1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/mm_types_task.h> 31 #include <linux/task_io_accounting.h> 32 #include <linux/posix-timers.h> 33 #include <linux/rseq.h> 34 35 /* task_struct member predeclarations (sorted alphabetically): */ 36 struct audit_context; 37 struct backing_dev_info; 38 struct bio_list; 39 struct blk_plug; 40 struct capture_control; 41 struct cfs_rq; 42 struct fs_struct; 43 struct futex_pi_state; 44 struct io_context; 45 struct mempolicy; 46 struct nameidata; 47 struct nsproxy; 48 struct perf_event_context; 49 struct pid_namespace; 50 struct pipe_inode_info; 51 struct rcu_node; 52 struct reclaim_state; 53 struct robust_list_head; 54 struct root_domain; 55 struct rq; 56 struct sched_attr; 57 struct sched_param; 58 struct seq_file; 59 struct sighand_struct; 60 struct signal_struct; 61 struct task_delay_info; 62 struct task_group; 63 64 /* 65 * Task state bitmask. NOTE! These bits are also 66 * encoded in fs/proc/array.c: get_task_state(). 67 * 68 * We have two separate sets of flags: task->state 69 * is about runnability, while task->exit_state are 70 * about the task exiting. Confusing, but this way 71 * modifying one set can't modify the other one by 72 * mistake. 73 */ 74 75 /* Used in tsk->state: */ 76 #define TASK_RUNNING 0x0000 77 #define TASK_INTERRUPTIBLE 0x0001 78 #define TASK_UNINTERRUPTIBLE 0x0002 79 #define __TASK_STOPPED 0x0004 80 #define __TASK_TRACED 0x0008 81 /* Used in tsk->exit_state: */ 82 #define EXIT_DEAD 0x0010 83 #define EXIT_ZOMBIE 0x0020 84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 85 /* Used in tsk->state again: */ 86 #define TASK_PARKED 0x0040 87 #define TASK_DEAD 0x0080 88 #define TASK_WAKEKILL 0x0100 89 #define TASK_WAKING 0x0200 90 #define TASK_NOLOAD 0x0400 91 #define TASK_NEW 0x0800 92 #define TASK_STATE_MAX 0x1000 93 94 /* Convenience macros for the sake of set_current_state: */ 95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 98 99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 100 101 /* Convenience macros for the sake of wake_up(): */ 102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 103 104 /* get_task_state(): */ 105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 108 TASK_PARKED) 109 110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 111 112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 113 114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 115 116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 117 (task->flags & PF_FROZEN) == 0 && \ 118 (task->state & TASK_NOLOAD) == 0) 119 120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122 /* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126 #define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129 #define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136 #define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143 #define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 151 } while (0) 152 #else 153 /* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (!need_sleep) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * condition test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * need_sleep = false; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state() executes a full memory barrier before accessing the 177 * task state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190 #define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193 #define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196 /* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202 #define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 208 } while (0) 209 210 #endif 211 212 /* Task command name length: */ 213 #define TASK_COMM_LEN 16 214 215 extern void scheduler_tick(void); 216 217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219 extern long schedule_timeout(long timeout); 220 extern long schedule_timeout_interruptible(long timeout); 221 extern long schedule_timeout_killable(long timeout); 222 extern long schedule_timeout_uninterruptible(long timeout); 223 extern long schedule_timeout_idle(long timeout); 224 asmlinkage void schedule(void); 225 extern void schedule_preempt_disabled(void); 226 227 extern int __must_check io_schedule_prepare(void); 228 extern void io_schedule_finish(int token); 229 extern long io_schedule_timeout(long timeout); 230 extern void io_schedule(void); 231 232 /** 233 * struct prev_cputime - snapshot of system and user cputime 234 * @utime: time spent in user mode 235 * @stime: time spent in system mode 236 * @lock: protects the above two fields 237 * 238 * Stores previous user/system time values such that we can guarantee 239 * monotonicity. 240 */ 241 struct prev_cputime { 242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 243 u64 utime; 244 u64 stime; 245 raw_spinlock_t lock; 246 #endif 247 }; 248 249 enum vtime_state { 250 /* Task is sleeping or running in a CPU with VTIME inactive: */ 251 VTIME_INACTIVE = 0, 252 /* Task runs in userspace in a CPU with VTIME active: */ 253 VTIME_USER, 254 /* Task runs in kernelspace in a CPU with VTIME active: */ 255 VTIME_SYS, 256 }; 257 258 struct vtime { 259 seqcount_t seqcount; 260 unsigned long long starttime; 261 enum vtime_state state; 262 u64 utime; 263 u64 stime; 264 u64 gtime; 265 }; 266 267 /* 268 * Utilization clamp constraints. 269 * @UCLAMP_MIN: Minimum utilization 270 * @UCLAMP_MAX: Maximum utilization 271 * @UCLAMP_CNT: Utilization clamp constraints count 272 */ 273 enum uclamp_id { 274 UCLAMP_MIN = 0, 275 UCLAMP_MAX, 276 UCLAMP_CNT 277 }; 278 279 #ifdef CONFIG_SMP 280 extern struct root_domain def_root_domain; 281 extern struct mutex sched_domains_mutex; 282 #endif 283 284 struct sched_info { 285 #ifdef CONFIG_SCHED_INFO 286 /* Cumulative counters: */ 287 288 /* # of times we have run on this CPU: */ 289 unsigned long pcount; 290 291 /* Time spent waiting on a runqueue: */ 292 unsigned long long run_delay; 293 294 /* Timestamps: */ 295 296 /* When did we last run on a CPU? */ 297 unsigned long long last_arrival; 298 299 /* When were we last queued to run? */ 300 unsigned long long last_queued; 301 302 #endif /* CONFIG_SCHED_INFO */ 303 }; 304 305 /* 306 * Integer metrics need fixed point arithmetic, e.g., sched/fair 307 * has a few: load, load_avg, util_avg, freq, and capacity. 308 * 309 * We define a basic fixed point arithmetic range, and then formalize 310 * all these metrics based on that basic range. 311 */ 312 # define SCHED_FIXEDPOINT_SHIFT 10 313 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 314 315 /* Increase resolution of cpu_capacity calculations */ 316 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 317 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 318 319 struct load_weight { 320 unsigned long weight; 321 u32 inv_weight; 322 }; 323 324 /** 325 * struct util_est - Estimation utilization of FAIR tasks 326 * @enqueued: instantaneous estimated utilization of a task/cpu 327 * @ewma: the Exponential Weighted Moving Average (EWMA) 328 * utilization of a task 329 * 330 * Support data structure to track an Exponential Weighted Moving Average 331 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 332 * average each time a task completes an activation. Sample's weight is chosen 333 * so that the EWMA will be relatively insensitive to transient changes to the 334 * task's workload. 335 * 336 * The enqueued attribute has a slightly different meaning for tasks and cpus: 337 * - task: the task's util_avg at last task dequeue time 338 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 339 * Thus, the util_est.enqueued of a task represents the contribution on the 340 * estimated utilization of the CPU where that task is currently enqueued. 341 * 342 * Only for tasks we track a moving average of the past instantaneous 343 * estimated utilization. This allows to absorb sporadic drops in utilization 344 * of an otherwise almost periodic task. 345 */ 346 struct util_est { 347 unsigned int enqueued; 348 unsigned int ewma; 349 #define UTIL_EST_WEIGHT_SHIFT 2 350 } __attribute__((__aligned__(sizeof(u64)))); 351 352 /* 353 * The load_avg/util_avg accumulates an infinite geometric series 354 * (see __update_load_avg() in kernel/sched/fair.c). 355 * 356 * [load_avg definition] 357 * 358 * load_avg = runnable% * scale_load_down(load) 359 * 360 * where runnable% is the time ratio that a sched_entity is runnable. 361 * For cfs_rq, it is the aggregated load_avg of all runnable and 362 * blocked sched_entities. 363 * 364 * [util_avg definition] 365 * 366 * util_avg = running% * SCHED_CAPACITY_SCALE 367 * 368 * where running% is the time ratio that a sched_entity is running on 369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 370 * and blocked sched_entities. 371 * 372 * load_avg and util_avg don't direcly factor frequency scaling and CPU 373 * capacity scaling. The scaling is done through the rq_clock_pelt that 374 * is used for computing those signals (see update_rq_clock_pelt()) 375 * 376 * N.B., the above ratios (runnable% and running%) themselves are in the 377 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 378 * to as large a range as necessary. This is for example reflected by 379 * util_avg's SCHED_CAPACITY_SCALE. 380 * 381 * [Overflow issue] 382 * 383 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 384 * with the highest load (=88761), always runnable on a single cfs_rq, 385 * and should not overflow as the number already hits PID_MAX_LIMIT. 386 * 387 * For all other cases (including 32-bit kernels), struct load_weight's 388 * weight will overflow first before we do, because: 389 * 390 * Max(load_avg) <= Max(load.weight) 391 * 392 * Then it is the load_weight's responsibility to consider overflow 393 * issues. 394 */ 395 struct sched_avg { 396 u64 last_update_time; 397 u64 load_sum; 398 u64 runnable_load_sum; 399 u32 util_sum; 400 u32 period_contrib; 401 unsigned long load_avg; 402 unsigned long runnable_load_avg; 403 unsigned long util_avg; 404 struct util_est util_est; 405 } ____cacheline_aligned; 406 407 struct sched_statistics { 408 #ifdef CONFIG_SCHEDSTATS 409 u64 wait_start; 410 u64 wait_max; 411 u64 wait_count; 412 u64 wait_sum; 413 u64 iowait_count; 414 u64 iowait_sum; 415 416 u64 sleep_start; 417 u64 sleep_max; 418 s64 sum_sleep_runtime; 419 420 u64 block_start; 421 u64 block_max; 422 u64 exec_max; 423 u64 slice_max; 424 425 u64 nr_migrations_cold; 426 u64 nr_failed_migrations_affine; 427 u64 nr_failed_migrations_running; 428 u64 nr_failed_migrations_hot; 429 u64 nr_forced_migrations; 430 431 u64 nr_wakeups; 432 u64 nr_wakeups_sync; 433 u64 nr_wakeups_migrate; 434 u64 nr_wakeups_local; 435 u64 nr_wakeups_remote; 436 u64 nr_wakeups_affine; 437 u64 nr_wakeups_affine_attempts; 438 u64 nr_wakeups_passive; 439 u64 nr_wakeups_idle; 440 #endif 441 }; 442 443 struct sched_entity { 444 /* For load-balancing: */ 445 struct load_weight load; 446 unsigned long runnable_weight; 447 struct rb_node run_node; 448 struct list_head group_node; 449 unsigned int on_rq; 450 451 u64 exec_start; 452 u64 sum_exec_runtime; 453 u64 vruntime; 454 u64 prev_sum_exec_runtime; 455 456 u64 nr_migrations; 457 458 struct sched_statistics statistics; 459 460 #ifdef CONFIG_FAIR_GROUP_SCHED 461 int depth; 462 struct sched_entity *parent; 463 /* rq on which this entity is (to be) queued: */ 464 struct cfs_rq *cfs_rq; 465 /* rq "owned" by this entity/group: */ 466 struct cfs_rq *my_q; 467 #endif 468 469 #ifdef CONFIG_SMP 470 /* 471 * Per entity load average tracking. 472 * 473 * Put into separate cache line so it does not 474 * collide with read-mostly values above. 475 */ 476 struct sched_avg avg; 477 #endif 478 }; 479 480 struct sched_rt_entity { 481 struct list_head run_list; 482 unsigned long timeout; 483 unsigned long watchdog_stamp; 484 unsigned int time_slice; 485 unsigned short on_rq; 486 unsigned short on_list; 487 488 struct sched_rt_entity *back; 489 #ifdef CONFIG_RT_GROUP_SCHED 490 struct sched_rt_entity *parent; 491 /* rq on which this entity is (to be) queued: */ 492 struct rt_rq *rt_rq; 493 /* rq "owned" by this entity/group: */ 494 struct rt_rq *my_q; 495 #endif 496 } __randomize_layout; 497 498 struct sched_dl_entity { 499 struct rb_node rb_node; 500 501 /* 502 * Original scheduling parameters. Copied here from sched_attr 503 * during sched_setattr(), they will remain the same until 504 * the next sched_setattr(). 505 */ 506 u64 dl_runtime; /* Maximum runtime for each instance */ 507 u64 dl_deadline; /* Relative deadline of each instance */ 508 u64 dl_period; /* Separation of two instances (period) */ 509 u64 dl_bw; /* dl_runtime / dl_period */ 510 u64 dl_density; /* dl_runtime / dl_deadline */ 511 512 /* 513 * Actual scheduling parameters. Initialized with the values above, 514 * they are continuously updated during task execution. Note that 515 * the remaining runtime could be < 0 in case we are in overrun. 516 */ 517 s64 runtime; /* Remaining runtime for this instance */ 518 u64 deadline; /* Absolute deadline for this instance */ 519 unsigned int flags; /* Specifying the scheduler behaviour */ 520 521 /* 522 * Some bool flags: 523 * 524 * @dl_throttled tells if we exhausted the runtime. If so, the 525 * task has to wait for a replenishment to be performed at the 526 * next firing of dl_timer. 527 * 528 * @dl_boosted tells if we are boosted due to DI. If so we are 529 * outside bandwidth enforcement mechanism (but only until we 530 * exit the critical section); 531 * 532 * @dl_yielded tells if task gave up the CPU before consuming 533 * all its available runtime during the last job. 534 * 535 * @dl_non_contending tells if the task is inactive while still 536 * contributing to the active utilization. In other words, it 537 * indicates if the inactive timer has been armed and its handler 538 * has not been executed yet. This flag is useful to avoid race 539 * conditions between the inactive timer handler and the wakeup 540 * code. 541 * 542 * @dl_overrun tells if the task asked to be informed about runtime 543 * overruns. 544 */ 545 unsigned int dl_throttled : 1; 546 unsigned int dl_boosted : 1; 547 unsigned int dl_yielded : 1; 548 unsigned int dl_non_contending : 1; 549 unsigned int dl_overrun : 1; 550 551 /* 552 * Bandwidth enforcement timer. Each -deadline task has its 553 * own bandwidth to be enforced, thus we need one timer per task. 554 */ 555 struct hrtimer dl_timer; 556 557 /* 558 * Inactive timer, responsible for decreasing the active utilization 559 * at the "0-lag time". When a -deadline task blocks, it contributes 560 * to GRUB's active utilization until the "0-lag time", hence a 561 * timer is needed to decrease the active utilization at the correct 562 * time. 563 */ 564 struct hrtimer inactive_timer; 565 }; 566 567 #ifdef CONFIG_UCLAMP_TASK 568 /* Number of utilization clamp buckets (shorter alias) */ 569 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 570 571 /* 572 * Utilization clamp for a scheduling entity 573 * @value: clamp value "assigned" to a se 574 * @bucket_id: bucket index corresponding to the "assigned" value 575 * @active: the se is currently refcounted in a rq's bucket 576 * @user_defined: the requested clamp value comes from user-space 577 * 578 * The bucket_id is the index of the clamp bucket matching the clamp value 579 * which is pre-computed and stored to avoid expensive integer divisions from 580 * the fast path. 581 * 582 * The active bit is set whenever a task has got an "effective" value assigned, 583 * which can be different from the clamp value "requested" from user-space. 584 * This allows to know a task is refcounted in the rq's bucket corresponding 585 * to the "effective" bucket_id. 586 * 587 * The user_defined bit is set whenever a task has got a task-specific clamp 588 * value requested from userspace, i.e. the system defaults apply to this task 589 * just as a restriction. This allows to relax default clamps when a less 590 * restrictive task-specific value has been requested, thus allowing to 591 * implement a "nice" semantic. For example, a task running with a 20% 592 * default boost can still drop its own boosting to 0%. 593 */ 594 struct uclamp_se { 595 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 596 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 597 unsigned int active : 1; 598 unsigned int user_defined : 1; 599 }; 600 #endif /* CONFIG_UCLAMP_TASK */ 601 602 union rcu_special { 603 struct { 604 u8 blocked; 605 u8 need_qs; 606 u8 exp_hint; /* Hint for performance. */ 607 u8 deferred_qs; 608 } b; /* Bits. */ 609 u32 s; /* Set of bits. */ 610 }; 611 612 enum perf_event_task_context { 613 perf_invalid_context = -1, 614 perf_hw_context = 0, 615 perf_sw_context, 616 perf_nr_task_contexts, 617 }; 618 619 struct wake_q_node { 620 struct wake_q_node *next; 621 }; 622 623 struct task_struct { 624 #ifdef CONFIG_THREAD_INFO_IN_TASK 625 /* 626 * For reasons of header soup (see current_thread_info()), this 627 * must be the first element of task_struct. 628 */ 629 struct thread_info thread_info; 630 #endif 631 /* -1 unrunnable, 0 runnable, >0 stopped: */ 632 volatile long state; 633 634 /* 635 * This begins the randomizable portion of task_struct. Only 636 * scheduling-critical items should be added above here. 637 */ 638 randomized_struct_fields_start 639 640 void *stack; 641 refcount_t usage; 642 /* Per task flags (PF_*), defined further below: */ 643 unsigned int flags; 644 unsigned int ptrace; 645 646 #ifdef CONFIG_SMP 647 struct llist_node wake_entry; 648 int on_cpu; 649 #ifdef CONFIG_THREAD_INFO_IN_TASK 650 /* Current CPU: */ 651 unsigned int cpu; 652 #endif 653 unsigned int wakee_flips; 654 unsigned long wakee_flip_decay_ts; 655 struct task_struct *last_wakee; 656 657 /* 658 * recent_used_cpu is initially set as the last CPU used by a task 659 * that wakes affine another task. Waker/wakee relationships can 660 * push tasks around a CPU where each wakeup moves to the next one. 661 * Tracking a recently used CPU allows a quick search for a recently 662 * used CPU that may be idle. 663 */ 664 int recent_used_cpu; 665 int wake_cpu; 666 #endif 667 int on_rq; 668 669 int prio; 670 int static_prio; 671 int normal_prio; 672 unsigned int rt_priority; 673 674 const struct sched_class *sched_class; 675 struct sched_entity se; 676 struct sched_rt_entity rt; 677 #ifdef CONFIG_CGROUP_SCHED 678 struct task_group *sched_task_group; 679 #endif 680 struct sched_dl_entity dl; 681 682 #ifdef CONFIG_UCLAMP_TASK 683 /* Clamp values requested for a scheduling entity */ 684 struct uclamp_se uclamp_req[UCLAMP_CNT]; 685 /* Effective clamp values used for a scheduling entity */ 686 struct uclamp_se uclamp[UCLAMP_CNT]; 687 #endif 688 689 #ifdef CONFIG_PREEMPT_NOTIFIERS 690 /* List of struct preempt_notifier: */ 691 struct hlist_head preempt_notifiers; 692 #endif 693 694 #ifdef CONFIG_BLK_DEV_IO_TRACE 695 unsigned int btrace_seq; 696 #endif 697 698 unsigned int policy; 699 int nr_cpus_allowed; 700 const cpumask_t *cpus_ptr; 701 cpumask_t cpus_mask; 702 703 #ifdef CONFIG_PREEMPT_RCU 704 int rcu_read_lock_nesting; 705 union rcu_special rcu_read_unlock_special; 706 struct list_head rcu_node_entry; 707 struct rcu_node *rcu_blocked_node; 708 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 709 710 #ifdef CONFIG_TASKS_RCU 711 unsigned long rcu_tasks_nvcsw; 712 u8 rcu_tasks_holdout; 713 u8 rcu_tasks_idx; 714 int rcu_tasks_idle_cpu; 715 struct list_head rcu_tasks_holdout_list; 716 #endif /* #ifdef CONFIG_TASKS_RCU */ 717 718 struct sched_info sched_info; 719 720 struct list_head tasks; 721 #ifdef CONFIG_SMP 722 struct plist_node pushable_tasks; 723 struct rb_node pushable_dl_tasks; 724 #endif 725 726 struct mm_struct *mm; 727 struct mm_struct *active_mm; 728 729 /* Per-thread vma caching: */ 730 struct vmacache vmacache; 731 732 #ifdef SPLIT_RSS_COUNTING 733 struct task_rss_stat rss_stat; 734 #endif 735 int exit_state; 736 int exit_code; 737 int exit_signal; 738 /* The signal sent when the parent dies: */ 739 int pdeath_signal; 740 /* JOBCTL_*, siglock protected: */ 741 unsigned long jobctl; 742 743 /* Used for emulating ABI behavior of previous Linux versions: */ 744 unsigned int personality; 745 746 /* Scheduler bits, serialized by scheduler locks: */ 747 unsigned sched_reset_on_fork:1; 748 unsigned sched_contributes_to_load:1; 749 unsigned sched_migrated:1; 750 unsigned sched_remote_wakeup:1; 751 #ifdef CONFIG_PSI 752 unsigned sched_psi_wake_requeue:1; 753 #endif 754 755 /* Force alignment to the next boundary: */ 756 unsigned :0; 757 758 /* Unserialized, strictly 'current' */ 759 760 /* Bit to tell LSMs we're in execve(): */ 761 unsigned in_execve:1; 762 unsigned in_iowait:1; 763 #ifndef TIF_RESTORE_SIGMASK 764 unsigned restore_sigmask:1; 765 #endif 766 #ifdef CONFIG_MEMCG 767 unsigned in_user_fault:1; 768 #endif 769 #ifdef CONFIG_COMPAT_BRK 770 unsigned brk_randomized:1; 771 #endif 772 #ifdef CONFIG_CGROUPS 773 /* disallow userland-initiated cgroup migration */ 774 unsigned no_cgroup_migration:1; 775 /* task is frozen/stopped (used by the cgroup freezer) */ 776 unsigned frozen:1; 777 #endif 778 #ifdef CONFIG_BLK_CGROUP 779 /* to be used once the psi infrastructure lands upstream. */ 780 unsigned use_memdelay:1; 781 #endif 782 783 unsigned long atomic_flags; /* Flags requiring atomic access. */ 784 785 struct restart_block restart_block; 786 787 pid_t pid; 788 pid_t tgid; 789 790 #ifdef CONFIG_STACKPROTECTOR 791 /* Canary value for the -fstack-protector GCC feature: */ 792 unsigned long stack_canary; 793 #endif 794 /* 795 * Pointers to the (original) parent process, youngest child, younger sibling, 796 * older sibling, respectively. (p->father can be replaced with 797 * p->real_parent->pid) 798 */ 799 800 /* Real parent process: */ 801 struct task_struct __rcu *real_parent; 802 803 /* Recipient of SIGCHLD, wait4() reports: */ 804 struct task_struct __rcu *parent; 805 806 /* 807 * Children/sibling form the list of natural children: 808 */ 809 struct list_head children; 810 struct list_head sibling; 811 struct task_struct *group_leader; 812 813 /* 814 * 'ptraced' is the list of tasks this task is using ptrace() on. 815 * 816 * This includes both natural children and PTRACE_ATTACH targets. 817 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 818 */ 819 struct list_head ptraced; 820 struct list_head ptrace_entry; 821 822 /* PID/PID hash table linkage. */ 823 struct pid *thread_pid; 824 struct hlist_node pid_links[PIDTYPE_MAX]; 825 struct list_head thread_group; 826 struct list_head thread_node; 827 828 struct completion *vfork_done; 829 830 /* CLONE_CHILD_SETTID: */ 831 int __user *set_child_tid; 832 833 /* CLONE_CHILD_CLEARTID: */ 834 int __user *clear_child_tid; 835 836 u64 utime; 837 u64 stime; 838 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 839 u64 utimescaled; 840 u64 stimescaled; 841 #endif 842 u64 gtime; 843 struct prev_cputime prev_cputime; 844 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 845 struct vtime vtime; 846 #endif 847 848 #ifdef CONFIG_NO_HZ_FULL 849 atomic_t tick_dep_mask; 850 #endif 851 /* Context switch counts: */ 852 unsigned long nvcsw; 853 unsigned long nivcsw; 854 855 /* Monotonic time in nsecs: */ 856 u64 start_time; 857 858 /* Boot based time in nsecs: */ 859 u64 real_start_time; 860 861 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 862 unsigned long min_flt; 863 unsigned long maj_flt; 864 865 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 866 struct posix_cputimers posix_cputimers; 867 868 /* Process credentials: */ 869 870 /* Tracer's credentials at attach: */ 871 const struct cred __rcu *ptracer_cred; 872 873 /* Objective and real subjective task credentials (COW): */ 874 const struct cred __rcu *real_cred; 875 876 /* Effective (overridable) subjective task credentials (COW): */ 877 const struct cred __rcu *cred; 878 879 #ifdef CONFIG_KEYS 880 /* Cached requested key. */ 881 struct key *cached_requested_key; 882 #endif 883 884 /* 885 * executable name, excluding path. 886 * 887 * - normally initialized setup_new_exec() 888 * - access it with [gs]et_task_comm() 889 * - lock it with task_lock() 890 */ 891 char comm[TASK_COMM_LEN]; 892 893 struct nameidata *nameidata; 894 895 #ifdef CONFIG_SYSVIPC 896 struct sysv_sem sysvsem; 897 struct sysv_shm sysvshm; 898 #endif 899 #ifdef CONFIG_DETECT_HUNG_TASK 900 unsigned long last_switch_count; 901 unsigned long last_switch_time; 902 #endif 903 /* Filesystem information: */ 904 struct fs_struct *fs; 905 906 /* Open file information: */ 907 struct files_struct *files; 908 909 /* Namespaces: */ 910 struct nsproxy *nsproxy; 911 912 /* Signal handlers: */ 913 struct signal_struct *signal; 914 struct sighand_struct *sighand; 915 sigset_t blocked; 916 sigset_t real_blocked; 917 /* Restored if set_restore_sigmask() was used: */ 918 sigset_t saved_sigmask; 919 struct sigpending pending; 920 unsigned long sas_ss_sp; 921 size_t sas_ss_size; 922 unsigned int sas_ss_flags; 923 924 struct callback_head *task_works; 925 926 #ifdef CONFIG_AUDIT 927 #ifdef CONFIG_AUDITSYSCALL 928 struct audit_context *audit_context; 929 #endif 930 kuid_t loginuid; 931 unsigned int sessionid; 932 #endif 933 struct seccomp seccomp; 934 935 /* Thread group tracking: */ 936 u32 parent_exec_id; 937 u32 self_exec_id; 938 939 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 940 spinlock_t alloc_lock; 941 942 /* Protection of the PI data structures: */ 943 raw_spinlock_t pi_lock; 944 945 struct wake_q_node wake_q; 946 947 #ifdef CONFIG_RT_MUTEXES 948 /* PI waiters blocked on a rt_mutex held by this task: */ 949 struct rb_root_cached pi_waiters; 950 /* Updated under owner's pi_lock and rq lock */ 951 struct task_struct *pi_top_task; 952 /* Deadlock detection and priority inheritance handling: */ 953 struct rt_mutex_waiter *pi_blocked_on; 954 #endif 955 956 #ifdef CONFIG_DEBUG_MUTEXES 957 /* Mutex deadlock detection: */ 958 struct mutex_waiter *blocked_on; 959 #endif 960 961 #ifdef CONFIG_TRACE_IRQFLAGS 962 unsigned int irq_events; 963 unsigned long hardirq_enable_ip; 964 unsigned long hardirq_disable_ip; 965 unsigned int hardirq_enable_event; 966 unsigned int hardirq_disable_event; 967 int hardirqs_enabled; 968 int hardirq_context; 969 unsigned long softirq_disable_ip; 970 unsigned long softirq_enable_ip; 971 unsigned int softirq_disable_event; 972 unsigned int softirq_enable_event; 973 int softirqs_enabled; 974 int softirq_context; 975 #endif 976 977 #ifdef CONFIG_LOCKDEP 978 # define MAX_LOCK_DEPTH 48UL 979 u64 curr_chain_key; 980 int lockdep_depth; 981 unsigned int lockdep_recursion; 982 struct held_lock held_locks[MAX_LOCK_DEPTH]; 983 #endif 984 985 #ifdef CONFIG_UBSAN 986 unsigned int in_ubsan; 987 #endif 988 989 /* Journalling filesystem info: */ 990 void *journal_info; 991 992 /* Stacked block device info: */ 993 struct bio_list *bio_list; 994 995 #ifdef CONFIG_BLOCK 996 /* Stack plugging: */ 997 struct blk_plug *plug; 998 #endif 999 1000 /* VM state: */ 1001 struct reclaim_state *reclaim_state; 1002 1003 struct backing_dev_info *backing_dev_info; 1004 1005 struct io_context *io_context; 1006 1007 #ifdef CONFIG_COMPACTION 1008 struct capture_control *capture_control; 1009 #endif 1010 /* Ptrace state: */ 1011 unsigned long ptrace_message; 1012 kernel_siginfo_t *last_siginfo; 1013 1014 struct task_io_accounting ioac; 1015 #ifdef CONFIG_PSI 1016 /* Pressure stall state */ 1017 unsigned int psi_flags; 1018 #endif 1019 #ifdef CONFIG_TASK_XACCT 1020 /* Accumulated RSS usage: */ 1021 u64 acct_rss_mem1; 1022 /* Accumulated virtual memory usage: */ 1023 u64 acct_vm_mem1; 1024 /* stime + utime since last update: */ 1025 u64 acct_timexpd; 1026 #endif 1027 #ifdef CONFIG_CPUSETS 1028 /* Protected by ->alloc_lock: */ 1029 nodemask_t mems_allowed; 1030 /* Seqence number to catch updates: */ 1031 seqcount_t mems_allowed_seq; 1032 int cpuset_mem_spread_rotor; 1033 int cpuset_slab_spread_rotor; 1034 #endif 1035 #ifdef CONFIG_CGROUPS 1036 /* Control Group info protected by css_set_lock: */ 1037 struct css_set __rcu *cgroups; 1038 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1039 struct list_head cg_list; 1040 #endif 1041 #ifdef CONFIG_X86_CPU_RESCTRL 1042 u32 closid; 1043 u32 rmid; 1044 #endif 1045 #ifdef CONFIG_FUTEX 1046 struct robust_list_head __user *robust_list; 1047 #ifdef CONFIG_COMPAT 1048 struct compat_robust_list_head __user *compat_robust_list; 1049 #endif 1050 struct list_head pi_state_list; 1051 struct futex_pi_state *pi_state_cache; 1052 #endif 1053 #ifdef CONFIG_PERF_EVENTS 1054 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1055 struct mutex perf_event_mutex; 1056 struct list_head perf_event_list; 1057 #endif 1058 #ifdef CONFIG_DEBUG_PREEMPT 1059 unsigned long preempt_disable_ip; 1060 #endif 1061 #ifdef CONFIG_NUMA 1062 /* Protected by alloc_lock: */ 1063 struct mempolicy *mempolicy; 1064 short il_prev; 1065 short pref_node_fork; 1066 #endif 1067 #ifdef CONFIG_NUMA_BALANCING 1068 int numa_scan_seq; 1069 unsigned int numa_scan_period; 1070 unsigned int numa_scan_period_max; 1071 int numa_preferred_nid; 1072 unsigned long numa_migrate_retry; 1073 /* Migration stamp: */ 1074 u64 node_stamp; 1075 u64 last_task_numa_placement; 1076 u64 last_sum_exec_runtime; 1077 struct callback_head numa_work; 1078 1079 /* 1080 * This pointer is only modified for current in syscall and 1081 * pagefault context (and for tasks being destroyed), so it can be read 1082 * from any of the following contexts: 1083 * - RCU read-side critical section 1084 * - current->numa_group from everywhere 1085 * - task's runqueue locked, task not running 1086 */ 1087 struct numa_group __rcu *numa_group; 1088 1089 /* 1090 * numa_faults is an array split into four regions: 1091 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1092 * in this precise order. 1093 * 1094 * faults_memory: Exponential decaying average of faults on a per-node 1095 * basis. Scheduling placement decisions are made based on these 1096 * counts. The values remain static for the duration of a PTE scan. 1097 * faults_cpu: Track the nodes the process was running on when a NUMA 1098 * hinting fault was incurred. 1099 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1100 * during the current scan window. When the scan completes, the counts 1101 * in faults_memory and faults_cpu decay and these values are copied. 1102 */ 1103 unsigned long *numa_faults; 1104 unsigned long total_numa_faults; 1105 1106 /* 1107 * numa_faults_locality tracks if faults recorded during the last 1108 * scan window were remote/local or failed to migrate. The task scan 1109 * period is adapted based on the locality of the faults with different 1110 * weights depending on whether they were shared or private faults 1111 */ 1112 unsigned long numa_faults_locality[3]; 1113 1114 unsigned long numa_pages_migrated; 1115 #endif /* CONFIG_NUMA_BALANCING */ 1116 1117 #ifdef CONFIG_RSEQ 1118 struct rseq __user *rseq; 1119 u32 rseq_sig; 1120 /* 1121 * RmW on rseq_event_mask must be performed atomically 1122 * with respect to preemption. 1123 */ 1124 unsigned long rseq_event_mask; 1125 #endif 1126 1127 struct tlbflush_unmap_batch tlb_ubc; 1128 1129 struct rcu_head rcu; 1130 1131 /* Cache last used pipe for splice(): */ 1132 struct pipe_inode_info *splice_pipe; 1133 1134 struct page_frag task_frag; 1135 1136 #ifdef CONFIG_TASK_DELAY_ACCT 1137 struct task_delay_info *delays; 1138 #endif 1139 1140 #ifdef CONFIG_FAULT_INJECTION 1141 int make_it_fail; 1142 unsigned int fail_nth; 1143 #endif 1144 /* 1145 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1146 * balance_dirty_pages() for a dirty throttling pause: 1147 */ 1148 int nr_dirtied; 1149 int nr_dirtied_pause; 1150 /* Start of a write-and-pause period: */ 1151 unsigned long dirty_paused_when; 1152 1153 #ifdef CONFIG_LATENCYTOP 1154 int latency_record_count; 1155 struct latency_record latency_record[LT_SAVECOUNT]; 1156 #endif 1157 /* 1158 * Time slack values; these are used to round up poll() and 1159 * select() etc timeout values. These are in nanoseconds. 1160 */ 1161 u64 timer_slack_ns; 1162 u64 default_timer_slack_ns; 1163 1164 #ifdef CONFIG_KASAN 1165 unsigned int kasan_depth; 1166 #endif 1167 1168 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1169 /* Index of current stored address in ret_stack: */ 1170 int curr_ret_stack; 1171 int curr_ret_depth; 1172 1173 /* Stack of return addresses for return function tracing: */ 1174 struct ftrace_ret_stack *ret_stack; 1175 1176 /* Timestamp for last schedule: */ 1177 unsigned long long ftrace_timestamp; 1178 1179 /* 1180 * Number of functions that haven't been traced 1181 * because of depth overrun: 1182 */ 1183 atomic_t trace_overrun; 1184 1185 /* Pause tracing: */ 1186 atomic_t tracing_graph_pause; 1187 #endif 1188 1189 #ifdef CONFIG_TRACING 1190 /* State flags for use by tracers: */ 1191 unsigned long trace; 1192 1193 /* Bitmask and counter of trace recursion: */ 1194 unsigned long trace_recursion; 1195 #endif /* CONFIG_TRACING */ 1196 1197 #ifdef CONFIG_KCOV 1198 /* Coverage collection mode enabled for this task (0 if disabled): */ 1199 unsigned int kcov_mode; 1200 1201 /* Size of the kcov_area: */ 1202 unsigned int kcov_size; 1203 1204 /* Buffer for coverage collection: */ 1205 void *kcov_area; 1206 1207 /* KCOV descriptor wired with this task or NULL: */ 1208 struct kcov *kcov; 1209 #endif 1210 1211 #ifdef CONFIG_MEMCG 1212 struct mem_cgroup *memcg_in_oom; 1213 gfp_t memcg_oom_gfp_mask; 1214 int memcg_oom_order; 1215 1216 /* Number of pages to reclaim on returning to userland: */ 1217 unsigned int memcg_nr_pages_over_high; 1218 1219 /* Used by memcontrol for targeted memcg charge: */ 1220 struct mem_cgroup *active_memcg; 1221 #endif 1222 1223 #ifdef CONFIG_BLK_CGROUP 1224 struct request_queue *throttle_queue; 1225 #endif 1226 1227 #ifdef CONFIG_UPROBES 1228 struct uprobe_task *utask; 1229 #endif 1230 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1231 unsigned int sequential_io; 1232 unsigned int sequential_io_avg; 1233 #endif 1234 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1235 unsigned long task_state_change; 1236 #endif 1237 int pagefault_disabled; 1238 #ifdef CONFIG_MMU 1239 struct task_struct *oom_reaper_list; 1240 #endif 1241 #ifdef CONFIG_VMAP_STACK 1242 struct vm_struct *stack_vm_area; 1243 #endif 1244 #ifdef CONFIG_THREAD_INFO_IN_TASK 1245 /* A live task holds one reference: */ 1246 refcount_t stack_refcount; 1247 #endif 1248 #ifdef CONFIG_LIVEPATCH 1249 int patch_state; 1250 #endif 1251 #ifdef CONFIG_SECURITY 1252 /* Used by LSM modules for access restriction: */ 1253 void *security; 1254 #endif 1255 1256 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1257 unsigned long lowest_stack; 1258 unsigned long prev_lowest_stack; 1259 #endif 1260 1261 /* 1262 * New fields for task_struct should be added above here, so that 1263 * they are included in the randomized portion of task_struct. 1264 */ 1265 randomized_struct_fields_end 1266 1267 /* CPU-specific state of this task: */ 1268 struct thread_struct thread; 1269 1270 /* 1271 * WARNING: on x86, 'thread_struct' contains a variable-sized 1272 * structure. It *MUST* be at the end of 'task_struct'. 1273 * 1274 * Do not put anything below here! 1275 */ 1276 }; 1277 1278 static inline struct pid *task_pid(struct task_struct *task) 1279 { 1280 return task->thread_pid; 1281 } 1282 1283 /* 1284 * the helpers to get the task's different pids as they are seen 1285 * from various namespaces 1286 * 1287 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1288 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1289 * current. 1290 * task_xid_nr_ns() : id seen from the ns specified; 1291 * 1292 * see also pid_nr() etc in include/linux/pid.h 1293 */ 1294 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1295 1296 static inline pid_t task_pid_nr(struct task_struct *tsk) 1297 { 1298 return tsk->pid; 1299 } 1300 1301 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1302 { 1303 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1304 } 1305 1306 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1307 { 1308 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1309 } 1310 1311 1312 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1313 { 1314 return tsk->tgid; 1315 } 1316 1317 /** 1318 * pid_alive - check that a task structure is not stale 1319 * @p: Task structure to be checked. 1320 * 1321 * Test if a process is not yet dead (at most zombie state) 1322 * If pid_alive fails, then pointers within the task structure 1323 * can be stale and must not be dereferenced. 1324 * 1325 * Return: 1 if the process is alive. 0 otherwise. 1326 */ 1327 static inline int pid_alive(const struct task_struct *p) 1328 { 1329 return p->thread_pid != NULL; 1330 } 1331 1332 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1333 { 1334 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1335 } 1336 1337 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1338 { 1339 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1340 } 1341 1342 1343 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1344 { 1345 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1346 } 1347 1348 static inline pid_t task_session_vnr(struct task_struct *tsk) 1349 { 1350 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1351 } 1352 1353 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1354 { 1355 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1356 } 1357 1358 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1359 { 1360 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1361 } 1362 1363 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1364 { 1365 pid_t pid = 0; 1366 1367 rcu_read_lock(); 1368 if (pid_alive(tsk)) 1369 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1370 rcu_read_unlock(); 1371 1372 return pid; 1373 } 1374 1375 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1376 { 1377 return task_ppid_nr_ns(tsk, &init_pid_ns); 1378 } 1379 1380 /* Obsolete, do not use: */ 1381 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1382 { 1383 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1384 } 1385 1386 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1387 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1388 1389 static inline unsigned int task_state_index(struct task_struct *tsk) 1390 { 1391 unsigned int tsk_state = READ_ONCE(tsk->state); 1392 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1393 1394 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1395 1396 if (tsk_state == TASK_IDLE) 1397 state = TASK_REPORT_IDLE; 1398 1399 return fls(state); 1400 } 1401 1402 static inline char task_index_to_char(unsigned int state) 1403 { 1404 static const char state_char[] = "RSDTtXZPI"; 1405 1406 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1407 1408 return state_char[state]; 1409 } 1410 1411 static inline char task_state_to_char(struct task_struct *tsk) 1412 { 1413 return task_index_to_char(task_state_index(tsk)); 1414 } 1415 1416 /** 1417 * is_global_init - check if a task structure is init. Since init 1418 * is free to have sub-threads we need to check tgid. 1419 * @tsk: Task structure to be checked. 1420 * 1421 * Check if a task structure is the first user space task the kernel created. 1422 * 1423 * Return: 1 if the task structure is init. 0 otherwise. 1424 */ 1425 static inline int is_global_init(struct task_struct *tsk) 1426 { 1427 return task_tgid_nr(tsk) == 1; 1428 } 1429 1430 extern struct pid *cad_pid; 1431 1432 /* 1433 * Per process flags 1434 */ 1435 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1436 #define PF_EXITING 0x00000004 /* Getting shut down */ 1437 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1438 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1439 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1440 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1441 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1442 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1443 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1444 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1445 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1446 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1447 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1448 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1449 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1450 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1451 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1452 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1453 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1454 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1455 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1456 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1457 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1458 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1459 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1460 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1461 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1462 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1463 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1464 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1465 1466 /* 1467 * Only the _current_ task can read/write to tsk->flags, but other 1468 * tasks can access tsk->flags in readonly mode for example 1469 * with tsk_used_math (like during threaded core dumping). 1470 * There is however an exception to this rule during ptrace 1471 * or during fork: the ptracer task is allowed to write to the 1472 * child->flags of its traced child (same goes for fork, the parent 1473 * can write to the child->flags), because we're guaranteed the 1474 * child is not running and in turn not changing child->flags 1475 * at the same time the parent does it. 1476 */ 1477 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1478 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1479 #define clear_used_math() clear_stopped_child_used_math(current) 1480 #define set_used_math() set_stopped_child_used_math(current) 1481 1482 #define conditional_stopped_child_used_math(condition, child) \ 1483 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1484 1485 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1486 1487 #define copy_to_stopped_child_used_math(child) \ 1488 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1489 1490 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1491 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1492 #define used_math() tsk_used_math(current) 1493 1494 static inline bool is_percpu_thread(void) 1495 { 1496 #ifdef CONFIG_SMP 1497 return (current->flags & PF_NO_SETAFFINITY) && 1498 (current->nr_cpus_allowed == 1); 1499 #else 1500 return true; 1501 #endif 1502 } 1503 1504 /* Per-process atomic flags. */ 1505 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1506 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1507 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1508 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1509 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1510 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1511 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1512 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1513 1514 #define TASK_PFA_TEST(name, func) \ 1515 static inline bool task_##func(struct task_struct *p) \ 1516 { return test_bit(PFA_##name, &p->atomic_flags); } 1517 1518 #define TASK_PFA_SET(name, func) \ 1519 static inline void task_set_##func(struct task_struct *p) \ 1520 { set_bit(PFA_##name, &p->atomic_flags); } 1521 1522 #define TASK_PFA_CLEAR(name, func) \ 1523 static inline void task_clear_##func(struct task_struct *p) \ 1524 { clear_bit(PFA_##name, &p->atomic_flags); } 1525 1526 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1527 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1528 1529 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1530 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1531 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1532 1533 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1534 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1535 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1536 1537 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1538 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1539 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1540 1541 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1542 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1543 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1544 1545 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1546 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1547 1548 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1549 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1550 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1551 1552 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1553 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1554 1555 static inline void 1556 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1557 { 1558 current->flags &= ~flags; 1559 current->flags |= orig_flags & flags; 1560 } 1561 1562 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1563 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1564 #ifdef CONFIG_SMP 1565 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1566 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1567 #else 1568 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1569 { 1570 } 1571 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1572 { 1573 if (!cpumask_test_cpu(0, new_mask)) 1574 return -EINVAL; 1575 return 0; 1576 } 1577 #endif 1578 1579 extern int yield_to(struct task_struct *p, bool preempt); 1580 extern void set_user_nice(struct task_struct *p, long nice); 1581 extern int task_prio(const struct task_struct *p); 1582 1583 /** 1584 * task_nice - return the nice value of a given task. 1585 * @p: the task in question. 1586 * 1587 * Return: The nice value [ -20 ... 0 ... 19 ]. 1588 */ 1589 static inline int task_nice(const struct task_struct *p) 1590 { 1591 return PRIO_TO_NICE((p)->static_prio); 1592 } 1593 1594 extern int can_nice(const struct task_struct *p, const int nice); 1595 extern int task_curr(const struct task_struct *p); 1596 extern int idle_cpu(int cpu); 1597 extern int available_idle_cpu(int cpu); 1598 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1599 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1600 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1601 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1602 extern struct task_struct *idle_task(int cpu); 1603 1604 /** 1605 * is_idle_task - is the specified task an idle task? 1606 * @p: the task in question. 1607 * 1608 * Return: 1 if @p is an idle task. 0 otherwise. 1609 */ 1610 static inline bool is_idle_task(const struct task_struct *p) 1611 { 1612 return !!(p->flags & PF_IDLE); 1613 } 1614 1615 extern struct task_struct *curr_task(int cpu); 1616 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1617 1618 void yield(void); 1619 1620 union thread_union { 1621 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1622 struct task_struct task; 1623 #endif 1624 #ifndef CONFIG_THREAD_INFO_IN_TASK 1625 struct thread_info thread_info; 1626 #endif 1627 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1628 }; 1629 1630 #ifndef CONFIG_THREAD_INFO_IN_TASK 1631 extern struct thread_info init_thread_info; 1632 #endif 1633 1634 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1635 1636 #ifdef CONFIG_THREAD_INFO_IN_TASK 1637 static inline struct thread_info *task_thread_info(struct task_struct *task) 1638 { 1639 return &task->thread_info; 1640 } 1641 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1642 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1643 #endif 1644 1645 /* 1646 * find a task by one of its numerical ids 1647 * 1648 * find_task_by_pid_ns(): 1649 * finds a task by its pid in the specified namespace 1650 * find_task_by_vpid(): 1651 * finds a task by its virtual pid 1652 * 1653 * see also find_vpid() etc in include/linux/pid.h 1654 */ 1655 1656 extern struct task_struct *find_task_by_vpid(pid_t nr); 1657 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1658 1659 /* 1660 * find a task by its virtual pid and get the task struct 1661 */ 1662 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1663 1664 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1665 extern int wake_up_process(struct task_struct *tsk); 1666 extern void wake_up_new_task(struct task_struct *tsk); 1667 1668 #ifdef CONFIG_SMP 1669 extern void kick_process(struct task_struct *tsk); 1670 #else 1671 static inline void kick_process(struct task_struct *tsk) { } 1672 #endif 1673 1674 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1675 1676 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1677 { 1678 __set_task_comm(tsk, from, false); 1679 } 1680 1681 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1682 #define get_task_comm(buf, tsk) ({ \ 1683 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1684 __get_task_comm(buf, sizeof(buf), tsk); \ 1685 }) 1686 1687 #ifdef CONFIG_SMP 1688 void scheduler_ipi(void); 1689 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1690 #else 1691 static inline void scheduler_ipi(void) { } 1692 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1693 { 1694 return 1; 1695 } 1696 #endif 1697 1698 /* 1699 * Set thread flags in other task's structures. 1700 * See asm/thread_info.h for TIF_xxxx flags available: 1701 */ 1702 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1703 { 1704 set_ti_thread_flag(task_thread_info(tsk), flag); 1705 } 1706 1707 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1708 { 1709 clear_ti_thread_flag(task_thread_info(tsk), flag); 1710 } 1711 1712 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1713 bool value) 1714 { 1715 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1716 } 1717 1718 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1719 { 1720 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1721 } 1722 1723 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1724 { 1725 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1726 } 1727 1728 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1729 { 1730 return test_ti_thread_flag(task_thread_info(tsk), flag); 1731 } 1732 1733 static inline void set_tsk_need_resched(struct task_struct *tsk) 1734 { 1735 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1736 } 1737 1738 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1739 { 1740 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1741 } 1742 1743 static inline int test_tsk_need_resched(struct task_struct *tsk) 1744 { 1745 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1746 } 1747 1748 /* 1749 * cond_resched() and cond_resched_lock(): latency reduction via 1750 * explicit rescheduling in places that are safe. The return 1751 * value indicates whether a reschedule was done in fact. 1752 * cond_resched_lock() will drop the spinlock before scheduling, 1753 */ 1754 #ifndef CONFIG_PREEMPTION 1755 extern int _cond_resched(void); 1756 #else 1757 static inline int _cond_resched(void) { return 0; } 1758 #endif 1759 1760 #define cond_resched() ({ \ 1761 ___might_sleep(__FILE__, __LINE__, 0); \ 1762 _cond_resched(); \ 1763 }) 1764 1765 extern int __cond_resched_lock(spinlock_t *lock); 1766 1767 #define cond_resched_lock(lock) ({ \ 1768 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1769 __cond_resched_lock(lock); \ 1770 }) 1771 1772 static inline void cond_resched_rcu(void) 1773 { 1774 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1775 rcu_read_unlock(); 1776 cond_resched(); 1777 rcu_read_lock(); 1778 #endif 1779 } 1780 1781 /* 1782 * Does a critical section need to be broken due to another 1783 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1784 * but a general need for low latency) 1785 */ 1786 static inline int spin_needbreak(spinlock_t *lock) 1787 { 1788 #ifdef CONFIG_PREEMPTION 1789 return spin_is_contended(lock); 1790 #else 1791 return 0; 1792 #endif 1793 } 1794 1795 static __always_inline bool need_resched(void) 1796 { 1797 return unlikely(tif_need_resched()); 1798 } 1799 1800 /* 1801 * Wrappers for p->thread_info->cpu access. No-op on UP. 1802 */ 1803 #ifdef CONFIG_SMP 1804 1805 static inline unsigned int task_cpu(const struct task_struct *p) 1806 { 1807 #ifdef CONFIG_THREAD_INFO_IN_TASK 1808 return READ_ONCE(p->cpu); 1809 #else 1810 return READ_ONCE(task_thread_info(p)->cpu); 1811 #endif 1812 } 1813 1814 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1815 1816 #else 1817 1818 static inline unsigned int task_cpu(const struct task_struct *p) 1819 { 1820 return 0; 1821 } 1822 1823 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1824 { 1825 } 1826 1827 #endif /* CONFIG_SMP */ 1828 1829 /* 1830 * In order to reduce various lock holder preemption latencies provide an 1831 * interface to see if a vCPU is currently running or not. 1832 * 1833 * This allows us to terminate optimistic spin loops and block, analogous to 1834 * the native optimistic spin heuristic of testing if the lock owner task is 1835 * running or not. 1836 */ 1837 #ifndef vcpu_is_preempted 1838 # define vcpu_is_preempted(cpu) false 1839 #endif 1840 1841 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1842 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1843 1844 #ifndef TASK_SIZE_OF 1845 #define TASK_SIZE_OF(tsk) TASK_SIZE 1846 #endif 1847 1848 #ifdef CONFIG_RSEQ 1849 1850 /* 1851 * Map the event mask on the user-space ABI enum rseq_cs_flags 1852 * for direct mask checks. 1853 */ 1854 enum rseq_event_mask_bits { 1855 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1856 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1857 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1858 }; 1859 1860 enum rseq_event_mask { 1861 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1862 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1863 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1864 }; 1865 1866 static inline void rseq_set_notify_resume(struct task_struct *t) 1867 { 1868 if (t->rseq) 1869 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1870 } 1871 1872 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1873 1874 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1875 struct pt_regs *regs) 1876 { 1877 if (current->rseq) 1878 __rseq_handle_notify_resume(ksig, regs); 1879 } 1880 1881 static inline void rseq_signal_deliver(struct ksignal *ksig, 1882 struct pt_regs *regs) 1883 { 1884 preempt_disable(); 1885 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1886 preempt_enable(); 1887 rseq_handle_notify_resume(ksig, regs); 1888 } 1889 1890 /* rseq_preempt() requires preemption to be disabled. */ 1891 static inline void rseq_preempt(struct task_struct *t) 1892 { 1893 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1894 rseq_set_notify_resume(t); 1895 } 1896 1897 /* rseq_migrate() requires preemption to be disabled. */ 1898 static inline void rseq_migrate(struct task_struct *t) 1899 { 1900 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1901 rseq_set_notify_resume(t); 1902 } 1903 1904 /* 1905 * If parent process has a registered restartable sequences area, the 1906 * child inherits. Only applies when forking a process, not a thread. 1907 */ 1908 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1909 { 1910 if (clone_flags & CLONE_THREAD) { 1911 t->rseq = NULL; 1912 t->rseq_sig = 0; 1913 t->rseq_event_mask = 0; 1914 } else { 1915 t->rseq = current->rseq; 1916 t->rseq_sig = current->rseq_sig; 1917 t->rseq_event_mask = current->rseq_event_mask; 1918 } 1919 } 1920 1921 static inline void rseq_execve(struct task_struct *t) 1922 { 1923 t->rseq = NULL; 1924 t->rseq_sig = 0; 1925 t->rseq_event_mask = 0; 1926 } 1927 1928 #else 1929 1930 static inline void rseq_set_notify_resume(struct task_struct *t) 1931 { 1932 } 1933 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1934 struct pt_regs *regs) 1935 { 1936 } 1937 static inline void rseq_signal_deliver(struct ksignal *ksig, 1938 struct pt_regs *regs) 1939 { 1940 } 1941 static inline void rseq_preempt(struct task_struct *t) 1942 { 1943 } 1944 static inline void rseq_migrate(struct task_struct *t) 1945 { 1946 } 1947 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1948 { 1949 } 1950 static inline void rseq_execve(struct task_struct *t) 1951 { 1952 } 1953 1954 #endif 1955 1956 void __exit_umh(struct task_struct *tsk); 1957 1958 static inline void exit_umh(struct task_struct *tsk) 1959 { 1960 if (unlikely(tsk->flags & PF_UMH)) 1961 __exit_umh(tsk); 1962 } 1963 1964 #ifdef CONFIG_DEBUG_RSEQ 1965 1966 void rseq_syscall(struct pt_regs *regs); 1967 1968 #else 1969 1970 static inline void rseq_syscall(struct pt_regs *regs) 1971 { 1972 } 1973 1974 #endif 1975 1976 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 1977 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 1978 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 1979 1980 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 1981 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 1982 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 1983 1984 int sched_trace_rq_cpu(struct rq *rq); 1985 1986 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 1987 1988 #endif 1989