1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 42 #ifdef __KERNEL__ 43 44 struct sched_param { 45 int sched_priority; 46 }; 47 48 #include <asm/param.h> /* for HZ */ 49 50 #include <linux/capability.h> 51 #include <linux/threads.h> 52 #include <linux/kernel.h> 53 #include <linux/types.h> 54 #include <linux/timex.h> 55 #include <linux/jiffies.h> 56 #include <linux/rbtree.h> 57 #include <linux/thread_info.h> 58 #include <linux/cpumask.h> 59 #include <linux/errno.h> 60 #include <linux/nodemask.h> 61 #include <linux/mm_types.h> 62 63 #include <asm/system.h> 64 #include <asm/page.h> 65 #include <asm/ptrace.h> 66 #include <asm/cputime.h> 67 68 #include <linux/smp.h> 69 #include <linux/sem.h> 70 #include <linux/signal.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compiler.h> 73 #include <linux/completion.h> 74 #include <linux/pid.h> 75 #include <linux/percpu.h> 76 #include <linux/topology.h> 77 #include <linux/proportions.h> 78 #include <linux/seccomp.h> 79 #include <linux/rcupdate.h> 80 #include <linux/rtmutex.h> 81 82 #include <linux/time.h> 83 #include <linux/param.h> 84 #include <linux/resource.h> 85 #include <linux/timer.h> 86 #include <linux/hrtimer.h> 87 #include <linux/task_io_accounting.h> 88 #include <linux/kobject.h> 89 #include <linux/latencytop.h> 90 #include <linux/cred.h> 91 92 #include <asm/processor.h> 93 94 struct mem_cgroup; 95 struct exec_domain; 96 struct futex_pi_state; 97 struct robust_list_head; 98 struct bio; 99 struct bts_tracer; 100 101 /* 102 * List of flags we want to share for kernel threads, 103 * if only because they are not used by them anyway. 104 */ 105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 106 107 /* 108 * These are the constant used to fake the fixed-point load-average 109 * counting. Some notes: 110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 111 * a load-average precision of 10 bits integer + 11 bits fractional 112 * - if you want to count load-averages more often, you need more 113 * precision, or rounding will get you. With 2-second counting freq, 114 * the EXP_n values would be 1981, 2034 and 2043 if still using only 115 * 11 bit fractions. 116 */ 117 extern unsigned long avenrun[]; /* Load averages */ 118 119 #define FSHIFT 11 /* nr of bits of precision */ 120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 123 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 124 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 125 126 #define CALC_LOAD(load,exp,n) \ 127 load *= exp; \ 128 load += n*(FIXED_1-exp); \ 129 load >>= FSHIFT; 130 131 extern unsigned long total_forks; 132 extern int nr_threads; 133 DECLARE_PER_CPU(unsigned long, process_counts); 134 extern int nr_processes(void); 135 extern unsigned long nr_running(void); 136 extern unsigned long nr_uninterruptible(void); 137 extern unsigned long nr_active(void); 138 extern unsigned long nr_iowait(void); 139 140 struct seq_file; 141 struct cfs_rq; 142 struct task_group; 143 #ifdef CONFIG_SCHED_DEBUG 144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 145 extern void proc_sched_set_task(struct task_struct *p); 146 extern void 147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 148 #else 149 static inline void 150 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 151 { 152 } 153 static inline void proc_sched_set_task(struct task_struct *p) 154 { 155 } 156 static inline void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 158 { 159 } 160 #endif 161 162 extern unsigned long long time_sync_thresh; 163 164 /* 165 * Task state bitmask. NOTE! These bits are also 166 * encoded in fs/proc/array.c: get_task_state(). 167 * 168 * We have two separate sets of flags: task->state 169 * is about runnability, while task->exit_state are 170 * about the task exiting. Confusing, but this way 171 * modifying one set can't modify the other one by 172 * mistake. 173 */ 174 #define TASK_RUNNING 0 175 #define TASK_INTERRUPTIBLE 1 176 #define TASK_UNINTERRUPTIBLE 2 177 #define __TASK_STOPPED 4 178 #define __TASK_TRACED 8 179 /* in tsk->exit_state */ 180 #define EXIT_ZOMBIE 16 181 #define EXIT_DEAD 32 182 /* in tsk->state again */ 183 #define TASK_DEAD 64 184 #define TASK_WAKEKILL 128 185 186 /* Convenience macros for the sake of set_task_state */ 187 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 188 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 189 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 190 191 /* Convenience macros for the sake of wake_up */ 192 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 193 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 194 195 /* get_task_state() */ 196 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 197 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 198 __TASK_TRACED) 199 200 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 201 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 202 #define task_is_stopped_or_traced(task) \ 203 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 204 #define task_contributes_to_load(task) \ 205 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 206 207 #define __set_task_state(tsk, state_value) \ 208 do { (tsk)->state = (state_value); } while (0) 209 #define set_task_state(tsk, state_value) \ 210 set_mb((tsk)->state, (state_value)) 211 212 /* 213 * set_current_state() includes a barrier so that the write of current->state 214 * is correctly serialised wrt the caller's subsequent test of whether to 215 * actually sleep: 216 * 217 * set_current_state(TASK_UNINTERRUPTIBLE); 218 * if (do_i_need_to_sleep()) 219 * schedule(); 220 * 221 * If the caller does not need such serialisation then use __set_current_state() 222 */ 223 #define __set_current_state(state_value) \ 224 do { current->state = (state_value); } while (0) 225 #define set_current_state(state_value) \ 226 set_mb(current->state, (state_value)) 227 228 /* Task command name length */ 229 #define TASK_COMM_LEN 16 230 231 #include <linux/spinlock.h> 232 233 /* 234 * This serializes "schedule()" and also protects 235 * the run-queue from deletions/modifications (but 236 * _adding_ to the beginning of the run-queue has 237 * a separate lock). 238 */ 239 extern rwlock_t tasklist_lock; 240 extern spinlock_t mmlist_lock; 241 242 struct task_struct; 243 244 extern void sched_init(void); 245 extern void sched_init_smp(void); 246 extern asmlinkage void schedule_tail(struct task_struct *prev); 247 extern void init_idle(struct task_struct *idle, int cpu); 248 extern void init_idle_bootup_task(struct task_struct *idle); 249 250 extern int runqueue_is_locked(void); 251 extern void task_rq_unlock_wait(struct task_struct *p); 252 253 extern cpumask_var_t nohz_cpu_mask; 254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 255 extern int select_nohz_load_balancer(int cpu); 256 #else 257 static inline int select_nohz_load_balancer(int cpu) 258 { 259 return 0; 260 } 261 #endif 262 263 /* 264 * Only dump TASK_* tasks. (0 for all tasks) 265 */ 266 extern void show_state_filter(unsigned long state_filter); 267 268 static inline void show_state(void) 269 { 270 show_state_filter(0); 271 } 272 273 extern void show_regs(struct pt_regs *); 274 275 /* 276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 277 * task), SP is the stack pointer of the first frame that should be shown in the back 278 * trace (or NULL if the entire call-chain of the task should be shown). 279 */ 280 extern void show_stack(struct task_struct *task, unsigned long *sp); 281 282 void io_schedule(void); 283 long io_schedule_timeout(long timeout); 284 285 extern void cpu_init (void); 286 extern void trap_init(void); 287 extern void update_process_times(int user); 288 extern void scheduler_tick(void); 289 290 extern void sched_show_task(struct task_struct *p); 291 292 #ifdef CONFIG_DETECT_SOFTLOCKUP 293 extern void softlockup_tick(void); 294 extern void touch_softlockup_watchdog(void); 295 extern void touch_all_softlockup_watchdogs(void); 296 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 297 struct file *filp, void __user *buffer, 298 size_t *lenp, loff_t *ppos); 299 extern unsigned int softlockup_panic; 300 extern unsigned long sysctl_hung_task_check_count; 301 extern unsigned long sysctl_hung_task_timeout_secs; 302 extern unsigned long sysctl_hung_task_warnings; 303 extern int softlockup_thresh; 304 #else 305 static inline void softlockup_tick(void) 306 { 307 } 308 static inline void spawn_softlockup_task(void) 309 { 310 } 311 static inline void touch_softlockup_watchdog(void) 312 { 313 } 314 static inline void touch_all_softlockup_watchdogs(void) 315 { 316 } 317 #endif 318 319 320 /* Attach to any functions which should be ignored in wchan output. */ 321 #define __sched __attribute__((__section__(".sched.text"))) 322 323 /* Linker adds these: start and end of __sched functions */ 324 extern char __sched_text_start[], __sched_text_end[]; 325 326 /* Is this address in the __sched functions? */ 327 extern int in_sched_functions(unsigned long addr); 328 329 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 330 extern signed long schedule_timeout(signed long timeout); 331 extern signed long schedule_timeout_interruptible(signed long timeout); 332 extern signed long schedule_timeout_killable(signed long timeout); 333 extern signed long schedule_timeout_uninterruptible(signed long timeout); 334 asmlinkage void schedule(void); 335 336 struct nsproxy; 337 struct user_namespace; 338 339 /* Maximum number of active map areas.. This is a random (large) number */ 340 #define DEFAULT_MAX_MAP_COUNT 65536 341 342 extern int sysctl_max_map_count; 343 344 #include <linux/aio.h> 345 346 extern unsigned long 347 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 348 unsigned long, unsigned long); 349 extern unsigned long 350 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 351 unsigned long len, unsigned long pgoff, 352 unsigned long flags); 353 extern void arch_unmap_area(struct mm_struct *, unsigned long); 354 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 355 356 #if USE_SPLIT_PTLOCKS 357 /* 358 * The mm counters are not protected by its page_table_lock, 359 * so must be incremented atomically. 360 */ 361 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 362 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 363 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 364 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 365 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 366 367 #else /* !USE_SPLIT_PTLOCKS */ 368 /* 369 * The mm counters are protected by its page_table_lock, 370 * so can be incremented directly. 371 */ 372 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 373 #define get_mm_counter(mm, member) ((mm)->_##member) 374 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 375 #define inc_mm_counter(mm, member) (mm)->_##member++ 376 #define dec_mm_counter(mm, member) (mm)->_##member-- 377 378 #endif /* !USE_SPLIT_PTLOCKS */ 379 380 #define get_mm_rss(mm) \ 381 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 382 #define update_hiwater_rss(mm) do { \ 383 unsigned long _rss = get_mm_rss(mm); \ 384 if ((mm)->hiwater_rss < _rss) \ 385 (mm)->hiwater_rss = _rss; \ 386 } while (0) 387 #define update_hiwater_vm(mm) do { \ 388 if ((mm)->hiwater_vm < (mm)->total_vm) \ 389 (mm)->hiwater_vm = (mm)->total_vm; \ 390 } while (0) 391 392 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm)) 393 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm) 394 395 extern void set_dumpable(struct mm_struct *mm, int value); 396 extern int get_dumpable(struct mm_struct *mm); 397 398 /* mm flags */ 399 /* dumpable bits */ 400 #define MMF_DUMPABLE 0 /* core dump is permitted */ 401 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 402 #define MMF_DUMPABLE_BITS 2 403 404 /* coredump filter bits */ 405 #define MMF_DUMP_ANON_PRIVATE 2 406 #define MMF_DUMP_ANON_SHARED 3 407 #define MMF_DUMP_MAPPED_PRIVATE 4 408 #define MMF_DUMP_MAPPED_SHARED 5 409 #define MMF_DUMP_ELF_HEADERS 6 410 #define MMF_DUMP_HUGETLB_PRIVATE 7 411 #define MMF_DUMP_HUGETLB_SHARED 8 412 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 413 #define MMF_DUMP_FILTER_BITS 7 414 #define MMF_DUMP_FILTER_MASK \ 415 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 416 #define MMF_DUMP_FILTER_DEFAULT \ 417 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 418 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 419 420 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 421 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 422 #else 423 # define MMF_DUMP_MASK_DEFAULT_ELF 0 424 #endif 425 426 struct sighand_struct { 427 atomic_t count; 428 struct k_sigaction action[_NSIG]; 429 spinlock_t siglock; 430 wait_queue_head_t signalfd_wqh; 431 }; 432 433 struct pacct_struct { 434 int ac_flag; 435 long ac_exitcode; 436 unsigned long ac_mem; 437 cputime_t ac_utime, ac_stime; 438 unsigned long ac_minflt, ac_majflt; 439 }; 440 441 /** 442 * struct task_cputime - collected CPU time counts 443 * @utime: time spent in user mode, in &cputime_t units 444 * @stime: time spent in kernel mode, in &cputime_t units 445 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 446 * 447 * This structure groups together three kinds of CPU time that are 448 * tracked for threads and thread groups. Most things considering 449 * CPU time want to group these counts together and treat all three 450 * of them in parallel. 451 */ 452 struct task_cputime { 453 cputime_t utime; 454 cputime_t stime; 455 unsigned long long sum_exec_runtime; 456 }; 457 /* Alternate field names when used to cache expirations. */ 458 #define prof_exp stime 459 #define virt_exp utime 460 #define sched_exp sum_exec_runtime 461 462 #define INIT_CPUTIME \ 463 (struct task_cputime) { \ 464 .utime = cputime_zero, \ 465 .stime = cputime_zero, \ 466 .sum_exec_runtime = 0, \ 467 } 468 469 /** 470 * struct thread_group_cputimer - thread group interval timer counts 471 * @cputime: thread group interval timers. 472 * @running: non-zero when there are timers running and 473 * @cputime receives updates. 474 * @lock: lock for fields in this struct. 475 * 476 * This structure contains the version of task_cputime, above, that is 477 * used for thread group CPU timer calculations. 478 */ 479 struct thread_group_cputimer { 480 struct task_cputime cputime; 481 int running; 482 spinlock_t lock; 483 }; 484 485 /* 486 * NOTE! "signal_struct" does not have it's own 487 * locking, because a shared signal_struct always 488 * implies a shared sighand_struct, so locking 489 * sighand_struct is always a proper superset of 490 * the locking of signal_struct. 491 */ 492 struct signal_struct { 493 atomic_t count; 494 atomic_t live; 495 496 wait_queue_head_t wait_chldexit; /* for wait4() */ 497 498 /* current thread group signal load-balancing target: */ 499 struct task_struct *curr_target; 500 501 /* shared signal handling: */ 502 struct sigpending shared_pending; 503 504 /* thread group exit support */ 505 int group_exit_code; 506 /* overloaded: 507 * - notify group_exit_task when ->count is equal to notify_count 508 * - everyone except group_exit_task is stopped during signal delivery 509 * of fatal signals, group_exit_task processes the signal. 510 */ 511 int notify_count; 512 struct task_struct *group_exit_task; 513 514 /* thread group stop support, overloads group_exit_code too */ 515 int group_stop_count; 516 unsigned int flags; /* see SIGNAL_* flags below */ 517 518 /* POSIX.1b Interval Timers */ 519 struct list_head posix_timers; 520 521 /* ITIMER_REAL timer for the process */ 522 struct hrtimer real_timer; 523 struct pid *leader_pid; 524 ktime_t it_real_incr; 525 526 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 527 cputime_t it_prof_expires, it_virt_expires; 528 cputime_t it_prof_incr, it_virt_incr; 529 530 /* 531 * Thread group totals for process CPU timers. 532 * See thread_group_cputimer(), et al, for details. 533 */ 534 struct thread_group_cputimer cputimer; 535 536 /* Earliest-expiration cache. */ 537 struct task_cputime cputime_expires; 538 539 struct list_head cpu_timers[3]; 540 541 /* job control IDs */ 542 543 /* 544 * pgrp and session fields are deprecated. 545 * use the task_session_Xnr and task_pgrp_Xnr routines below 546 */ 547 548 union { 549 pid_t pgrp __deprecated; 550 pid_t __pgrp; 551 }; 552 553 struct pid *tty_old_pgrp; 554 555 union { 556 pid_t session __deprecated; 557 pid_t __session; 558 }; 559 560 /* boolean value for session group leader */ 561 int leader; 562 563 struct tty_struct *tty; /* NULL if no tty */ 564 565 /* 566 * Cumulative resource counters for dead threads in the group, 567 * and for reaped dead child processes forked by this group. 568 * Live threads maintain their own counters and add to these 569 * in __exit_signal, except for the group leader. 570 */ 571 cputime_t utime, stime, cutime, cstime; 572 cputime_t gtime; 573 cputime_t cgtime; 574 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 575 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 576 unsigned long inblock, oublock, cinblock, coublock; 577 struct task_io_accounting ioac; 578 579 /* 580 * Cumulative ns of schedule CPU time fo dead threads in the 581 * group, not including a zombie group leader, (This only differs 582 * from jiffies_to_ns(utime + stime) if sched_clock uses something 583 * other than jiffies.) 584 */ 585 unsigned long long sum_sched_runtime; 586 587 /* 588 * We don't bother to synchronize most readers of this at all, 589 * because there is no reader checking a limit that actually needs 590 * to get both rlim_cur and rlim_max atomically, and either one 591 * alone is a single word that can safely be read normally. 592 * getrlimit/setrlimit use task_lock(current->group_leader) to 593 * protect this instead of the siglock, because they really 594 * have no need to disable irqs. 595 */ 596 struct rlimit rlim[RLIM_NLIMITS]; 597 598 #ifdef CONFIG_BSD_PROCESS_ACCT 599 struct pacct_struct pacct; /* per-process accounting information */ 600 #endif 601 #ifdef CONFIG_TASKSTATS 602 struct taskstats *stats; 603 #endif 604 #ifdef CONFIG_AUDIT 605 unsigned audit_tty; 606 struct tty_audit_buf *tty_audit_buf; 607 #endif 608 }; 609 610 /* Context switch must be unlocked if interrupts are to be enabled */ 611 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 612 # define __ARCH_WANT_UNLOCKED_CTXSW 613 #endif 614 615 /* 616 * Bits in flags field of signal_struct. 617 */ 618 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 619 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 620 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 621 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 622 /* 623 * Pending notifications to parent. 624 */ 625 #define SIGNAL_CLD_STOPPED 0x00000010 626 #define SIGNAL_CLD_CONTINUED 0x00000020 627 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 628 629 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 630 631 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 632 static inline int signal_group_exit(const struct signal_struct *sig) 633 { 634 return (sig->flags & SIGNAL_GROUP_EXIT) || 635 (sig->group_exit_task != NULL); 636 } 637 638 /* 639 * Some day this will be a full-fledged user tracking system.. 640 */ 641 struct user_struct { 642 atomic_t __count; /* reference count */ 643 atomic_t processes; /* How many processes does this user have? */ 644 atomic_t files; /* How many open files does this user have? */ 645 atomic_t sigpending; /* How many pending signals does this user have? */ 646 #ifdef CONFIG_INOTIFY_USER 647 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 648 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 649 #endif 650 #ifdef CONFIG_EPOLL 651 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 652 #endif 653 #ifdef CONFIG_POSIX_MQUEUE 654 /* protected by mq_lock */ 655 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 656 #endif 657 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 658 659 #ifdef CONFIG_KEYS 660 struct key *uid_keyring; /* UID specific keyring */ 661 struct key *session_keyring; /* UID's default session keyring */ 662 #endif 663 664 /* Hash table maintenance information */ 665 struct hlist_node uidhash_node; 666 uid_t uid; 667 struct user_namespace *user_ns; 668 669 #ifdef CONFIG_USER_SCHED 670 struct task_group *tg; 671 #ifdef CONFIG_SYSFS 672 struct kobject kobj; 673 struct work_struct work; 674 #endif 675 #endif 676 }; 677 678 extern int uids_sysfs_init(void); 679 680 extern struct user_struct *find_user(uid_t); 681 682 extern struct user_struct root_user; 683 #define INIT_USER (&root_user) 684 685 686 struct backing_dev_info; 687 struct reclaim_state; 688 689 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 690 struct sched_info { 691 /* cumulative counters */ 692 unsigned long pcount; /* # of times run on this cpu */ 693 unsigned long long run_delay; /* time spent waiting on a runqueue */ 694 695 /* timestamps */ 696 unsigned long long last_arrival,/* when we last ran on a cpu */ 697 last_queued; /* when we were last queued to run */ 698 #ifdef CONFIG_SCHEDSTATS 699 /* BKL stats */ 700 unsigned int bkl_count; 701 #endif 702 }; 703 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 704 705 #ifdef CONFIG_TASK_DELAY_ACCT 706 struct task_delay_info { 707 spinlock_t lock; 708 unsigned int flags; /* Private per-task flags */ 709 710 /* For each stat XXX, add following, aligned appropriately 711 * 712 * struct timespec XXX_start, XXX_end; 713 * u64 XXX_delay; 714 * u32 XXX_count; 715 * 716 * Atomicity of updates to XXX_delay, XXX_count protected by 717 * single lock above (split into XXX_lock if contention is an issue). 718 */ 719 720 /* 721 * XXX_count is incremented on every XXX operation, the delay 722 * associated with the operation is added to XXX_delay. 723 * XXX_delay contains the accumulated delay time in nanoseconds. 724 */ 725 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 726 u64 blkio_delay; /* wait for sync block io completion */ 727 u64 swapin_delay; /* wait for swapin block io completion */ 728 u32 blkio_count; /* total count of the number of sync block */ 729 /* io operations performed */ 730 u32 swapin_count; /* total count of the number of swapin block */ 731 /* io operations performed */ 732 733 struct timespec freepages_start, freepages_end; 734 u64 freepages_delay; /* wait for memory reclaim */ 735 u32 freepages_count; /* total count of memory reclaim */ 736 }; 737 #endif /* CONFIG_TASK_DELAY_ACCT */ 738 739 static inline int sched_info_on(void) 740 { 741 #ifdef CONFIG_SCHEDSTATS 742 return 1; 743 #elif defined(CONFIG_TASK_DELAY_ACCT) 744 extern int delayacct_on; 745 return delayacct_on; 746 #else 747 return 0; 748 #endif 749 } 750 751 enum cpu_idle_type { 752 CPU_IDLE, 753 CPU_NOT_IDLE, 754 CPU_NEWLY_IDLE, 755 CPU_MAX_IDLE_TYPES 756 }; 757 758 /* 759 * sched-domains (multiprocessor balancing) declarations: 760 */ 761 762 /* 763 * Increase resolution of nice-level calculations: 764 */ 765 #define SCHED_LOAD_SHIFT 10 766 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 767 768 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 769 770 #ifdef CONFIG_SMP 771 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 772 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 773 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 774 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 775 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 776 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 777 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 778 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 779 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 780 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 781 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 782 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 783 784 enum powersavings_balance_level { 785 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 786 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 787 * first for long running threads 788 */ 789 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 790 * cpu package for power savings 791 */ 792 MAX_POWERSAVINGS_BALANCE_LEVELS 793 }; 794 795 extern int sched_mc_power_savings, sched_smt_power_savings; 796 797 static inline int sd_balance_for_mc_power(void) 798 { 799 if (sched_smt_power_savings) 800 return SD_POWERSAVINGS_BALANCE; 801 802 return 0; 803 } 804 805 static inline int sd_balance_for_package_power(void) 806 { 807 if (sched_mc_power_savings | sched_smt_power_savings) 808 return SD_POWERSAVINGS_BALANCE; 809 810 return 0; 811 } 812 813 /* 814 * Optimise SD flags for power savings: 815 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 816 * Keep default SD flags if sched_{smt,mc}_power_saving=0 817 */ 818 819 static inline int sd_power_saving_flags(void) 820 { 821 if (sched_mc_power_savings | sched_smt_power_savings) 822 return SD_BALANCE_NEWIDLE; 823 824 return 0; 825 } 826 827 struct sched_group { 828 struct sched_group *next; /* Must be a circular list */ 829 830 /* 831 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 832 * single CPU. This is read only (except for setup, hotplug CPU). 833 * Note : Never change cpu_power without recompute its reciprocal 834 */ 835 unsigned int __cpu_power; 836 /* 837 * reciprocal value of cpu_power to avoid expensive divides 838 * (see include/linux/reciprocal_div.h) 839 */ 840 u32 reciprocal_cpu_power; 841 842 unsigned long cpumask[]; 843 }; 844 845 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 846 { 847 return to_cpumask(sg->cpumask); 848 } 849 850 enum sched_domain_level { 851 SD_LV_NONE = 0, 852 SD_LV_SIBLING, 853 SD_LV_MC, 854 SD_LV_CPU, 855 SD_LV_NODE, 856 SD_LV_ALLNODES, 857 SD_LV_MAX 858 }; 859 860 struct sched_domain_attr { 861 int relax_domain_level; 862 }; 863 864 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 865 .relax_domain_level = -1, \ 866 } 867 868 struct sched_domain { 869 /* These fields must be setup */ 870 struct sched_domain *parent; /* top domain must be null terminated */ 871 struct sched_domain *child; /* bottom domain must be null terminated */ 872 struct sched_group *groups; /* the balancing groups of the domain */ 873 unsigned long min_interval; /* Minimum balance interval ms */ 874 unsigned long max_interval; /* Maximum balance interval ms */ 875 unsigned int busy_factor; /* less balancing by factor if busy */ 876 unsigned int imbalance_pct; /* No balance until over watermark */ 877 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 878 unsigned int busy_idx; 879 unsigned int idle_idx; 880 unsigned int newidle_idx; 881 unsigned int wake_idx; 882 unsigned int forkexec_idx; 883 int flags; /* See SD_* */ 884 enum sched_domain_level level; 885 886 /* Runtime fields. */ 887 unsigned long last_balance; /* init to jiffies. units in jiffies */ 888 unsigned int balance_interval; /* initialise to 1. units in ms. */ 889 unsigned int nr_balance_failed; /* initialise to 0 */ 890 891 u64 last_update; 892 893 #ifdef CONFIG_SCHEDSTATS 894 /* load_balance() stats */ 895 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 896 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 897 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 898 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 899 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 900 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 901 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 902 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 903 904 /* Active load balancing */ 905 unsigned int alb_count; 906 unsigned int alb_failed; 907 unsigned int alb_pushed; 908 909 /* SD_BALANCE_EXEC stats */ 910 unsigned int sbe_count; 911 unsigned int sbe_balanced; 912 unsigned int sbe_pushed; 913 914 /* SD_BALANCE_FORK stats */ 915 unsigned int sbf_count; 916 unsigned int sbf_balanced; 917 unsigned int sbf_pushed; 918 919 /* try_to_wake_up() stats */ 920 unsigned int ttwu_wake_remote; 921 unsigned int ttwu_move_affine; 922 unsigned int ttwu_move_balance; 923 #endif 924 #ifdef CONFIG_SCHED_DEBUG 925 char *name; 926 #endif 927 928 /* span of all CPUs in this domain */ 929 unsigned long span[]; 930 }; 931 932 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 933 { 934 return to_cpumask(sd->span); 935 } 936 937 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 938 struct sched_domain_attr *dattr_new); 939 940 /* Test a flag in parent sched domain */ 941 static inline int test_sd_parent(struct sched_domain *sd, int flag) 942 { 943 if (sd->parent && (sd->parent->flags & flag)) 944 return 1; 945 946 return 0; 947 } 948 949 #else /* CONFIG_SMP */ 950 951 struct sched_domain_attr; 952 953 static inline void 954 partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 955 struct sched_domain_attr *dattr_new) 956 { 957 } 958 #endif /* !CONFIG_SMP */ 959 960 struct io_context; /* See blkdev.h */ 961 962 963 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 964 extern void prefetch_stack(struct task_struct *t); 965 #else 966 static inline void prefetch_stack(struct task_struct *t) { } 967 #endif 968 969 struct audit_context; /* See audit.c */ 970 struct mempolicy; 971 struct pipe_inode_info; 972 struct uts_namespace; 973 974 struct rq; 975 struct sched_domain; 976 977 struct sched_class { 978 const struct sched_class *next; 979 980 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 981 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 982 void (*yield_task) (struct rq *rq); 983 984 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync); 985 986 struct task_struct * (*pick_next_task) (struct rq *rq); 987 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 988 989 #ifdef CONFIG_SMP 990 int (*select_task_rq)(struct task_struct *p, int sync); 991 992 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 993 struct rq *busiest, unsigned long max_load_move, 994 struct sched_domain *sd, enum cpu_idle_type idle, 995 int *all_pinned, int *this_best_prio); 996 997 int (*move_one_task) (struct rq *this_rq, int this_cpu, 998 struct rq *busiest, struct sched_domain *sd, 999 enum cpu_idle_type idle); 1000 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1001 void (*post_schedule) (struct rq *this_rq); 1002 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 1003 1004 void (*set_cpus_allowed)(struct task_struct *p, 1005 const struct cpumask *newmask); 1006 1007 void (*rq_online)(struct rq *rq); 1008 void (*rq_offline)(struct rq *rq); 1009 #endif 1010 1011 void (*set_curr_task) (struct rq *rq); 1012 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1013 void (*task_new) (struct rq *rq, struct task_struct *p); 1014 1015 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1016 int running); 1017 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1018 int running); 1019 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1020 int oldprio, int running); 1021 1022 #ifdef CONFIG_FAIR_GROUP_SCHED 1023 void (*moved_group) (struct task_struct *p); 1024 #endif 1025 }; 1026 1027 struct load_weight { 1028 unsigned long weight, inv_weight; 1029 }; 1030 1031 /* 1032 * CFS stats for a schedulable entity (task, task-group etc) 1033 * 1034 * Current field usage histogram: 1035 * 1036 * 4 se->block_start 1037 * 4 se->run_node 1038 * 4 se->sleep_start 1039 * 6 se->load.weight 1040 */ 1041 struct sched_entity { 1042 struct load_weight load; /* for load-balancing */ 1043 struct rb_node run_node; 1044 struct list_head group_node; 1045 unsigned int on_rq; 1046 1047 u64 exec_start; 1048 u64 sum_exec_runtime; 1049 u64 vruntime; 1050 u64 prev_sum_exec_runtime; 1051 1052 u64 last_wakeup; 1053 u64 avg_overlap; 1054 1055 #ifdef CONFIG_SCHEDSTATS 1056 u64 wait_start; 1057 u64 wait_max; 1058 u64 wait_count; 1059 u64 wait_sum; 1060 1061 u64 sleep_start; 1062 u64 sleep_max; 1063 s64 sum_sleep_runtime; 1064 1065 u64 block_start; 1066 u64 block_max; 1067 u64 exec_max; 1068 u64 slice_max; 1069 1070 u64 nr_migrations; 1071 u64 nr_migrations_cold; 1072 u64 nr_failed_migrations_affine; 1073 u64 nr_failed_migrations_running; 1074 u64 nr_failed_migrations_hot; 1075 u64 nr_forced_migrations; 1076 u64 nr_forced2_migrations; 1077 1078 u64 nr_wakeups; 1079 u64 nr_wakeups_sync; 1080 u64 nr_wakeups_migrate; 1081 u64 nr_wakeups_local; 1082 u64 nr_wakeups_remote; 1083 u64 nr_wakeups_affine; 1084 u64 nr_wakeups_affine_attempts; 1085 u64 nr_wakeups_passive; 1086 u64 nr_wakeups_idle; 1087 #endif 1088 1089 #ifdef CONFIG_FAIR_GROUP_SCHED 1090 struct sched_entity *parent; 1091 /* rq on which this entity is (to be) queued: */ 1092 struct cfs_rq *cfs_rq; 1093 /* rq "owned" by this entity/group: */ 1094 struct cfs_rq *my_q; 1095 #endif 1096 }; 1097 1098 struct sched_rt_entity { 1099 struct list_head run_list; 1100 unsigned long timeout; 1101 unsigned int time_slice; 1102 int nr_cpus_allowed; 1103 1104 struct sched_rt_entity *back; 1105 #ifdef CONFIG_RT_GROUP_SCHED 1106 struct sched_rt_entity *parent; 1107 /* rq on which this entity is (to be) queued: */ 1108 struct rt_rq *rt_rq; 1109 /* rq "owned" by this entity/group: */ 1110 struct rt_rq *my_q; 1111 #endif 1112 }; 1113 1114 struct task_struct { 1115 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1116 void *stack; 1117 atomic_t usage; 1118 unsigned int flags; /* per process flags, defined below */ 1119 unsigned int ptrace; 1120 1121 int lock_depth; /* BKL lock depth */ 1122 1123 #ifdef CONFIG_SMP 1124 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1125 int oncpu; 1126 #endif 1127 #endif 1128 1129 int prio, static_prio, normal_prio; 1130 unsigned int rt_priority; 1131 const struct sched_class *sched_class; 1132 struct sched_entity se; 1133 struct sched_rt_entity rt; 1134 1135 #ifdef CONFIG_PREEMPT_NOTIFIERS 1136 /* list of struct preempt_notifier: */ 1137 struct hlist_head preempt_notifiers; 1138 #endif 1139 1140 /* 1141 * fpu_counter contains the number of consecutive context switches 1142 * that the FPU is used. If this is over a threshold, the lazy fpu 1143 * saving becomes unlazy to save the trap. This is an unsigned char 1144 * so that after 256 times the counter wraps and the behavior turns 1145 * lazy again; this to deal with bursty apps that only use FPU for 1146 * a short time 1147 */ 1148 unsigned char fpu_counter; 1149 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1150 #ifdef CONFIG_BLK_DEV_IO_TRACE 1151 unsigned int btrace_seq; 1152 #endif 1153 1154 unsigned int policy; 1155 cpumask_t cpus_allowed; 1156 1157 #ifdef CONFIG_PREEMPT_RCU 1158 int rcu_read_lock_nesting; 1159 int rcu_flipctr_idx; 1160 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1161 1162 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1163 struct sched_info sched_info; 1164 #endif 1165 1166 struct list_head tasks; 1167 1168 struct mm_struct *mm, *active_mm; 1169 1170 /* task state */ 1171 struct linux_binfmt *binfmt; 1172 int exit_state; 1173 int exit_code, exit_signal; 1174 int pdeath_signal; /* The signal sent when the parent dies */ 1175 /* ??? */ 1176 unsigned int personality; 1177 unsigned did_exec:1; 1178 pid_t pid; 1179 pid_t tgid; 1180 1181 #ifdef CONFIG_CC_STACKPROTECTOR 1182 /* Canary value for the -fstack-protector gcc feature */ 1183 unsigned long stack_canary; 1184 #endif 1185 /* 1186 * pointers to (original) parent process, youngest child, younger sibling, 1187 * older sibling, respectively. (p->father can be replaced with 1188 * p->real_parent->pid) 1189 */ 1190 struct task_struct *real_parent; /* real parent process */ 1191 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1192 /* 1193 * children/sibling forms the list of my natural children 1194 */ 1195 struct list_head children; /* list of my children */ 1196 struct list_head sibling; /* linkage in my parent's children list */ 1197 struct task_struct *group_leader; /* threadgroup leader */ 1198 1199 /* 1200 * ptraced is the list of tasks this task is using ptrace on. 1201 * This includes both natural children and PTRACE_ATTACH targets. 1202 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1203 */ 1204 struct list_head ptraced; 1205 struct list_head ptrace_entry; 1206 1207 #ifdef CONFIG_X86_PTRACE_BTS 1208 /* 1209 * This is the tracer handle for the ptrace BTS extension. 1210 * This field actually belongs to the ptracer task. 1211 */ 1212 struct bts_tracer *bts; 1213 /* 1214 * The buffer to hold the BTS data. 1215 */ 1216 void *bts_buffer; 1217 size_t bts_size; 1218 #endif /* CONFIG_X86_PTRACE_BTS */ 1219 1220 /* PID/PID hash table linkage. */ 1221 struct pid_link pids[PIDTYPE_MAX]; 1222 struct list_head thread_group; 1223 1224 struct completion *vfork_done; /* for vfork() */ 1225 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1226 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1227 1228 cputime_t utime, stime, utimescaled, stimescaled; 1229 cputime_t gtime; 1230 cputime_t prev_utime, prev_stime; 1231 unsigned long nvcsw, nivcsw; /* context switch counts */ 1232 struct timespec start_time; /* monotonic time */ 1233 struct timespec real_start_time; /* boot based time */ 1234 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1235 unsigned long min_flt, maj_flt; 1236 1237 struct task_cputime cputime_expires; 1238 struct list_head cpu_timers[3]; 1239 1240 /* process credentials */ 1241 const struct cred *real_cred; /* objective and real subjective task 1242 * credentials (COW) */ 1243 const struct cred *cred; /* effective (overridable) subjective task 1244 * credentials (COW) */ 1245 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */ 1246 1247 char comm[TASK_COMM_LEN]; /* executable name excluding path 1248 - access with [gs]et_task_comm (which lock 1249 it with task_lock()) 1250 - initialized normally by flush_old_exec */ 1251 /* file system info */ 1252 int link_count, total_link_count; 1253 #ifdef CONFIG_SYSVIPC 1254 /* ipc stuff */ 1255 struct sysv_sem sysvsem; 1256 #endif 1257 #ifdef CONFIG_DETECT_SOFTLOCKUP 1258 /* hung task detection */ 1259 unsigned long last_switch_timestamp; 1260 unsigned long last_switch_count; 1261 #endif 1262 /* CPU-specific state of this task */ 1263 struct thread_struct thread; 1264 /* filesystem information */ 1265 struct fs_struct *fs; 1266 /* open file information */ 1267 struct files_struct *files; 1268 /* namespaces */ 1269 struct nsproxy *nsproxy; 1270 /* signal handlers */ 1271 struct signal_struct *signal; 1272 struct sighand_struct *sighand; 1273 1274 sigset_t blocked, real_blocked; 1275 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1276 struct sigpending pending; 1277 1278 unsigned long sas_ss_sp; 1279 size_t sas_ss_size; 1280 int (*notifier)(void *priv); 1281 void *notifier_data; 1282 sigset_t *notifier_mask; 1283 struct audit_context *audit_context; 1284 #ifdef CONFIG_AUDITSYSCALL 1285 uid_t loginuid; 1286 unsigned int sessionid; 1287 #endif 1288 seccomp_t seccomp; 1289 1290 /* Thread group tracking */ 1291 u32 parent_exec_id; 1292 u32 self_exec_id; 1293 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1294 spinlock_t alloc_lock; 1295 1296 /* Protection of the PI data structures: */ 1297 spinlock_t pi_lock; 1298 1299 #ifdef CONFIG_RT_MUTEXES 1300 /* PI waiters blocked on a rt_mutex held by this task */ 1301 struct plist_head pi_waiters; 1302 /* Deadlock detection and priority inheritance handling */ 1303 struct rt_mutex_waiter *pi_blocked_on; 1304 #endif 1305 1306 #ifdef CONFIG_DEBUG_MUTEXES 1307 /* mutex deadlock detection */ 1308 struct mutex_waiter *blocked_on; 1309 #endif 1310 #ifdef CONFIG_TRACE_IRQFLAGS 1311 unsigned int irq_events; 1312 int hardirqs_enabled; 1313 unsigned long hardirq_enable_ip; 1314 unsigned int hardirq_enable_event; 1315 unsigned long hardirq_disable_ip; 1316 unsigned int hardirq_disable_event; 1317 int softirqs_enabled; 1318 unsigned long softirq_disable_ip; 1319 unsigned int softirq_disable_event; 1320 unsigned long softirq_enable_ip; 1321 unsigned int softirq_enable_event; 1322 int hardirq_context; 1323 int softirq_context; 1324 #endif 1325 #ifdef CONFIG_LOCKDEP 1326 # define MAX_LOCK_DEPTH 48UL 1327 u64 curr_chain_key; 1328 int lockdep_depth; 1329 unsigned int lockdep_recursion; 1330 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1331 #endif 1332 1333 /* journalling filesystem info */ 1334 void *journal_info; 1335 1336 /* stacked block device info */ 1337 struct bio *bio_list, **bio_tail; 1338 1339 /* VM state */ 1340 struct reclaim_state *reclaim_state; 1341 1342 struct backing_dev_info *backing_dev_info; 1343 1344 struct io_context *io_context; 1345 1346 unsigned long ptrace_message; 1347 siginfo_t *last_siginfo; /* For ptrace use. */ 1348 struct task_io_accounting ioac; 1349 #if defined(CONFIG_TASK_XACCT) 1350 u64 acct_rss_mem1; /* accumulated rss usage */ 1351 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1352 cputime_t acct_timexpd; /* stime + utime since last update */ 1353 #endif 1354 #ifdef CONFIG_CPUSETS 1355 nodemask_t mems_allowed; 1356 int cpuset_mems_generation; 1357 int cpuset_mem_spread_rotor; 1358 #endif 1359 #ifdef CONFIG_CGROUPS 1360 /* Control Group info protected by css_set_lock */ 1361 struct css_set *cgroups; 1362 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1363 struct list_head cg_list; 1364 #endif 1365 #ifdef CONFIG_FUTEX 1366 struct robust_list_head __user *robust_list; 1367 #ifdef CONFIG_COMPAT 1368 struct compat_robust_list_head __user *compat_robust_list; 1369 #endif 1370 struct list_head pi_state_list; 1371 struct futex_pi_state *pi_state_cache; 1372 #endif 1373 #ifdef CONFIG_NUMA 1374 struct mempolicy *mempolicy; 1375 short il_next; 1376 #endif 1377 atomic_t fs_excl; /* holding fs exclusive resources */ 1378 struct rcu_head rcu; 1379 1380 /* 1381 * cache last used pipe for splice 1382 */ 1383 struct pipe_inode_info *splice_pipe; 1384 #ifdef CONFIG_TASK_DELAY_ACCT 1385 struct task_delay_info *delays; 1386 #endif 1387 #ifdef CONFIG_FAULT_INJECTION 1388 int make_it_fail; 1389 #endif 1390 struct prop_local_single dirties; 1391 #ifdef CONFIG_LATENCYTOP 1392 int latency_record_count; 1393 struct latency_record latency_record[LT_SAVECOUNT]; 1394 #endif 1395 /* 1396 * time slack values; these are used to round up poll() and 1397 * select() etc timeout values. These are in nanoseconds. 1398 */ 1399 unsigned long timer_slack_ns; 1400 unsigned long default_timer_slack_ns; 1401 1402 struct list_head *scm_work_list; 1403 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1404 /* Index of current stored adress in ret_stack */ 1405 int curr_ret_stack; 1406 /* Stack of return addresses for return function tracing */ 1407 struct ftrace_ret_stack *ret_stack; 1408 /* 1409 * Number of functions that haven't been traced 1410 * because of depth overrun. 1411 */ 1412 atomic_t trace_overrun; 1413 /* Pause for the tracing */ 1414 atomic_t tracing_graph_pause; 1415 #endif 1416 #ifdef CONFIG_TRACING 1417 /* state flags for use by tracers */ 1418 unsigned long trace; 1419 #endif 1420 }; 1421 1422 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1423 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed) 1424 1425 /* 1426 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1427 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1428 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1429 * values are inverted: lower p->prio value means higher priority. 1430 * 1431 * The MAX_USER_RT_PRIO value allows the actual maximum 1432 * RT priority to be separate from the value exported to 1433 * user-space. This allows kernel threads to set their 1434 * priority to a value higher than any user task. Note: 1435 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1436 */ 1437 1438 #define MAX_USER_RT_PRIO 100 1439 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1440 1441 #define MAX_PRIO (MAX_RT_PRIO + 40) 1442 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1443 1444 static inline int rt_prio(int prio) 1445 { 1446 if (unlikely(prio < MAX_RT_PRIO)) 1447 return 1; 1448 return 0; 1449 } 1450 1451 static inline int rt_task(struct task_struct *p) 1452 { 1453 return rt_prio(p->prio); 1454 } 1455 1456 static inline void set_task_session(struct task_struct *tsk, pid_t session) 1457 { 1458 tsk->signal->__session = session; 1459 } 1460 1461 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1462 { 1463 tsk->signal->__pgrp = pgrp; 1464 } 1465 1466 static inline struct pid *task_pid(struct task_struct *task) 1467 { 1468 return task->pids[PIDTYPE_PID].pid; 1469 } 1470 1471 static inline struct pid *task_tgid(struct task_struct *task) 1472 { 1473 return task->group_leader->pids[PIDTYPE_PID].pid; 1474 } 1475 1476 static inline struct pid *task_pgrp(struct task_struct *task) 1477 { 1478 return task->group_leader->pids[PIDTYPE_PGID].pid; 1479 } 1480 1481 static inline struct pid *task_session(struct task_struct *task) 1482 { 1483 return task->group_leader->pids[PIDTYPE_SID].pid; 1484 } 1485 1486 struct pid_namespace; 1487 1488 /* 1489 * the helpers to get the task's different pids as they are seen 1490 * from various namespaces 1491 * 1492 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1493 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1494 * current. 1495 * task_xid_nr_ns() : id seen from the ns specified; 1496 * 1497 * set_task_vxid() : assigns a virtual id to a task; 1498 * 1499 * see also pid_nr() etc in include/linux/pid.h 1500 */ 1501 1502 static inline pid_t task_pid_nr(struct task_struct *tsk) 1503 { 1504 return tsk->pid; 1505 } 1506 1507 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1508 1509 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1510 { 1511 return pid_vnr(task_pid(tsk)); 1512 } 1513 1514 1515 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1516 { 1517 return tsk->tgid; 1518 } 1519 1520 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1521 1522 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1523 { 1524 return pid_vnr(task_tgid(tsk)); 1525 } 1526 1527 1528 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1529 { 1530 return tsk->signal->__pgrp; 1531 } 1532 1533 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1534 1535 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1536 { 1537 return pid_vnr(task_pgrp(tsk)); 1538 } 1539 1540 1541 static inline pid_t task_session_nr(struct task_struct *tsk) 1542 { 1543 return tsk->signal->__session; 1544 } 1545 1546 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1547 1548 static inline pid_t task_session_vnr(struct task_struct *tsk) 1549 { 1550 return pid_vnr(task_session(tsk)); 1551 } 1552 1553 1554 /** 1555 * pid_alive - check that a task structure is not stale 1556 * @p: Task structure to be checked. 1557 * 1558 * Test if a process is not yet dead (at most zombie state) 1559 * If pid_alive fails, then pointers within the task structure 1560 * can be stale and must not be dereferenced. 1561 */ 1562 static inline int pid_alive(struct task_struct *p) 1563 { 1564 return p->pids[PIDTYPE_PID].pid != NULL; 1565 } 1566 1567 /** 1568 * is_global_init - check if a task structure is init 1569 * @tsk: Task structure to be checked. 1570 * 1571 * Check if a task structure is the first user space task the kernel created. 1572 */ 1573 static inline int is_global_init(struct task_struct *tsk) 1574 { 1575 return tsk->pid == 1; 1576 } 1577 1578 /* 1579 * is_container_init: 1580 * check whether in the task is init in its own pid namespace. 1581 */ 1582 extern int is_container_init(struct task_struct *tsk); 1583 1584 extern struct pid *cad_pid; 1585 1586 extern void free_task(struct task_struct *tsk); 1587 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1588 1589 extern void __put_task_struct(struct task_struct *t); 1590 1591 static inline void put_task_struct(struct task_struct *t) 1592 { 1593 if (atomic_dec_and_test(&t->usage)) 1594 __put_task_struct(t); 1595 } 1596 1597 extern cputime_t task_utime(struct task_struct *p); 1598 extern cputime_t task_stime(struct task_struct *p); 1599 extern cputime_t task_gtime(struct task_struct *p); 1600 1601 /* 1602 * Per process flags 1603 */ 1604 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1605 /* Not implemented yet, only for 486*/ 1606 #define PF_STARTING 0x00000002 /* being created */ 1607 #define PF_EXITING 0x00000004 /* getting shut down */ 1608 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1609 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1610 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1611 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1612 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1613 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1614 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1615 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1616 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1617 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1618 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1619 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1620 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1621 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1622 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1623 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1624 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1625 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1626 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1627 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1628 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1629 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1630 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1631 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1632 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1633 1634 /* 1635 * Only the _current_ task can read/write to tsk->flags, but other 1636 * tasks can access tsk->flags in readonly mode for example 1637 * with tsk_used_math (like during threaded core dumping). 1638 * There is however an exception to this rule during ptrace 1639 * or during fork: the ptracer task is allowed to write to the 1640 * child->flags of its traced child (same goes for fork, the parent 1641 * can write to the child->flags), because we're guaranteed the 1642 * child is not running and in turn not changing child->flags 1643 * at the same time the parent does it. 1644 */ 1645 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1646 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1647 #define clear_used_math() clear_stopped_child_used_math(current) 1648 #define set_used_math() set_stopped_child_used_math(current) 1649 #define conditional_stopped_child_used_math(condition, child) \ 1650 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1651 #define conditional_used_math(condition) \ 1652 conditional_stopped_child_used_math(condition, current) 1653 #define copy_to_stopped_child_used_math(child) \ 1654 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1655 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1656 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1657 #define used_math() tsk_used_math(current) 1658 1659 #ifdef CONFIG_SMP 1660 extern int set_cpus_allowed_ptr(struct task_struct *p, 1661 const struct cpumask *new_mask); 1662 #else 1663 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1664 const struct cpumask *new_mask) 1665 { 1666 if (!cpumask_test_cpu(0, new_mask)) 1667 return -EINVAL; 1668 return 0; 1669 } 1670 #endif 1671 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1672 { 1673 return set_cpus_allowed_ptr(p, &new_mask); 1674 } 1675 1676 extern unsigned long long sched_clock(void); 1677 1678 extern void sched_clock_init(void); 1679 extern u64 sched_clock_cpu(int cpu); 1680 1681 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1682 static inline void sched_clock_tick(void) 1683 { 1684 } 1685 1686 static inline void sched_clock_idle_sleep_event(void) 1687 { 1688 } 1689 1690 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1691 { 1692 } 1693 #else 1694 extern void sched_clock_tick(void); 1695 extern void sched_clock_idle_sleep_event(void); 1696 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1697 #endif 1698 1699 /* 1700 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1701 * clock constructed from sched_clock(): 1702 */ 1703 extern unsigned long long cpu_clock(int cpu); 1704 1705 extern unsigned long long 1706 task_sched_runtime(struct task_struct *task); 1707 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1708 1709 /* sched_exec is called by processes performing an exec */ 1710 #ifdef CONFIG_SMP 1711 extern void sched_exec(void); 1712 #else 1713 #define sched_exec() {} 1714 #endif 1715 1716 extern void sched_clock_idle_sleep_event(void); 1717 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1718 1719 #ifdef CONFIG_HOTPLUG_CPU 1720 extern void idle_task_exit(void); 1721 #else 1722 static inline void idle_task_exit(void) {} 1723 #endif 1724 1725 extern void sched_idle_next(void); 1726 1727 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1728 extern void wake_up_idle_cpu(int cpu); 1729 #else 1730 static inline void wake_up_idle_cpu(int cpu) { } 1731 #endif 1732 1733 extern unsigned int sysctl_sched_latency; 1734 extern unsigned int sysctl_sched_min_granularity; 1735 extern unsigned int sysctl_sched_wakeup_granularity; 1736 extern unsigned int sysctl_sched_shares_ratelimit; 1737 extern unsigned int sysctl_sched_shares_thresh; 1738 #ifdef CONFIG_SCHED_DEBUG 1739 extern unsigned int sysctl_sched_child_runs_first; 1740 extern unsigned int sysctl_sched_features; 1741 extern unsigned int sysctl_sched_migration_cost; 1742 extern unsigned int sysctl_sched_nr_migrate; 1743 1744 int sched_nr_latency_handler(struct ctl_table *table, int write, 1745 struct file *file, void __user *buffer, size_t *length, 1746 loff_t *ppos); 1747 #endif 1748 extern unsigned int sysctl_sched_rt_period; 1749 extern int sysctl_sched_rt_runtime; 1750 1751 int sched_rt_handler(struct ctl_table *table, int write, 1752 struct file *filp, void __user *buffer, size_t *lenp, 1753 loff_t *ppos); 1754 1755 extern unsigned int sysctl_sched_compat_yield; 1756 1757 #ifdef CONFIG_RT_MUTEXES 1758 extern int rt_mutex_getprio(struct task_struct *p); 1759 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1760 extern void rt_mutex_adjust_pi(struct task_struct *p); 1761 #else 1762 static inline int rt_mutex_getprio(struct task_struct *p) 1763 { 1764 return p->normal_prio; 1765 } 1766 # define rt_mutex_adjust_pi(p) do { } while (0) 1767 #endif 1768 1769 extern void set_user_nice(struct task_struct *p, long nice); 1770 extern int task_prio(const struct task_struct *p); 1771 extern int task_nice(const struct task_struct *p); 1772 extern int can_nice(const struct task_struct *p, const int nice); 1773 extern int task_curr(const struct task_struct *p); 1774 extern int idle_cpu(int cpu); 1775 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1776 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1777 struct sched_param *); 1778 extern struct task_struct *idle_task(int cpu); 1779 extern struct task_struct *curr_task(int cpu); 1780 extern void set_curr_task(int cpu, struct task_struct *p); 1781 1782 void yield(void); 1783 1784 /* 1785 * The default (Linux) execution domain. 1786 */ 1787 extern struct exec_domain default_exec_domain; 1788 1789 union thread_union { 1790 struct thread_info thread_info; 1791 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1792 }; 1793 1794 #ifndef __HAVE_ARCH_KSTACK_END 1795 static inline int kstack_end(void *addr) 1796 { 1797 /* Reliable end of stack detection: 1798 * Some APM bios versions misalign the stack 1799 */ 1800 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1801 } 1802 #endif 1803 1804 extern union thread_union init_thread_union; 1805 extern struct task_struct init_task; 1806 1807 extern struct mm_struct init_mm; 1808 1809 extern struct pid_namespace init_pid_ns; 1810 1811 /* 1812 * find a task by one of its numerical ids 1813 * 1814 * find_task_by_pid_type_ns(): 1815 * it is the most generic call - it finds a task by all id, 1816 * type and namespace specified 1817 * find_task_by_pid_ns(): 1818 * finds a task by its pid in the specified namespace 1819 * find_task_by_vpid(): 1820 * finds a task by its virtual pid 1821 * 1822 * see also find_vpid() etc in include/linux/pid.h 1823 */ 1824 1825 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1826 struct pid_namespace *ns); 1827 1828 extern struct task_struct *find_task_by_vpid(pid_t nr); 1829 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1830 struct pid_namespace *ns); 1831 1832 extern void __set_special_pids(struct pid *pid); 1833 1834 /* per-UID process charging. */ 1835 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1836 static inline struct user_struct *get_uid(struct user_struct *u) 1837 { 1838 atomic_inc(&u->__count); 1839 return u; 1840 } 1841 extern void free_uid(struct user_struct *); 1842 extern void release_uids(struct user_namespace *ns); 1843 1844 #include <asm/current.h> 1845 1846 extern void do_timer(unsigned long ticks); 1847 1848 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1849 extern int wake_up_process(struct task_struct *tsk); 1850 extern void wake_up_new_task(struct task_struct *tsk, 1851 unsigned long clone_flags); 1852 #ifdef CONFIG_SMP 1853 extern void kick_process(struct task_struct *tsk); 1854 #else 1855 static inline void kick_process(struct task_struct *tsk) { } 1856 #endif 1857 extern void sched_fork(struct task_struct *p, int clone_flags); 1858 extern void sched_dead(struct task_struct *p); 1859 1860 extern void proc_caches_init(void); 1861 extern void flush_signals(struct task_struct *); 1862 extern void ignore_signals(struct task_struct *); 1863 extern void flush_signal_handlers(struct task_struct *, int force_default); 1864 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1865 1866 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1867 { 1868 unsigned long flags; 1869 int ret; 1870 1871 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1872 ret = dequeue_signal(tsk, mask, info); 1873 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1874 1875 return ret; 1876 } 1877 1878 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1879 sigset_t *mask); 1880 extern void unblock_all_signals(void); 1881 extern void release_task(struct task_struct * p); 1882 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1883 extern int force_sigsegv(int, struct task_struct *); 1884 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1885 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1886 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1887 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1888 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1889 extern int kill_pid(struct pid *pid, int sig, int priv); 1890 extern int kill_proc_info(int, struct siginfo *, pid_t); 1891 extern int do_notify_parent(struct task_struct *, int); 1892 extern void force_sig(int, struct task_struct *); 1893 extern void force_sig_specific(int, struct task_struct *); 1894 extern int send_sig(int, struct task_struct *, int); 1895 extern void zap_other_threads(struct task_struct *p); 1896 extern struct sigqueue *sigqueue_alloc(void); 1897 extern void sigqueue_free(struct sigqueue *); 1898 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1899 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1900 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1901 1902 static inline int kill_cad_pid(int sig, int priv) 1903 { 1904 return kill_pid(cad_pid, sig, priv); 1905 } 1906 1907 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1908 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1909 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1910 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1911 1912 static inline int is_si_special(const struct siginfo *info) 1913 { 1914 return info <= SEND_SIG_FORCED; 1915 } 1916 1917 /* True if we are on the alternate signal stack. */ 1918 1919 static inline int on_sig_stack(unsigned long sp) 1920 { 1921 return (sp - current->sas_ss_sp < current->sas_ss_size); 1922 } 1923 1924 static inline int sas_ss_flags(unsigned long sp) 1925 { 1926 return (current->sas_ss_size == 0 ? SS_DISABLE 1927 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1928 } 1929 1930 /* 1931 * Routines for handling mm_structs 1932 */ 1933 extern struct mm_struct * mm_alloc(void); 1934 1935 /* mmdrop drops the mm and the page tables */ 1936 extern void __mmdrop(struct mm_struct *); 1937 static inline void mmdrop(struct mm_struct * mm) 1938 { 1939 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1940 __mmdrop(mm); 1941 } 1942 1943 /* mmput gets rid of the mappings and all user-space */ 1944 extern void mmput(struct mm_struct *); 1945 /* Grab a reference to a task's mm, if it is not already going away */ 1946 extern struct mm_struct *get_task_mm(struct task_struct *task); 1947 /* Remove the current tasks stale references to the old mm_struct */ 1948 extern void mm_release(struct task_struct *, struct mm_struct *); 1949 /* Allocate a new mm structure and copy contents from tsk->mm */ 1950 extern struct mm_struct *dup_mm(struct task_struct *tsk); 1951 1952 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1953 extern void flush_thread(void); 1954 extern void exit_thread(void); 1955 1956 extern void exit_files(struct task_struct *); 1957 extern void __cleanup_signal(struct signal_struct *); 1958 extern void __cleanup_sighand(struct sighand_struct *); 1959 1960 extern void exit_itimers(struct signal_struct *); 1961 extern void flush_itimer_signals(void); 1962 1963 extern NORET_TYPE void do_group_exit(int); 1964 1965 extern void daemonize(const char *, ...); 1966 extern int allow_signal(int); 1967 extern int disallow_signal(int); 1968 1969 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1970 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1971 struct task_struct *fork_idle(int); 1972 1973 extern void set_task_comm(struct task_struct *tsk, char *from); 1974 extern char *get_task_comm(char *to, struct task_struct *tsk); 1975 1976 #ifdef CONFIG_SMP 1977 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1978 #else 1979 static inline unsigned long wait_task_inactive(struct task_struct *p, 1980 long match_state) 1981 { 1982 return 1; 1983 } 1984 #endif 1985 1986 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1987 1988 #define for_each_process(p) \ 1989 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1990 1991 extern bool is_single_threaded(struct task_struct *); 1992 1993 /* 1994 * Careful: do_each_thread/while_each_thread is a double loop so 1995 * 'break' will not work as expected - use goto instead. 1996 */ 1997 #define do_each_thread(g, t) \ 1998 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1999 2000 #define while_each_thread(g, t) \ 2001 while ((t = next_thread(t)) != g) 2002 2003 /* de_thread depends on thread_group_leader not being a pid based check */ 2004 #define thread_group_leader(p) (p == p->group_leader) 2005 2006 /* Do to the insanities of de_thread it is possible for a process 2007 * to have the pid of the thread group leader without actually being 2008 * the thread group leader. For iteration through the pids in proc 2009 * all we care about is that we have a task with the appropriate 2010 * pid, we don't actually care if we have the right task. 2011 */ 2012 static inline int has_group_leader_pid(struct task_struct *p) 2013 { 2014 return p->pid == p->tgid; 2015 } 2016 2017 static inline 2018 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2019 { 2020 return p1->tgid == p2->tgid; 2021 } 2022 2023 static inline struct task_struct *next_thread(const struct task_struct *p) 2024 { 2025 return list_entry(rcu_dereference(p->thread_group.next), 2026 struct task_struct, thread_group); 2027 } 2028 2029 static inline int thread_group_empty(struct task_struct *p) 2030 { 2031 return list_empty(&p->thread_group); 2032 } 2033 2034 #define delay_group_leader(p) \ 2035 (thread_group_leader(p) && !thread_group_empty(p)) 2036 2037 /* 2038 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2039 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2040 * pins the final release of task.io_context. Also protects ->cpuset and 2041 * ->cgroup.subsys[]. 2042 * 2043 * Nests both inside and outside of read_lock(&tasklist_lock). 2044 * It must not be nested with write_lock_irq(&tasklist_lock), 2045 * neither inside nor outside. 2046 */ 2047 static inline void task_lock(struct task_struct *p) 2048 { 2049 spin_lock(&p->alloc_lock); 2050 } 2051 2052 static inline void task_unlock(struct task_struct *p) 2053 { 2054 spin_unlock(&p->alloc_lock); 2055 } 2056 2057 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2058 unsigned long *flags); 2059 2060 static inline void unlock_task_sighand(struct task_struct *tsk, 2061 unsigned long *flags) 2062 { 2063 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2064 } 2065 2066 #ifndef __HAVE_THREAD_FUNCTIONS 2067 2068 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2069 #define task_stack_page(task) ((task)->stack) 2070 2071 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2072 { 2073 *task_thread_info(p) = *task_thread_info(org); 2074 task_thread_info(p)->task = p; 2075 } 2076 2077 static inline unsigned long *end_of_stack(struct task_struct *p) 2078 { 2079 return (unsigned long *)(task_thread_info(p) + 1); 2080 } 2081 2082 #endif 2083 2084 static inline int object_is_on_stack(void *obj) 2085 { 2086 void *stack = task_stack_page(current); 2087 2088 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2089 } 2090 2091 extern void thread_info_cache_init(void); 2092 2093 /* set thread flags in other task's structures 2094 * - see asm/thread_info.h for TIF_xxxx flags available 2095 */ 2096 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2097 { 2098 set_ti_thread_flag(task_thread_info(tsk), flag); 2099 } 2100 2101 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2102 { 2103 clear_ti_thread_flag(task_thread_info(tsk), flag); 2104 } 2105 2106 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2107 { 2108 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2109 } 2110 2111 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2112 { 2113 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2114 } 2115 2116 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2117 { 2118 return test_ti_thread_flag(task_thread_info(tsk), flag); 2119 } 2120 2121 static inline void set_tsk_need_resched(struct task_struct *tsk) 2122 { 2123 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2124 } 2125 2126 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2127 { 2128 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2129 } 2130 2131 static inline int test_tsk_need_resched(struct task_struct *tsk) 2132 { 2133 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2134 } 2135 2136 static inline int signal_pending(struct task_struct *p) 2137 { 2138 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2139 } 2140 2141 extern int __fatal_signal_pending(struct task_struct *p); 2142 2143 static inline int fatal_signal_pending(struct task_struct *p) 2144 { 2145 return signal_pending(p) && __fatal_signal_pending(p); 2146 } 2147 2148 static inline int signal_pending_state(long state, struct task_struct *p) 2149 { 2150 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2151 return 0; 2152 if (!signal_pending(p)) 2153 return 0; 2154 2155 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2156 } 2157 2158 static inline int need_resched(void) 2159 { 2160 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2161 } 2162 2163 /* 2164 * cond_resched() and cond_resched_lock(): latency reduction via 2165 * explicit rescheduling in places that are safe. The return 2166 * value indicates whether a reschedule was done in fact. 2167 * cond_resched_lock() will drop the spinlock before scheduling, 2168 * cond_resched_softirq() will enable bhs before scheduling. 2169 */ 2170 extern int _cond_resched(void); 2171 #ifdef CONFIG_PREEMPT_BKL 2172 static inline int cond_resched(void) 2173 { 2174 return 0; 2175 } 2176 #else 2177 static inline int cond_resched(void) 2178 { 2179 return _cond_resched(); 2180 } 2181 #endif 2182 extern int cond_resched_lock(spinlock_t * lock); 2183 extern int cond_resched_softirq(void); 2184 static inline int cond_resched_bkl(void) 2185 { 2186 return _cond_resched(); 2187 } 2188 2189 /* 2190 * Does a critical section need to be broken due to another 2191 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2192 * but a general need for low latency) 2193 */ 2194 static inline int spin_needbreak(spinlock_t *lock) 2195 { 2196 #ifdef CONFIG_PREEMPT 2197 return spin_is_contended(lock); 2198 #else 2199 return 0; 2200 #endif 2201 } 2202 2203 /* 2204 * Thread group CPU time accounting. 2205 */ 2206 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2207 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2208 2209 static inline void thread_group_cputime_init(struct signal_struct *sig) 2210 { 2211 sig->cputimer.cputime = INIT_CPUTIME; 2212 spin_lock_init(&sig->cputimer.lock); 2213 sig->cputimer.running = 0; 2214 } 2215 2216 static inline void thread_group_cputime_free(struct signal_struct *sig) 2217 { 2218 } 2219 2220 /* 2221 * Reevaluate whether the task has signals pending delivery. 2222 * Wake the task if so. 2223 * This is required every time the blocked sigset_t changes. 2224 * callers must hold sighand->siglock. 2225 */ 2226 extern void recalc_sigpending_and_wake(struct task_struct *t); 2227 extern void recalc_sigpending(void); 2228 2229 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2230 2231 /* 2232 * Wrappers for p->thread_info->cpu access. No-op on UP. 2233 */ 2234 #ifdef CONFIG_SMP 2235 2236 static inline unsigned int task_cpu(const struct task_struct *p) 2237 { 2238 return task_thread_info(p)->cpu; 2239 } 2240 2241 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2242 2243 #else 2244 2245 static inline unsigned int task_cpu(const struct task_struct *p) 2246 { 2247 return 0; 2248 } 2249 2250 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2251 { 2252 } 2253 2254 #endif /* CONFIG_SMP */ 2255 2256 extern void arch_pick_mmap_layout(struct mm_struct *mm); 2257 2258 #ifdef CONFIG_TRACING 2259 extern void 2260 __trace_special(void *__tr, void *__data, 2261 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2262 #else 2263 static inline void 2264 __trace_special(void *__tr, void *__data, 2265 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2266 { 2267 } 2268 #endif 2269 2270 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2271 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2272 2273 extern void normalize_rt_tasks(void); 2274 2275 #ifdef CONFIG_GROUP_SCHED 2276 2277 extern struct task_group init_task_group; 2278 #ifdef CONFIG_USER_SCHED 2279 extern struct task_group root_task_group; 2280 extern void set_tg_uid(struct user_struct *user); 2281 #endif 2282 2283 extern struct task_group *sched_create_group(struct task_group *parent); 2284 extern void sched_destroy_group(struct task_group *tg); 2285 extern void sched_move_task(struct task_struct *tsk); 2286 #ifdef CONFIG_FAIR_GROUP_SCHED 2287 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2288 extern unsigned long sched_group_shares(struct task_group *tg); 2289 #endif 2290 #ifdef CONFIG_RT_GROUP_SCHED 2291 extern int sched_group_set_rt_runtime(struct task_group *tg, 2292 long rt_runtime_us); 2293 extern long sched_group_rt_runtime(struct task_group *tg); 2294 extern int sched_group_set_rt_period(struct task_group *tg, 2295 long rt_period_us); 2296 extern long sched_group_rt_period(struct task_group *tg); 2297 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2298 #endif 2299 #endif 2300 2301 extern int task_can_switch_user(struct user_struct *up, 2302 struct task_struct *tsk); 2303 2304 #ifdef CONFIG_TASK_XACCT 2305 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2306 { 2307 tsk->ioac.rchar += amt; 2308 } 2309 2310 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2311 { 2312 tsk->ioac.wchar += amt; 2313 } 2314 2315 static inline void inc_syscr(struct task_struct *tsk) 2316 { 2317 tsk->ioac.syscr++; 2318 } 2319 2320 static inline void inc_syscw(struct task_struct *tsk) 2321 { 2322 tsk->ioac.syscw++; 2323 } 2324 #else 2325 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2326 { 2327 } 2328 2329 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2330 { 2331 } 2332 2333 static inline void inc_syscr(struct task_struct *tsk) 2334 { 2335 } 2336 2337 static inline void inc_syscw(struct task_struct *tsk) 2338 { 2339 } 2340 #endif 2341 2342 #ifndef TASK_SIZE_OF 2343 #define TASK_SIZE_OF(tsk) TASK_SIZE 2344 #endif 2345 2346 #ifdef CONFIG_MM_OWNER 2347 extern void mm_update_next_owner(struct mm_struct *mm); 2348 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2349 #else 2350 static inline void mm_update_next_owner(struct mm_struct *mm) 2351 { 2352 } 2353 2354 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2355 { 2356 } 2357 #endif /* CONFIG_MM_OWNER */ 2358 2359 #define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2360 2361 #endif /* __KERNEL__ */ 2362 2363 #endif 2364