1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio; 101 struct fs_struct; 102 struct bts_context; 103 struct perf_event_context; 104 105 /* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111 /* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121 extern unsigned long avenrun[]; /* Load averages */ 122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124 #define FSHIFT 11 /* nr of bits of precision */ 125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 129 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131 #define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136 extern unsigned long total_forks; 137 extern int nr_threads; 138 DECLARE_PER_CPU(unsigned long, process_counts); 139 extern int nr_processes(void); 140 extern unsigned long nr_running(void); 141 extern unsigned long nr_uninterruptible(void); 142 extern unsigned long nr_iowait(void); 143 extern unsigned long nr_iowait_cpu(void); 144 extern unsigned long this_cpu_load(void); 145 146 147 extern void calc_global_load(void); 148 149 extern unsigned long get_parent_ip(unsigned long addr); 150 151 struct seq_file; 152 struct cfs_rq; 153 struct task_group; 154 #ifdef CONFIG_SCHED_DEBUG 155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 156 extern void proc_sched_set_task(struct task_struct *p); 157 extern void 158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 159 #else 160 static inline void 161 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 162 { 163 } 164 static inline void proc_sched_set_task(struct task_struct *p) 165 { 166 } 167 static inline void 168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 169 { 170 } 171 #endif 172 173 /* 174 * Task state bitmask. NOTE! These bits are also 175 * encoded in fs/proc/array.c: get_task_state(). 176 * 177 * We have two separate sets of flags: task->state 178 * is about runnability, while task->exit_state are 179 * about the task exiting. Confusing, but this way 180 * modifying one set can't modify the other one by 181 * mistake. 182 */ 183 #define TASK_RUNNING 0 184 #define TASK_INTERRUPTIBLE 1 185 #define TASK_UNINTERRUPTIBLE 2 186 #define __TASK_STOPPED 4 187 #define __TASK_TRACED 8 188 /* in tsk->exit_state */ 189 #define EXIT_ZOMBIE 16 190 #define EXIT_DEAD 32 191 /* in tsk->state again */ 192 #define TASK_DEAD 64 193 #define TASK_WAKEKILL 128 194 #define TASK_WAKING 256 195 #define TASK_STATE_MAX 512 196 197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 198 199 extern char ___assert_task_state[1 - 2*!!( 200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 201 202 /* Convenience macros for the sake of set_task_state */ 203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 206 207 /* Convenience macros for the sake of wake_up */ 208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 210 211 /* get_task_state() */ 212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 214 __TASK_TRACED) 215 216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 extern void sched_init(void); 262 extern void sched_init_smp(void); 263 extern asmlinkage void schedule_tail(struct task_struct *prev); 264 extern void init_idle(struct task_struct *idle, int cpu); 265 extern void init_idle_bootup_task(struct task_struct *idle); 266 267 extern int runqueue_is_locked(int cpu); 268 extern void task_rq_unlock_wait(struct task_struct *p); 269 270 extern cpumask_var_t nohz_cpu_mask; 271 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 272 extern int select_nohz_load_balancer(int cpu); 273 extern int get_nohz_load_balancer(void); 274 #else 275 static inline int select_nohz_load_balancer(int cpu) 276 { 277 return 0; 278 } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_DETECT_SOFTLOCKUP 311 extern void softlockup_tick(void); 312 extern void touch_softlockup_watchdog(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 extern int softlockup_thresh; 319 #else 320 static inline void softlockup_tick(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 #endif 330 331 #ifdef CONFIG_DETECT_HUNG_TASK 332 extern unsigned int sysctl_hung_task_panic; 333 extern unsigned long sysctl_hung_task_check_count; 334 extern unsigned long sysctl_hung_task_timeout_secs; 335 extern unsigned long sysctl_hung_task_warnings; 336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 337 void __user *buffer, 338 size_t *lenp, loff_t *ppos); 339 #endif 340 341 /* Attach to any functions which should be ignored in wchan output. */ 342 #define __sched __attribute__((__section__(".sched.text"))) 343 344 /* Linker adds these: start and end of __sched functions */ 345 extern char __sched_text_start[], __sched_text_end[]; 346 347 /* Is this address in the __sched functions? */ 348 extern int in_sched_functions(unsigned long addr); 349 350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 351 extern signed long schedule_timeout(signed long timeout); 352 extern signed long schedule_timeout_interruptible(signed long timeout); 353 extern signed long schedule_timeout_killable(signed long timeout); 354 extern signed long schedule_timeout_uninterruptible(signed long timeout); 355 asmlinkage void schedule(void); 356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 357 358 struct nsproxy; 359 struct user_namespace; 360 361 /* 362 * Default maximum number of active map areas, this limits the number of vmas 363 * per mm struct. Users can overwrite this number by sysctl but there is a 364 * problem. 365 * 366 * When a program's coredump is generated as ELF format, a section is created 367 * per a vma. In ELF, the number of sections is represented in unsigned short. 368 * This means the number of sections should be smaller than 65535 at coredump. 369 * Because the kernel adds some informative sections to a image of program at 370 * generating coredump, we need some margin. The number of extra sections is 371 * 1-3 now and depends on arch. We use "5" as safe margin, here. 372 */ 373 #define MAPCOUNT_ELF_CORE_MARGIN (5) 374 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 375 376 extern int sysctl_max_map_count; 377 378 #include <linux/aio.h> 379 380 #ifdef CONFIG_MMU 381 extern void arch_pick_mmap_layout(struct mm_struct *mm); 382 extern unsigned long 383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 384 unsigned long, unsigned long); 385 extern unsigned long 386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 387 unsigned long len, unsigned long pgoff, 388 unsigned long flags); 389 extern void arch_unmap_area(struct mm_struct *, unsigned long); 390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 391 #else 392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 393 #endif 394 395 #if USE_SPLIT_PTLOCKS 396 /* 397 * The mm counters are not protected by its page_table_lock, 398 * so must be incremented atomically. 399 */ 400 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 401 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 402 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 403 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 404 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 405 406 #else /* !USE_SPLIT_PTLOCKS */ 407 /* 408 * The mm counters are protected by its page_table_lock, 409 * so can be incremented directly. 410 */ 411 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 412 #define get_mm_counter(mm, member) ((mm)->_##member) 413 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 414 #define inc_mm_counter(mm, member) (mm)->_##member++ 415 #define dec_mm_counter(mm, member) (mm)->_##member-- 416 417 #endif /* !USE_SPLIT_PTLOCKS */ 418 419 #define get_mm_rss(mm) \ 420 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 421 #define update_hiwater_rss(mm) do { \ 422 unsigned long _rss = get_mm_rss(mm); \ 423 if ((mm)->hiwater_rss < _rss) \ 424 (mm)->hiwater_rss = _rss; \ 425 } while (0) 426 #define update_hiwater_vm(mm) do { \ 427 if ((mm)->hiwater_vm < (mm)->total_vm) \ 428 (mm)->hiwater_vm = (mm)->total_vm; \ 429 } while (0) 430 431 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 432 { 433 return max(mm->hiwater_rss, get_mm_rss(mm)); 434 } 435 436 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 437 struct mm_struct *mm) 438 { 439 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 440 441 if (*maxrss < hiwater_rss) 442 *maxrss = hiwater_rss; 443 } 444 445 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 446 { 447 return max(mm->hiwater_vm, mm->total_vm); 448 } 449 450 extern void set_dumpable(struct mm_struct *mm, int value); 451 extern int get_dumpable(struct mm_struct *mm); 452 453 /* mm flags */ 454 /* dumpable bits */ 455 #define MMF_DUMPABLE 0 /* core dump is permitted */ 456 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 457 458 #define MMF_DUMPABLE_BITS 2 459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 460 461 /* coredump filter bits */ 462 #define MMF_DUMP_ANON_PRIVATE 2 463 #define MMF_DUMP_ANON_SHARED 3 464 #define MMF_DUMP_MAPPED_PRIVATE 4 465 #define MMF_DUMP_MAPPED_SHARED 5 466 #define MMF_DUMP_ELF_HEADERS 6 467 #define MMF_DUMP_HUGETLB_PRIVATE 7 468 #define MMF_DUMP_HUGETLB_SHARED 8 469 470 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 471 #define MMF_DUMP_FILTER_BITS 7 472 #define MMF_DUMP_FILTER_MASK \ 473 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 474 #define MMF_DUMP_FILTER_DEFAULT \ 475 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 476 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 477 478 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 479 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 480 #else 481 # define MMF_DUMP_MASK_DEFAULT_ELF 0 482 #endif 483 /* leave room for more dump flags */ 484 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 485 486 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 487 488 struct sighand_struct { 489 atomic_t count; 490 struct k_sigaction action[_NSIG]; 491 spinlock_t siglock; 492 wait_queue_head_t signalfd_wqh; 493 }; 494 495 struct pacct_struct { 496 int ac_flag; 497 long ac_exitcode; 498 unsigned long ac_mem; 499 cputime_t ac_utime, ac_stime; 500 unsigned long ac_minflt, ac_majflt; 501 }; 502 503 struct cpu_itimer { 504 cputime_t expires; 505 cputime_t incr; 506 u32 error; 507 u32 incr_error; 508 }; 509 510 /** 511 * struct task_cputime - collected CPU time counts 512 * @utime: time spent in user mode, in &cputime_t units 513 * @stime: time spent in kernel mode, in &cputime_t units 514 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 515 * 516 * This structure groups together three kinds of CPU time that are 517 * tracked for threads and thread groups. Most things considering 518 * CPU time want to group these counts together and treat all three 519 * of them in parallel. 520 */ 521 struct task_cputime { 522 cputime_t utime; 523 cputime_t stime; 524 unsigned long long sum_exec_runtime; 525 }; 526 /* Alternate field names when used to cache expirations. */ 527 #define prof_exp stime 528 #define virt_exp utime 529 #define sched_exp sum_exec_runtime 530 531 #define INIT_CPUTIME \ 532 (struct task_cputime) { \ 533 .utime = cputime_zero, \ 534 .stime = cputime_zero, \ 535 .sum_exec_runtime = 0, \ 536 } 537 538 /* 539 * Disable preemption until the scheduler is running. 540 * Reset by start_kernel()->sched_init()->init_idle(). 541 * 542 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 543 * before the scheduler is active -- see should_resched(). 544 */ 545 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 546 547 /** 548 * struct thread_group_cputimer - thread group interval timer counts 549 * @cputime: thread group interval timers. 550 * @running: non-zero when there are timers running and 551 * @cputime receives updates. 552 * @lock: lock for fields in this struct. 553 * 554 * This structure contains the version of task_cputime, above, that is 555 * used for thread group CPU timer calculations. 556 */ 557 struct thread_group_cputimer { 558 struct task_cputime cputime; 559 int running; 560 spinlock_t lock; 561 }; 562 563 /* 564 * NOTE! "signal_struct" does not have it's own 565 * locking, because a shared signal_struct always 566 * implies a shared sighand_struct, so locking 567 * sighand_struct is always a proper superset of 568 * the locking of signal_struct. 569 */ 570 struct signal_struct { 571 atomic_t count; 572 atomic_t live; 573 574 wait_queue_head_t wait_chldexit; /* for wait4() */ 575 576 /* current thread group signal load-balancing target: */ 577 struct task_struct *curr_target; 578 579 /* shared signal handling: */ 580 struct sigpending shared_pending; 581 582 /* thread group exit support */ 583 int group_exit_code; 584 /* overloaded: 585 * - notify group_exit_task when ->count is equal to notify_count 586 * - everyone except group_exit_task is stopped during signal delivery 587 * of fatal signals, group_exit_task processes the signal. 588 */ 589 int notify_count; 590 struct task_struct *group_exit_task; 591 592 /* thread group stop support, overloads group_exit_code too */ 593 int group_stop_count; 594 unsigned int flags; /* see SIGNAL_* flags below */ 595 596 /* POSIX.1b Interval Timers */ 597 struct list_head posix_timers; 598 599 /* ITIMER_REAL timer for the process */ 600 struct hrtimer real_timer; 601 struct pid *leader_pid; 602 ktime_t it_real_incr; 603 604 /* 605 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 606 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 607 * values are defined to 0 and 1 respectively 608 */ 609 struct cpu_itimer it[2]; 610 611 /* 612 * Thread group totals for process CPU timers. 613 * See thread_group_cputimer(), et al, for details. 614 */ 615 struct thread_group_cputimer cputimer; 616 617 /* Earliest-expiration cache. */ 618 struct task_cputime cputime_expires; 619 620 struct list_head cpu_timers[3]; 621 622 struct pid *tty_old_pgrp; 623 624 /* boolean value for session group leader */ 625 int leader; 626 627 struct tty_struct *tty; /* NULL if no tty */ 628 629 /* 630 * Cumulative resource counters for dead threads in the group, 631 * and for reaped dead child processes forked by this group. 632 * Live threads maintain their own counters and add to these 633 * in __exit_signal, except for the group leader. 634 */ 635 cputime_t utime, stime, cutime, cstime; 636 cputime_t gtime; 637 cputime_t cgtime; 638 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 639 cputime_t prev_utime, prev_stime; 640 #endif 641 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 642 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 643 unsigned long inblock, oublock, cinblock, coublock; 644 unsigned long maxrss, cmaxrss; 645 struct task_io_accounting ioac; 646 647 /* 648 * Cumulative ns of schedule CPU time fo dead threads in the 649 * group, not including a zombie group leader, (This only differs 650 * from jiffies_to_ns(utime + stime) if sched_clock uses something 651 * other than jiffies.) 652 */ 653 unsigned long long sum_sched_runtime; 654 655 /* 656 * We don't bother to synchronize most readers of this at all, 657 * because there is no reader checking a limit that actually needs 658 * to get both rlim_cur and rlim_max atomically, and either one 659 * alone is a single word that can safely be read normally. 660 * getrlimit/setrlimit use task_lock(current->group_leader) to 661 * protect this instead of the siglock, because they really 662 * have no need to disable irqs. 663 */ 664 struct rlimit rlim[RLIM_NLIMITS]; 665 666 #ifdef CONFIG_BSD_PROCESS_ACCT 667 struct pacct_struct pacct; /* per-process accounting information */ 668 #endif 669 #ifdef CONFIG_TASKSTATS 670 struct taskstats *stats; 671 #endif 672 #ifdef CONFIG_AUDIT 673 unsigned audit_tty; 674 struct tty_audit_buf *tty_audit_buf; 675 #endif 676 677 int oom_adj; /* OOM kill score adjustment (bit shift) */ 678 }; 679 680 /* Context switch must be unlocked if interrupts are to be enabled */ 681 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 682 # define __ARCH_WANT_UNLOCKED_CTXSW 683 #endif 684 685 /* 686 * Bits in flags field of signal_struct. 687 */ 688 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 689 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 690 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 691 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 692 /* 693 * Pending notifications to parent. 694 */ 695 #define SIGNAL_CLD_STOPPED 0x00000010 696 #define SIGNAL_CLD_CONTINUED 0x00000020 697 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 698 699 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 700 701 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 702 static inline int signal_group_exit(const struct signal_struct *sig) 703 { 704 return (sig->flags & SIGNAL_GROUP_EXIT) || 705 (sig->group_exit_task != NULL); 706 } 707 708 /* 709 * Some day this will be a full-fledged user tracking system.. 710 */ 711 struct user_struct { 712 atomic_t __count; /* reference count */ 713 atomic_t processes; /* How many processes does this user have? */ 714 atomic_t files; /* How many open files does this user have? */ 715 atomic_t sigpending; /* How many pending signals does this user have? */ 716 #ifdef CONFIG_INOTIFY_USER 717 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 718 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 719 #endif 720 #ifdef CONFIG_EPOLL 721 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 722 #endif 723 #ifdef CONFIG_POSIX_MQUEUE 724 /* protected by mq_lock */ 725 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 726 #endif 727 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 728 729 #ifdef CONFIG_KEYS 730 struct key *uid_keyring; /* UID specific keyring */ 731 struct key *session_keyring; /* UID's default session keyring */ 732 #endif 733 734 /* Hash table maintenance information */ 735 struct hlist_node uidhash_node; 736 uid_t uid; 737 struct user_namespace *user_ns; 738 739 #ifdef CONFIG_USER_SCHED 740 struct task_group *tg; 741 #ifdef CONFIG_SYSFS 742 struct kobject kobj; 743 struct delayed_work work; 744 #endif 745 #endif 746 747 #ifdef CONFIG_PERF_EVENTS 748 atomic_long_t locked_vm; 749 #endif 750 }; 751 752 extern int uids_sysfs_init(void); 753 754 extern struct user_struct *find_user(uid_t); 755 756 extern struct user_struct root_user; 757 #define INIT_USER (&root_user) 758 759 760 struct backing_dev_info; 761 struct reclaim_state; 762 763 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 764 struct sched_info { 765 /* cumulative counters */ 766 unsigned long pcount; /* # of times run on this cpu */ 767 unsigned long long run_delay; /* time spent waiting on a runqueue */ 768 769 /* timestamps */ 770 unsigned long long last_arrival,/* when we last ran on a cpu */ 771 last_queued; /* when we were last queued to run */ 772 #ifdef CONFIG_SCHEDSTATS 773 /* BKL stats */ 774 unsigned int bkl_count; 775 #endif 776 }; 777 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 778 779 #ifdef CONFIG_TASK_DELAY_ACCT 780 struct task_delay_info { 781 spinlock_t lock; 782 unsigned int flags; /* Private per-task flags */ 783 784 /* For each stat XXX, add following, aligned appropriately 785 * 786 * struct timespec XXX_start, XXX_end; 787 * u64 XXX_delay; 788 * u32 XXX_count; 789 * 790 * Atomicity of updates to XXX_delay, XXX_count protected by 791 * single lock above (split into XXX_lock if contention is an issue). 792 */ 793 794 /* 795 * XXX_count is incremented on every XXX operation, the delay 796 * associated with the operation is added to XXX_delay. 797 * XXX_delay contains the accumulated delay time in nanoseconds. 798 */ 799 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 800 u64 blkio_delay; /* wait for sync block io completion */ 801 u64 swapin_delay; /* wait for swapin block io completion */ 802 u32 blkio_count; /* total count of the number of sync block */ 803 /* io operations performed */ 804 u32 swapin_count; /* total count of the number of swapin block */ 805 /* io operations performed */ 806 807 struct timespec freepages_start, freepages_end; 808 u64 freepages_delay; /* wait for memory reclaim */ 809 u32 freepages_count; /* total count of memory reclaim */ 810 }; 811 #endif /* CONFIG_TASK_DELAY_ACCT */ 812 813 static inline int sched_info_on(void) 814 { 815 #ifdef CONFIG_SCHEDSTATS 816 return 1; 817 #elif defined(CONFIG_TASK_DELAY_ACCT) 818 extern int delayacct_on; 819 return delayacct_on; 820 #else 821 return 0; 822 #endif 823 } 824 825 enum cpu_idle_type { 826 CPU_IDLE, 827 CPU_NOT_IDLE, 828 CPU_NEWLY_IDLE, 829 CPU_MAX_IDLE_TYPES 830 }; 831 832 /* 833 * sched-domains (multiprocessor balancing) declarations: 834 */ 835 836 /* 837 * Increase resolution of nice-level calculations: 838 */ 839 #define SCHED_LOAD_SHIFT 10 840 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 841 842 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 843 844 #ifdef CONFIG_SMP 845 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 846 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 847 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 848 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 849 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 850 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 851 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 852 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 853 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 854 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 855 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 856 857 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 858 859 enum powersavings_balance_level { 860 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 861 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 862 * first for long running threads 863 */ 864 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 865 * cpu package for power savings 866 */ 867 MAX_POWERSAVINGS_BALANCE_LEVELS 868 }; 869 870 extern int sched_mc_power_savings, sched_smt_power_savings; 871 872 static inline int sd_balance_for_mc_power(void) 873 { 874 if (sched_smt_power_savings) 875 return SD_POWERSAVINGS_BALANCE; 876 877 return SD_PREFER_SIBLING; 878 } 879 880 static inline int sd_balance_for_package_power(void) 881 { 882 if (sched_mc_power_savings | sched_smt_power_savings) 883 return SD_POWERSAVINGS_BALANCE; 884 885 return SD_PREFER_SIBLING; 886 } 887 888 /* 889 * Optimise SD flags for power savings: 890 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 891 * Keep default SD flags if sched_{smt,mc}_power_saving=0 892 */ 893 894 static inline int sd_power_saving_flags(void) 895 { 896 if (sched_mc_power_savings | sched_smt_power_savings) 897 return SD_BALANCE_NEWIDLE; 898 899 return 0; 900 } 901 902 struct sched_group { 903 struct sched_group *next; /* Must be a circular list */ 904 905 /* 906 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 907 * single CPU. 908 */ 909 unsigned int cpu_power; 910 911 /* 912 * The CPUs this group covers. 913 * 914 * NOTE: this field is variable length. (Allocated dynamically 915 * by attaching extra space to the end of the structure, 916 * depending on how many CPUs the kernel has booted up with) 917 * 918 * It is also be embedded into static data structures at build 919 * time. (See 'struct static_sched_group' in kernel/sched.c) 920 */ 921 unsigned long cpumask[0]; 922 }; 923 924 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 925 { 926 return to_cpumask(sg->cpumask); 927 } 928 929 enum sched_domain_level { 930 SD_LV_NONE = 0, 931 SD_LV_SIBLING, 932 SD_LV_MC, 933 SD_LV_CPU, 934 SD_LV_NODE, 935 SD_LV_ALLNODES, 936 SD_LV_MAX 937 }; 938 939 struct sched_domain_attr { 940 int relax_domain_level; 941 }; 942 943 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 944 .relax_domain_level = -1, \ 945 } 946 947 struct sched_domain { 948 /* These fields must be setup */ 949 struct sched_domain *parent; /* top domain must be null terminated */ 950 struct sched_domain *child; /* bottom domain must be null terminated */ 951 struct sched_group *groups; /* the balancing groups of the domain */ 952 unsigned long min_interval; /* Minimum balance interval ms */ 953 unsigned long max_interval; /* Maximum balance interval ms */ 954 unsigned int busy_factor; /* less balancing by factor if busy */ 955 unsigned int imbalance_pct; /* No balance until over watermark */ 956 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 957 unsigned int busy_idx; 958 unsigned int idle_idx; 959 unsigned int newidle_idx; 960 unsigned int wake_idx; 961 unsigned int forkexec_idx; 962 unsigned int smt_gain; 963 int flags; /* See SD_* */ 964 enum sched_domain_level level; 965 966 /* Runtime fields. */ 967 unsigned long last_balance; /* init to jiffies. units in jiffies */ 968 unsigned int balance_interval; /* initialise to 1. units in ms. */ 969 unsigned int nr_balance_failed; /* initialise to 0 */ 970 971 u64 last_update; 972 973 #ifdef CONFIG_SCHEDSTATS 974 /* load_balance() stats */ 975 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 976 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 977 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 978 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 979 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 980 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 981 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 982 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 983 984 /* Active load balancing */ 985 unsigned int alb_count; 986 unsigned int alb_failed; 987 unsigned int alb_pushed; 988 989 /* SD_BALANCE_EXEC stats */ 990 unsigned int sbe_count; 991 unsigned int sbe_balanced; 992 unsigned int sbe_pushed; 993 994 /* SD_BALANCE_FORK stats */ 995 unsigned int sbf_count; 996 unsigned int sbf_balanced; 997 unsigned int sbf_pushed; 998 999 /* try_to_wake_up() stats */ 1000 unsigned int ttwu_wake_remote; 1001 unsigned int ttwu_move_affine; 1002 unsigned int ttwu_move_balance; 1003 #endif 1004 #ifdef CONFIG_SCHED_DEBUG 1005 char *name; 1006 #endif 1007 1008 /* 1009 * Span of all CPUs in this domain. 1010 * 1011 * NOTE: this field is variable length. (Allocated dynamically 1012 * by attaching extra space to the end of the structure, 1013 * depending on how many CPUs the kernel has booted up with) 1014 * 1015 * It is also be embedded into static data structures at build 1016 * time. (See 'struct static_sched_domain' in kernel/sched.c) 1017 */ 1018 unsigned long span[0]; 1019 }; 1020 1021 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1022 { 1023 return to_cpumask(sd->span); 1024 } 1025 1026 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1027 struct sched_domain_attr *dattr_new); 1028 1029 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1030 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1031 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1032 1033 /* Test a flag in parent sched domain */ 1034 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1035 { 1036 if (sd->parent && (sd->parent->flags & flag)) 1037 return 1; 1038 1039 return 0; 1040 } 1041 1042 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1043 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1044 1045 #else /* CONFIG_SMP */ 1046 1047 struct sched_domain_attr; 1048 1049 static inline void 1050 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1051 struct sched_domain_attr *dattr_new) 1052 { 1053 } 1054 #endif /* !CONFIG_SMP */ 1055 1056 1057 struct io_context; /* See blkdev.h */ 1058 1059 1060 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1061 extern void prefetch_stack(struct task_struct *t); 1062 #else 1063 static inline void prefetch_stack(struct task_struct *t) { } 1064 #endif 1065 1066 struct audit_context; /* See audit.c */ 1067 struct mempolicy; 1068 struct pipe_inode_info; 1069 struct uts_namespace; 1070 1071 struct rq; 1072 struct sched_domain; 1073 1074 /* 1075 * wake flags 1076 */ 1077 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1078 #define WF_FORK 0x02 /* child wakeup after fork */ 1079 1080 struct sched_class { 1081 const struct sched_class *next; 1082 1083 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 1084 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 1085 void (*yield_task) (struct rq *rq); 1086 1087 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1088 1089 struct task_struct * (*pick_next_task) (struct rq *rq); 1090 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1091 1092 #ifdef CONFIG_SMP 1093 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1094 1095 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 1096 struct rq *busiest, unsigned long max_load_move, 1097 struct sched_domain *sd, enum cpu_idle_type idle, 1098 int *all_pinned, int *this_best_prio); 1099 1100 int (*move_one_task) (struct rq *this_rq, int this_cpu, 1101 struct rq *busiest, struct sched_domain *sd, 1102 enum cpu_idle_type idle); 1103 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1104 void (*post_schedule) (struct rq *this_rq); 1105 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1106 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1107 1108 void (*set_cpus_allowed)(struct task_struct *p, 1109 const struct cpumask *newmask); 1110 1111 void (*rq_online)(struct rq *rq); 1112 void (*rq_offline)(struct rq *rq); 1113 #endif 1114 1115 void (*set_curr_task) (struct rq *rq); 1116 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1117 void (*task_fork) (struct task_struct *p); 1118 1119 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1120 int running); 1121 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1122 int running); 1123 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1124 int oldprio, int running); 1125 1126 unsigned int (*get_rr_interval) (struct rq *rq, 1127 struct task_struct *task); 1128 1129 #ifdef CONFIG_FAIR_GROUP_SCHED 1130 void (*moved_group) (struct task_struct *p, int on_rq); 1131 #endif 1132 }; 1133 1134 struct load_weight { 1135 unsigned long weight, inv_weight; 1136 }; 1137 1138 /* 1139 * CFS stats for a schedulable entity (task, task-group etc) 1140 * 1141 * Current field usage histogram: 1142 * 1143 * 4 se->block_start 1144 * 4 se->run_node 1145 * 4 se->sleep_start 1146 * 6 se->load.weight 1147 */ 1148 struct sched_entity { 1149 struct load_weight load; /* for load-balancing */ 1150 struct rb_node run_node; 1151 struct list_head group_node; 1152 unsigned int on_rq; 1153 1154 u64 exec_start; 1155 u64 sum_exec_runtime; 1156 u64 vruntime; 1157 u64 prev_sum_exec_runtime; 1158 1159 u64 last_wakeup; 1160 u64 avg_overlap; 1161 1162 u64 nr_migrations; 1163 1164 u64 start_runtime; 1165 u64 avg_wakeup; 1166 1167 #ifdef CONFIG_SCHEDSTATS 1168 u64 wait_start; 1169 u64 wait_max; 1170 u64 wait_count; 1171 u64 wait_sum; 1172 u64 iowait_count; 1173 u64 iowait_sum; 1174 1175 u64 sleep_start; 1176 u64 sleep_max; 1177 s64 sum_sleep_runtime; 1178 1179 u64 block_start; 1180 u64 block_max; 1181 u64 exec_max; 1182 u64 slice_max; 1183 1184 u64 nr_migrations_cold; 1185 u64 nr_failed_migrations_affine; 1186 u64 nr_failed_migrations_running; 1187 u64 nr_failed_migrations_hot; 1188 u64 nr_forced_migrations; 1189 1190 u64 nr_wakeups; 1191 u64 nr_wakeups_sync; 1192 u64 nr_wakeups_migrate; 1193 u64 nr_wakeups_local; 1194 u64 nr_wakeups_remote; 1195 u64 nr_wakeups_affine; 1196 u64 nr_wakeups_affine_attempts; 1197 u64 nr_wakeups_passive; 1198 u64 nr_wakeups_idle; 1199 #endif 1200 1201 #ifdef CONFIG_FAIR_GROUP_SCHED 1202 struct sched_entity *parent; 1203 /* rq on which this entity is (to be) queued: */ 1204 struct cfs_rq *cfs_rq; 1205 /* rq "owned" by this entity/group: */ 1206 struct cfs_rq *my_q; 1207 #endif 1208 }; 1209 1210 struct sched_rt_entity { 1211 struct list_head run_list; 1212 unsigned long timeout; 1213 unsigned int time_slice; 1214 int nr_cpus_allowed; 1215 1216 struct sched_rt_entity *back; 1217 #ifdef CONFIG_RT_GROUP_SCHED 1218 struct sched_rt_entity *parent; 1219 /* rq on which this entity is (to be) queued: */ 1220 struct rt_rq *rt_rq; 1221 /* rq "owned" by this entity/group: */ 1222 struct rt_rq *my_q; 1223 #endif 1224 }; 1225 1226 struct rcu_node; 1227 1228 struct task_struct { 1229 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1230 void *stack; 1231 atomic_t usage; 1232 unsigned int flags; /* per process flags, defined below */ 1233 unsigned int ptrace; 1234 1235 int lock_depth; /* BKL lock depth */ 1236 1237 #ifdef CONFIG_SMP 1238 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1239 int oncpu; 1240 #endif 1241 #endif 1242 1243 int prio, static_prio, normal_prio; 1244 unsigned int rt_priority; 1245 const struct sched_class *sched_class; 1246 struct sched_entity se; 1247 struct sched_rt_entity rt; 1248 1249 #ifdef CONFIG_PREEMPT_NOTIFIERS 1250 /* list of struct preempt_notifier: */ 1251 struct hlist_head preempt_notifiers; 1252 #endif 1253 1254 /* 1255 * fpu_counter contains the number of consecutive context switches 1256 * that the FPU is used. If this is over a threshold, the lazy fpu 1257 * saving becomes unlazy to save the trap. This is an unsigned char 1258 * so that after 256 times the counter wraps and the behavior turns 1259 * lazy again; this to deal with bursty apps that only use FPU for 1260 * a short time 1261 */ 1262 unsigned char fpu_counter; 1263 #ifdef CONFIG_BLK_DEV_IO_TRACE 1264 unsigned int btrace_seq; 1265 #endif 1266 1267 unsigned int policy; 1268 cpumask_t cpus_allowed; 1269 1270 #ifdef CONFIG_TREE_PREEMPT_RCU 1271 int rcu_read_lock_nesting; 1272 char rcu_read_unlock_special; 1273 struct rcu_node *rcu_blocked_node; 1274 struct list_head rcu_node_entry; 1275 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1276 1277 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1278 struct sched_info sched_info; 1279 #endif 1280 1281 struct list_head tasks; 1282 struct plist_node pushable_tasks; 1283 1284 struct mm_struct *mm, *active_mm; 1285 1286 /* task state */ 1287 int exit_state; 1288 int exit_code, exit_signal; 1289 int pdeath_signal; /* The signal sent when the parent dies */ 1290 /* ??? */ 1291 unsigned int personality; 1292 unsigned did_exec:1; 1293 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1294 * execve */ 1295 unsigned in_iowait:1; 1296 1297 1298 /* Revert to default priority/policy when forking */ 1299 unsigned sched_reset_on_fork:1; 1300 1301 pid_t pid; 1302 pid_t tgid; 1303 1304 #ifdef CONFIG_CC_STACKPROTECTOR 1305 /* Canary value for the -fstack-protector gcc feature */ 1306 unsigned long stack_canary; 1307 #endif 1308 1309 /* 1310 * pointers to (original) parent process, youngest child, younger sibling, 1311 * older sibling, respectively. (p->father can be replaced with 1312 * p->real_parent->pid) 1313 */ 1314 struct task_struct *real_parent; /* real parent process */ 1315 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1316 /* 1317 * children/sibling forms the list of my natural children 1318 */ 1319 struct list_head children; /* list of my children */ 1320 struct list_head sibling; /* linkage in my parent's children list */ 1321 struct task_struct *group_leader; /* threadgroup leader */ 1322 1323 /* 1324 * ptraced is the list of tasks this task is using ptrace on. 1325 * This includes both natural children and PTRACE_ATTACH targets. 1326 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1327 */ 1328 struct list_head ptraced; 1329 struct list_head ptrace_entry; 1330 1331 /* 1332 * This is the tracer handle for the ptrace BTS extension. 1333 * This field actually belongs to the ptracer task. 1334 */ 1335 struct bts_context *bts; 1336 1337 /* PID/PID hash table linkage. */ 1338 struct pid_link pids[PIDTYPE_MAX]; 1339 struct list_head thread_group; 1340 1341 struct completion *vfork_done; /* for vfork() */ 1342 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1343 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1344 1345 cputime_t utime, stime, utimescaled, stimescaled; 1346 cputime_t gtime; 1347 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1348 cputime_t prev_utime, prev_stime; 1349 #endif 1350 unsigned long nvcsw, nivcsw; /* context switch counts */ 1351 struct timespec start_time; /* monotonic time */ 1352 struct timespec real_start_time; /* boot based time */ 1353 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1354 unsigned long min_flt, maj_flt; 1355 1356 struct task_cputime cputime_expires; 1357 struct list_head cpu_timers[3]; 1358 1359 /* process credentials */ 1360 const struct cred *real_cred; /* objective and real subjective task 1361 * credentials (COW) */ 1362 const struct cred *cred; /* effective (overridable) subjective task 1363 * credentials (COW) */ 1364 struct mutex cred_guard_mutex; /* guard against foreign influences on 1365 * credential calculations 1366 * (notably. ptrace) */ 1367 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1368 1369 char comm[TASK_COMM_LEN]; /* executable name excluding path 1370 - access with [gs]et_task_comm (which lock 1371 it with task_lock()) 1372 - initialized normally by flush_old_exec */ 1373 /* file system info */ 1374 int link_count, total_link_count; 1375 #ifdef CONFIG_SYSVIPC 1376 /* ipc stuff */ 1377 struct sysv_sem sysvsem; 1378 #endif 1379 #ifdef CONFIG_DETECT_HUNG_TASK 1380 /* hung task detection */ 1381 unsigned long last_switch_count; 1382 #endif 1383 /* CPU-specific state of this task */ 1384 struct thread_struct thread; 1385 /* filesystem information */ 1386 struct fs_struct *fs; 1387 /* open file information */ 1388 struct files_struct *files; 1389 /* namespaces */ 1390 struct nsproxy *nsproxy; 1391 /* signal handlers */ 1392 struct signal_struct *signal; 1393 struct sighand_struct *sighand; 1394 1395 sigset_t blocked, real_blocked; 1396 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1397 struct sigpending pending; 1398 1399 unsigned long sas_ss_sp; 1400 size_t sas_ss_size; 1401 int (*notifier)(void *priv); 1402 void *notifier_data; 1403 sigset_t *notifier_mask; 1404 struct audit_context *audit_context; 1405 #ifdef CONFIG_AUDITSYSCALL 1406 uid_t loginuid; 1407 unsigned int sessionid; 1408 #endif 1409 seccomp_t seccomp; 1410 1411 /* Thread group tracking */ 1412 u32 parent_exec_id; 1413 u32 self_exec_id; 1414 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1415 * mempolicy */ 1416 spinlock_t alloc_lock; 1417 1418 #ifdef CONFIG_GENERIC_HARDIRQS 1419 /* IRQ handler threads */ 1420 struct irqaction *irqaction; 1421 #endif 1422 1423 /* Protection of the PI data structures: */ 1424 raw_spinlock_t pi_lock; 1425 1426 #ifdef CONFIG_RT_MUTEXES 1427 /* PI waiters blocked on a rt_mutex held by this task */ 1428 struct plist_head pi_waiters; 1429 /* Deadlock detection and priority inheritance handling */ 1430 struct rt_mutex_waiter *pi_blocked_on; 1431 #endif 1432 1433 #ifdef CONFIG_DEBUG_MUTEXES 1434 /* mutex deadlock detection */ 1435 struct mutex_waiter *blocked_on; 1436 #endif 1437 #ifdef CONFIG_TRACE_IRQFLAGS 1438 unsigned int irq_events; 1439 unsigned long hardirq_enable_ip; 1440 unsigned long hardirq_disable_ip; 1441 unsigned int hardirq_enable_event; 1442 unsigned int hardirq_disable_event; 1443 int hardirqs_enabled; 1444 int hardirq_context; 1445 unsigned long softirq_disable_ip; 1446 unsigned long softirq_enable_ip; 1447 unsigned int softirq_disable_event; 1448 unsigned int softirq_enable_event; 1449 int softirqs_enabled; 1450 int softirq_context; 1451 #endif 1452 #ifdef CONFIG_LOCKDEP 1453 # define MAX_LOCK_DEPTH 48UL 1454 u64 curr_chain_key; 1455 int lockdep_depth; 1456 unsigned int lockdep_recursion; 1457 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1458 gfp_t lockdep_reclaim_gfp; 1459 #endif 1460 1461 /* journalling filesystem info */ 1462 void *journal_info; 1463 1464 /* stacked block device info */ 1465 struct bio *bio_list, **bio_tail; 1466 1467 /* VM state */ 1468 struct reclaim_state *reclaim_state; 1469 1470 struct backing_dev_info *backing_dev_info; 1471 1472 struct io_context *io_context; 1473 1474 unsigned long ptrace_message; 1475 siginfo_t *last_siginfo; /* For ptrace use. */ 1476 struct task_io_accounting ioac; 1477 #if defined(CONFIG_TASK_XACCT) 1478 u64 acct_rss_mem1; /* accumulated rss usage */ 1479 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1480 cputime_t acct_timexpd; /* stime + utime since last update */ 1481 #endif 1482 #ifdef CONFIG_CPUSETS 1483 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1484 int cpuset_mem_spread_rotor; 1485 #endif 1486 #ifdef CONFIG_CGROUPS 1487 /* Control Group info protected by css_set_lock */ 1488 struct css_set *cgroups; 1489 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1490 struct list_head cg_list; 1491 #endif 1492 #ifdef CONFIG_FUTEX 1493 struct robust_list_head __user *robust_list; 1494 #ifdef CONFIG_COMPAT 1495 struct compat_robust_list_head __user *compat_robust_list; 1496 #endif 1497 struct list_head pi_state_list; 1498 struct futex_pi_state *pi_state_cache; 1499 #endif 1500 #ifdef CONFIG_PERF_EVENTS 1501 struct perf_event_context *perf_event_ctxp; 1502 struct mutex perf_event_mutex; 1503 struct list_head perf_event_list; 1504 #endif 1505 #ifdef CONFIG_NUMA 1506 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1507 short il_next; 1508 #endif 1509 atomic_t fs_excl; /* holding fs exclusive resources */ 1510 struct rcu_head rcu; 1511 1512 /* 1513 * cache last used pipe for splice 1514 */ 1515 struct pipe_inode_info *splice_pipe; 1516 #ifdef CONFIG_TASK_DELAY_ACCT 1517 struct task_delay_info *delays; 1518 #endif 1519 #ifdef CONFIG_FAULT_INJECTION 1520 int make_it_fail; 1521 #endif 1522 struct prop_local_single dirties; 1523 #ifdef CONFIG_LATENCYTOP 1524 int latency_record_count; 1525 struct latency_record latency_record[LT_SAVECOUNT]; 1526 #endif 1527 /* 1528 * time slack values; these are used to round up poll() and 1529 * select() etc timeout values. These are in nanoseconds. 1530 */ 1531 unsigned long timer_slack_ns; 1532 unsigned long default_timer_slack_ns; 1533 1534 struct list_head *scm_work_list; 1535 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1536 /* Index of current stored adress in ret_stack */ 1537 int curr_ret_stack; 1538 /* Stack of return addresses for return function tracing */ 1539 struct ftrace_ret_stack *ret_stack; 1540 /* time stamp for last schedule */ 1541 unsigned long long ftrace_timestamp; 1542 /* 1543 * Number of functions that haven't been traced 1544 * because of depth overrun. 1545 */ 1546 atomic_t trace_overrun; 1547 /* Pause for the tracing */ 1548 atomic_t tracing_graph_pause; 1549 #endif 1550 #ifdef CONFIG_TRACING 1551 /* state flags for use by tracers */ 1552 unsigned long trace; 1553 /* bitmask of trace recursion */ 1554 unsigned long trace_recursion; 1555 #endif /* CONFIG_TRACING */ 1556 unsigned long stack_start; 1557 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1558 struct memcg_batch_info { 1559 int do_batch; /* incremented when batch uncharge started */ 1560 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1561 unsigned long bytes; /* uncharged usage */ 1562 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1563 } memcg_batch; 1564 #endif 1565 }; 1566 1567 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1568 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1569 1570 /* 1571 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1572 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1573 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1574 * values are inverted: lower p->prio value means higher priority. 1575 * 1576 * The MAX_USER_RT_PRIO value allows the actual maximum 1577 * RT priority to be separate from the value exported to 1578 * user-space. This allows kernel threads to set their 1579 * priority to a value higher than any user task. Note: 1580 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1581 */ 1582 1583 #define MAX_USER_RT_PRIO 100 1584 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1585 1586 #define MAX_PRIO (MAX_RT_PRIO + 40) 1587 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1588 1589 static inline int rt_prio(int prio) 1590 { 1591 if (unlikely(prio < MAX_RT_PRIO)) 1592 return 1; 1593 return 0; 1594 } 1595 1596 static inline int rt_task(struct task_struct *p) 1597 { 1598 return rt_prio(p->prio); 1599 } 1600 1601 static inline struct pid *task_pid(struct task_struct *task) 1602 { 1603 return task->pids[PIDTYPE_PID].pid; 1604 } 1605 1606 static inline struct pid *task_tgid(struct task_struct *task) 1607 { 1608 return task->group_leader->pids[PIDTYPE_PID].pid; 1609 } 1610 1611 /* 1612 * Without tasklist or rcu lock it is not safe to dereference 1613 * the result of task_pgrp/task_session even if task == current, 1614 * we can race with another thread doing sys_setsid/sys_setpgid. 1615 */ 1616 static inline struct pid *task_pgrp(struct task_struct *task) 1617 { 1618 return task->group_leader->pids[PIDTYPE_PGID].pid; 1619 } 1620 1621 static inline struct pid *task_session(struct task_struct *task) 1622 { 1623 return task->group_leader->pids[PIDTYPE_SID].pid; 1624 } 1625 1626 struct pid_namespace; 1627 1628 /* 1629 * the helpers to get the task's different pids as they are seen 1630 * from various namespaces 1631 * 1632 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1633 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1634 * current. 1635 * task_xid_nr_ns() : id seen from the ns specified; 1636 * 1637 * set_task_vxid() : assigns a virtual id to a task; 1638 * 1639 * see also pid_nr() etc in include/linux/pid.h 1640 */ 1641 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1642 struct pid_namespace *ns); 1643 1644 static inline pid_t task_pid_nr(struct task_struct *tsk) 1645 { 1646 return tsk->pid; 1647 } 1648 1649 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1650 struct pid_namespace *ns) 1651 { 1652 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1653 } 1654 1655 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1656 { 1657 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1658 } 1659 1660 1661 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1662 { 1663 return tsk->tgid; 1664 } 1665 1666 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1667 1668 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1669 { 1670 return pid_vnr(task_tgid(tsk)); 1671 } 1672 1673 1674 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1675 struct pid_namespace *ns) 1676 { 1677 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1678 } 1679 1680 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1681 { 1682 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1683 } 1684 1685 1686 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1687 struct pid_namespace *ns) 1688 { 1689 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1690 } 1691 1692 static inline pid_t task_session_vnr(struct task_struct *tsk) 1693 { 1694 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1695 } 1696 1697 /* obsolete, do not use */ 1698 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1699 { 1700 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1701 } 1702 1703 /** 1704 * pid_alive - check that a task structure is not stale 1705 * @p: Task structure to be checked. 1706 * 1707 * Test if a process is not yet dead (at most zombie state) 1708 * If pid_alive fails, then pointers within the task structure 1709 * can be stale and must not be dereferenced. 1710 */ 1711 static inline int pid_alive(struct task_struct *p) 1712 { 1713 return p->pids[PIDTYPE_PID].pid != NULL; 1714 } 1715 1716 /** 1717 * is_global_init - check if a task structure is init 1718 * @tsk: Task structure to be checked. 1719 * 1720 * Check if a task structure is the first user space task the kernel created. 1721 */ 1722 static inline int is_global_init(struct task_struct *tsk) 1723 { 1724 return tsk->pid == 1; 1725 } 1726 1727 /* 1728 * is_container_init: 1729 * check whether in the task is init in its own pid namespace. 1730 */ 1731 extern int is_container_init(struct task_struct *tsk); 1732 1733 extern struct pid *cad_pid; 1734 1735 extern void free_task(struct task_struct *tsk); 1736 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1737 1738 extern void __put_task_struct(struct task_struct *t); 1739 1740 static inline void put_task_struct(struct task_struct *t) 1741 { 1742 if (atomic_dec_and_test(&t->usage)) 1743 __put_task_struct(t); 1744 } 1745 1746 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1747 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1748 1749 /* 1750 * Per process flags 1751 */ 1752 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1753 /* Not implemented yet, only for 486*/ 1754 #define PF_STARTING 0x00000002 /* being created */ 1755 #define PF_EXITING 0x00000004 /* getting shut down */ 1756 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1757 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1758 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1759 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1760 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1761 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1762 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1763 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1764 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1765 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1766 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1767 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1768 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1769 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1770 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1771 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1772 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1773 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1774 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1775 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1776 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1777 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1778 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1779 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1780 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1781 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1782 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1783 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1784 1785 /* 1786 * Only the _current_ task can read/write to tsk->flags, but other 1787 * tasks can access tsk->flags in readonly mode for example 1788 * with tsk_used_math (like during threaded core dumping). 1789 * There is however an exception to this rule during ptrace 1790 * or during fork: the ptracer task is allowed to write to the 1791 * child->flags of its traced child (same goes for fork, the parent 1792 * can write to the child->flags), because we're guaranteed the 1793 * child is not running and in turn not changing child->flags 1794 * at the same time the parent does it. 1795 */ 1796 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1797 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1798 #define clear_used_math() clear_stopped_child_used_math(current) 1799 #define set_used_math() set_stopped_child_used_math(current) 1800 #define conditional_stopped_child_used_math(condition, child) \ 1801 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1802 #define conditional_used_math(condition) \ 1803 conditional_stopped_child_used_math(condition, current) 1804 #define copy_to_stopped_child_used_math(child) \ 1805 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1806 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1807 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1808 #define used_math() tsk_used_math(current) 1809 1810 #ifdef CONFIG_TREE_PREEMPT_RCU 1811 1812 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1813 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1814 1815 static inline void rcu_copy_process(struct task_struct *p) 1816 { 1817 p->rcu_read_lock_nesting = 0; 1818 p->rcu_read_unlock_special = 0; 1819 p->rcu_blocked_node = NULL; 1820 INIT_LIST_HEAD(&p->rcu_node_entry); 1821 } 1822 1823 #else 1824 1825 static inline void rcu_copy_process(struct task_struct *p) 1826 { 1827 } 1828 1829 #endif 1830 1831 #ifdef CONFIG_SMP 1832 extern int set_cpus_allowed_ptr(struct task_struct *p, 1833 const struct cpumask *new_mask); 1834 #else 1835 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1836 const struct cpumask *new_mask) 1837 { 1838 if (!cpumask_test_cpu(0, new_mask)) 1839 return -EINVAL; 1840 return 0; 1841 } 1842 #endif 1843 1844 #ifndef CONFIG_CPUMASK_OFFSTACK 1845 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1846 { 1847 return set_cpus_allowed_ptr(p, &new_mask); 1848 } 1849 #endif 1850 1851 /* 1852 * Architectures can set this to 1 if they have specified 1853 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1854 * but then during bootup it turns out that sched_clock() 1855 * is reliable after all: 1856 */ 1857 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1858 extern int sched_clock_stable; 1859 #endif 1860 1861 /* ftrace calls sched_clock() directly */ 1862 extern unsigned long long notrace sched_clock(void); 1863 1864 extern void sched_clock_init(void); 1865 extern u64 sched_clock_cpu(int cpu); 1866 1867 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1868 static inline void sched_clock_tick(void) 1869 { 1870 } 1871 1872 static inline void sched_clock_idle_sleep_event(void) 1873 { 1874 } 1875 1876 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1877 { 1878 } 1879 #else 1880 extern void sched_clock_tick(void); 1881 extern void sched_clock_idle_sleep_event(void); 1882 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1883 #endif 1884 1885 /* 1886 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1887 * clock constructed from sched_clock(): 1888 */ 1889 extern unsigned long long cpu_clock(int cpu); 1890 1891 extern unsigned long long 1892 task_sched_runtime(struct task_struct *task); 1893 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1894 1895 /* sched_exec is called by processes performing an exec */ 1896 #ifdef CONFIG_SMP 1897 extern void sched_exec(void); 1898 #else 1899 #define sched_exec() {} 1900 #endif 1901 1902 extern void sched_clock_idle_sleep_event(void); 1903 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1904 1905 #ifdef CONFIG_HOTPLUG_CPU 1906 extern void idle_task_exit(void); 1907 #else 1908 static inline void idle_task_exit(void) {} 1909 #endif 1910 1911 extern void sched_idle_next(void); 1912 1913 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1914 extern void wake_up_idle_cpu(int cpu); 1915 #else 1916 static inline void wake_up_idle_cpu(int cpu) { } 1917 #endif 1918 1919 extern unsigned int sysctl_sched_latency; 1920 extern unsigned int sysctl_sched_min_granularity; 1921 extern unsigned int sysctl_sched_wakeup_granularity; 1922 extern unsigned int sysctl_sched_shares_ratelimit; 1923 extern unsigned int sysctl_sched_shares_thresh; 1924 extern unsigned int sysctl_sched_child_runs_first; 1925 1926 enum sched_tunable_scaling { 1927 SCHED_TUNABLESCALING_NONE, 1928 SCHED_TUNABLESCALING_LOG, 1929 SCHED_TUNABLESCALING_LINEAR, 1930 SCHED_TUNABLESCALING_END, 1931 }; 1932 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1933 1934 #ifdef CONFIG_SCHED_DEBUG 1935 extern unsigned int sysctl_sched_migration_cost; 1936 extern unsigned int sysctl_sched_nr_migrate; 1937 extern unsigned int sysctl_sched_time_avg; 1938 extern unsigned int sysctl_timer_migration; 1939 1940 int sched_proc_update_handler(struct ctl_table *table, int write, 1941 void __user *buffer, size_t *length, 1942 loff_t *ppos); 1943 #endif 1944 #ifdef CONFIG_SCHED_DEBUG 1945 static inline unsigned int get_sysctl_timer_migration(void) 1946 { 1947 return sysctl_timer_migration; 1948 } 1949 #else 1950 static inline unsigned int get_sysctl_timer_migration(void) 1951 { 1952 return 1; 1953 } 1954 #endif 1955 extern unsigned int sysctl_sched_rt_period; 1956 extern int sysctl_sched_rt_runtime; 1957 1958 int sched_rt_handler(struct ctl_table *table, int write, 1959 void __user *buffer, size_t *lenp, 1960 loff_t *ppos); 1961 1962 extern unsigned int sysctl_sched_compat_yield; 1963 1964 #ifdef CONFIG_RT_MUTEXES 1965 extern int rt_mutex_getprio(struct task_struct *p); 1966 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1967 extern void rt_mutex_adjust_pi(struct task_struct *p); 1968 #else 1969 static inline int rt_mutex_getprio(struct task_struct *p) 1970 { 1971 return p->normal_prio; 1972 } 1973 # define rt_mutex_adjust_pi(p) do { } while (0) 1974 #endif 1975 1976 extern void set_user_nice(struct task_struct *p, long nice); 1977 extern int task_prio(const struct task_struct *p); 1978 extern int task_nice(const struct task_struct *p); 1979 extern int can_nice(const struct task_struct *p, const int nice); 1980 extern int task_curr(const struct task_struct *p); 1981 extern int idle_cpu(int cpu); 1982 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1983 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1984 struct sched_param *); 1985 extern struct task_struct *idle_task(int cpu); 1986 extern struct task_struct *curr_task(int cpu); 1987 extern void set_curr_task(int cpu, struct task_struct *p); 1988 1989 void yield(void); 1990 1991 /* 1992 * The default (Linux) execution domain. 1993 */ 1994 extern struct exec_domain default_exec_domain; 1995 1996 union thread_union { 1997 struct thread_info thread_info; 1998 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1999 }; 2000 2001 #ifndef __HAVE_ARCH_KSTACK_END 2002 static inline int kstack_end(void *addr) 2003 { 2004 /* Reliable end of stack detection: 2005 * Some APM bios versions misalign the stack 2006 */ 2007 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2008 } 2009 #endif 2010 2011 extern union thread_union init_thread_union; 2012 extern struct task_struct init_task; 2013 2014 extern struct mm_struct init_mm; 2015 2016 extern struct pid_namespace init_pid_ns; 2017 2018 /* 2019 * find a task by one of its numerical ids 2020 * 2021 * find_task_by_pid_ns(): 2022 * finds a task by its pid in the specified namespace 2023 * find_task_by_vpid(): 2024 * finds a task by its virtual pid 2025 * 2026 * see also find_vpid() etc in include/linux/pid.h 2027 */ 2028 2029 extern struct task_struct *find_task_by_vpid(pid_t nr); 2030 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2031 struct pid_namespace *ns); 2032 2033 extern void __set_special_pids(struct pid *pid); 2034 2035 /* per-UID process charging. */ 2036 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2037 static inline struct user_struct *get_uid(struct user_struct *u) 2038 { 2039 atomic_inc(&u->__count); 2040 return u; 2041 } 2042 extern void free_uid(struct user_struct *); 2043 extern void release_uids(struct user_namespace *ns); 2044 2045 #include <asm/current.h> 2046 2047 extern void do_timer(unsigned long ticks); 2048 2049 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2050 extern int wake_up_process(struct task_struct *tsk); 2051 extern void wake_up_new_task(struct task_struct *tsk, 2052 unsigned long clone_flags); 2053 #ifdef CONFIG_SMP 2054 extern void kick_process(struct task_struct *tsk); 2055 #else 2056 static inline void kick_process(struct task_struct *tsk) { } 2057 #endif 2058 extern void sched_fork(struct task_struct *p, int clone_flags); 2059 extern void sched_dead(struct task_struct *p); 2060 2061 extern void proc_caches_init(void); 2062 extern void flush_signals(struct task_struct *); 2063 extern void __flush_signals(struct task_struct *); 2064 extern void ignore_signals(struct task_struct *); 2065 extern void flush_signal_handlers(struct task_struct *, int force_default); 2066 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2067 2068 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2069 { 2070 unsigned long flags; 2071 int ret; 2072 2073 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2074 ret = dequeue_signal(tsk, mask, info); 2075 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2076 2077 return ret; 2078 } 2079 2080 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2081 sigset_t *mask); 2082 extern void unblock_all_signals(void); 2083 extern void release_task(struct task_struct * p); 2084 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2085 extern int force_sigsegv(int, struct task_struct *); 2086 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2087 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2088 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2089 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2090 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2091 extern int kill_pid(struct pid *pid, int sig, int priv); 2092 extern int kill_proc_info(int, struct siginfo *, pid_t); 2093 extern int do_notify_parent(struct task_struct *, int); 2094 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2095 extern void force_sig(int, struct task_struct *); 2096 extern int send_sig(int, struct task_struct *, int); 2097 extern void zap_other_threads(struct task_struct *p); 2098 extern struct sigqueue *sigqueue_alloc(void); 2099 extern void sigqueue_free(struct sigqueue *); 2100 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2101 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2102 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2103 2104 static inline int kill_cad_pid(int sig, int priv) 2105 { 2106 return kill_pid(cad_pid, sig, priv); 2107 } 2108 2109 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2110 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2111 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2112 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2113 2114 /* 2115 * True if we are on the alternate signal stack. 2116 */ 2117 static inline int on_sig_stack(unsigned long sp) 2118 { 2119 #ifdef CONFIG_STACK_GROWSUP 2120 return sp >= current->sas_ss_sp && 2121 sp - current->sas_ss_sp < current->sas_ss_size; 2122 #else 2123 return sp > current->sas_ss_sp && 2124 sp - current->sas_ss_sp <= current->sas_ss_size; 2125 #endif 2126 } 2127 2128 static inline int sas_ss_flags(unsigned long sp) 2129 { 2130 return (current->sas_ss_size == 0 ? SS_DISABLE 2131 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2132 } 2133 2134 /* 2135 * Routines for handling mm_structs 2136 */ 2137 extern struct mm_struct * mm_alloc(void); 2138 2139 /* mmdrop drops the mm and the page tables */ 2140 extern void __mmdrop(struct mm_struct *); 2141 static inline void mmdrop(struct mm_struct * mm) 2142 { 2143 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2144 __mmdrop(mm); 2145 } 2146 2147 /* mmput gets rid of the mappings and all user-space */ 2148 extern void mmput(struct mm_struct *); 2149 /* Grab a reference to a task's mm, if it is not already going away */ 2150 extern struct mm_struct *get_task_mm(struct task_struct *task); 2151 /* Remove the current tasks stale references to the old mm_struct */ 2152 extern void mm_release(struct task_struct *, struct mm_struct *); 2153 /* Allocate a new mm structure and copy contents from tsk->mm */ 2154 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2155 2156 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2157 struct task_struct *, struct pt_regs *); 2158 extern void flush_thread(void); 2159 extern void exit_thread(void); 2160 2161 extern void exit_files(struct task_struct *); 2162 extern void __cleanup_signal(struct signal_struct *); 2163 extern void __cleanup_sighand(struct sighand_struct *); 2164 2165 extern void exit_itimers(struct signal_struct *); 2166 extern void flush_itimer_signals(void); 2167 2168 extern NORET_TYPE void do_group_exit(int); 2169 2170 extern void daemonize(const char *, ...); 2171 extern int allow_signal(int); 2172 extern int disallow_signal(int); 2173 2174 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 2175 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2176 struct task_struct *fork_idle(int); 2177 2178 extern void set_task_comm(struct task_struct *tsk, char *from); 2179 extern char *get_task_comm(char *to, struct task_struct *tsk); 2180 2181 #ifdef CONFIG_SMP 2182 extern void wait_task_context_switch(struct task_struct *p); 2183 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2184 #else 2185 static inline void wait_task_context_switch(struct task_struct *p) {} 2186 static inline unsigned long wait_task_inactive(struct task_struct *p, 2187 long match_state) 2188 { 2189 return 1; 2190 } 2191 #endif 2192 2193 #define next_task(p) \ 2194 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2195 2196 #define for_each_process(p) \ 2197 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2198 2199 extern bool current_is_single_threaded(void); 2200 2201 /* 2202 * Careful: do_each_thread/while_each_thread is a double loop so 2203 * 'break' will not work as expected - use goto instead. 2204 */ 2205 #define do_each_thread(g, t) \ 2206 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2207 2208 #define while_each_thread(g, t) \ 2209 while ((t = next_thread(t)) != g) 2210 2211 /* de_thread depends on thread_group_leader not being a pid based check */ 2212 #define thread_group_leader(p) (p == p->group_leader) 2213 2214 /* Do to the insanities of de_thread it is possible for a process 2215 * to have the pid of the thread group leader without actually being 2216 * the thread group leader. For iteration through the pids in proc 2217 * all we care about is that we have a task with the appropriate 2218 * pid, we don't actually care if we have the right task. 2219 */ 2220 static inline int has_group_leader_pid(struct task_struct *p) 2221 { 2222 return p->pid == p->tgid; 2223 } 2224 2225 static inline 2226 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2227 { 2228 return p1->tgid == p2->tgid; 2229 } 2230 2231 static inline struct task_struct *next_thread(const struct task_struct *p) 2232 { 2233 return list_entry_rcu(p->thread_group.next, 2234 struct task_struct, thread_group); 2235 } 2236 2237 static inline int thread_group_empty(struct task_struct *p) 2238 { 2239 return list_empty(&p->thread_group); 2240 } 2241 2242 #define delay_group_leader(p) \ 2243 (thread_group_leader(p) && !thread_group_empty(p)) 2244 2245 static inline int task_detached(struct task_struct *p) 2246 { 2247 return p->exit_signal == -1; 2248 } 2249 2250 /* 2251 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2252 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2253 * pins the final release of task.io_context. Also protects ->cpuset and 2254 * ->cgroup.subsys[]. 2255 * 2256 * Nests both inside and outside of read_lock(&tasklist_lock). 2257 * It must not be nested with write_lock_irq(&tasklist_lock), 2258 * neither inside nor outside. 2259 */ 2260 static inline void task_lock(struct task_struct *p) 2261 { 2262 spin_lock(&p->alloc_lock); 2263 } 2264 2265 static inline void task_unlock(struct task_struct *p) 2266 { 2267 spin_unlock(&p->alloc_lock); 2268 } 2269 2270 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2271 unsigned long *flags); 2272 2273 static inline void unlock_task_sighand(struct task_struct *tsk, 2274 unsigned long *flags) 2275 { 2276 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2277 } 2278 2279 #ifndef __HAVE_THREAD_FUNCTIONS 2280 2281 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2282 #define task_stack_page(task) ((task)->stack) 2283 2284 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2285 { 2286 *task_thread_info(p) = *task_thread_info(org); 2287 task_thread_info(p)->task = p; 2288 } 2289 2290 static inline unsigned long *end_of_stack(struct task_struct *p) 2291 { 2292 return (unsigned long *)(task_thread_info(p) + 1); 2293 } 2294 2295 #endif 2296 2297 static inline int object_is_on_stack(void *obj) 2298 { 2299 void *stack = task_stack_page(current); 2300 2301 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2302 } 2303 2304 extern void thread_info_cache_init(void); 2305 2306 #ifdef CONFIG_DEBUG_STACK_USAGE 2307 static inline unsigned long stack_not_used(struct task_struct *p) 2308 { 2309 unsigned long *n = end_of_stack(p); 2310 2311 do { /* Skip over canary */ 2312 n++; 2313 } while (!*n); 2314 2315 return (unsigned long)n - (unsigned long)end_of_stack(p); 2316 } 2317 #endif 2318 2319 /* set thread flags in other task's structures 2320 * - see asm/thread_info.h for TIF_xxxx flags available 2321 */ 2322 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2323 { 2324 set_ti_thread_flag(task_thread_info(tsk), flag); 2325 } 2326 2327 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2328 { 2329 clear_ti_thread_flag(task_thread_info(tsk), flag); 2330 } 2331 2332 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2333 { 2334 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2335 } 2336 2337 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2338 { 2339 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2340 } 2341 2342 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2343 { 2344 return test_ti_thread_flag(task_thread_info(tsk), flag); 2345 } 2346 2347 static inline void set_tsk_need_resched(struct task_struct *tsk) 2348 { 2349 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2350 } 2351 2352 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2353 { 2354 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2355 } 2356 2357 static inline int test_tsk_need_resched(struct task_struct *tsk) 2358 { 2359 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2360 } 2361 2362 static inline int restart_syscall(void) 2363 { 2364 set_tsk_thread_flag(current, TIF_SIGPENDING); 2365 return -ERESTARTNOINTR; 2366 } 2367 2368 static inline int signal_pending(struct task_struct *p) 2369 { 2370 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2371 } 2372 2373 static inline int __fatal_signal_pending(struct task_struct *p) 2374 { 2375 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2376 } 2377 2378 static inline int fatal_signal_pending(struct task_struct *p) 2379 { 2380 return signal_pending(p) && __fatal_signal_pending(p); 2381 } 2382 2383 static inline int signal_pending_state(long state, struct task_struct *p) 2384 { 2385 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2386 return 0; 2387 if (!signal_pending(p)) 2388 return 0; 2389 2390 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2391 } 2392 2393 static inline int need_resched(void) 2394 { 2395 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2396 } 2397 2398 /* 2399 * cond_resched() and cond_resched_lock(): latency reduction via 2400 * explicit rescheduling in places that are safe. The return 2401 * value indicates whether a reschedule was done in fact. 2402 * cond_resched_lock() will drop the spinlock before scheduling, 2403 * cond_resched_softirq() will enable bhs before scheduling. 2404 */ 2405 extern int _cond_resched(void); 2406 2407 #define cond_resched() ({ \ 2408 __might_sleep(__FILE__, __LINE__, 0); \ 2409 _cond_resched(); \ 2410 }) 2411 2412 extern int __cond_resched_lock(spinlock_t *lock); 2413 2414 #ifdef CONFIG_PREEMPT 2415 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2416 #else 2417 #define PREEMPT_LOCK_OFFSET 0 2418 #endif 2419 2420 #define cond_resched_lock(lock) ({ \ 2421 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2422 __cond_resched_lock(lock); \ 2423 }) 2424 2425 extern int __cond_resched_softirq(void); 2426 2427 #define cond_resched_softirq() ({ \ 2428 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2429 __cond_resched_softirq(); \ 2430 }) 2431 2432 /* 2433 * Does a critical section need to be broken due to another 2434 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2435 * but a general need for low latency) 2436 */ 2437 static inline int spin_needbreak(spinlock_t *lock) 2438 { 2439 #ifdef CONFIG_PREEMPT 2440 return spin_is_contended(lock); 2441 #else 2442 return 0; 2443 #endif 2444 } 2445 2446 /* 2447 * Thread group CPU time accounting. 2448 */ 2449 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2450 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2451 2452 static inline void thread_group_cputime_init(struct signal_struct *sig) 2453 { 2454 sig->cputimer.cputime = INIT_CPUTIME; 2455 spin_lock_init(&sig->cputimer.lock); 2456 sig->cputimer.running = 0; 2457 } 2458 2459 static inline void thread_group_cputime_free(struct signal_struct *sig) 2460 { 2461 } 2462 2463 /* 2464 * Reevaluate whether the task has signals pending delivery. 2465 * Wake the task if so. 2466 * This is required every time the blocked sigset_t changes. 2467 * callers must hold sighand->siglock. 2468 */ 2469 extern void recalc_sigpending_and_wake(struct task_struct *t); 2470 extern void recalc_sigpending(void); 2471 2472 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2473 2474 /* 2475 * Wrappers for p->thread_info->cpu access. No-op on UP. 2476 */ 2477 #ifdef CONFIG_SMP 2478 2479 static inline unsigned int task_cpu(const struct task_struct *p) 2480 { 2481 return task_thread_info(p)->cpu; 2482 } 2483 2484 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2485 2486 #else 2487 2488 static inline unsigned int task_cpu(const struct task_struct *p) 2489 { 2490 return 0; 2491 } 2492 2493 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2494 { 2495 } 2496 2497 #endif /* CONFIG_SMP */ 2498 2499 #ifdef CONFIG_TRACING 2500 extern void 2501 __trace_special(void *__tr, void *__data, 2502 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2503 #else 2504 static inline void 2505 __trace_special(void *__tr, void *__data, 2506 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2507 { 2508 } 2509 #endif 2510 2511 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2512 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2513 2514 extern void normalize_rt_tasks(void); 2515 2516 #ifdef CONFIG_GROUP_SCHED 2517 2518 extern struct task_group init_task_group; 2519 #ifdef CONFIG_USER_SCHED 2520 extern struct task_group root_task_group; 2521 extern void set_tg_uid(struct user_struct *user); 2522 #endif 2523 2524 extern struct task_group *sched_create_group(struct task_group *parent); 2525 extern void sched_destroy_group(struct task_group *tg); 2526 extern void sched_move_task(struct task_struct *tsk); 2527 #ifdef CONFIG_FAIR_GROUP_SCHED 2528 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2529 extern unsigned long sched_group_shares(struct task_group *tg); 2530 #endif 2531 #ifdef CONFIG_RT_GROUP_SCHED 2532 extern int sched_group_set_rt_runtime(struct task_group *tg, 2533 long rt_runtime_us); 2534 extern long sched_group_rt_runtime(struct task_group *tg); 2535 extern int sched_group_set_rt_period(struct task_group *tg, 2536 long rt_period_us); 2537 extern long sched_group_rt_period(struct task_group *tg); 2538 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2539 #endif 2540 #endif 2541 2542 extern int task_can_switch_user(struct user_struct *up, 2543 struct task_struct *tsk); 2544 2545 #ifdef CONFIG_TASK_XACCT 2546 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2547 { 2548 tsk->ioac.rchar += amt; 2549 } 2550 2551 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2552 { 2553 tsk->ioac.wchar += amt; 2554 } 2555 2556 static inline void inc_syscr(struct task_struct *tsk) 2557 { 2558 tsk->ioac.syscr++; 2559 } 2560 2561 static inline void inc_syscw(struct task_struct *tsk) 2562 { 2563 tsk->ioac.syscw++; 2564 } 2565 #else 2566 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2567 { 2568 } 2569 2570 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2571 { 2572 } 2573 2574 static inline void inc_syscr(struct task_struct *tsk) 2575 { 2576 } 2577 2578 static inline void inc_syscw(struct task_struct *tsk) 2579 { 2580 } 2581 #endif 2582 2583 #ifndef TASK_SIZE_OF 2584 #define TASK_SIZE_OF(tsk) TASK_SIZE 2585 #endif 2586 2587 /* 2588 * Call the function if the target task is executing on a CPU right now: 2589 */ 2590 extern void task_oncpu_function_call(struct task_struct *p, 2591 void (*func) (void *info), void *info); 2592 2593 2594 #ifdef CONFIG_MM_OWNER 2595 extern void mm_update_next_owner(struct mm_struct *mm); 2596 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2597 #else 2598 static inline void mm_update_next_owner(struct mm_struct *mm) 2599 { 2600 } 2601 2602 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2603 { 2604 } 2605 #endif /* CONFIG_MM_OWNER */ 2606 2607 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2608 unsigned int limit) 2609 { 2610 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2611 } 2612 2613 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2614 unsigned int limit) 2615 { 2616 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2617 } 2618 2619 static inline unsigned long rlimit(unsigned int limit) 2620 { 2621 return task_rlimit(current, limit); 2622 } 2623 2624 static inline unsigned long rlimit_max(unsigned int limit) 2625 { 2626 return task_rlimit_max(current, limit); 2627 } 2628 2629 #endif /* __KERNEL__ */ 2630 2631 #endif 2632