;
696 };
697 #endif /* CONFIG_UCLAMP_TASK */
698 
699 union rcu_special {
700 	struct {
701 		u8			blocked;
702 		u8			need_qs;
703 		u8			exp_hint; /* Hint for performance. */
704 		u8			need_mb; /* Readers need smp_mb(). */
705 	} b; /* Bits. */
706 	u32 s; /* Set of bits. */
707 };
708 
709 enum perf_event_task_context {
710 	perf_invalid_context = -1,
711 	perf_hw_context = 0,
712 	perf_sw_context,
713 	perf_nr_task_contexts,
714 };
715 
716 struct wake_q_node {
717 	struct wake_q_node *next;
718 };
719 
720 struct kmap_ctrl {
721 #ifdef CONFIG_KMAP_LOCAL
722 	int				idx;
723 	pte_t				pteval[KM_MAX_IDX];
724 #endif
725 };
726 
727 struct task_struct {
728 #ifdef CONFIG_THREAD_INFO_IN_TASK
729 	/*
730 	 * For reasons of header soup (see current_thread_info()), this
731 	 * must be the first element of task_struct.
732 	 */
733 	struct thread_info		thread_info;
734 #endif
735 	unsigned int			__state;
736 
737 #ifdef CONFIG_PREEMPT_RT
738 	/* saved state for "spinlock sleepers" */
739 	unsigned int			saved_state;
740 #endif
741 
742 	/*
743 	 * This begins the randomizable portion of task_struct. Only
744 	 * scheduling-critical items should be added above here.
745 	 */
746 	randomized_struct_fields_start
747 
748 	void				*stack;
749 	refcount_t			usage;
750 	/* Per task flags (PF_*), defined further below: */
751 	unsigned int			flags;
752 	unsigned int			ptrace;
753 
754 #ifdef CONFIG_SMP
755 	int				on_cpu;
756 	struct __call_single_node	wake_entry;
757 	unsigned int			wakee_flips;
758 	unsigned long			wakee_flip_decay_ts;
759 	struct task_struct		*last_wakee;
760 
761 	/*
762 	 * recent_used_cpu is initially set as the last CPU used by a task
763 	 * that wakes affine another task. Waker/wakee relationships can
764 	 * push tasks around a CPU where each wakeup moves to the next one.
765 	 * Tracking a recently used CPU allows a quick search for a recently
766 	 * used CPU that may be idle.
767 	 */
768 	int				recent_used_cpu;
769 	int				wake_cpu;
770 #endif
771 	int				on_rq;
772 
773 	int				prio;
774 	int				static_prio;
775 	int				normal_prio;
776 	unsigned int			rt_priority;
777 
778 	struct sched_entity		se;
779 	struct sched_rt_entity		rt;
780 	struct sched_dl_entity		dl;
781 	const struct sched_class	*sched_class;
782 
783 #ifdef CONFIG_SCHED_CORE
784 	struct rb_node			core_node;
785 	unsigned long			core_cookie;
786 	unsigned int			core_occupation;
787 #endif
788 
789 #ifdef CONFIG_CGROUP_SCHED
790 	struct task_group		*sched_task_group;
791 #endif
792 
793 #ifdef CONFIG_UCLAMP_TASK
794 	/*
795 	 * Clamp values requested for a scheduling entity.
796 	 * Must be updated with task_rq_lock() held.
797 	 */
798 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
799 	/*
800 	 * Effective clamp values used for a scheduling entity.
801 	 * Must be updated with task_rq_lock() held.
802 	 */
803 	struct uclamp_se		uclamp[UCLAMP_CNT];
804 #endif
805 
806 	struct sched_statistics         stats;
807 
808 #ifdef CONFIG_PREEMPT_NOTIFIERS
809 	/* List of struct preempt_notifier: */
810 	struct hlist_head		preempt_notifiers;
811 #endif
812 
813 #ifdef CONFIG_BLK_DEV_IO_TRACE
814 	unsigned int			btrace_seq;
815 #endif
816 
817 	unsigned int			policy;
818 	int				nr_cpus_allowed;
819 	const cpumask_t			*cpus_ptr;
820 	cpumask_t			*user_cpus_ptr;
821 	cpumask_t			cpus_mask;
822 	void				*migration_pending;
823 #ifdef CONFIG_SMP
824 	unsigned short			migration_disabled;
825 #endif
826 	unsigned short			migration_flags;
827 
828 #ifdef CONFIG_PREEMPT_RCU
829 	int				rcu_read_lock_nesting;
830 	union rcu_special		rcu_read_unlock_special;
831 	struct list_head		rcu_node_entry;
832 	struct rcu_node			*rcu_blocked_node;
833 #endif /* #ifdef CONFIG_PREEMPT_RCU */
834 
835 #ifdef CONFIG_TASKS_RCU
836 	unsigned long			rcu_tasks_nvcsw;
837 	u8				rcu_tasks_holdout;
838 	u8				rcu_tasks_idx;
839 	int				rcu_tasks_idle_cpu;
840 	struct list_head		rcu_tasks_holdout_list;
841 #endif /* #ifdef CONFIG_TASKS_RCU */
842 
843 #ifdef CONFIG_TASKS_TRACE_RCU
844 	int				trc_reader_nesting;
845 	int				trc_ipi_to_cpu;
846 	union rcu_special		trc_reader_special;
847 	bool				trc_reader_checked;
848 	struct list_head		trc_holdout_list;
849 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
850 
851 	struct sched_info		sched_info;
852 
853 	struct list_head		tasks;
854 #ifdef CONFIG_SMP
855 	struct plist_node		pushable_tasks;
856 	struct rb_node			pushable_dl_tasks;
857 #endif
858 
859 	struct mm_struct		*mm;
860 	struct mm_struct		*active_mm;
861 
862 	/* Per-thread vma caching: */
863 	struct vmacache			vmacache;
864 
865 #ifdef SPLIT_RSS_COUNTING
866 	struct task_rss_stat		rss_stat;
867 #endif
868 	int				exit_state;
869 	int				exit_code;
870 	int				exit_signal;
871 	/* The signal sent when the parent dies: */
872 	int				pdeath_signal;
873 	/* JOBCTL_*, siglock protected: */
874 	unsigned long			jobctl;
875 
876 	/* Used for emulating ABI behavior of previous Linux versions: */
877 	unsigned int			personality;
878 
879 	/* Scheduler bits, serialized by scheduler locks: */
880 	unsigned			sched_reset_on_fork:1;
881 	unsigned			sched_contributes_to_load:1;
882 	unsigned			sched_migrated:1;
883 #ifdef CONFIG_PSI
884 	unsigned			sched_psi_wake_requeue:1;
885 #endif
886 
887 	/* Force alignment to the next boundary: */
888 	unsigned			:0;
889 
890 	/* Unserialized, strictly 'current' */
891 
892 	/*
893 	 * This field must not be in the scheduler word above due to wakelist
894 	 * queueing no longer being serialized by p->on_cpu. However:
895 	 *
896 	 * p->XXX = X;			ttwu()
897 	 * schedule()			  if (p->on_rq && ..) // false
898 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
899 	 *   deactivate_task()		      ttwu_queue_wakelist())
900 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
901 	 *
902 	 * guarantees all stores of 'current' are visible before
903 	 * ->sched_remote_wakeup gets used, so it can be in this word.
904 	 */
905 	unsigned			sched_remote_wakeup:1;
906 
907 	/* Bit to tell LSMs we're in execve(): */
908 	unsigned			in_execve:1;
909 	unsigned			in_iowait:1;
910 #ifndef TIF_RESTORE_SIGMASK
911 	unsigned			restore_sigmask:1;
912 #endif
913 #ifdef CONFIG_MEMCG
914 	unsigned			in_user_fault:1;
915 #endif
916 #ifdef CONFIG_COMPAT_BRK
917 	unsigned			brk_randomized:1;
918 #endif
919 #ifdef CONFIG_CGROUPS
920 	/* disallow userland-initiated cgroup migration */
921 	unsigned			no_cgroup_migration:1;
922 	/* task is frozen/stopped (used by the cgroup freezer) */
923 	unsigned			frozen:1;
924 #endif
925 #ifdef CONFIG_BLK_CGROUP
926 	unsigned			use_memdelay:1;
927 #endif
928 #ifdef CONFIG_PSI
929 	/* Stalled due to lack of memory */
930 	unsigned			in_memstall:1;
931 #endif
932 #ifdef CONFIG_PAGE_OWNER
933 	/* Used by page_owner=on to detect recursion in page tracking. */
934 	unsigned			in_page_owner:1;
935 #endif
936 #ifdef CONFIG_EVENTFD
937 	/* Recursion prevention for eventfd_signal() */
938 	unsigned			in_eventfd_signal:1;
939 #endif
940 
941 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
942 
943 	struct restart_block		restart_block;
944 
945 	pid_t				pid;
946 	pid_t				tgid;
947 
948 #ifdef CONFIG_STACKPROTECTOR
949 	/* Canary value for the -fstack-protector GCC feature: */
950 	unsigned long			stack_canary;
951 #endif
952 	/*
953 	 * Pointers to the (original) parent process, youngest child, younger sibling,
954 	 * older sibling, respectively.  (p->father can be replaced with
955 	 * p->real_parent->pid)
956 	 */
957 
958 	/* Real parent process: */
959 	struct task_struct __rcu	*real_parent;
960 
961 	/* Recipient of SIGCHLD, wait4() reports: */
962 	struct task_struct __rcu	*parent;
963 
964 	/*
965 	 * Children/sibling form the list of natural children:
966 	 */
967 	struct list_head		children;
968 	struct list_head		sibling;
969 	struct task_struct		*group_leader;
970 
971 	/*
972 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
973 	 *
974 	 * This includes both natural children and PTRACE_ATTACH targets.
975 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
976 	 */
977 	struct list_head		ptraced;
978 	struct list_head		ptrace_entry;
979 
980 	/* PID/PID hash table linkage. */
981 	struct pid			*thread_pid;
982 	struct hlist_node		pid_links[PIDTYPE_MAX];
983 	struct list_head		thread_group;
984 	struct list_head		thread_node;
985 
986 	struct completion		*vfork_done;
987 
988 	/* CLONE_CHILD_SETTID: */
989 	int __user			*set_child_tid;
990 
991 	/* CLONE_CHILD_CLEARTID: */
992 	int __user			*clear_child_tid;
993 
994 	/* PF_KTHREAD | PF_IO_WORKER */
995 	void				*worker_private;
996 
997 	u64				utime;
998 	u64				stime;
999 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1000 	u64				utimescaled;
1001 	u64				stimescaled;
1002 #endif
1003 	u64				gtime;
1004 	struct prev_cputime		prev_cputime;
1005 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1006 	struct vtime			vtime;
1007 #endif
1008 
1009 #ifdef CONFIG_NO_HZ_FULL
1010 	atomic_t			tick_dep_mask;
1011 #endif
1012 	/* Context switch counts: */
1013 	unsigned long			nvcsw;
1014 	unsigned long			nivcsw;
1015 
1016 	/* Monotonic time in nsecs: */
1017 	u64				start_time;
1018 
1019 	/* Boot based time in nsecs: */
1020 	u64				start_boottime;
1021 
1022 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1023 	unsigned long			min_flt;
1024 	unsigned long			maj_flt;
1025 
1026 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1027 	struct posix_cputimers		posix_cputimers;
1028 
1029 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1030 	struct posix_cputimers_work	posix_cputimers_work;
1031 #endif
1032 
1033 	/* Process credentials: */
1034 
1035 	/* Tracer's credentials at attach: */
1036 	const struct cred __rcu		*ptracer_cred;
1037 
1038 	/* Objective and real subjective task credentials (COW): */
1039 	const struct cred __rcu		*real_cred;
1040 
1041 	/* Effective (overridable) subjective task credentials (COW): */
1042 	const struct cred __rcu		*cred;
1043 
1044 #ifdef CONFIG_KEYS
1045 	/* Cached requested key. */
1046 	struct key			*cached_requested_key;
1047 #endif
1048 
1049 	/*
1050 	 * executable name, excluding path.
1051 	 *
1052 	 * - normally initialized setup_new_exec()
1053 	 * - access it with [gs]et_task_comm()
1054 	 * - lock it with task_lock()
1055 	 */
1056 	char				comm[TASK_COMM_LEN];
1057 
1058 	struct nameidata		*nameidata;
1059 
1060 #ifdef CONFIG_SYSVIPC
1061 	struct sysv_sem			sysvsem;
1062 	struct sysv_shm			sysvshm;
1063 #endif
1064 #ifdef CONFIG_DETECT_HUNG_TASK
1065 	unsigned long			last_switch_count;
1066 	unsigned long			last_switch_time;
1067 #endif
1068 	/* Filesystem information: */
1069 	struct fs_struct		*fs;
1070 
1071 	/* Open file information: */
1072 	struct files_struct		*files;
1073 
1074 #ifdef CONFIG_IO_URING
1075 	struct io_uring_task		*io_uring;
1076 #endif
1077 
1078 	/* Namespaces: */
1079 	struct nsproxy			*nsproxy;
1080 
1081 	/* Signal handlers: */
1082 	struct signal_struct		*signal;
1083 	struct sighand_struct __rcu		*sighand;
1084 	sigset_t			blocked;
1085 	sigset_t			real_blocked;
1086 	/* Restored if set_restore_sigmask() was used: */
1087 	sigset_t			saved_sigmask;
1088 	struct sigpending		pending;
1089 	unsigned long			sas_ss_sp;
1090 	size_t				sas_ss_size;
1091 	unsigned int			sas_ss_flags;
1092 
1093 	struct callback_head		*task_works;
1094 
1095 #ifdef CONFIG_AUDIT
1096 #ifdef CONFIG_AUDITSYSCALL
1097 	struct audit_context		*audit_context;
1098 #endif
1099 	kuid_t				loginuid;
1100 	unsigned int			sessionid;
1101 #endif
1102 	struct seccomp			seccomp;
1103 	struct syscall_user_dispatch	syscall_dispatch;
1104 
1105 	/* Thread group tracking: */
1106 	u64				parent_exec_id;
1107 	u64				self_exec_id;
1108 
1109 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1110 	spinlock_t			alloc_lock;
1111 
1112 	/* Protection of the PI data structures: */
1113 	raw_spinlock_t			pi_lock;
1114 
1115 	struct wake_q_node		wake_q;
1116 
1117 #ifdef CONFIG_RT_MUTEXES
1118 	/* PI waiters blocked on a rt_mutex held by this task: */
1119 	struct rb_root_cached		pi_waiters;
1120 	/* Updated under owner's pi_lock and rq lock */
1121 	struct task_struct		*pi_top_task;
1122 	/* Deadlock detection and priority inheritance handling: */
1123 	struct rt_mutex_waiter		*pi_blocked_on;
1124 #endif
1125 
1126 #ifdef CONFIG_DEBUG_MUTEXES
1127 	/* Mutex deadlock detection: */
1128 	struct mutex_waiter		*blocked_on;
1129 #endif
1130 
1131 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1132 	int				non_block_count;
1133 #endif
1134 
1135 #ifdef CONFIG_TRACE_IRQFLAGS
1136 	struct irqtrace_events		irqtrace;
1137 	unsigned int			hardirq_threaded;
1138 	u64				hardirq_chain_key;
1139 	int				softirqs_enabled;
1140 	int				softirq_context;
1141 	int				irq_config;
1142 #endif
1143 #ifdef CONFIG_PREEMPT_RT
1144 	int				softirq_disable_cnt;
1145 #endif
1146 
1147 #ifdef CONFIG_LOCKDEP
1148 # define MAX_LOCK_DEPTH			48UL
1149 	u64				curr_chain_key;
1150 	int				lockdep_depth;
1151 	unsigned int			lockdep_recursion;
1152 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1153 #endif
1154 
1155 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1156 	unsigned int			in_ubsan;
1157 #endif
1158 
1159 	/* Journalling filesystem info: */
1160 	void				*journal_info;
1161 
1162 	/* Stacked block device info: */
1163 	struct bio_list			*bio_list;
1164 
1165 	/* Stack plugging: */
1166 	struct blk_plug			*plug;
1167 
1168 	/* VM state: */
1169 	struct reclaim_state		*reclaim_state;
1170 
1171 	struct backing_dev_info		*backing_dev_info;
1172 
1173 	struct io_context		*io_context;
1174 
1175 #ifdef CONFIG_COMPACTION
1176 	struct capture_control		*capture_control;
1177 #endif
1178 	/* Ptrace state: */
1179 	unsigned long			ptrace_message;
1180 	kernel_siginfo_t		*last_siginfo;
1181 
1182 	struct task_io_accounting	ioac;
1183 #ifdef CONFIG_PSI
1184 	/* Pressure stall state */
1185 	unsigned int			psi_flags;
1186 #endif
1187 #ifdef CONFIG_TASK_XACCT
1188 	/* Accumulated RSS usage: */
1189 	u64				acct_rss_mem1;
1190 	/* Accumulated virtual memory usage: */
1191 	u64				acct_vm_mem1;
1192 	/* stime + utime since last update: */
1193 	u64				acct_timexpd;
1194 #endif
1195 #ifdef CONFIG_CPUSETS
1196 	/* Protected by ->alloc_lock: */
1197 	nodemask_t			mems_allowed;
1198 	/* Sequence number to catch updates: */
1199 	seqcount_spinlock_t		mems_allowed_seq;
1200 	int				cpuset_mem_spread_rotor;
1201 	int				cpuset_slab_spread_rotor;
1202 #endif
1203 #ifdef CONFIG_CGROUPS
1204 	/* Control Group info protected by css_set_lock: */
1205 	struct css_set __rcu		*cgroups;
1206 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1207 	struct list_head		cg_list;
1208 #endif
1209 #ifdef CONFIG_X86_CPU_RESCTRL
1210 	u32				closid;
1211 	u32				rmid;
1212 #endif
1213 #ifdef CONFIG_FUTEX
1214 	struct robust_list_head __user	*robust_list;
1215 #ifdef CONFIG_COMPAT
1216 	struct compat_robust_list_head __user *compat_robust_list;
1217 #endif
1218 	struct list_head		pi_state_list;
1219 	struct futex_pi_state		*pi_state_cache;
1220 	struct mutex			futex_exit_mutex;
1221 	unsigned int			futex_state;
1222 #endif
1223 #ifdef CONFIG_PERF_EVENTS
1224 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1225 	struct mutex			perf_event_mutex;
1226 	struct list_head		perf_event_list;
1227 #endif
1228 #ifdef CONFIG_DEBUG_PREEMPT
1229 	unsigned long			preempt_disable_ip;
1230 #endif
1231 #ifdef CONFIG_NUMA
1232 	/* Protected by alloc_lock: */
1233 	struct mempolicy		*mempolicy;
1234 	short				il_prev;
1235 	short				pref_node_fork;
1236 #endif
1237 #ifdef CONFIG_NUMA_BALANCING
1238 	int				numa_scan_seq;
1239 	unsigned int			numa_scan_period;
1240 	unsigned int			numa_scan_period_max;
1241 	int				numa_preferred_nid;
1242 	unsigned long			numa_migrate_retry;
1243 	/* Migration stamp: */
1244 	u64				node_stamp;
1245 	u64				last_task_numa_placement;
1246 	u64				last_sum_exec_runtime;
1247 	struct callback_head		numa_work;
1248 
1249 	/*
1250 	 * This pointer is only modified for current in syscall and
1251 	 * pagefault context (and for tasks being destroyed), so it can be read
1252 	 * from any of the following contexts:
1253 	 *  - RCU read-side critical section
1254 	 *  - current->numa_group from everywhere
1255 	 *  - task's runqueue locked, task not running
1256 	 */
1257 	struct numa_group __rcu		*numa_group;
1258 
1259 	/*
1260 	 * numa_faults is an array split into four regions:
1261 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1262 	 * in this precise order.
1263 	 *
1264 	 * faults_memory: Exponential decaying average of faults on a per-node
1265 	 * basis. Scheduling placement decisions are made based on these
1266 	 * counts. The values remain static for the duration of a PTE scan.
1267 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1268 	 * hinting fault was incurred.
1269 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1270 	 * during the current scan window. When the scan completes, the counts
1271 	 * in faults_memory and faults_cpu decay and these values are copied.
1272 	 */
1273 	unsigned long			*numa_faults;
1274 	unsigned long			total_numa_faults;
1275 
1276 	/*
1277 	 * numa_faults_locality tracks if faults recorded during the last
1278 	 * scan window were remote/local or failed to migrate. The task scan
1279 	 * period is adapted based on the locality of the faults with different
1280 	 * weights depending on whether they were shared or private faults
1281 	 */
1282 	unsigned long			numa_faults_locality[3];
1283 
1284 	unsigned long			numa_pages_migrated;
1285 #endif /* CONFIG_NUMA_BALANCING */
1286 
1287 #ifdef CONFIG_RSEQ
1288 	struct rseq __user *rseq;
1289 	u32 rseq_sig;
1290 	/*
1291 	 * RmW on rseq_event_mask must be performed atomically
1292 	 * with respect to preemption.
1293 	 */
1294 	unsigned long rseq_event_mask;
1295 #endif
1296 
1297 	struct tlbflush_unmap_batch	tlb_ubc;
1298 
1299 	union {
1300 		refcount_t		rcu_users;
1301 		struct rcu_head		rcu;
1302 	};
1303 
1304 	/* Cache last used pipe for splice(): */
1305 	struct pipe_inode_info		*splice_pipe;
1306 
1307 	struct page_frag		task_frag;
1308 
1309 #ifdef CONFIG_TASK_DELAY_ACCT
1310 	struct task_delay_info		*delays;
1311 #endif
1312 
1313 #ifdef CONFIG_FAULT_INJECTION
1314 	int				make_it_fail;
1315 	unsigned int			fail_nth;
1316 #endif
1317 	/*
1318 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1319 	 * balance_dirty_pages() for a dirty throttling pause:
1320 	 */
1321 	int				nr_dirtied;
1322 	int				nr_dirtied_pause;
1323 	/* Start of a write-and-pause period: */
1324 	unsigned long			dirty_paused_when;
1325 
1326 #ifdef CONFIG_LATENCYTOP
1327 	int				latency_record_count;
1328 	struct latency_record		latency_record[LT_SAVECOUNT];
1329 #endif
1330 	/*
1331 	 * Time slack values; these are used to round up poll() and
1332 	 * select() etc timeout values. These are in nanoseconds.
1333 	 */
1334 	u64				timer_slack_ns;
1335 	u64				default_timer_slack_ns;
1336 
1337 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1338 	unsigned int			kasan_depth;
1339 #endif
1340 
1341 #ifdef CONFIG_KCSAN
1342 	struct kcsan_ctx		kcsan_ctx;
1343 #ifdef CONFIG_TRACE_IRQFLAGS
1344 	struct irqtrace_events		kcsan_save_irqtrace;
1345 #endif
1346 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1347 	int				kcsan_stack_depth;
1348 #endif
1349 #endif
1350 
1351 #if IS_ENABLED(CONFIG_KUNIT)
1352 	struct kunit			*kunit_test;
1353 #endif
1354 
1355 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1356 	/* Index of current stored address in ret_stack: */
1357 	int				curr_ret_stack;
1358 	int				curr_ret_depth;
1359 
1360 	/* Stack of return addresses for return function tracing: */
1361 	struct ftrace_ret_stack		*ret_stack;
1362 
1363 	/* Timestamp for last schedule: */
1364 	unsigned long long		ftrace_timestamp;
1365 
1366 	/*
1367 	 * Number of functions that haven't been traced
1368 	 * because of depth overrun:
1369 	 */
1370 	atomic_t			trace_overrun;
1371 
1372 	/* Pause tracing: */
1373 	atomic_t			tracing_graph_pause;
1374 #endif
1375 
1376 #ifdef CONFIG_TRACING
1377 	/* State flags for use by tracers: */
1378 	unsigned long			trace;
1379 
1380 	/* Bitmask and counter of trace recursion: */
1381 	unsigned long			trace_recursion;
1382 #endif /* CONFIG_TRACING */
1383 
1384 #ifdef CONFIG_KCOV
1385 	/* See kernel/kcov.c for more details. */
1386 
1387 	/* Coverage collection mode enabled for this task (0 if disabled): */
1388 	unsigned int			kcov_mode;
1389 
1390 	/* Size of the kcov_area: */
1391 	unsigned int			kcov_size;
1392 
1393 	/* Buffer for coverage collection: */
1394 	void				*kcov_area;
1395 
1396 	/* KCOV descriptor wired with this task or NULL: */
1397 	struct kcov			*kcov;
1398 
1399 	/* KCOV common handle for remote coverage collection: */
1400 	u64				kcov_handle;
1401 
1402 	/* KCOV sequence number: */
1403 	int				kcov_sequence;
1404 
1405 	/* Collect coverage from softirq context: */
1406 	unsigned int			kcov_softirq;
1407 #endif
1408 
1409 #ifdef CONFIG_MEMCG
1410 	struct mem_cgroup		*memcg_in_oom;
1411 	gfp_t				memcg_oom_gfp_mask;
1412 	int				memcg_oom_order;
1413 
1414 	/* Number of pages to reclaim on returning to userland: */
1415 	unsigned int			memcg_nr_pages_over_high;
1416 
1417 	/* Used by memcontrol for targeted memcg charge: */
1418 	struct mem_cgroup		*active_memcg;
1419 #endif
1420 
1421 #ifdef CONFIG_BLK_CGROUP
1422 	struct request_queue		*throttle_queue;
1423 #endif
1424 
1425 #ifdef CONFIG_UPROBES
1426 	struct uprobe_task		*utask;
1427 #endif
1428 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1429 	unsigned int			sequential_io;
1430 	unsigned int			sequential_io_avg;
1431 #endif
1432 	struct kmap_ctrl		kmap_ctrl;
1433 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1434 	unsigned long			task_state_change;
1435 # ifdef CONFIG_PREEMPT_RT
1436 	unsigned long			saved_state_change;
1437 # endif
1438 #endif
1439 	int				pagefault_disabled;
1440 #ifdef CONFIG_MMU
1441 	struct task_struct		*oom_reaper_list;
1442 #endif
1443 #ifdef CONFIG_VMAP_STACK
1444 	struct vm_struct		*stack_vm_area;
1445 #endif
1446 #ifdef CONFIG_THREAD_INFO_IN_TASK
1447 	/* A live task holds one reference: */
1448 	refcount_t			stack_refcount;
1449 #endif
1450 #ifdef CONFIG_LIVEPATCH
1451 	int patch_state;
1452 #endif
1453 #ifdef CONFIG_SECURITY
1454 	/* Used by LSM modules for access restriction: */
1455 	void				*security;
1456 #endif
1457 #ifdef CONFIG_BPF_SYSCALL
1458 	/* Used by BPF task local storage */
1459 	struct bpf_local_storage __rcu	*bpf_storage;
1460 	/* Used for BPF run context */
1461 	struct bpf_run_ctx		*bpf_ctx;
1462 #endif
1463 
1464 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1465 	unsigned long			lowest_stack;
1466 	unsigned long			prev_lowest_stack;
1467 #endif
1468 
1469 #ifdef CONFIG_X86_MCE
1470 	void __user			*mce_vaddr;
1471 	__u64				mce_kflags;
1472 	u64				mce_addr;
1473 	__u64				mce_ripv : 1,
1474 					mce_whole_page : 1,
1475 					__mce_reserved : 62;
1476 	struct callback_head		mce_kill_me;
1477 	int				mce_count;
1478 #endif
1479 
1480 #ifdef CONFIG_KRETPROBES
1481 	struct llist_head               kretprobe_instances;
1482 #endif
1483 
1484 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1485 	/*
1486 	 * If L1D flush is supported on mm context switch
1487 	 * then we use this callback head to queue kill work
1488 	 * to kill tasks that are not running on SMT disabled
1489 	 * cores
1490 	 */
1491 	struct callback_head		l1d_flush_kill;
1492 #endif
1493 
1494 	/*
1495 	 * New fields for task_struct should be added above here, so that
1496 	 * they are included in the randomized portion of task_struct.
1497 	 */
1498 	randomized_struct_fields_end
1499 
1500 	/* CPU-specific state of this task: */
1501 	struct thread_struct		thread;
1502 
1503 	/*
1504 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1505 	 * structure.  It *MUST* be at the end of 'task_struct'.
1506 	 *
1507 	 * Do not put anything below here!
1508 	 */
1509 };
1510 
1511 static inline struct pid *task_pid(struct task_struct *task)
1512 {
1513 	return task->thread_pid;
1514 }
1515 
1516 /*
1517  * the helpers to get the task's different pids as they are seen
1518  * from various namespaces
1519  *
1520  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1521  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1522  *                     current.
1523  * task_xid_nr_ns()  : id seen from the ns specified;
1524  *
1525  * see also pid_nr() etc in include/linux/pid.h
1526  */
1527 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1528 
1529 static inline pid_t task_pid_nr(struct task_struct *tsk)
1530 {
1531 	return tsk->pid;
1532 }
1533 
1534 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1535 {
1536 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1537 }
1538 
1539 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1540 {
1541 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1542 }
1543 
1544 
1545 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1546 {
1547 	return tsk->tgid;
1548 }
1549 
1550 /**
1551  * pid_alive - check that a task structure is not stale
1552  * @p: Task structure to be checked.
1553  *
1554  * Test if a process is not yet dead (at most zombie state)
1555  * If pid_alive fails, then pointers within the task structure
1556  * can be stale and must not be dereferenced.
1557  *
1558  * Return: 1 if the process is alive. 0 otherwise.
1559  */
1560 static inline int pid_alive(const struct task_struct *p)
1561 {
1562 	return p->thread_pid != NULL;
1563 }
1564 
1565 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1566 {
1567 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1568 }
1569 
1570 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1571 {
1572 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1573 }
1574 
1575 
1576 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1577 {
1578 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1579 }
1580 
1581 static inline pid_t task_session_vnr(struct task_struct *tsk)
1582 {
1583 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1584 }
1585 
1586 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1587 {
1588 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1589 }
1590 
1591 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1592 {
1593 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1594 }
1595 
1596 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1597 {
1598 	pid_t pid = 0;
1599 
1600 	rcu_read_lock();
1601 	if (pid_alive(tsk))
1602 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1603 	rcu_read_unlock();
1604 
1605 	return pid;
1606 }
1607 
1608 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1609 {
1610 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1611 }
1612 
1613 /* Obsolete, do not use: */
1614 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1615 {
1616 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1617 }
1618 
1619 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1620 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1621 
1622 static inline unsigned int task_state_index(struct task_struct *tsk)
1623 {
1624 	unsigned int tsk_state = READ_ONCE(tsk->__state);
1625 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1626 
1627 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1628 
1629 	if (tsk_state == TASK_IDLE)
1630 		state = TASK_REPORT_IDLE;
1631 
1632 	return fls(state);
1633 }
1634 
1635 static inline char task_index_to_char(unsigned int state)
1636 {
1637 	static const char state_char[] = "RSDTtXZPI";
1638 
1639 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1640 
1641 	return state_char[state];
1642 }
1643 
1644 static inline char task_state_to_char(struct task_struct *tsk)
1645 {
1646 	return task_index_to_char(task_state_index(tsk));
1647 }
1648 
1649 /**
1650  * is_global_init - check if a task structure is init. Since init
1651  * is free to have sub-threads we need to check tgid.
1652  * @tsk: Task structure to be checked.
1653  *
1654  * Check if a task structure is the first user space task the kernel created.
1655  *
1656  * Return: 1 if the task structure is init. 0 otherwise.
1657  */
1658 static inline int is_global_init(struct task_struct *tsk)
1659 {
1660 	return task_tgid_nr(tsk) == 1;
1661 }
1662 
1663 extern struct pid *cad_pid;
1664 
1665 /*
1666  * Per process flags
1667  */
1668 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1669 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1670 #define PF_EXITING		0x00000004	/* Getting shut down */
1671 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1672 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1673 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1674 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1675 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1676 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1677 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1678 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1679 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1680 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1681 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1682 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1683 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1684 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1685 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1686 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1687 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1688 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1689 						 * I am cleaning dirty pages from some other bdi. */
1690 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1691 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1692 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1693 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1694 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1695 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1696 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1697 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1698 
1699 /*
1700  * Only the _current_ task can read/write to tsk->flags, but other
1701  * tasks can access tsk->flags in readonly mode for example
1702  * with tsk_used_math (like during threaded core dumping).
1703  * There is however an exception to this rule during ptrace
1704  * or during fork: the ptracer task is allowed to write to the
1705  * child->flags of its traced child (same goes for fork, the parent
1706  * can write to the child->flags), because we're guaranteed the
1707  * child is not running and in turn not changing child->flags
1708  * at the same time the parent does it.
1709  */
1710 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1711 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1712 #define clear_used_math()			clear_stopped_child_used_math(current)
1713 #define set_used_math()				set_stopped_child_used_math(current)
1714 
1715 #define conditional_stopped_child_used_math(condition, child) \
1716 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1717 
1718 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1719 
1720 #define copy_to_stopped_child_used_math(child) \
1721 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1722 
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1725 #define used_math()				tsk_used_math(current)
1726 
1727 static __always_inline bool is_percpu_thread(void)
1728 {
1729 #ifdef CONFIG_SMP
1730 	return (current->flags & PF_NO_SETAFFINITY) &&
1731 		(current->nr_cpus_allowed  == 1);
1732 #else
1733 	return true;
1734 #endif
1735 }
1736 
1737 /* Per-process atomic flags. */
1738 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1739 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1740 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1741 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1742 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1743 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1744 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1745 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1746 
1747 #define TASK_PFA_TEST(name, func)					\
1748 	static inline bool task_##func(struct task_struct *p)		\
1749 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1750 
1751 #define TASK_PFA_SET(name, func)					\
1752 	static inline void task_set_##func(struct task_struct *p)	\
1753 	{ set_bit(PFA_##name, &p->atomic_flags); }
1754 
1755 #define TASK_PFA_CLEAR(name, func)					\
1756 	static inline void task_clear_##func(struct task_struct *p)	\
1757 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1758 
1759 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1760 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1761 
1762 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1763 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1764 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1765 
1766 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1767 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1768 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1769 
1770 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1771 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1772 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1773 
1774 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1775 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1776 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1777 
1778 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1779 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1780 
1781 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1782 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1783 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1784 
1785 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1786 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1787 
1788 static inline void
1789 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1790 {
1791 	current->flags &= ~flags;
1792 	current->flags |= orig_flags & flags;
1793 }
1794 
1795 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1796 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1797 #ifdef CONFIG_SMP
1798 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1799 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1800 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1801 extern void release_user_cpus_ptr(struct task_struct *p);
1802 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1803 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1804 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1805 #else
1806 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1807 {
1808 }
1809 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1810 {
1811 	if (!cpumask_test_cpu(0, new_mask))
1812 		return -EINVAL;
1813 	return 0;
1814 }
1815 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1816 {
1817 	if (src->user_cpus_ptr)
1818 		return -EINVAL;
1819 	return 0;
1820 }
1821 static inline void release_user_cpus_ptr(struct task_struct *p)
1822 {
1823 	WARN_ON(p->user_cpus_ptr);
1824 }
1825 
1826 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1827 {
1828 	return 0;
1829 }
1830 #endif
1831 
1832 extern int yield_to(struct task_struct *p, bool preempt);
1833 extern void set_user_nice(struct task_struct *p, long nice);
1834 extern int task_prio(const struct task_struct *p);
1835 
1836 /**
1837  * task_nice - return the nice value of a given task.
1838  * @p: the task in question.
1839  *
1840  * Return: The nice value [ -20 ... 0 ... 19 ].
1841  */
1842 static inline int task_nice(const struct task_struct *p)
1843 {
1844 	return PRIO_TO_NICE((p)->static_prio);
1845 }
1846 
1847 extern int can_nice(const struct task_struct *p, const int nice);
1848 extern int task_curr(const struct task_struct *p);
1849 extern int idle_cpu(int cpu);
1850 extern int available_idle_cpu(int cpu);
1851 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1852 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1853 extern void sched_set_fifo(struct task_struct *p);
1854 extern void sched_set_fifo_low(struct task_struct *p);
1855 extern void sched_set_normal(struct task_struct *p, int nice);
1856 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1857 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1858 extern struct task_struct *idle_task(int cpu);
1859 
1860 /**
1861  * is_idle_task - is the specified task an idle task?
1862  * @p: the task in question.
1863  *
1864  * Return: 1 if @p is an idle task. 0 otherwise.
1865  */
1866 static __always_inline bool is_idle_task(const struct task_struct *p)
1867 {
1868 	return !!(p->flags & PF_IDLE);
1869 }
1870 
1871 extern struct task_struct *curr_task(int cpu);
1872 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1873 
1874 void yield(void);
1875 
1876 union thread_union {
1877 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1878 	struct task_struct task;
1879 #endif
1880 #ifndef CONFIG_THREAD_INFO_IN_TASK
1881 	struct thread_info thread_info;
1882 #endif
1883 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1884 };
1885 
1886 #ifndef CONFIG_THREAD_INFO_IN_TASK
1887 extern struct thread_info init_thread_info;
1888 #endif
1889 
1890 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1891 
1892 #ifdef CONFIG_THREAD_INFO_IN_TASK
1893 # define task_thread_info(task)	(&(task)->thread_info)
1894 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1895 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1896 #endif
1897 
1898 /*
1899  * find a task by one of its numerical ids
1900  *
1901  * find_task_by_pid_ns():
1902  *      finds a task by its pid in the specified namespace
1903  * find_task_by_vpid():
1904  *      finds a task by its virtual pid
1905  *
1906  * see also find_vpid() etc in include/linux/pid.h
1907  */
1908 
1909 extern struct task_struct *find_task_by_vpid(pid_t nr);
1910 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1911 
1912 /*
1913  * find a task by its virtual pid and get the task struct
1914  */
1915 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1916 
1917 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1918 extern int wake_up_process(struct task_struct *tsk);
1919 extern void wake_up_new_task(struct task_struct *tsk);
1920 
1921 #ifdef CONFIG_SMP
1922 extern void kick_process(struct task_struct *tsk);
1923 #else
1924 static inline void kick_process(struct task_struct *tsk) { }
1925 #endif
1926 
1927 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1928 
1929 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1930 {
1931 	__set_task_comm(tsk, from, false);
1932 }
1933 
1934 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1935 #define get_task_comm(buf, tsk) ({			\
1936 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1937 	__get_task_comm(buf, sizeof(buf), tsk);		\
1938 })
1939 
1940 #ifdef CONFIG_SMP
1941 static __always_inline void scheduler_ipi(void)
1942 {
1943 	/*
1944 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1945 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1946 	 * this IPI.
1947 	 */
1948 	preempt_fold_need_resched();
1949 }
1950 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1951 #else
1952 static inline void scheduler_ipi(void) { }
1953 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1954 {
1955 	return 1;
1956 }
1957 #endif
1958 
1959 /*
1960  * Set thread flags in other task's structures.
1961  * See asm/thread_info.h for TIF_xxxx flags available:
1962  */
1963 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1964 {
1965 	set_ti_thread_flag(task_thread_info(tsk), flag);
1966 }
1967 
1968 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1969 {
1970 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1971 }
1972 
1973 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1974 					  bool value)
1975 {
1976 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1977 }
1978 
1979 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1980 {
1981 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1982 }
1983 
1984 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1985 {
1986 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1987 }
1988 
1989 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1990 {
1991 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1992 }
1993 
1994 static inline void set_tsk_need_resched(struct task_struct *tsk)
1995 {
1996 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1997 }
1998 
1999 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2000 {
2001 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2002 }
2003 
2004 static inline int test_tsk_need_resched(struct task_struct *tsk)
2005 {
2006 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2007 }
2008 
2009 /*
2010  * cond_resched() and cond_resched_lock(): latency reduction via
2011  * explicit rescheduling in places that are safe. The return
2012  * value indicates whether a reschedule was done in fact.
2013  * cond_resched_lock() will drop the spinlock before scheduling,
2014  */
2015 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2016 extern int __cond_resched(void);
2017 
2018 #ifdef CONFIG_PREEMPT_DYNAMIC
2019 
2020 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2021 
2022 static __always_inline int _cond_resched(void)
2023 {
2024 	return static_call_mod(cond_resched)();
2025 }
2026 
2027 #else
2028 
2029 static inline int _cond_resched(void)
2030 {
2031 	return __cond_resched();
2032 }
2033 
2034 #endif /* CONFIG_PREEMPT_DYNAMIC */
2035 
2036 #else
2037 
2038 static inline int _cond_resched(void) { return 0; }
2039 
2040 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2041 
2042 #define cond_resched() ({			\
2043 	__might_resched(__FILE__, __LINE__, 0);	\
2044 	_cond_resched();			\
2045 })
2046 
2047 extern int __cond_resched_lock(spinlock_t *lock);
2048 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2049 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2050 
2051 #define MIGHT_RESCHED_RCU_SHIFT		8
2052 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2053 
2054 #ifndef CONFIG_PREEMPT_RT
2055 /*
2056  * Non RT kernels have an elevated preempt count due to the held lock,
2057  * but are not allowed to be inside a RCU read side critical section
2058  */
2059 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2060 #else
2061 /*
2062  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2063  * cond_resched*lock() has to take that into account because it checks for
2064  * preempt_count() and rcu_preempt_depth().
2065  */
2066 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2067 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2068 #endif
2069 
2070 #define cond_resched_lock(lock) ({						\
2071 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2072 	__cond_resched_lock(lock);						\
2073 })
2074 
2075 #define cond_resched_rwlock_read(lock) ({					\
2076 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2077 	__cond_resched_rwlock_read(lock);					\
2078 })
2079 
2080 #define cond_resched_rwlock_write(lock) ({					\
2081 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2082 	__cond_resched_rwlock_write(lock);					\
2083 })
2084 
2085 static inline void cond_resched_rcu(void)
2086 {
2087 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2088 	rcu_read_unlock();
2089 	cond_resched();
2090 	rcu_read_lock();
2091 #endif
2092 }
2093 
2094 /*
2095  * Does a critical section need to be broken due to another
2096  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2097  * but a general need for low latency)
2098  */
2099 static inline int spin_needbreak(spinlock_t *lock)
2100 {
2101 #ifdef CONFIG_PREEMPTION
2102 	return spin_is_contended(lock);
2103 #else
2104 	return 0;
2105 #endif
2106 }
2107 
2108 /*
2109  * Check if a rwlock is contended.
2110  * Returns non-zero if there is another task waiting on the rwlock.
2111  * Returns zero if the lock is not contended or the system / underlying
2112  * rwlock implementation does not support contention detection.
2113  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2114  * for low latency.
2115  */
2116 static inline int rwlock_needbreak(rwlock_t *lock)
2117 {
2118 #ifdef CONFIG_PREEMPTION
2119 	return rwlock_is_contended(lock);
2120 #else
2121 	return 0;
2122 #endif
2123 }
2124 
2125 static __always_inline bool need_resched(void)
2126 {
2127 	return unlikely(tif_need_resched());
2128 }
2129 
2130 /*
2131  * Wrappers for p->thread_info->cpu access. No-op on UP.
2132  */
2133 #ifdef CONFIG_SMP
2134 
2135 static inline unsigned int task_cpu(const struct task_struct *p)
2136 {
2137 	return READ_ONCE(task_thread_info(p)->cpu);
2138 }
2139 
2140 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2141 
2142 #else
2143 
2144 static inline unsigned int task_cpu(const struct task_struct *p)
2145 {
2146 	return 0;
2147 }
2148 
2149 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2150 {
2151 }
2152 
2153 #endif /* CONFIG_SMP */
2154 
2155 extern bool sched_task_on_rq(struct task_struct *p);
2156 extern unsigned long get_wchan(struct task_struct *p);
2157 
2158 /*
2159  * In order to reduce various lock holder preemption latencies provide an
2160  * interface to see if a vCPU is currently running or not.
2161  *
2162  * This allows us to terminate optimistic spin loops and block, analogous to
2163  * the native optimistic spin heuristic of testing if the lock owner task is
2164  * running or not.
2165  */
2166 #ifndef vcpu_is_preempted
2167 static inline bool vcpu_is_preempted(int cpu)
2168 {
2169 	return false;
2170 }
2171 #endif
2172 
2173 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2174 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2175 
2176 #ifndef TASK_SIZE_OF
2177 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2178 #endif
2179 
2180 #ifdef CONFIG_SMP
2181 static inline bool owner_on_cpu(struct task_struct *owner)
2182 {
2183 	/*
2184 	 * As lock holder preemption issue, we both skip spinning if
2185 	 * task is not on cpu or its cpu is preempted
2186 	 */
2187 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2188 }
2189 
2190 /* Returns effective CPU energy utilization, as seen by the scheduler */
2191 unsigned long sched_cpu_util(int cpu, unsigned long max);
2192 #endif /* CONFIG_SMP */
2193 
2194 #ifdef CONFIG_RSEQ
2195 
2196 /*
2197  * Map the event mask on the user-space ABI enum rseq_cs_flags
2198  * for direct mask checks.
2199  */
2200 enum rseq_event_mask_bits {
2201 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2202 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2203 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2204 };
2205 
2206 enum rseq_event_mask {
2207 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2208 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2209 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2210 };
2211 
2212 static inline void rseq_set_notify_resume(struct task_struct *t)
2213 {
2214 	if (t->rseq)
2215 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2216 }
2217 
2218 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2219 
2220 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2221 					     struct pt_regs *regs)
2222 {
2223 	if (current->rseq)
2224 		__rseq_handle_notify_resume(ksig, regs);
2225 }
2226 
2227 static inline void rseq_signal_deliver(struct ksignal *ksig,
2228 				       struct pt_regs *regs)
2229 {
2230 	preempt_disable();
2231 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2232 	preempt_enable();
2233 	rseq_handle_notify_resume(ksig, regs);
2234 }
2235 
2236 /* rseq_preempt() requires preemption to be disabled. */
2237 static inline void rseq_preempt(struct task_struct *t)
2238 {
2239 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2240 	rseq_set_notify_resume(t);
2241 }
2242 
2243 /* rseq_migrate() requires preemption to be disabled. */
2244 static inline void rseq_migrate(struct task_struct *t)
2245 {
2246 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2247 	rseq_set_notify_resume(t);
2248 }
2249 
2250 /*
2251  * If parent process has a registered restartable sequences area, the
2252  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2253  */
2254 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2255 {
2256 	if (clone_flags & CLONE_VM) {
2257 		t->rseq = NULL;
2258 		t->rseq_sig = 0;
2259 		t->rseq_event_mask = 0;
2260 	} else {
2261 		t->rseq = current->rseq;
2262 		t->rseq_sig = current->rseq_sig;
2263 		t->rseq_event_mask = current->rseq_event_mask;
2264 	}
2265 }
2266 
2267 static inline void rseq_execve(struct task_struct *t)
2268 {
2269 	t->rseq = NULL;
2270 	t->rseq_sig = 0;
2271 	t->rseq_event_mask = 0;
2272 }
2273 
2274 #else
2275 
2276 static inline void rseq_set_notify_resume(struct task_struct *t)
2277 {
2278 }
2279 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2280 					     struct pt_regs *regs)
2281 {
2282 }
2283 static inline void rseq_signal_deliver(struct ksignal *ksig,
2284 				       struct pt_regs *regs)
2285 {
2286 }
2287 static inline void rseq_preempt(struct task_struct *t)
2288 {
2289 }
2290 static inline void rseq_migrate(struct task_struct *t)
2291 {
2292 }
2293 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2294 {
2295 }
2296 static inline void rseq_execve(struct task_struct *t)
2297 {
2298 }
2299 
2300 #endif
2301 
2302 #ifdef CONFIG_DEBUG_RSEQ
2303 
2304 void rseq_syscall(struct pt_regs *regs);
2305 
2306 #else
2307 
2308 static inline void rseq_syscall(struct pt_regs *regs)
2309 {
2310 }
2311 
2312 #endif
2313 
2314 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2315 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2316 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2317 
2318 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2319 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2320 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2321 
2322 int sched_trace_rq_cpu(struct rq *rq);
2323 int sched_trace_rq_cpu_capacity(struct rq *rq);
2324 int sched_trace_rq_nr_running(struct rq *rq);
2325 
2326 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2327 
2328 #ifdef CONFIG_SCHED_CORE
2329 extern void sched_core_free(struct task_struct *tsk);
2330 extern void sched_core_fork(struct task_struct *p);
2331 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2332 				unsigned long uaddr);
2333 #else
2334 static inline void sched_core_free(struct task_struct *tsk) { }
2335 static inline void sched_core_fork(struct task_struct *p) { }
2336 #endif
2337 
2338 #endif
2339