1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 42 #ifdef __KERNEL__ 43 44 struct sched_param { 45 int sched_priority; 46 }; 47 48 #include <asm/param.h> /* for HZ */ 49 50 #include <linux/capability.h> 51 #include <linux/threads.h> 52 #include <linux/kernel.h> 53 #include <linux/types.h> 54 #include <linux/timex.h> 55 #include <linux/jiffies.h> 56 #include <linux/rbtree.h> 57 #include <linux/thread_info.h> 58 #include <linux/cpumask.h> 59 #include <linux/errno.h> 60 #include <linux/nodemask.h> 61 #include <linux/mm_types.h> 62 63 #include <asm/system.h> 64 #include <asm/page.h> 65 #include <asm/ptrace.h> 66 #include <asm/cputime.h> 67 68 #include <linux/smp.h> 69 #include <linux/sem.h> 70 #include <linux/signal.h> 71 #include <linux/path.h> 72 #include <linux/compiler.h> 73 #include <linux/completion.h> 74 #include <linux/pid.h> 75 #include <linux/percpu.h> 76 #include <linux/topology.h> 77 #include <linux/proportions.h> 78 #include <linux/seccomp.h> 79 #include <linux/rcupdate.h> 80 #include <linux/rtmutex.h> 81 82 #include <linux/time.h> 83 #include <linux/param.h> 84 #include <linux/resource.h> 85 #include <linux/timer.h> 86 #include <linux/hrtimer.h> 87 #include <linux/task_io_accounting.h> 88 #include <linux/kobject.h> 89 #include <linux/latencytop.h> 90 #include <linux/cred.h> 91 92 #include <asm/processor.h> 93 94 struct mem_cgroup; 95 struct exec_domain; 96 struct futex_pi_state; 97 struct robust_list_head; 98 struct bio; 99 struct bts_tracer; 100 struct fs_struct; 101 102 /* 103 * List of flags we want to share for kernel threads, 104 * if only because they are not used by them anyway. 105 */ 106 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 107 108 /* 109 * These are the constant used to fake the fixed-point load-average 110 * counting. Some notes: 111 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 112 * a load-average precision of 10 bits integer + 11 bits fractional 113 * - if you want to count load-averages more often, you need more 114 * precision, or rounding will get you. With 2-second counting freq, 115 * the EXP_n values would be 1981, 2034 and 2043 if still using only 116 * 11 bit fractions. 117 */ 118 extern unsigned long avenrun[]; /* Load averages */ 119 120 #define FSHIFT 11 /* nr of bits of precision */ 121 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 122 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 123 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 124 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 125 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 126 127 #define CALC_LOAD(load,exp,n) \ 128 load *= exp; \ 129 load += n*(FIXED_1-exp); \ 130 load >>= FSHIFT; 131 132 extern unsigned long total_forks; 133 extern int nr_threads; 134 DECLARE_PER_CPU(unsigned long, process_counts); 135 extern int nr_processes(void); 136 extern unsigned long nr_running(void); 137 extern unsigned long nr_uninterruptible(void); 138 extern unsigned long nr_active(void); 139 extern unsigned long nr_iowait(void); 140 141 extern unsigned long get_parent_ip(unsigned long addr); 142 143 struct seq_file; 144 struct cfs_rq; 145 struct task_group; 146 #ifdef CONFIG_SCHED_DEBUG 147 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 148 extern void proc_sched_set_task(struct task_struct *p); 149 extern void 150 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 151 #else 152 static inline void 153 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 154 { 155 } 156 static inline void proc_sched_set_task(struct task_struct *p) 157 { 158 } 159 static inline void 160 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 161 { 162 } 163 #endif 164 165 extern unsigned long long time_sync_thresh; 166 167 /* 168 * Task state bitmask. NOTE! These bits are also 169 * encoded in fs/proc/array.c: get_task_state(). 170 * 171 * We have two separate sets of flags: task->state 172 * is about runnability, while task->exit_state are 173 * about the task exiting. Confusing, but this way 174 * modifying one set can't modify the other one by 175 * mistake. 176 */ 177 #define TASK_RUNNING 0 178 #define TASK_INTERRUPTIBLE 1 179 #define TASK_UNINTERRUPTIBLE 2 180 #define __TASK_STOPPED 4 181 #define __TASK_TRACED 8 182 /* in tsk->exit_state */ 183 #define EXIT_ZOMBIE 16 184 #define EXIT_DEAD 32 185 /* in tsk->state again */ 186 #define TASK_DEAD 64 187 #define TASK_WAKEKILL 128 188 189 /* Convenience macros for the sake of set_task_state */ 190 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 191 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 192 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 193 194 /* Convenience macros for the sake of wake_up */ 195 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 196 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 197 198 /* get_task_state() */ 199 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 200 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 201 __TASK_TRACED) 202 203 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 204 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 205 #define task_is_stopped_or_traced(task) \ 206 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 207 #define task_contributes_to_load(task) \ 208 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 209 (task->flags & PF_FROZEN) == 0) 210 211 #define __set_task_state(tsk, state_value) \ 212 do { (tsk)->state = (state_value); } while (0) 213 #define set_task_state(tsk, state_value) \ 214 set_mb((tsk)->state, (state_value)) 215 216 /* 217 * set_current_state() includes a barrier so that the write of current->state 218 * is correctly serialised wrt the caller's subsequent test of whether to 219 * actually sleep: 220 * 221 * set_current_state(TASK_UNINTERRUPTIBLE); 222 * if (do_i_need_to_sleep()) 223 * schedule(); 224 * 225 * If the caller does not need such serialisation then use __set_current_state() 226 */ 227 #define __set_current_state(state_value) \ 228 do { current->state = (state_value); } while (0) 229 #define set_current_state(state_value) \ 230 set_mb(current->state, (state_value)) 231 232 /* Task command name length */ 233 #define TASK_COMM_LEN 16 234 235 #include <linux/spinlock.h> 236 237 /* 238 * This serializes "schedule()" and also protects 239 * the run-queue from deletions/modifications (but 240 * _adding_ to the beginning of the run-queue has 241 * a separate lock). 242 */ 243 extern rwlock_t tasklist_lock; 244 extern spinlock_t mmlist_lock; 245 246 struct task_struct; 247 248 extern void sched_init(void); 249 extern void sched_init_smp(void); 250 extern asmlinkage void schedule_tail(struct task_struct *prev); 251 extern void init_idle(struct task_struct *idle, int cpu); 252 extern void init_idle_bootup_task(struct task_struct *idle); 253 254 extern int runqueue_is_locked(void); 255 extern void task_rq_unlock_wait(struct task_struct *p); 256 257 extern cpumask_var_t nohz_cpu_mask; 258 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 259 extern int select_nohz_load_balancer(int cpu); 260 #else 261 static inline int select_nohz_load_balancer(int cpu) 262 { 263 return 0; 264 } 265 #endif 266 267 /* 268 * Only dump TASK_* tasks. (0 for all tasks) 269 */ 270 extern void show_state_filter(unsigned long state_filter); 271 272 static inline void show_state(void) 273 { 274 show_state_filter(0); 275 } 276 277 extern void show_regs(struct pt_regs *); 278 279 /* 280 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 281 * task), SP is the stack pointer of the first frame that should be shown in the back 282 * trace (or NULL if the entire call-chain of the task should be shown). 283 */ 284 extern void show_stack(struct task_struct *task, unsigned long *sp); 285 286 void io_schedule(void); 287 long io_schedule_timeout(long timeout); 288 289 extern void cpu_init (void); 290 extern void trap_init(void); 291 extern void update_process_times(int user); 292 extern void scheduler_tick(void); 293 294 extern void sched_show_task(struct task_struct *p); 295 296 #ifdef CONFIG_DETECT_SOFTLOCKUP 297 extern void softlockup_tick(void); 298 extern void touch_softlockup_watchdog(void); 299 extern void touch_all_softlockup_watchdogs(void); 300 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 301 struct file *filp, void __user *buffer, 302 size_t *lenp, loff_t *ppos); 303 extern unsigned int softlockup_panic; 304 extern int softlockup_thresh; 305 #else 306 static inline void softlockup_tick(void) 307 { 308 } 309 static inline void touch_softlockup_watchdog(void) 310 { 311 } 312 static inline void touch_all_softlockup_watchdogs(void) 313 { 314 } 315 #endif 316 317 #ifdef CONFIG_DETECT_HUNG_TASK 318 extern unsigned int sysctl_hung_task_panic; 319 extern unsigned long sysctl_hung_task_check_count; 320 extern unsigned long sysctl_hung_task_timeout_secs; 321 extern unsigned long sysctl_hung_task_warnings; 322 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 323 struct file *filp, void __user *buffer, 324 size_t *lenp, loff_t *ppos); 325 #endif 326 327 /* Attach to any functions which should be ignored in wchan output. */ 328 #define __sched __attribute__((__section__(".sched.text"))) 329 330 /* Linker adds these: start and end of __sched functions */ 331 extern char __sched_text_start[], __sched_text_end[]; 332 333 /* Is this address in the __sched functions? */ 334 extern int in_sched_functions(unsigned long addr); 335 336 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 337 extern signed long schedule_timeout(signed long timeout); 338 extern signed long schedule_timeout_interruptible(signed long timeout); 339 extern signed long schedule_timeout_killable(signed long timeout); 340 extern signed long schedule_timeout_uninterruptible(signed long timeout); 341 asmlinkage void __schedule(void); 342 asmlinkage void schedule(void); 343 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 344 345 struct nsproxy; 346 struct user_namespace; 347 348 /* Maximum number of active map areas.. This is a random (large) number */ 349 #define DEFAULT_MAX_MAP_COUNT 65536 350 351 extern int sysctl_max_map_count; 352 353 #include <linux/aio.h> 354 355 extern unsigned long 356 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 357 unsigned long, unsigned long); 358 extern unsigned long 359 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 360 unsigned long len, unsigned long pgoff, 361 unsigned long flags); 362 extern void arch_unmap_area(struct mm_struct *, unsigned long); 363 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 364 365 #if USE_SPLIT_PTLOCKS 366 /* 367 * The mm counters are not protected by its page_table_lock, 368 * so must be incremented atomically. 369 */ 370 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 371 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 372 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 373 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 374 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 375 376 #else /* !USE_SPLIT_PTLOCKS */ 377 /* 378 * The mm counters are protected by its page_table_lock, 379 * so can be incremented directly. 380 */ 381 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 382 #define get_mm_counter(mm, member) ((mm)->_##member) 383 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 384 #define inc_mm_counter(mm, member) (mm)->_##member++ 385 #define dec_mm_counter(mm, member) (mm)->_##member-- 386 387 #endif /* !USE_SPLIT_PTLOCKS */ 388 389 #define get_mm_rss(mm) \ 390 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 391 #define update_hiwater_rss(mm) do { \ 392 unsigned long _rss = get_mm_rss(mm); \ 393 if ((mm)->hiwater_rss < _rss) \ 394 (mm)->hiwater_rss = _rss; \ 395 } while (0) 396 #define update_hiwater_vm(mm) do { \ 397 if ((mm)->hiwater_vm < (mm)->total_vm) \ 398 (mm)->hiwater_vm = (mm)->total_vm; \ 399 } while (0) 400 401 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 402 { 403 return max(mm->hiwater_rss, get_mm_rss(mm)); 404 } 405 406 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 407 { 408 return max(mm->hiwater_vm, mm->total_vm); 409 } 410 411 extern void set_dumpable(struct mm_struct *mm, int value); 412 extern int get_dumpable(struct mm_struct *mm); 413 414 /* mm flags */ 415 /* dumpable bits */ 416 #define MMF_DUMPABLE 0 /* core dump is permitted */ 417 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 418 #define MMF_DUMPABLE_BITS 2 419 420 /* coredump filter bits */ 421 #define MMF_DUMP_ANON_PRIVATE 2 422 #define MMF_DUMP_ANON_SHARED 3 423 #define MMF_DUMP_MAPPED_PRIVATE 4 424 #define MMF_DUMP_MAPPED_SHARED 5 425 #define MMF_DUMP_ELF_HEADERS 6 426 #define MMF_DUMP_HUGETLB_PRIVATE 7 427 #define MMF_DUMP_HUGETLB_SHARED 8 428 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 429 #define MMF_DUMP_FILTER_BITS 7 430 #define MMF_DUMP_FILTER_MASK \ 431 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 432 #define MMF_DUMP_FILTER_DEFAULT \ 433 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 434 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 435 436 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 437 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 438 #else 439 # define MMF_DUMP_MASK_DEFAULT_ELF 0 440 #endif 441 442 struct sighand_struct { 443 atomic_t count; 444 struct k_sigaction action[_NSIG]; 445 spinlock_t siglock; 446 wait_queue_head_t signalfd_wqh; 447 }; 448 449 struct pacct_struct { 450 int ac_flag; 451 long ac_exitcode; 452 unsigned long ac_mem; 453 cputime_t ac_utime, ac_stime; 454 unsigned long ac_minflt, ac_majflt; 455 }; 456 457 /** 458 * struct task_cputime - collected CPU time counts 459 * @utime: time spent in user mode, in &cputime_t units 460 * @stime: time spent in kernel mode, in &cputime_t units 461 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 462 * 463 * This structure groups together three kinds of CPU time that are 464 * tracked for threads and thread groups. Most things considering 465 * CPU time want to group these counts together and treat all three 466 * of them in parallel. 467 */ 468 struct task_cputime { 469 cputime_t utime; 470 cputime_t stime; 471 unsigned long long sum_exec_runtime; 472 }; 473 /* Alternate field names when used to cache expirations. */ 474 #define prof_exp stime 475 #define virt_exp utime 476 #define sched_exp sum_exec_runtime 477 478 #define INIT_CPUTIME \ 479 (struct task_cputime) { \ 480 .utime = cputime_zero, \ 481 .stime = cputime_zero, \ 482 .sum_exec_runtime = 0, \ 483 } 484 485 /** 486 * struct thread_group_cputimer - thread group interval timer counts 487 * @cputime: thread group interval timers. 488 * @running: non-zero when there are timers running and 489 * @cputime receives updates. 490 * @lock: lock for fields in this struct. 491 * 492 * This structure contains the version of task_cputime, above, that is 493 * used for thread group CPU timer calculations. 494 */ 495 struct thread_group_cputimer { 496 struct task_cputime cputime; 497 int running; 498 spinlock_t lock; 499 }; 500 501 /* 502 * NOTE! "signal_struct" does not have it's own 503 * locking, because a shared signal_struct always 504 * implies a shared sighand_struct, so locking 505 * sighand_struct is always a proper superset of 506 * the locking of signal_struct. 507 */ 508 struct signal_struct { 509 atomic_t count; 510 atomic_t live; 511 512 wait_queue_head_t wait_chldexit; /* for wait4() */ 513 514 /* current thread group signal load-balancing target: */ 515 struct task_struct *curr_target; 516 517 /* shared signal handling: */ 518 struct sigpending shared_pending; 519 520 /* thread group exit support */ 521 int group_exit_code; 522 /* overloaded: 523 * - notify group_exit_task when ->count is equal to notify_count 524 * - everyone except group_exit_task is stopped during signal delivery 525 * of fatal signals, group_exit_task processes the signal. 526 */ 527 int notify_count; 528 struct task_struct *group_exit_task; 529 530 /* thread group stop support, overloads group_exit_code too */ 531 int group_stop_count; 532 unsigned int flags; /* see SIGNAL_* flags below */ 533 534 /* POSIX.1b Interval Timers */ 535 struct list_head posix_timers; 536 537 /* ITIMER_REAL timer for the process */ 538 struct hrtimer real_timer; 539 struct pid *leader_pid; 540 ktime_t it_real_incr; 541 542 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 543 cputime_t it_prof_expires, it_virt_expires; 544 cputime_t it_prof_incr, it_virt_incr; 545 546 /* 547 * Thread group totals for process CPU timers. 548 * See thread_group_cputimer(), et al, for details. 549 */ 550 struct thread_group_cputimer cputimer; 551 552 /* Earliest-expiration cache. */ 553 struct task_cputime cputime_expires; 554 555 struct list_head cpu_timers[3]; 556 557 struct pid *tty_old_pgrp; 558 559 /* boolean value for session group leader */ 560 int leader; 561 562 struct tty_struct *tty; /* NULL if no tty */ 563 564 /* 565 * Cumulative resource counters for dead threads in the group, 566 * and for reaped dead child processes forked by this group. 567 * Live threads maintain their own counters and add to these 568 * in __exit_signal, except for the group leader. 569 */ 570 cputime_t utime, stime, cutime, cstime; 571 cputime_t gtime; 572 cputime_t cgtime; 573 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 574 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 575 unsigned long inblock, oublock, cinblock, coublock; 576 struct task_io_accounting ioac; 577 578 /* 579 * Cumulative ns of schedule CPU time fo dead threads in the 580 * group, not including a zombie group leader, (This only differs 581 * from jiffies_to_ns(utime + stime) if sched_clock uses something 582 * other than jiffies.) 583 */ 584 unsigned long long sum_sched_runtime; 585 586 /* 587 * We don't bother to synchronize most readers of this at all, 588 * because there is no reader checking a limit that actually needs 589 * to get both rlim_cur and rlim_max atomically, and either one 590 * alone is a single word that can safely be read normally. 591 * getrlimit/setrlimit use task_lock(current->group_leader) to 592 * protect this instead of the siglock, because they really 593 * have no need to disable irqs. 594 */ 595 struct rlimit rlim[RLIM_NLIMITS]; 596 597 #ifdef CONFIG_BSD_PROCESS_ACCT 598 struct pacct_struct pacct; /* per-process accounting information */ 599 #endif 600 #ifdef CONFIG_TASKSTATS 601 struct taskstats *stats; 602 #endif 603 #ifdef CONFIG_AUDIT 604 unsigned audit_tty; 605 struct tty_audit_buf *tty_audit_buf; 606 #endif 607 }; 608 609 /* Context switch must be unlocked if interrupts are to be enabled */ 610 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 611 # define __ARCH_WANT_UNLOCKED_CTXSW 612 #endif 613 614 /* 615 * Bits in flags field of signal_struct. 616 */ 617 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 618 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 619 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 620 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 621 /* 622 * Pending notifications to parent. 623 */ 624 #define SIGNAL_CLD_STOPPED 0x00000010 625 #define SIGNAL_CLD_CONTINUED 0x00000020 626 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 627 628 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 629 630 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 631 static inline int signal_group_exit(const struct signal_struct *sig) 632 { 633 return (sig->flags & SIGNAL_GROUP_EXIT) || 634 (sig->group_exit_task != NULL); 635 } 636 637 /* 638 * Some day this will be a full-fledged user tracking system.. 639 */ 640 struct user_struct { 641 atomic_t __count; /* reference count */ 642 atomic_t processes; /* How many processes does this user have? */ 643 atomic_t files; /* How many open files does this user have? */ 644 atomic_t sigpending; /* How many pending signals does this user have? */ 645 #ifdef CONFIG_INOTIFY_USER 646 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 647 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 648 #endif 649 #ifdef CONFIG_EPOLL 650 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 651 #endif 652 #ifdef CONFIG_POSIX_MQUEUE 653 /* protected by mq_lock */ 654 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 655 #endif 656 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 657 658 #ifdef CONFIG_KEYS 659 struct key *uid_keyring; /* UID specific keyring */ 660 struct key *session_keyring; /* UID's default session keyring */ 661 #endif 662 663 /* Hash table maintenance information */ 664 struct hlist_node uidhash_node; 665 uid_t uid; 666 struct user_namespace *user_ns; 667 668 #ifdef CONFIG_USER_SCHED 669 struct task_group *tg; 670 #ifdef CONFIG_SYSFS 671 struct kobject kobj; 672 struct work_struct work; 673 #endif 674 #endif 675 }; 676 677 extern int uids_sysfs_init(void); 678 679 extern struct user_struct *find_user(uid_t); 680 681 extern struct user_struct root_user; 682 #define INIT_USER (&root_user) 683 684 685 struct backing_dev_info; 686 struct reclaim_state; 687 688 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 689 struct sched_info { 690 /* cumulative counters */ 691 unsigned long pcount; /* # of times run on this cpu */ 692 unsigned long long run_delay; /* time spent waiting on a runqueue */ 693 694 /* timestamps */ 695 unsigned long long last_arrival,/* when we last ran on a cpu */ 696 last_queued; /* when we were last queued to run */ 697 #ifdef CONFIG_SCHEDSTATS 698 /* BKL stats */ 699 unsigned int bkl_count; 700 #endif 701 }; 702 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 703 704 #ifdef CONFIG_TASK_DELAY_ACCT 705 struct task_delay_info { 706 spinlock_t lock; 707 unsigned int flags; /* Private per-task flags */ 708 709 /* For each stat XXX, add following, aligned appropriately 710 * 711 * struct timespec XXX_start, XXX_end; 712 * u64 XXX_delay; 713 * u32 XXX_count; 714 * 715 * Atomicity of updates to XXX_delay, XXX_count protected by 716 * single lock above (split into XXX_lock if contention is an issue). 717 */ 718 719 /* 720 * XXX_count is incremented on every XXX operation, the delay 721 * associated with the operation is added to XXX_delay. 722 * XXX_delay contains the accumulated delay time in nanoseconds. 723 */ 724 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 725 u64 blkio_delay; /* wait for sync block io completion */ 726 u64 swapin_delay; /* wait for swapin block io completion */ 727 u32 blkio_count; /* total count of the number of sync block */ 728 /* io operations performed */ 729 u32 swapin_count; /* total count of the number of swapin block */ 730 /* io operations performed */ 731 732 struct timespec freepages_start, freepages_end; 733 u64 freepages_delay; /* wait for memory reclaim */ 734 u32 freepages_count; /* total count of memory reclaim */ 735 }; 736 #endif /* CONFIG_TASK_DELAY_ACCT */ 737 738 static inline int sched_info_on(void) 739 { 740 #ifdef CONFIG_SCHEDSTATS 741 return 1; 742 #elif defined(CONFIG_TASK_DELAY_ACCT) 743 extern int delayacct_on; 744 return delayacct_on; 745 #else 746 return 0; 747 #endif 748 } 749 750 enum cpu_idle_type { 751 CPU_IDLE, 752 CPU_NOT_IDLE, 753 CPU_NEWLY_IDLE, 754 CPU_MAX_IDLE_TYPES 755 }; 756 757 /* 758 * sched-domains (multiprocessor balancing) declarations: 759 */ 760 761 /* 762 * Increase resolution of nice-level calculations: 763 */ 764 #define SCHED_LOAD_SHIFT 10 765 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 766 767 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 768 769 #ifdef CONFIG_SMP 770 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 771 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 772 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 773 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 774 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 775 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 776 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 777 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 778 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 779 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 780 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 781 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 782 783 enum powersavings_balance_level { 784 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 785 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 786 * first for long running threads 787 */ 788 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 789 * cpu package for power savings 790 */ 791 MAX_POWERSAVINGS_BALANCE_LEVELS 792 }; 793 794 extern int sched_mc_power_savings, sched_smt_power_savings; 795 796 static inline int sd_balance_for_mc_power(void) 797 { 798 if (sched_smt_power_savings) 799 return SD_POWERSAVINGS_BALANCE; 800 801 return 0; 802 } 803 804 static inline int sd_balance_for_package_power(void) 805 { 806 if (sched_mc_power_savings | sched_smt_power_savings) 807 return SD_POWERSAVINGS_BALANCE; 808 809 return 0; 810 } 811 812 /* 813 * Optimise SD flags for power savings: 814 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 815 * Keep default SD flags if sched_{smt,mc}_power_saving=0 816 */ 817 818 static inline int sd_power_saving_flags(void) 819 { 820 if (sched_mc_power_savings | sched_smt_power_savings) 821 return SD_BALANCE_NEWIDLE; 822 823 return 0; 824 } 825 826 struct sched_group { 827 struct sched_group *next; /* Must be a circular list */ 828 829 /* 830 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 831 * single CPU. This is read only (except for setup, hotplug CPU). 832 * Note : Never change cpu_power without recompute its reciprocal 833 */ 834 unsigned int __cpu_power; 835 /* 836 * reciprocal value of cpu_power to avoid expensive divides 837 * (see include/linux/reciprocal_div.h) 838 */ 839 u32 reciprocal_cpu_power; 840 841 unsigned long cpumask[]; 842 }; 843 844 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 845 { 846 return to_cpumask(sg->cpumask); 847 } 848 849 enum sched_domain_level { 850 SD_LV_NONE = 0, 851 SD_LV_SIBLING, 852 SD_LV_MC, 853 SD_LV_CPU, 854 SD_LV_NODE, 855 SD_LV_ALLNODES, 856 SD_LV_MAX 857 }; 858 859 struct sched_domain_attr { 860 int relax_domain_level; 861 }; 862 863 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 864 .relax_domain_level = -1, \ 865 } 866 867 struct sched_domain { 868 /* These fields must be setup */ 869 struct sched_domain *parent; /* top domain must be null terminated */ 870 struct sched_domain *child; /* bottom domain must be null terminated */ 871 struct sched_group *groups; /* the balancing groups of the domain */ 872 unsigned long min_interval; /* Minimum balance interval ms */ 873 unsigned long max_interval; /* Maximum balance interval ms */ 874 unsigned int busy_factor; /* less balancing by factor if busy */ 875 unsigned int imbalance_pct; /* No balance until over watermark */ 876 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 877 unsigned int busy_idx; 878 unsigned int idle_idx; 879 unsigned int newidle_idx; 880 unsigned int wake_idx; 881 unsigned int forkexec_idx; 882 int flags; /* See SD_* */ 883 enum sched_domain_level level; 884 885 /* Runtime fields. */ 886 unsigned long last_balance; /* init to jiffies. units in jiffies */ 887 unsigned int balance_interval; /* initialise to 1. units in ms. */ 888 unsigned int nr_balance_failed; /* initialise to 0 */ 889 890 u64 last_update; 891 892 #ifdef CONFIG_SCHEDSTATS 893 /* load_balance() stats */ 894 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 895 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 896 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 897 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 898 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 899 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 900 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 901 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 902 903 /* Active load balancing */ 904 unsigned int alb_count; 905 unsigned int alb_failed; 906 unsigned int alb_pushed; 907 908 /* SD_BALANCE_EXEC stats */ 909 unsigned int sbe_count; 910 unsigned int sbe_balanced; 911 unsigned int sbe_pushed; 912 913 /* SD_BALANCE_FORK stats */ 914 unsigned int sbf_count; 915 unsigned int sbf_balanced; 916 unsigned int sbf_pushed; 917 918 /* try_to_wake_up() stats */ 919 unsigned int ttwu_wake_remote; 920 unsigned int ttwu_move_affine; 921 unsigned int ttwu_move_balance; 922 #endif 923 #ifdef CONFIG_SCHED_DEBUG 924 char *name; 925 #endif 926 927 /* span of all CPUs in this domain */ 928 unsigned long span[]; 929 }; 930 931 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 932 { 933 return to_cpumask(sd->span); 934 } 935 936 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 937 struct sched_domain_attr *dattr_new); 938 939 /* Test a flag in parent sched domain */ 940 static inline int test_sd_parent(struct sched_domain *sd, int flag) 941 { 942 if (sd->parent && (sd->parent->flags & flag)) 943 return 1; 944 945 return 0; 946 } 947 948 #else /* CONFIG_SMP */ 949 950 struct sched_domain_attr; 951 952 static inline void 953 partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 954 struct sched_domain_attr *dattr_new) 955 { 956 } 957 #endif /* !CONFIG_SMP */ 958 959 struct io_context; /* See blkdev.h */ 960 961 962 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 963 extern void prefetch_stack(struct task_struct *t); 964 #else 965 static inline void prefetch_stack(struct task_struct *t) { } 966 #endif 967 968 struct audit_context; /* See audit.c */ 969 struct mempolicy; 970 struct pipe_inode_info; 971 struct uts_namespace; 972 973 struct rq; 974 struct sched_domain; 975 976 struct sched_class { 977 const struct sched_class *next; 978 979 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 980 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 981 void (*yield_task) (struct rq *rq); 982 983 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync); 984 985 struct task_struct * (*pick_next_task) (struct rq *rq); 986 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 987 988 #ifdef CONFIG_SMP 989 int (*select_task_rq)(struct task_struct *p, int sync); 990 991 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 992 struct rq *busiest, unsigned long max_load_move, 993 struct sched_domain *sd, enum cpu_idle_type idle, 994 int *all_pinned, int *this_best_prio); 995 996 int (*move_one_task) (struct rq *this_rq, int this_cpu, 997 struct rq *busiest, struct sched_domain *sd, 998 enum cpu_idle_type idle); 999 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1000 int (*needs_post_schedule) (struct rq *this_rq); 1001 void (*post_schedule) (struct rq *this_rq); 1002 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 1003 1004 void (*set_cpus_allowed)(struct task_struct *p, 1005 const struct cpumask *newmask); 1006 1007 void (*rq_online)(struct rq *rq); 1008 void (*rq_offline)(struct rq *rq); 1009 #endif 1010 1011 void (*set_curr_task) (struct rq *rq); 1012 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1013 void (*task_new) (struct rq *rq, struct task_struct *p); 1014 1015 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1016 int running); 1017 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1018 int running); 1019 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1020 int oldprio, int running); 1021 1022 #ifdef CONFIG_FAIR_GROUP_SCHED 1023 void (*moved_group) (struct task_struct *p); 1024 #endif 1025 }; 1026 1027 struct load_weight { 1028 unsigned long weight, inv_weight; 1029 }; 1030 1031 /* 1032 * CFS stats for a schedulable entity (task, task-group etc) 1033 * 1034 * Current field usage histogram: 1035 * 1036 * 4 se->block_start 1037 * 4 se->run_node 1038 * 4 se->sleep_start 1039 * 6 se->load.weight 1040 */ 1041 struct sched_entity { 1042 struct load_weight load; /* for load-balancing */ 1043 struct rb_node run_node; 1044 struct list_head group_node; 1045 unsigned int on_rq; 1046 1047 u64 exec_start; 1048 u64 sum_exec_runtime; 1049 u64 vruntime; 1050 u64 prev_sum_exec_runtime; 1051 1052 u64 last_wakeup; 1053 u64 avg_overlap; 1054 1055 u64 start_runtime; 1056 u64 avg_wakeup; 1057 u64 nr_migrations; 1058 1059 #ifdef CONFIG_SCHEDSTATS 1060 u64 wait_start; 1061 u64 wait_max; 1062 u64 wait_count; 1063 u64 wait_sum; 1064 1065 u64 sleep_start; 1066 u64 sleep_max; 1067 s64 sum_sleep_runtime; 1068 1069 u64 block_start; 1070 u64 block_max; 1071 u64 exec_max; 1072 u64 slice_max; 1073 1074 u64 nr_migrations_cold; 1075 u64 nr_failed_migrations_affine; 1076 u64 nr_failed_migrations_running; 1077 u64 nr_failed_migrations_hot; 1078 u64 nr_forced_migrations; 1079 u64 nr_forced2_migrations; 1080 1081 u64 nr_wakeups; 1082 u64 nr_wakeups_sync; 1083 u64 nr_wakeups_migrate; 1084 u64 nr_wakeups_local; 1085 u64 nr_wakeups_remote; 1086 u64 nr_wakeups_affine; 1087 u64 nr_wakeups_affine_attempts; 1088 u64 nr_wakeups_passive; 1089 u64 nr_wakeups_idle; 1090 #endif 1091 1092 #ifdef CONFIG_FAIR_GROUP_SCHED 1093 struct sched_entity *parent; 1094 /* rq on which this entity is (to be) queued: */ 1095 struct cfs_rq *cfs_rq; 1096 /* rq "owned" by this entity/group: */ 1097 struct cfs_rq *my_q; 1098 #endif 1099 }; 1100 1101 struct sched_rt_entity { 1102 struct list_head run_list; 1103 unsigned long timeout; 1104 unsigned int time_slice; 1105 int nr_cpus_allowed; 1106 1107 struct sched_rt_entity *back; 1108 #ifdef CONFIG_RT_GROUP_SCHED 1109 struct sched_rt_entity *parent; 1110 /* rq on which this entity is (to be) queued: */ 1111 struct rt_rq *rt_rq; 1112 /* rq "owned" by this entity/group: */ 1113 struct rt_rq *my_q; 1114 #endif 1115 }; 1116 1117 struct task_struct { 1118 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1119 void *stack; 1120 atomic_t usage; 1121 unsigned int flags; /* per process flags, defined below */ 1122 unsigned int ptrace; 1123 1124 int lock_depth; /* BKL lock depth */ 1125 1126 #ifdef CONFIG_SMP 1127 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1128 int oncpu; 1129 #endif 1130 #endif 1131 1132 int prio, static_prio, normal_prio; 1133 unsigned int rt_priority; 1134 const struct sched_class *sched_class; 1135 struct sched_entity se; 1136 struct sched_rt_entity rt; 1137 1138 #ifdef CONFIG_PREEMPT_NOTIFIERS 1139 /* list of struct preempt_notifier: */ 1140 struct hlist_head preempt_notifiers; 1141 #endif 1142 1143 /* 1144 * fpu_counter contains the number of consecutive context switches 1145 * that the FPU is used. If this is over a threshold, the lazy fpu 1146 * saving becomes unlazy to save the trap. This is an unsigned char 1147 * so that after 256 times the counter wraps and the behavior turns 1148 * lazy again; this to deal with bursty apps that only use FPU for 1149 * a short time 1150 */ 1151 unsigned char fpu_counter; 1152 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1153 #ifdef CONFIG_BLK_DEV_IO_TRACE 1154 unsigned int btrace_seq; 1155 #endif 1156 1157 unsigned int policy; 1158 cpumask_t cpus_allowed; 1159 1160 #ifdef CONFIG_PREEMPT_RCU 1161 int rcu_read_lock_nesting; 1162 int rcu_flipctr_idx; 1163 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1164 1165 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1166 struct sched_info sched_info; 1167 #endif 1168 1169 struct list_head tasks; 1170 struct plist_node pushable_tasks; 1171 1172 struct mm_struct *mm, *active_mm; 1173 1174 /* task state */ 1175 struct linux_binfmt *binfmt; 1176 int exit_state; 1177 int exit_code, exit_signal; 1178 int pdeath_signal; /* The signal sent when the parent dies */ 1179 /* ??? */ 1180 unsigned int personality; 1181 unsigned did_exec:1; 1182 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1183 * execve */ 1184 pid_t pid; 1185 pid_t tgid; 1186 1187 /* Canary value for the -fstack-protector gcc feature */ 1188 unsigned long stack_canary; 1189 1190 /* 1191 * pointers to (original) parent process, youngest child, younger sibling, 1192 * older sibling, respectively. (p->father can be replaced with 1193 * p->real_parent->pid) 1194 */ 1195 struct task_struct *real_parent; /* real parent process */ 1196 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1197 /* 1198 * children/sibling forms the list of my natural children 1199 */ 1200 struct list_head children; /* list of my children */ 1201 struct list_head sibling; /* linkage in my parent's children list */ 1202 struct task_struct *group_leader; /* threadgroup leader */ 1203 1204 /* 1205 * ptraced is the list of tasks this task is using ptrace on. 1206 * This includes both natural children and PTRACE_ATTACH targets. 1207 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1208 */ 1209 struct list_head ptraced; 1210 struct list_head ptrace_entry; 1211 1212 #ifdef CONFIG_X86_PTRACE_BTS 1213 /* 1214 * This is the tracer handle for the ptrace BTS extension. 1215 * This field actually belongs to the ptracer task. 1216 */ 1217 struct bts_tracer *bts; 1218 /* 1219 * The buffer to hold the BTS data. 1220 */ 1221 void *bts_buffer; 1222 size_t bts_size; 1223 #endif /* CONFIG_X86_PTRACE_BTS */ 1224 1225 /* PID/PID hash table linkage. */ 1226 struct pid_link pids[PIDTYPE_MAX]; 1227 struct list_head thread_group; 1228 1229 struct completion *vfork_done; /* for vfork() */ 1230 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1231 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1232 1233 cputime_t utime, stime, utimescaled, stimescaled; 1234 cputime_t gtime; 1235 cputime_t prev_utime, prev_stime; 1236 unsigned long nvcsw, nivcsw; /* context switch counts */ 1237 struct timespec start_time; /* monotonic time */ 1238 struct timespec real_start_time; /* boot based time */ 1239 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1240 unsigned long min_flt, maj_flt; 1241 1242 struct task_cputime cputime_expires; 1243 struct list_head cpu_timers[3]; 1244 1245 /* process credentials */ 1246 const struct cred *real_cred; /* objective and real subjective task 1247 * credentials (COW) */ 1248 const struct cred *cred; /* effective (overridable) subjective task 1249 * credentials (COW) */ 1250 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */ 1251 1252 char comm[TASK_COMM_LEN]; /* executable name excluding path 1253 - access with [gs]et_task_comm (which lock 1254 it with task_lock()) 1255 - initialized normally by flush_old_exec */ 1256 /* file system info */ 1257 int link_count, total_link_count; 1258 #ifdef CONFIG_SYSVIPC 1259 /* ipc stuff */ 1260 struct sysv_sem sysvsem; 1261 #endif 1262 #ifdef CONFIG_DETECT_HUNG_TASK 1263 /* hung task detection */ 1264 unsigned long last_switch_count; 1265 #endif 1266 /* CPU-specific state of this task */ 1267 struct thread_struct thread; 1268 /* filesystem information */ 1269 struct fs_struct *fs; 1270 /* open file information */ 1271 struct files_struct *files; 1272 /* namespaces */ 1273 struct nsproxy *nsproxy; 1274 /* signal handlers */ 1275 struct signal_struct *signal; 1276 struct sighand_struct *sighand; 1277 1278 sigset_t blocked, real_blocked; 1279 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1280 struct sigpending pending; 1281 1282 unsigned long sas_ss_sp; 1283 size_t sas_ss_size; 1284 int (*notifier)(void *priv); 1285 void *notifier_data; 1286 sigset_t *notifier_mask; 1287 struct audit_context *audit_context; 1288 #ifdef CONFIG_AUDITSYSCALL 1289 uid_t loginuid; 1290 unsigned int sessionid; 1291 #endif 1292 seccomp_t seccomp; 1293 1294 /* Thread group tracking */ 1295 u32 parent_exec_id; 1296 u32 self_exec_id; 1297 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1298 spinlock_t alloc_lock; 1299 1300 #ifdef CONFIG_GENERIC_HARDIRQS 1301 /* IRQ handler threads */ 1302 struct irqaction *irqaction; 1303 #endif 1304 1305 /* Protection of the PI data structures: */ 1306 spinlock_t pi_lock; 1307 1308 #ifdef CONFIG_RT_MUTEXES 1309 /* PI waiters blocked on a rt_mutex held by this task */ 1310 struct plist_head pi_waiters; 1311 /* Deadlock detection and priority inheritance handling */ 1312 struct rt_mutex_waiter *pi_blocked_on; 1313 #endif 1314 1315 #ifdef CONFIG_DEBUG_MUTEXES 1316 /* mutex deadlock detection */ 1317 struct mutex_waiter *blocked_on; 1318 #endif 1319 #ifdef CONFIG_TRACE_IRQFLAGS 1320 unsigned int irq_events; 1321 int hardirqs_enabled; 1322 unsigned long hardirq_enable_ip; 1323 unsigned int hardirq_enable_event; 1324 unsigned long hardirq_disable_ip; 1325 unsigned int hardirq_disable_event; 1326 int softirqs_enabled; 1327 unsigned long softirq_disable_ip; 1328 unsigned int softirq_disable_event; 1329 unsigned long softirq_enable_ip; 1330 unsigned int softirq_enable_event; 1331 int hardirq_context; 1332 int softirq_context; 1333 #endif 1334 #ifdef CONFIG_LOCKDEP 1335 # define MAX_LOCK_DEPTH 48UL 1336 u64 curr_chain_key; 1337 int lockdep_depth; 1338 unsigned int lockdep_recursion; 1339 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1340 gfp_t lockdep_reclaim_gfp; 1341 #endif 1342 1343 /* journalling filesystem info */ 1344 void *journal_info; 1345 1346 /* stacked block device info */ 1347 struct bio *bio_list, **bio_tail; 1348 1349 /* VM state */ 1350 struct reclaim_state *reclaim_state; 1351 1352 struct backing_dev_info *backing_dev_info; 1353 1354 struct io_context *io_context; 1355 1356 unsigned long ptrace_message; 1357 siginfo_t *last_siginfo; /* For ptrace use. */ 1358 struct task_io_accounting ioac; 1359 #if defined(CONFIG_TASK_XACCT) 1360 u64 acct_rss_mem1; /* accumulated rss usage */ 1361 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1362 cputime_t acct_timexpd; /* stime + utime since last update */ 1363 #endif 1364 #ifdef CONFIG_CPUSETS 1365 nodemask_t mems_allowed; 1366 int cpuset_mems_generation; 1367 int cpuset_mem_spread_rotor; 1368 #endif 1369 #ifdef CONFIG_CGROUPS 1370 /* Control Group info protected by css_set_lock */ 1371 struct css_set *cgroups; 1372 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1373 struct list_head cg_list; 1374 #endif 1375 #ifdef CONFIG_FUTEX 1376 struct robust_list_head __user *robust_list; 1377 #ifdef CONFIG_COMPAT 1378 struct compat_robust_list_head __user *compat_robust_list; 1379 #endif 1380 struct list_head pi_state_list; 1381 struct futex_pi_state *pi_state_cache; 1382 #endif 1383 #ifdef CONFIG_NUMA 1384 struct mempolicy *mempolicy; 1385 short il_next; 1386 #endif 1387 atomic_t fs_excl; /* holding fs exclusive resources */ 1388 struct rcu_head rcu; 1389 1390 /* 1391 * cache last used pipe for splice 1392 */ 1393 struct pipe_inode_info *splice_pipe; 1394 #ifdef CONFIG_TASK_DELAY_ACCT 1395 struct task_delay_info *delays; 1396 #endif 1397 #ifdef CONFIG_FAULT_INJECTION 1398 int make_it_fail; 1399 #endif 1400 struct prop_local_single dirties; 1401 #ifdef CONFIG_LATENCYTOP 1402 int latency_record_count; 1403 struct latency_record latency_record[LT_SAVECOUNT]; 1404 #endif 1405 /* 1406 * time slack values; these are used to round up poll() and 1407 * select() etc timeout values. These are in nanoseconds. 1408 */ 1409 unsigned long timer_slack_ns; 1410 unsigned long default_timer_slack_ns; 1411 1412 struct list_head *scm_work_list; 1413 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1414 /* Index of current stored adress in ret_stack */ 1415 int curr_ret_stack; 1416 /* Stack of return addresses for return function tracing */ 1417 struct ftrace_ret_stack *ret_stack; 1418 /* time stamp for last schedule */ 1419 unsigned long long ftrace_timestamp; 1420 /* 1421 * Number of functions that haven't been traced 1422 * because of depth overrun. 1423 */ 1424 atomic_t trace_overrun; 1425 /* Pause for the tracing */ 1426 atomic_t tracing_graph_pause; 1427 #endif 1428 #ifdef CONFIG_TRACING 1429 /* state flags for use by tracers */ 1430 unsigned long trace; 1431 #endif 1432 }; 1433 1434 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1435 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed) 1436 1437 /* 1438 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1439 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1440 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1441 * values are inverted: lower p->prio value means higher priority. 1442 * 1443 * The MAX_USER_RT_PRIO value allows the actual maximum 1444 * RT priority to be separate from the value exported to 1445 * user-space. This allows kernel threads to set their 1446 * priority to a value higher than any user task. Note: 1447 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1448 */ 1449 1450 #define MAX_USER_RT_PRIO 100 1451 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1452 1453 #define MAX_PRIO (MAX_RT_PRIO + 40) 1454 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1455 1456 static inline int rt_prio(int prio) 1457 { 1458 if (unlikely(prio < MAX_RT_PRIO)) 1459 return 1; 1460 return 0; 1461 } 1462 1463 static inline int rt_task(struct task_struct *p) 1464 { 1465 return rt_prio(p->prio); 1466 } 1467 1468 static inline struct pid *task_pid(struct task_struct *task) 1469 { 1470 return task->pids[PIDTYPE_PID].pid; 1471 } 1472 1473 static inline struct pid *task_tgid(struct task_struct *task) 1474 { 1475 return task->group_leader->pids[PIDTYPE_PID].pid; 1476 } 1477 1478 /* 1479 * Without tasklist or rcu lock it is not safe to dereference 1480 * the result of task_pgrp/task_session even if task == current, 1481 * we can race with another thread doing sys_setsid/sys_setpgid. 1482 */ 1483 static inline struct pid *task_pgrp(struct task_struct *task) 1484 { 1485 return task->group_leader->pids[PIDTYPE_PGID].pid; 1486 } 1487 1488 static inline struct pid *task_session(struct task_struct *task) 1489 { 1490 return task->group_leader->pids[PIDTYPE_SID].pid; 1491 } 1492 1493 struct pid_namespace; 1494 1495 /* 1496 * the helpers to get the task's different pids as they are seen 1497 * from various namespaces 1498 * 1499 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1500 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1501 * current. 1502 * task_xid_nr_ns() : id seen from the ns specified; 1503 * 1504 * set_task_vxid() : assigns a virtual id to a task; 1505 * 1506 * see also pid_nr() etc in include/linux/pid.h 1507 */ 1508 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1509 struct pid_namespace *ns); 1510 1511 static inline pid_t task_pid_nr(struct task_struct *tsk) 1512 { 1513 return tsk->pid; 1514 } 1515 1516 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1517 struct pid_namespace *ns) 1518 { 1519 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1520 } 1521 1522 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1523 { 1524 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1525 } 1526 1527 1528 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1529 { 1530 return tsk->tgid; 1531 } 1532 1533 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1534 1535 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1536 { 1537 return pid_vnr(task_tgid(tsk)); 1538 } 1539 1540 1541 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1542 struct pid_namespace *ns) 1543 { 1544 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1545 } 1546 1547 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1548 { 1549 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1550 } 1551 1552 1553 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1554 struct pid_namespace *ns) 1555 { 1556 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1557 } 1558 1559 static inline pid_t task_session_vnr(struct task_struct *tsk) 1560 { 1561 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1562 } 1563 1564 /* obsolete, do not use */ 1565 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1566 { 1567 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1568 } 1569 1570 /** 1571 * pid_alive - check that a task structure is not stale 1572 * @p: Task structure to be checked. 1573 * 1574 * Test if a process is not yet dead (at most zombie state) 1575 * If pid_alive fails, then pointers within the task structure 1576 * can be stale and must not be dereferenced. 1577 */ 1578 static inline int pid_alive(struct task_struct *p) 1579 { 1580 return p->pids[PIDTYPE_PID].pid != NULL; 1581 } 1582 1583 /** 1584 * is_global_init - check if a task structure is init 1585 * @tsk: Task structure to be checked. 1586 * 1587 * Check if a task structure is the first user space task the kernel created. 1588 */ 1589 static inline int is_global_init(struct task_struct *tsk) 1590 { 1591 return tsk->pid == 1; 1592 } 1593 1594 /* 1595 * is_container_init: 1596 * check whether in the task is init in its own pid namespace. 1597 */ 1598 extern int is_container_init(struct task_struct *tsk); 1599 1600 extern struct pid *cad_pid; 1601 1602 extern void free_task(struct task_struct *tsk); 1603 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1604 1605 extern void __put_task_struct(struct task_struct *t); 1606 1607 static inline void put_task_struct(struct task_struct *t) 1608 { 1609 if (atomic_dec_and_test(&t->usage)) 1610 __put_task_struct(t); 1611 } 1612 1613 extern cputime_t task_utime(struct task_struct *p); 1614 extern cputime_t task_stime(struct task_struct *p); 1615 extern cputime_t task_gtime(struct task_struct *p); 1616 1617 /* 1618 * Per process flags 1619 */ 1620 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1621 /* Not implemented yet, only for 486*/ 1622 #define PF_STARTING 0x00000002 /* being created */ 1623 #define PF_EXITING 0x00000004 /* getting shut down */ 1624 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1625 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1626 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1627 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1628 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1629 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1630 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1631 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1632 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1633 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1634 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1635 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1636 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1637 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1638 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1639 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1640 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1641 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1642 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1643 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1644 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1645 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1646 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1647 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1648 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1649 1650 /* 1651 * Only the _current_ task can read/write to tsk->flags, but other 1652 * tasks can access tsk->flags in readonly mode for example 1653 * with tsk_used_math (like during threaded core dumping). 1654 * There is however an exception to this rule during ptrace 1655 * or during fork: the ptracer task is allowed to write to the 1656 * child->flags of its traced child (same goes for fork, the parent 1657 * can write to the child->flags), because we're guaranteed the 1658 * child is not running and in turn not changing child->flags 1659 * at the same time the parent does it. 1660 */ 1661 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1662 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1663 #define clear_used_math() clear_stopped_child_used_math(current) 1664 #define set_used_math() set_stopped_child_used_math(current) 1665 #define conditional_stopped_child_used_math(condition, child) \ 1666 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1667 #define conditional_used_math(condition) \ 1668 conditional_stopped_child_used_math(condition, current) 1669 #define copy_to_stopped_child_used_math(child) \ 1670 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1671 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1672 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1673 #define used_math() tsk_used_math(current) 1674 1675 #ifdef CONFIG_SMP 1676 extern int set_cpus_allowed_ptr(struct task_struct *p, 1677 const struct cpumask *new_mask); 1678 #else 1679 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1680 const struct cpumask *new_mask) 1681 { 1682 if (!cpumask_test_cpu(0, new_mask)) 1683 return -EINVAL; 1684 return 0; 1685 } 1686 #endif 1687 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1688 { 1689 return set_cpus_allowed_ptr(p, &new_mask); 1690 } 1691 1692 /* 1693 * Architectures can set this to 1 if they have specified 1694 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1695 * but then during bootup it turns out that sched_clock() 1696 * is reliable after all: 1697 */ 1698 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1699 extern int sched_clock_stable; 1700 #endif 1701 1702 extern unsigned long long sched_clock(void); 1703 1704 extern void sched_clock_init(void); 1705 extern u64 sched_clock_cpu(int cpu); 1706 1707 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1708 static inline void sched_clock_tick(void) 1709 { 1710 } 1711 1712 static inline void sched_clock_idle_sleep_event(void) 1713 { 1714 } 1715 1716 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1717 { 1718 } 1719 #else 1720 extern void sched_clock_tick(void); 1721 extern void sched_clock_idle_sleep_event(void); 1722 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1723 #endif 1724 1725 /* 1726 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1727 * clock constructed from sched_clock(): 1728 */ 1729 extern unsigned long long cpu_clock(int cpu); 1730 1731 extern unsigned long long 1732 task_sched_runtime(struct task_struct *task); 1733 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1734 1735 /* sched_exec is called by processes performing an exec */ 1736 #ifdef CONFIG_SMP 1737 extern void sched_exec(void); 1738 #else 1739 #define sched_exec() {} 1740 #endif 1741 1742 extern void sched_clock_idle_sleep_event(void); 1743 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1744 1745 #ifdef CONFIG_HOTPLUG_CPU 1746 extern void idle_task_exit(void); 1747 #else 1748 static inline void idle_task_exit(void) {} 1749 #endif 1750 1751 extern void sched_idle_next(void); 1752 1753 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1754 extern void wake_up_idle_cpu(int cpu); 1755 #else 1756 static inline void wake_up_idle_cpu(int cpu) { } 1757 #endif 1758 1759 extern unsigned int sysctl_sched_latency; 1760 extern unsigned int sysctl_sched_min_granularity; 1761 extern unsigned int sysctl_sched_wakeup_granularity; 1762 extern unsigned int sysctl_sched_shares_ratelimit; 1763 extern unsigned int sysctl_sched_shares_thresh; 1764 #ifdef CONFIG_SCHED_DEBUG 1765 extern unsigned int sysctl_sched_child_runs_first; 1766 extern unsigned int sysctl_sched_features; 1767 extern unsigned int sysctl_sched_migration_cost; 1768 extern unsigned int sysctl_sched_nr_migrate; 1769 1770 int sched_nr_latency_handler(struct ctl_table *table, int write, 1771 struct file *file, void __user *buffer, size_t *length, 1772 loff_t *ppos); 1773 #endif 1774 extern unsigned int sysctl_sched_rt_period; 1775 extern int sysctl_sched_rt_runtime; 1776 1777 int sched_rt_handler(struct ctl_table *table, int write, 1778 struct file *filp, void __user *buffer, size_t *lenp, 1779 loff_t *ppos); 1780 1781 extern unsigned int sysctl_sched_compat_yield; 1782 1783 #ifdef CONFIG_RT_MUTEXES 1784 extern int rt_mutex_getprio(struct task_struct *p); 1785 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1786 extern void rt_mutex_adjust_pi(struct task_struct *p); 1787 #else 1788 static inline int rt_mutex_getprio(struct task_struct *p) 1789 { 1790 return p->normal_prio; 1791 } 1792 # define rt_mutex_adjust_pi(p) do { } while (0) 1793 #endif 1794 1795 extern void set_user_nice(struct task_struct *p, long nice); 1796 extern int task_prio(const struct task_struct *p); 1797 extern int task_nice(const struct task_struct *p); 1798 extern int can_nice(const struct task_struct *p, const int nice); 1799 extern int task_curr(const struct task_struct *p); 1800 extern int idle_cpu(int cpu); 1801 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1802 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1803 struct sched_param *); 1804 extern struct task_struct *idle_task(int cpu); 1805 extern struct task_struct *curr_task(int cpu); 1806 extern void set_curr_task(int cpu, struct task_struct *p); 1807 1808 void yield(void); 1809 1810 /* 1811 * The default (Linux) execution domain. 1812 */ 1813 extern struct exec_domain default_exec_domain; 1814 1815 union thread_union { 1816 struct thread_info thread_info; 1817 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1818 }; 1819 1820 #ifndef __HAVE_ARCH_KSTACK_END 1821 static inline int kstack_end(void *addr) 1822 { 1823 /* Reliable end of stack detection: 1824 * Some APM bios versions misalign the stack 1825 */ 1826 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1827 } 1828 #endif 1829 1830 extern union thread_union init_thread_union; 1831 extern struct task_struct init_task; 1832 1833 extern struct mm_struct init_mm; 1834 1835 extern struct pid_namespace init_pid_ns; 1836 1837 /* 1838 * find a task by one of its numerical ids 1839 * 1840 * find_task_by_pid_type_ns(): 1841 * it is the most generic call - it finds a task by all id, 1842 * type and namespace specified 1843 * find_task_by_pid_ns(): 1844 * finds a task by its pid in the specified namespace 1845 * find_task_by_vpid(): 1846 * finds a task by its virtual pid 1847 * 1848 * see also find_vpid() etc in include/linux/pid.h 1849 */ 1850 1851 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1852 struct pid_namespace *ns); 1853 1854 extern struct task_struct *find_task_by_vpid(pid_t nr); 1855 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1856 struct pid_namespace *ns); 1857 1858 extern void __set_special_pids(struct pid *pid); 1859 1860 /* per-UID process charging. */ 1861 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1862 static inline struct user_struct *get_uid(struct user_struct *u) 1863 { 1864 atomic_inc(&u->__count); 1865 return u; 1866 } 1867 extern void free_uid(struct user_struct *); 1868 extern void release_uids(struct user_namespace *ns); 1869 1870 #include <asm/current.h> 1871 1872 extern void do_timer(unsigned long ticks); 1873 1874 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1875 extern int wake_up_process(struct task_struct *tsk); 1876 extern void wake_up_new_task(struct task_struct *tsk, 1877 unsigned long clone_flags); 1878 #ifdef CONFIG_SMP 1879 extern void kick_process(struct task_struct *tsk); 1880 #else 1881 static inline void kick_process(struct task_struct *tsk) { } 1882 #endif 1883 extern void sched_fork(struct task_struct *p, int clone_flags); 1884 extern void sched_dead(struct task_struct *p); 1885 1886 extern void proc_caches_init(void); 1887 extern void flush_signals(struct task_struct *); 1888 extern void ignore_signals(struct task_struct *); 1889 extern void flush_signal_handlers(struct task_struct *, int force_default); 1890 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1891 1892 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1893 { 1894 unsigned long flags; 1895 int ret; 1896 1897 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1898 ret = dequeue_signal(tsk, mask, info); 1899 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1900 1901 return ret; 1902 } 1903 1904 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1905 sigset_t *mask); 1906 extern void unblock_all_signals(void); 1907 extern void release_task(struct task_struct * p); 1908 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1909 extern int force_sigsegv(int, struct task_struct *); 1910 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1911 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1912 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1913 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1914 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1915 extern int kill_pid(struct pid *pid, int sig, int priv); 1916 extern int kill_proc_info(int, struct siginfo *, pid_t); 1917 extern int do_notify_parent(struct task_struct *, int); 1918 extern void force_sig(int, struct task_struct *); 1919 extern void force_sig_specific(int, struct task_struct *); 1920 extern int send_sig(int, struct task_struct *, int); 1921 extern void zap_other_threads(struct task_struct *p); 1922 extern struct sigqueue *sigqueue_alloc(void); 1923 extern void sigqueue_free(struct sigqueue *); 1924 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1925 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1926 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1927 1928 static inline int kill_cad_pid(int sig, int priv) 1929 { 1930 return kill_pid(cad_pid, sig, priv); 1931 } 1932 1933 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1934 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1935 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1936 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1937 1938 static inline int is_si_special(const struct siginfo *info) 1939 { 1940 return info <= SEND_SIG_FORCED; 1941 } 1942 1943 /* True if we are on the alternate signal stack. */ 1944 1945 static inline int on_sig_stack(unsigned long sp) 1946 { 1947 return (sp - current->sas_ss_sp < current->sas_ss_size); 1948 } 1949 1950 static inline int sas_ss_flags(unsigned long sp) 1951 { 1952 return (current->sas_ss_size == 0 ? SS_DISABLE 1953 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1954 } 1955 1956 /* 1957 * Routines for handling mm_structs 1958 */ 1959 extern struct mm_struct * mm_alloc(void); 1960 1961 /* mmdrop drops the mm and the page tables */ 1962 extern void __mmdrop(struct mm_struct *); 1963 static inline void mmdrop(struct mm_struct * mm) 1964 { 1965 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1966 __mmdrop(mm); 1967 } 1968 1969 /* mmput gets rid of the mappings and all user-space */ 1970 extern void mmput(struct mm_struct *); 1971 /* Grab a reference to a task's mm, if it is not already going away */ 1972 extern struct mm_struct *get_task_mm(struct task_struct *task); 1973 /* Remove the current tasks stale references to the old mm_struct */ 1974 extern void mm_release(struct task_struct *, struct mm_struct *); 1975 /* Allocate a new mm structure and copy contents from tsk->mm */ 1976 extern struct mm_struct *dup_mm(struct task_struct *tsk); 1977 1978 extern int copy_thread(unsigned long, unsigned long, unsigned long, 1979 struct task_struct *, struct pt_regs *); 1980 extern void flush_thread(void); 1981 extern void exit_thread(void); 1982 1983 extern void exit_files(struct task_struct *); 1984 extern void __cleanup_signal(struct signal_struct *); 1985 extern void __cleanup_sighand(struct sighand_struct *); 1986 1987 extern void exit_itimers(struct signal_struct *); 1988 extern void flush_itimer_signals(void); 1989 1990 extern NORET_TYPE void do_group_exit(int); 1991 1992 extern void daemonize(const char *, ...); 1993 extern int allow_signal(int); 1994 extern int disallow_signal(int); 1995 1996 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1997 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1998 struct task_struct *fork_idle(int); 1999 2000 extern void set_task_comm(struct task_struct *tsk, char *from); 2001 extern char *get_task_comm(char *to, struct task_struct *tsk); 2002 2003 #ifdef CONFIG_SMP 2004 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2005 #else 2006 static inline unsigned long wait_task_inactive(struct task_struct *p, 2007 long match_state) 2008 { 2009 return 1; 2010 } 2011 #endif 2012 2013 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 2014 2015 #define for_each_process(p) \ 2016 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2017 2018 extern bool is_single_threaded(struct task_struct *); 2019 2020 /* 2021 * Careful: do_each_thread/while_each_thread is a double loop so 2022 * 'break' will not work as expected - use goto instead. 2023 */ 2024 #define do_each_thread(g, t) \ 2025 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2026 2027 #define while_each_thread(g, t) \ 2028 while ((t = next_thread(t)) != g) 2029 2030 /* de_thread depends on thread_group_leader not being a pid based check */ 2031 #define thread_group_leader(p) (p == p->group_leader) 2032 2033 /* Do to the insanities of de_thread it is possible for a process 2034 * to have the pid of the thread group leader without actually being 2035 * the thread group leader. For iteration through the pids in proc 2036 * all we care about is that we have a task with the appropriate 2037 * pid, we don't actually care if we have the right task. 2038 */ 2039 static inline int has_group_leader_pid(struct task_struct *p) 2040 { 2041 return p->pid == p->tgid; 2042 } 2043 2044 static inline 2045 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2046 { 2047 return p1->tgid == p2->tgid; 2048 } 2049 2050 static inline struct task_struct *next_thread(const struct task_struct *p) 2051 { 2052 return list_entry(rcu_dereference(p->thread_group.next), 2053 struct task_struct, thread_group); 2054 } 2055 2056 static inline int thread_group_empty(struct task_struct *p) 2057 { 2058 return list_empty(&p->thread_group); 2059 } 2060 2061 #define delay_group_leader(p) \ 2062 (thread_group_leader(p) && !thread_group_empty(p)) 2063 2064 static inline int task_detached(struct task_struct *p) 2065 { 2066 return p->exit_signal == -1; 2067 } 2068 2069 /* 2070 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2071 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2072 * pins the final release of task.io_context. Also protects ->cpuset and 2073 * ->cgroup.subsys[]. 2074 * 2075 * Nests both inside and outside of read_lock(&tasklist_lock). 2076 * It must not be nested with write_lock_irq(&tasklist_lock), 2077 * neither inside nor outside. 2078 */ 2079 static inline void task_lock(struct task_struct *p) 2080 { 2081 spin_lock(&p->alloc_lock); 2082 } 2083 2084 static inline void task_unlock(struct task_struct *p) 2085 { 2086 spin_unlock(&p->alloc_lock); 2087 } 2088 2089 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2090 unsigned long *flags); 2091 2092 static inline void unlock_task_sighand(struct task_struct *tsk, 2093 unsigned long *flags) 2094 { 2095 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2096 } 2097 2098 #ifndef __HAVE_THREAD_FUNCTIONS 2099 2100 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2101 #define task_stack_page(task) ((task)->stack) 2102 2103 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2104 { 2105 *task_thread_info(p) = *task_thread_info(org); 2106 task_thread_info(p)->task = p; 2107 } 2108 2109 static inline unsigned long *end_of_stack(struct task_struct *p) 2110 { 2111 return (unsigned long *)(task_thread_info(p) + 1); 2112 } 2113 2114 #endif 2115 2116 static inline int object_is_on_stack(void *obj) 2117 { 2118 void *stack = task_stack_page(current); 2119 2120 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2121 } 2122 2123 extern void thread_info_cache_init(void); 2124 2125 #ifdef CONFIG_DEBUG_STACK_USAGE 2126 static inline unsigned long stack_not_used(struct task_struct *p) 2127 { 2128 unsigned long *n = end_of_stack(p); 2129 2130 do { /* Skip over canary */ 2131 n++; 2132 } while (!*n); 2133 2134 return (unsigned long)n - (unsigned long)end_of_stack(p); 2135 } 2136 #endif 2137 2138 /* set thread flags in other task's structures 2139 * - see asm/thread_info.h for TIF_xxxx flags available 2140 */ 2141 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2142 { 2143 set_ti_thread_flag(task_thread_info(tsk), flag); 2144 } 2145 2146 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2147 { 2148 clear_ti_thread_flag(task_thread_info(tsk), flag); 2149 } 2150 2151 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2152 { 2153 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2154 } 2155 2156 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2157 { 2158 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2159 } 2160 2161 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2162 { 2163 return test_ti_thread_flag(task_thread_info(tsk), flag); 2164 } 2165 2166 static inline void set_tsk_need_resched(struct task_struct *tsk) 2167 { 2168 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2169 } 2170 2171 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2172 { 2173 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2174 } 2175 2176 static inline int test_tsk_need_resched(struct task_struct *tsk) 2177 { 2178 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2179 } 2180 2181 static inline int signal_pending(struct task_struct *p) 2182 { 2183 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2184 } 2185 2186 extern int __fatal_signal_pending(struct task_struct *p); 2187 2188 static inline int fatal_signal_pending(struct task_struct *p) 2189 { 2190 return signal_pending(p) && __fatal_signal_pending(p); 2191 } 2192 2193 static inline int signal_pending_state(long state, struct task_struct *p) 2194 { 2195 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2196 return 0; 2197 if (!signal_pending(p)) 2198 return 0; 2199 2200 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2201 } 2202 2203 static inline int need_resched(void) 2204 { 2205 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2206 } 2207 2208 /* 2209 * cond_resched() and cond_resched_lock(): latency reduction via 2210 * explicit rescheduling in places that are safe. The return 2211 * value indicates whether a reschedule was done in fact. 2212 * cond_resched_lock() will drop the spinlock before scheduling, 2213 * cond_resched_softirq() will enable bhs before scheduling. 2214 */ 2215 extern int _cond_resched(void); 2216 #ifdef CONFIG_PREEMPT_BKL 2217 static inline int cond_resched(void) 2218 { 2219 return 0; 2220 } 2221 #else 2222 static inline int cond_resched(void) 2223 { 2224 return _cond_resched(); 2225 } 2226 #endif 2227 extern int cond_resched_lock(spinlock_t * lock); 2228 extern int cond_resched_softirq(void); 2229 static inline int cond_resched_bkl(void) 2230 { 2231 return _cond_resched(); 2232 } 2233 2234 /* 2235 * Does a critical section need to be broken due to another 2236 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2237 * but a general need for low latency) 2238 */ 2239 static inline int spin_needbreak(spinlock_t *lock) 2240 { 2241 #ifdef CONFIG_PREEMPT 2242 return spin_is_contended(lock); 2243 #else 2244 return 0; 2245 #endif 2246 } 2247 2248 /* 2249 * Thread group CPU time accounting. 2250 */ 2251 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2252 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2253 2254 static inline void thread_group_cputime_init(struct signal_struct *sig) 2255 { 2256 sig->cputimer.cputime = INIT_CPUTIME; 2257 spin_lock_init(&sig->cputimer.lock); 2258 sig->cputimer.running = 0; 2259 } 2260 2261 static inline void thread_group_cputime_free(struct signal_struct *sig) 2262 { 2263 } 2264 2265 /* 2266 * Reevaluate whether the task has signals pending delivery. 2267 * Wake the task if so. 2268 * This is required every time the blocked sigset_t changes. 2269 * callers must hold sighand->siglock. 2270 */ 2271 extern void recalc_sigpending_and_wake(struct task_struct *t); 2272 extern void recalc_sigpending(void); 2273 2274 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2275 2276 /* 2277 * Wrappers for p->thread_info->cpu access. No-op on UP. 2278 */ 2279 #ifdef CONFIG_SMP 2280 2281 static inline unsigned int task_cpu(const struct task_struct *p) 2282 { 2283 return task_thread_info(p)->cpu; 2284 } 2285 2286 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2287 2288 #else 2289 2290 static inline unsigned int task_cpu(const struct task_struct *p) 2291 { 2292 return 0; 2293 } 2294 2295 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2296 { 2297 } 2298 2299 #endif /* CONFIG_SMP */ 2300 2301 extern void arch_pick_mmap_layout(struct mm_struct *mm); 2302 2303 #ifdef CONFIG_TRACING 2304 extern void 2305 __trace_special(void *__tr, void *__data, 2306 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2307 #else 2308 static inline void 2309 __trace_special(void *__tr, void *__data, 2310 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2311 { 2312 } 2313 #endif 2314 2315 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2316 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2317 2318 extern void normalize_rt_tasks(void); 2319 2320 #ifdef CONFIG_GROUP_SCHED 2321 2322 extern struct task_group init_task_group; 2323 #ifdef CONFIG_USER_SCHED 2324 extern struct task_group root_task_group; 2325 extern void set_tg_uid(struct user_struct *user); 2326 #endif 2327 2328 extern struct task_group *sched_create_group(struct task_group *parent); 2329 extern void sched_destroy_group(struct task_group *tg); 2330 extern void sched_move_task(struct task_struct *tsk); 2331 #ifdef CONFIG_FAIR_GROUP_SCHED 2332 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2333 extern unsigned long sched_group_shares(struct task_group *tg); 2334 #endif 2335 #ifdef CONFIG_RT_GROUP_SCHED 2336 extern int sched_group_set_rt_runtime(struct task_group *tg, 2337 long rt_runtime_us); 2338 extern long sched_group_rt_runtime(struct task_group *tg); 2339 extern int sched_group_set_rt_period(struct task_group *tg, 2340 long rt_period_us); 2341 extern long sched_group_rt_period(struct task_group *tg); 2342 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2343 #endif 2344 #endif 2345 2346 extern int task_can_switch_user(struct user_struct *up, 2347 struct task_struct *tsk); 2348 2349 #ifdef CONFIG_TASK_XACCT 2350 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2351 { 2352 tsk->ioac.rchar += amt; 2353 } 2354 2355 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2356 { 2357 tsk->ioac.wchar += amt; 2358 } 2359 2360 static inline void inc_syscr(struct task_struct *tsk) 2361 { 2362 tsk->ioac.syscr++; 2363 } 2364 2365 static inline void inc_syscw(struct task_struct *tsk) 2366 { 2367 tsk->ioac.syscw++; 2368 } 2369 #else 2370 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2371 { 2372 } 2373 2374 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2375 { 2376 } 2377 2378 static inline void inc_syscr(struct task_struct *tsk) 2379 { 2380 } 2381 2382 static inline void inc_syscw(struct task_struct *tsk) 2383 { 2384 } 2385 #endif 2386 2387 #ifndef TASK_SIZE_OF 2388 #define TASK_SIZE_OF(tsk) TASK_SIZE 2389 #endif 2390 2391 #ifdef CONFIG_MM_OWNER 2392 extern void mm_update_next_owner(struct mm_struct *mm); 2393 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2394 #else 2395 static inline void mm_update_next_owner(struct mm_struct *mm) 2396 { 2397 } 2398 2399 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2400 { 2401 } 2402 #endif /* CONFIG_MM_OWNER */ 2403 2404 #define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2405 2406 #endif /* __KERNEL__ */ 2407 2408 #endif 2409