xref: /linux/include/linux/sched.h (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT		0x1000
101 #define TASK_STATE_MAX			0x2000
102 
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED			__TASK_TRACED
107 
108 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109 
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112 
113 /* get_task_state(): */
114 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 					 TASK_PARKED)
118 
119 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120 
121 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
122 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
123 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
124 
125 /*
126  * Special states are those that do not use the normal wait-loop pattern. See
127  * the comment with set_special_state().
128  */
129 #define is_special_task_state(state)				\
130 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
131 
132 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
133 # define debug_normal_state_change(state_value)				\
134 	do {								\
135 		WARN_ON_ONCE(is_special_task_state(state_value));	\
136 		current->task_state_change = _THIS_IP_;			\
137 	} while (0)
138 
139 # define debug_special_state_change(state_value)			\
140 	do {								\
141 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
142 		current->task_state_change = _THIS_IP_;			\
143 	} while (0)
144 
145 # define debug_rtlock_wait_set_state()					\
146 	do {								 \
147 		current->saved_state_change = current->task_state_change;\
148 		current->task_state_change = _THIS_IP_;			 \
149 	} while (0)
150 
151 # define debug_rtlock_wait_restore_state()				\
152 	do {								 \
153 		current->task_state_change = current->saved_state_change;\
154 	} while (0)
155 
156 #else
157 # define debug_normal_state_change(cond)	do { } while (0)
158 # define debug_special_state_change(cond)	do { } while (0)
159 # define debug_rtlock_wait_set_state()		do { } while (0)
160 # define debug_rtlock_wait_restore_state()	do { } while (0)
161 #endif
162 
163 /*
164  * set_current_state() includes a barrier so that the write of current->state
165  * is correctly serialised wrt the caller's subsequent test of whether to
166  * actually sleep:
167  *
168  *   for (;;) {
169  *	set_current_state(TASK_UNINTERRUPTIBLE);
170  *	if (CONDITION)
171  *	   break;
172  *
173  *	schedule();
174  *   }
175  *   __set_current_state(TASK_RUNNING);
176  *
177  * If the caller does not need such serialisation (because, for instance, the
178  * CONDITION test and condition change and wakeup are under the same lock) then
179  * use __set_current_state().
180  *
181  * The above is typically ordered against the wakeup, which does:
182  *
183  *   CONDITION = 1;
184  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
185  *
186  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
187  * accessing p->state.
188  *
189  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
190  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
191  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
192  *
193  * However, with slightly different timing the wakeup TASK_RUNNING store can
194  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
195  * a problem either because that will result in one extra go around the loop
196  * and our @cond test will save the day.
197  *
198  * Also see the comments of try_to_wake_up().
199  */
200 #define __set_current_state(state_value)				\
201 	do {								\
202 		debug_normal_state_change((state_value));		\
203 		WRITE_ONCE(current->__state, (state_value));		\
204 	} while (0)
205 
206 #define set_current_state(state_value)					\
207 	do {								\
208 		debug_normal_state_change((state_value));		\
209 		smp_store_mb(current->__state, (state_value));		\
210 	} while (0)
211 
212 /*
213  * set_special_state() should be used for those states when the blocking task
214  * can not use the regular condition based wait-loop. In that case we must
215  * serialize against wakeups such that any possible in-flight TASK_RUNNING
216  * stores will not collide with our state change.
217  */
218 #define set_special_state(state_value)					\
219 	do {								\
220 		unsigned long flags; /* may shadow */			\
221 									\
222 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
223 		debug_special_state_change((state_value));		\
224 		WRITE_ONCE(current->__state, (state_value));		\
225 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
226 	} while (0)
227 
228 /*
229  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
230  *
231  * RT's spin/rwlock substitutions are state preserving. The state of the
232  * task when blocking on the lock is saved in task_struct::saved_state and
233  * restored after the lock has been acquired.  These operations are
234  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
235  * lock related wakeups while the task is blocked on the lock are
236  * redirected to operate on task_struct::saved_state to ensure that these
237  * are not dropped. On restore task_struct::saved_state is set to
238  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
239  *
240  * The lock operation looks like this:
241  *
242  *	current_save_and_set_rtlock_wait_state();
243  *	for (;;) {
244  *		if (try_lock())
245  *			break;
246  *		raw_spin_unlock_irq(&lock->wait_lock);
247  *		schedule_rtlock();
248  *		raw_spin_lock_irq(&lock->wait_lock);
249  *		set_current_state(TASK_RTLOCK_WAIT);
250  *	}
251  *	current_restore_rtlock_saved_state();
252  */
253 #define current_save_and_set_rtlock_wait_state()			\
254 	do {								\
255 		lockdep_assert_irqs_disabled();				\
256 		raw_spin_lock(&current->pi_lock);			\
257 		current->saved_state = current->__state;		\
258 		debug_rtlock_wait_set_state();				\
259 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
260 		raw_spin_unlock(&current->pi_lock);			\
261 	} while (0);
262 
263 #define current_restore_rtlock_saved_state()				\
264 	do {								\
265 		lockdep_assert_irqs_disabled();				\
266 		raw_spin_lock(&current->pi_lock);			\
267 		debug_rtlock_wait_restore_state();			\
268 		WRITE_ONCE(current->__state, current->saved_state);	\
269 		current->saved_state = TASK_RUNNING;			\
270 		raw_spin_unlock(&current->pi_lock);			\
271 	} while (0);
272 
273 #define get_current_state()	READ_ONCE(current->__state)
274 
275 /*
276  * Define the task command name length as enum, then it can be visible to
277  * BPF programs.
278  */
279 enum {
280 	TASK_COMM_LEN = 16,
281 };
282 
283 extern void scheduler_tick(void);
284 
285 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
286 
287 extern long schedule_timeout(long timeout);
288 extern long schedule_timeout_interruptible(long timeout);
289 extern long schedule_timeout_killable(long timeout);
290 extern long schedule_timeout_uninterruptible(long timeout);
291 extern long schedule_timeout_idle(long timeout);
292 asmlinkage void schedule(void);
293 extern void schedule_preempt_disabled(void);
294 asmlinkage void preempt_schedule_irq(void);
295 #ifdef CONFIG_PREEMPT_RT
296  extern void schedule_rtlock(void);
297 #endif
298 
299 extern int __must_check io_schedule_prepare(void);
300 extern void io_schedule_finish(int token);
301 extern long io_schedule_timeout(long timeout);
302 extern void io_schedule(void);
303 
304 /**
305  * struct prev_cputime - snapshot of system and user cputime
306  * @utime: time spent in user mode
307  * @stime: time spent in system mode
308  * @lock: protects the above two fields
309  *
310  * Stores previous user/system time values such that we can guarantee
311  * monotonicity.
312  */
313 struct prev_cputime {
314 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
315 	u64				utime;
316 	u64				stime;
317 	raw_spinlock_t			lock;
318 #endif
319 };
320 
321 enum vtime_state {
322 	/* Task is sleeping or running in a CPU with VTIME inactive: */
323 	VTIME_INACTIVE = 0,
324 	/* Task is idle */
325 	VTIME_IDLE,
326 	/* Task runs in kernelspace in a CPU with VTIME active: */
327 	VTIME_SYS,
328 	/* Task runs in userspace in a CPU with VTIME active: */
329 	VTIME_USER,
330 	/* Task runs as guests in a CPU with VTIME active: */
331 	VTIME_GUEST,
332 };
333 
334 struct vtime {
335 	seqcount_t		seqcount;
336 	unsigned long long	starttime;
337 	enum vtime_state	state;
338 	unsigned int		cpu;
339 	u64			utime;
340 	u64			stime;
341 	u64			gtime;
342 };
343 
344 /*
345  * Utilization clamp constraints.
346  * @UCLAMP_MIN:	Minimum utilization
347  * @UCLAMP_MAX:	Maximum utilization
348  * @UCLAMP_CNT:	Utilization clamp constraints count
349  */
350 enum uclamp_id {
351 	UCLAMP_MIN = 0,
352 	UCLAMP_MAX,
353 	UCLAMP_CNT
354 };
355 
356 #ifdef CONFIG_SMP
357 extern struct root_domain def_root_domain;
358 extern struct mutex sched_domains_mutex;
359 #endif
360 
361 struct sched_info {
362 #ifdef CONFIG_SCHED_INFO
363 	/* Cumulative counters: */
364 
365 	/* # of times we have run on this CPU: */
366 	unsigned long			pcount;
367 
368 	/* Time spent waiting on a runqueue: */
369 	unsigned long long		run_delay;
370 
371 	/* Timestamps: */
372 
373 	/* When did we last run on a CPU? */
374 	unsigned long long		last_arrival;
375 
376 	/* When were we last queued to run? */
377 	unsigned long long		last_queued;
378 
379 #endif /* CONFIG_SCHED_INFO */
380 };
381 
382 /*
383  * Integer metrics need fixed point arithmetic, e.g., sched/fair
384  * has a few: load, load_avg, util_avg, freq, and capacity.
385  *
386  * We define a basic fixed point arithmetic range, and then formalize
387  * all these metrics based on that basic range.
388  */
389 # define SCHED_FIXEDPOINT_SHIFT		10
390 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
391 
392 /* Increase resolution of cpu_capacity calculations */
393 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
394 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
395 
396 struct load_weight {
397 	unsigned long			weight;
398 	u32				inv_weight;
399 };
400 
401 /**
402  * struct util_est - Estimation utilization of FAIR tasks
403  * @enqueued: instantaneous estimated utilization of a task/cpu
404  * @ewma:     the Exponential Weighted Moving Average (EWMA)
405  *            utilization of a task
406  *
407  * Support data structure to track an Exponential Weighted Moving Average
408  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
409  * average each time a task completes an activation. Sample's weight is chosen
410  * so that the EWMA will be relatively insensitive to transient changes to the
411  * task's workload.
412  *
413  * The enqueued attribute has a slightly different meaning for tasks and cpus:
414  * - task:   the task's util_avg at last task dequeue time
415  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
416  * Thus, the util_est.enqueued of a task represents the contribution on the
417  * estimated utilization of the CPU where that task is currently enqueued.
418  *
419  * Only for tasks we track a moving average of the past instantaneous
420  * estimated utilization. This allows to absorb sporadic drops in utilization
421  * of an otherwise almost periodic task.
422  *
423  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
424  * updates. When a task is dequeued, its util_est should not be updated if its
425  * util_avg has not been updated in the meantime.
426  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
427  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
428  * for a task) it is safe to use MSB.
429  */
430 struct util_est {
431 	unsigned int			enqueued;
432 	unsigned int			ewma;
433 #define UTIL_EST_WEIGHT_SHIFT		2
434 #define UTIL_AVG_UNCHANGED		0x80000000
435 } __attribute__((__aligned__(sizeof(u64))));
436 
437 /*
438  * The load/runnable/util_avg accumulates an infinite geometric series
439  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
440  *
441  * [load_avg definition]
442  *
443  *   load_avg = runnable% * scale_load_down(load)
444  *
445  * [runnable_avg definition]
446  *
447  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
448  *
449  * [util_avg definition]
450  *
451  *   util_avg = running% * SCHED_CAPACITY_SCALE
452  *
453  * where runnable% is the time ratio that a sched_entity is runnable and
454  * running% the time ratio that a sched_entity is running.
455  *
456  * For cfs_rq, they are the aggregated values of all runnable and blocked
457  * sched_entities.
458  *
459  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
460  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
461  * for computing those signals (see update_rq_clock_pelt())
462  *
463  * N.B., the above ratios (runnable% and running%) themselves are in the
464  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
465  * to as large a range as necessary. This is for example reflected by
466  * util_avg's SCHED_CAPACITY_SCALE.
467  *
468  * [Overflow issue]
469  *
470  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
471  * with the highest load (=88761), always runnable on a single cfs_rq,
472  * and should not overflow as the number already hits PID_MAX_LIMIT.
473  *
474  * For all other cases (including 32-bit kernels), struct load_weight's
475  * weight will overflow first before we do, because:
476  *
477  *    Max(load_avg) <= Max(load.weight)
478  *
479  * Then it is the load_weight's responsibility to consider overflow
480  * issues.
481  */
482 struct sched_avg {
483 	u64				last_update_time;
484 	u64				load_sum;
485 	u64				runnable_sum;
486 	u32				util_sum;
487 	u32				period_contrib;
488 	unsigned long			load_avg;
489 	unsigned long			runnable_avg;
490 	unsigned long			util_avg;
491 	struct util_est			util_est;
492 } ____cacheline_aligned;
493 
494 struct sched_statistics {
495 #ifdef CONFIG_SCHEDSTATS
496 	u64				wait_start;
497 	u64				wait_max;
498 	u64				wait_count;
499 	u64				wait_sum;
500 	u64				iowait_count;
501 	u64				iowait_sum;
502 
503 	u64				sleep_start;
504 	u64				sleep_max;
505 	s64				sum_sleep_runtime;
506 
507 	u64				block_start;
508 	u64				block_max;
509 	s64				sum_block_runtime;
510 
511 	u64				exec_max;
512 	u64				slice_max;
513 
514 	u64				nr_migrations_cold;
515 	u64				nr_failed_migrations_affine;
516 	u64				nr_failed_migrations_running;
517 	u64				nr_failed_migrations_hot;
518 	u64				nr_forced_migrations;
519 
520 	u64				nr_wakeups;
521 	u64				nr_wakeups_sync;
522 	u64				nr_wakeups_migrate;
523 	u64				nr_wakeups_local;
524 	u64				nr_wakeups_remote;
525 	u64				nr_wakeups_affine;
526 	u64				nr_wakeups_affine_attempts;
527 	u64				nr_wakeups_passive;
528 	u64				nr_wakeups_idle;
529 
530 #ifdef CONFIG_SCHED_CORE
531 	u64				core_forceidle_sum;
532 #endif
533 #endif /* CONFIG_SCHEDSTATS */
534 } ____cacheline_aligned;
535 
536 struct sched_entity {
537 	/* For load-balancing: */
538 	struct load_weight		load;
539 	struct rb_node			run_node;
540 	struct list_head		group_node;
541 	unsigned int			on_rq;
542 
543 	u64				exec_start;
544 	u64				sum_exec_runtime;
545 	u64				vruntime;
546 	u64				prev_sum_exec_runtime;
547 
548 	u64				nr_migrations;
549 
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 	int				depth;
552 	struct sched_entity		*parent;
553 	/* rq on which this entity is (to be) queued: */
554 	struct cfs_rq			*cfs_rq;
555 	/* rq "owned" by this entity/group: */
556 	struct cfs_rq			*my_q;
557 	/* cached value of my_q->h_nr_running */
558 	unsigned long			runnable_weight;
559 #endif
560 
561 #ifdef CONFIG_SMP
562 	/*
563 	 * Per entity load average tracking.
564 	 *
565 	 * Put into separate cache line so it does not
566 	 * collide with read-mostly values above.
567 	 */
568 	struct sched_avg		avg;
569 #endif
570 };
571 
572 struct sched_rt_entity {
573 	struct list_head		run_list;
574 	unsigned long			timeout;
575 	unsigned long			watchdog_stamp;
576 	unsigned int			time_slice;
577 	unsigned short			on_rq;
578 	unsigned short			on_list;
579 
580 	struct sched_rt_entity		*back;
581 #ifdef CONFIG_RT_GROUP_SCHED
582 	struct sched_rt_entity		*parent;
583 	/* rq on which this entity is (to be) queued: */
584 	struct rt_rq			*rt_rq;
585 	/* rq "owned" by this entity/group: */
586 	struct rt_rq			*my_q;
587 #endif
588 } __randomize_layout;
589 
590 struct sched_dl_entity {
591 	struct rb_node			rb_node;
592 
593 	/*
594 	 * Original scheduling parameters. Copied here from sched_attr
595 	 * during sched_setattr(), they will remain the same until
596 	 * the next sched_setattr().
597 	 */
598 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
599 	u64				dl_deadline;	/* Relative deadline of each instance	*/
600 	u64				dl_period;	/* Separation of two instances (period) */
601 	u64				dl_bw;		/* dl_runtime / dl_period		*/
602 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
603 
604 	/*
605 	 * Actual scheduling parameters. Initialized with the values above,
606 	 * they are continuously updated during task execution. Note that
607 	 * the remaining runtime could be < 0 in case we are in overrun.
608 	 */
609 	s64				runtime;	/* Remaining runtime for this instance	*/
610 	u64				deadline;	/* Absolute deadline for this instance	*/
611 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
612 
613 	/*
614 	 * Some bool flags:
615 	 *
616 	 * @dl_throttled tells if we exhausted the runtime. If so, the
617 	 * task has to wait for a replenishment to be performed at the
618 	 * next firing of dl_timer.
619 	 *
620 	 * @dl_yielded tells if task gave up the CPU before consuming
621 	 * all its available runtime during the last job.
622 	 *
623 	 * @dl_non_contending tells if the task is inactive while still
624 	 * contributing to the active utilization. In other words, it
625 	 * indicates if the inactive timer has been armed and its handler
626 	 * has not been executed yet. This flag is useful to avoid race
627 	 * conditions between the inactive timer handler and the wakeup
628 	 * code.
629 	 *
630 	 * @dl_overrun tells if the task asked to be informed about runtime
631 	 * overruns.
632 	 */
633 	unsigned int			dl_throttled      : 1;
634 	unsigned int			dl_yielded        : 1;
635 	unsigned int			dl_non_contending : 1;
636 	unsigned int			dl_overrun	  : 1;
637 
638 	/*
639 	 * Bandwidth enforcement timer. Each -deadline task has its
640 	 * own bandwidth to be enforced, thus we need one timer per task.
641 	 */
642 	struct hrtimer			dl_timer;
643 
644 	/*
645 	 * Inactive timer, responsible for decreasing the active utilization
646 	 * at the "0-lag time". When a -deadline task blocks, it contributes
647 	 * to GRUB's active utilization until the "0-lag time", hence a
648 	 * timer is needed to decrease the active utilization at the correct
649 	 * time.
650 	 */
651 	struct hrtimer inactive_timer;
652 
653 #ifdef CONFIG_RT_MUTEXES
654 	/*
655 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
656 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
657 	 * to (the original one/itself).
658 	 */
659 	struct sched_dl_entity *pi_se;
660 #endif
661 };
662 
663 #ifdef CONFIG_UCLAMP_TASK
664 /* Number of utilization clamp buckets (shorter alias) */
665 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
666 
667 /*
668  * Utilization clamp for a scheduling entity
669  * @value:		clamp value "assigned" to a se
670  * @bucket_id:		bucket index corresponding to the "assigned" value
671  * @active:		the se is currently refcounted in a rq's bucket
672  * @user_defined:	the requested clamp value comes from user-space
673  *
674  * The bucket_id is the index of the clamp bucket matching the clamp value
675  * which is pre-computed and stored to avoid expensive integer divisions from
676  * the fast path.
677  *
678  * The active bit is set whenever a task has got an "effective" value assigned,
679  * which can be different from the clamp value "requested" from user-space.
680  * This allows to know a task is refcounted in the rq's bucket corresponding
681  * to the "effective" bucket_id.
682  *
683  * The user_defined bit is set whenever a task has got a task-specific clamp
684  * value requested from userspace, i.e. the system defaults apply to this task
685  * just as a restriction. This allows to relax default clamps when a less
686  * restrictive task-specific value has been requested, thus allowing to
687  * implement a "nice" semantic. For example, a task running with a 20%
688  * default boost can still drop its own boosting to 0%.
689  */
690 struct uclamp_se {
691 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
692 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
693 	unsigned int active		: 1;
694 	unsigned int user_defined	: 1;
695 };
696 #endif /* CONFIG_UCLAMP_TASK */
697 
698 union rcu_special {
699 	struct {
700 		u8			blocked;
701 		u8			need_qs;
702 		u8			exp_hint; /* Hint for performance. */
703 		u8			need_mb; /* Readers need smp_mb(). */
704 	} b; /* Bits. */
705 	u32 s; /* Set of bits. */
706 };
707 
708 enum perf_event_task_context {
709 	perf_invalid_context = -1,
710 	perf_hw_context = 0,
711 	perf_sw_context,
712 	perf_nr_task_contexts,
713 };
714 
715 struct wake_q_node {
716 	struct wake_q_node *next;
717 };
718 
719 struct kmap_ctrl {
720 #ifdef CONFIG_KMAP_LOCAL
721 	int				idx;
722 	pte_t				pteval[KM_MAX_IDX];
723 #endif
724 };
725 
726 struct task_struct {
727 #ifdef CONFIG_THREAD_INFO_IN_TASK
728 	/*
729 	 * For reasons of header soup (see current_thread_info()), this
730 	 * must be the first element of task_struct.
731 	 */
732 	struct thread_info		thread_info;
733 #endif
734 	unsigned int			__state;
735 
736 #ifdef CONFIG_PREEMPT_RT
737 	/* saved state for "spinlock sleepers" */
738 	unsigned int			saved_state;
739 #endif
740 
741 	/*
742 	 * This begins the randomizable portion of task_struct. Only
743 	 * scheduling-critical items should be added above here.
744 	 */
745 	randomized_struct_fields_start
746 
747 	void				*stack;
748 	refcount_t			usage;
749 	/* Per task flags (PF_*), defined further below: */
750 	unsigned int			flags;
751 	unsigned int			ptrace;
752 
753 #ifdef CONFIG_SMP
754 	int				on_cpu;
755 	struct __call_single_node	wake_entry;
756 	unsigned int			wakee_flips;
757 	unsigned long			wakee_flip_decay_ts;
758 	struct task_struct		*last_wakee;
759 
760 	/*
761 	 * recent_used_cpu is initially set as the last CPU used by a task
762 	 * that wakes affine another task. Waker/wakee relationships can
763 	 * push tasks around a CPU where each wakeup moves to the next one.
764 	 * Tracking a recently used CPU allows a quick search for a recently
765 	 * used CPU that may be idle.
766 	 */
767 	int				recent_used_cpu;
768 	int				wake_cpu;
769 #endif
770 	int				on_rq;
771 
772 	int				prio;
773 	int				static_prio;
774 	int				normal_prio;
775 	unsigned int			rt_priority;
776 
777 	struct sched_entity		se;
778 	struct sched_rt_entity		rt;
779 	struct sched_dl_entity		dl;
780 	const struct sched_class	*sched_class;
781 
782 #ifdef CONFIG_SCHED_CORE
783 	struct rb_node			core_node;
784 	unsigned long			core_cookie;
785 	unsigned int			core_occupation;
786 #endif
787 
788 #ifdef CONFIG_CGROUP_SCHED
789 	struct task_group		*sched_task_group;
790 #endif
791 
792 #ifdef CONFIG_UCLAMP_TASK
793 	/*
794 	 * Clamp values requested for a scheduling entity.
795 	 * Must be updated with task_rq_lock() held.
796 	 */
797 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
798 	/*
799 	 * Effective clamp values used for a scheduling entity.
800 	 * Must be updated with task_rq_lock() held.
801 	 */
802 	struct uclamp_se		uclamp[UCLAMP_CNT];
803 #endif
804 
805 	struct sched_statistics         stats;
806 
807 #ifdef CONFIG_PREEMPT_NOTIFIERS
808 	/* List of struct preempt_notifier: */
809 	struct hlist_head		preempt_notifiers;
810 #endif
811 
812 #ifdef CONFIG_BLK_DEV_IO_TRACE
813 	unsigned int			btrace_seq;
814 #endif
815 
816 	unsigned int			policy;
817 	int				nr_cpus_allowed;
818 	const cpumask_t			*cpus_ptr;
819 	cpumask_t			*user_cpus_ptr;
820 	cpumask_t			cpus_mask;
821 	void				*migration_pending;
822 #ifdef CONFIG_SMP
823 	unsigned short			migration_disabled;
824 #endif
825 	unsigned short			migration_flags;
826 
827 #ifdef CONFIG_PREEMPT_RCU
828 	int				rcu_read_lock_nesting;
829 	union rcu_special		rcu_read_unlock_special;
830 	struct list_head		rcu_node_entry;
831 	struct rcu_node			*rcu_blocked_node;
832 #endif /* #ifdef CONFIG_PREEMPT_RCU */
833 
834 #ifdef CONFIG_TASKS_RCU
835 	unsigned long			rcu_tasks_nvcsw;
836 	u8				rcu_tasks_holdout;
837 	u8				rcu_tasks_idx;
838 	int				rcu_tasks_idle_cpu;
839 	struct list_head		rcu_tasks_holdout_list;
840 #endif /* #ifdef CONFIG_TASKS_RCU */
841 
842 #ifdef CONFIG_TASKS_TRACE_RCU
843 	int				trc_reader_nesting;
844 	int				trc_ipi_to_cpu;
845 	union rcu_special		trc_reader_special;
846 	bool				trc_reader_checked;
847 	struct list_head		trc_holdout_list;
848 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
849 
850 	struct sched_info		sched_info;
851 
852 	struct list_head		tasks;
853 #ifdef CONFIG_SMP
854 	struct plist_node		pushable_tasks;
855 	struct rb_node			pushable_dl_tasks;
856 #endif
857 
858 	struct mm_struct		*mm;
859 	struct mm_struct		*active_mm;
860 
861 	/* Per-thread vma caching: */
862 	struct vmacache			vmacache;
863 
864 #ifdef SPLIT_RSS_COUNTING
865 	struct task_rss_stat		rss_stat;
866 #endif
867 	int				exit_state;
868 	int				exit_code;
869 	int				exit_signal;
870 	/* The signal sent when the parent dies: */
871 	int				pdeath_signal;
872 	/* JOBCTL_*, siglock protected: */
873 	unsigned long			jobctl;
874 
875 	/* Used for emulating ABI behavior of previous Linux versions: */
876 	unsigned int			personality;
877 
878 	/* Scheduler bits, serialized by scheduler locks: */
879 	unsigned			sched_reset_on_fork:1;
880 	unsigned			sched_contributes_to_load:1;
881 	unsigned			sched_migrated:1;
882 #ifdef CONFIG_PSI
883 	unsigned			sched_psi_wake_requeue:1;
884 #endif
885 
886 	/* Force alignment to the next boundary: */
887 	unsigned			:0;
888 
889 	/* Unserialized, strictly 'current' */
890 
891 	/*
892 	 * This field must not be in the scheduler word above due to wakelist
893 	 * queueing no longer being serialized by p->on_cpu. However:
894 	 *
895 	 * p->XXX = X;			ttwu()
896 	 * schedule()			  if (p->on_rq && ..) // false
897 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
898 	 *   deactivate_task()		      ttwu_queue_wakelist())
899 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
900 	 *
901 	 * guarantees all stores of 'current' are visible before
902 	 * ->sched_remote_wakeup gets used, so it can be in this word.
903 	 */
904 	unsigned			sched_remote_wakeup:1;
905 
906 	/* Bit to tell LSMs we're in execve(): */
907 	unsigned			in_execve:1;
908 	unsigned			in_iowait:1;
909 #ifndef TIF_RESTORE_SIGMASK
910 	unsigned			restore_sigmask:1;
911 #endif
912 #ifdef CONFIG_MEMCG
913 	unsigned			in_user_fault:1;
914 #endif
915 #ifdef CONFIG_COMPAT_BRK
916 	unsigned			brk_randomized:1;
917 #endif
918 #ifdef CONFIG_CGROUPS
919 	/* disallow userland-initiated cgroup migration */
920 	unsigned			no_cgroup_migration:1;
921 	/* task is frozen/stopped (used by the cgroup freezer) */
922 	unsigned			frozen:1;
923 #endif
924 #ifdef CONFIG_BLK_CGROUP
925 	unsigned			use_memdelay:1;
926 #endif
927 #ifdef CONFIG_PSI
928 	/* Stalled due to lack of memory */
929 	unsigned			in_memstall:1;
930 #endif
931 #ifdef CONFIG_PAGE_OWNER
932 	/* Used by page_owner=on to detect recursion in page tracking. */
933 	unsigned			in_page_owner:1;
934 #endif
935 #ifdef CONFIG_EVENTFD
936 	/* Recursion prevention for eventfd_signal() */
937 	unsigned			in_eventfd_signal:1;
938 #endif
939 #ifdef CONFIG_IOMMU_SVA
940 	unsigned			pasid_activated:1;
941 #endif
942 #ifdef	CONFIG_CPU_SUP_INTEL
943 	unsigned			reported_split_lock:1;
944 #endif
945 
946 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
947 
948 	struct restart_block		restart_block;
949 
950 	pid_t				pid;
951 	pid_t				tgid;
952 
953 #ifdef CONFIG_STACKPROTECTOR
954 	/* Canary value for the -fstack-protector GCC feature: */
955 	unsigned long			stack_canary;
956 #endif
957 	/*
958 	 * Pointers to the (original) parent process, youngest child, younger sibling,
959 	 * older sibling, respectively.  (p->father can be replaced with
960 	 * p->real_parent->pid)
961 	 */
962 
963 	/* Real parent process: */
964 	struct task_struct __rcu	*real_parent;
965 
966 	/* Recipient of SIGCHLD, wait4() reports: */
967 	struct task_struct __rcu	*parent;
968 
969 	/*
970 	 * Children/sibling form the list of natural children:
971 	 */
972 	struct list_head		children;
973 	struct list_head		sibling;
974 	struct task_struct		*group_leader;
975 
976 	/*
977 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
978 	 *
979 	 * This includes both natural children and PTRACE_ATTACH targets.
980 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
981 	 */
982 	struct list_head		ptraced;
983 	struct list_head		ptrace_entry;
984 
985 	/* PID/PID hash table linkage. */
986 	struct pid			*thread_pid;
987 	struct hlist_node		pid_links[PIDTYPE_MAX];
988 	struct list_head		thread_group;
989 	struct list_head		thread_node;
990 
991 	struct completion		*vfork_done;
992 
993 	/* CLONE_CHILD_SETTID: */
994 	int __user			*set_child_tid;
995 
996 	/* CLONE_CHILD_CLEARTID: */
997 	int __user			*clear_child_tid;
998 
999 	/* PF_KTHREAD | PF_IO_WORKER */
1000 	void				*worker_private;
1001 
1002 	u64				utime;
1003 	u64				stime;
1004 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1005 	u64				utimescaled;
1006 	u64				stimescaled;
1007 #endif
1008 	u64				gtime;
1009 	struct prev_cputime		prev_cputime;
1010 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1011 	struct vtime			vtime;
1012 #endif
1013 
1014 #ifdef CONFIG_NO_HZ_FULL
1015 	atomic_t			tick_dep_mask;
1016 #endif
1017 	/* Context switch counts: */
1018 	unsigned long			nvcsw;
1019 	unsigned long			nivcsw;
1020 
1021 	/* Monotonic time in nsecs: */
1022 	u64				start_time;
1023 
1024 	/* Boot based time in nsecs: */
1025 	u64				start_boottime;
1026 
1027 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1028 	unsigned long			min_flt;
1029 	unsigned long			maj_flt;
1030 
1031 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1032 	struct posix_cputimers		posix_cputimers;
1033 
1034 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1035 	struct posix_cputimers_work	posix_cputimers_work;
1036 #endif
1037 
1038 	/* Process credentials: */
1039 
1040 	/* Tracer's credentials at attach: */
1041 	const struct cred __rcu		*ptracer_cred;
1042 
1043 	/* Objective and real subjective task credentials (COW): */
1044 	const struct cred __rcu		*real_cred;
1045 
1046 	/* Effective (overridable) subjective task credentials (COW): */
1047 	const struct cred __rcu		*cred;
1048 
1049 #ifdef CONFIG_KEYS
1050 	/* Cached requested key. */
1051 	struct key			*cached_requested_key;
1052 #endif
1053 
1054 	/*
1055 	 * executable name, excluding path.
1056 	 *
1057 	 * - normally initialized setup_new_exec()
1058 	 * - access it with [gs]et_task_comm()
1059 	 * - lock it with task_lock()
1060 	 */
1061 	char				comm[TASK_COMM_LEN];
1062 
1063 	struct nameidata		*nameidata;
1064 
1065 #ifdef CONFIG_SYSVIPC
1066 	struct sysv_sem			sysvsem;
1067 	struct sysv_shm			sysvshm;
1068 #endif
1069 #ifdef CONFIG_DETECT_HUNG_TASK
1070 	unsigned long			last_switch_count;
1071 	unsigned long			last_switch_time;
1072 #endif
1073 	/* Filesystem information: */
1074 	struct fs_struct		*fs;
1075 
1076 	/* Open file information: */
1077 	struct files_struct		*files;
1078 
1079 #ifdef CONFIG_IO_URING
1080 	struct io_uring_task		*io_uring;
1081 #endif
1082 
1083 	/* Namespaces: */
1084 	struct nsproxy			*nsproxy;
1085 
1086 	/* Signal handlers: */
1087 	struct signal_struct		*signal;
1088 	struct sighand_struct __rcu		*sighand;
1089 	sigset_t			blocked;
1090 	sigset_t			real_blocked;
1091 	/* Restored if set_restore_sigmask() was used: */
1092 	sigset_t			saved_sigmask;
1093 	struct sigpending		pending;
1094 	unsigned long			sas_ss_sp;
1095 	size_t				sas_ss_size;
1096 	unsigned int			sas_ss_flags;
1097 
1098 	struct callback_head		*task_works;
1099 
1100 #ifdef CONFIG_AUDIT
1101 #ifdef CONFIG_AUDITSYSCALL
1102 	struct audit_context		*audit_context;
1103 #endif
1104 	kuid_t				loginuid;
1105 	unsigned int			sessionid;
1106 #endif
1107 	struct seccomp			seccomp;
1108 	struct syscall_user_dispatch	syscall_dispatch;
1109 
1110 	/* Thread group tracking: */
1111 	u64				parent_exec_id;
1112 	u64				self_exec_id;
1113 
1114 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1115 	spinlock_t			alloc_lock;
1116 
1117 	/* Protection of the PI data structures: */
1118 	raw_spinlock_t			pi_lock;
1119 
1120 	struct wake_q_node		wake_q;
1121 
1122 #ifdef CONFIG_RT_MUTEXES
1123 	/* PI waiters blocked on a rt_mutex held by this task: */
1124 	struct rb_root_cached		pi_waiters;
1125 	/* Updated under owner's pi_lock and rq lock */
1126 	struct task_struct		*pi_top_task;
1127 	/* Deadlock detection and priority inheritance handling: */
1128 	struct rt_mutex_waiter		*pi_blocked_on;
1129 #endif
1130 
1131 #ifdef CONFIG_DEBUG_MUTEXES
1132 	/* Mutex deadlock detection: */
1133 	struct mutex_waiter		*blocked_on;
1134 #endif
1135 
1136 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1137 	int				non_block_count;
1138 #endif
1139 
1140 #ifdef CONFIG_TRACE_IRQFLAGS
1141 	struct irqtrace_events		irqtrace;
1142 	unsigned int			hardirq_threaded;
1143 	u64				hardirq_chain_key;
1144 	int				softirqs_enabled;
1145 	int				softirq_context;
1146 	int				irq_config;
1147 #endif
1148 #ifdef CONFIG_PREEMPT_RT
1149 	int				softirq_disable_cnt;
1150 #endif
1151 
1152 #ifdef CONFIG_LOCKDEP
1153 # define MAX_LOCK_DEPTH			48UL
1154 	u64				curr_chain_key;
1155 	int				lockdep_depth;
1156 	unsigned int			lockdep_recursion;
1157 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1158 #endif
1159 
1160 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1161 	unsigned int			in_ubsan;
1162 #endif
1163 
1164 	/* Journalling filesystem info: */
1165 	void				*journal_info;
1166 
1167 	/* Stacked block device info: */
1168 	struct bio_list			*bio_list;
1169 
1170 	/* Stack plugging: */
1171 	struct blk_plug			*plug;
1172 
1173 	/* VM state: */
1174 	struct reclaim_state		*reclaim_state;
1175 
1176 	struct backing_dev_info		*backing_dev_info;
1177 
1178 	struct io_context		*io_context;
1179 
1180 #ifdef CONFIG_COMPACTION
1181 	struct capture_control		*capture_control;
1182 #endif
1183 	/* Ptrace state: */
1184 	unsigned long			ptrace_message;
1185 	kernel_siginfo_t		*last_siginfo;
1186 
1187 	struct task_io_accounting	ioac;
1188 #ifdef CONFIG_PSI
1189 	/* Pressure stall state */
1190 	unsigned int			psi_flags;
1191 #endif
1192 #ifdef CONFIG_TASK_XACCT
1193 	/* Accumulated RSS usage: */
1194 	u64				acct_rss_mem1;
1195 	/* Accumulated virtual memory usage: */
1196 	u64				acct_vm_mem1;
1197 	/* stime + utime since last update: */
1198 	u64				acct_timexpd;
1199 #endif
1200 #ifdef CONFIG_CPUSETS
1201 	/* Protected by ->alloc_lock: */
1202 	nodemask_t			mems_allowed;
1203 	/* Sequence number to catch updates: */
1204 	seqcount_spinlock_t		mems_allowed_seq;
1205 	int				cpuset_mem_spread_rotor;
1206 	int				cpuset_slab_spread_rotor;
1207 #endif
1208 #ifdef CONFIG_CGROUPS
1209 	/* Control Group info protected by css_set_lock: */
1210 	struct css_set __rcu		*cgroups;
1211 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1212 	struct list_head		cg_list;
1213 #endif
1214 #ifdef CONFIG_X86_CPU_RESCTRL
1215 	u32				closid;
1216 	u32				rmid;
1217 #endif
1218 #ifdef CONFIG_FUTEX
1219 	struct robust_list_head __user	*robust_list;
1220 #ifdef CONFIG_COMPAT
1221 	struct compat_robust_list_head __user *compat_robust_list;
1222 #endif
1223 	struct list_head		pi_state_list;
1224 	struct futex_pi_state		*pi_state_cache;
1225 	struct mutex			futex_exit_mutex;
1226 	unsigned int			futex_state;
1227 #endif
1228 #ifdef CONFIG_PERF_EVENTS
1229 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1230 	struct mutex			perf_event_mutex;
1231 	struct list_head		perf_event_list;
1232 #endif
1233 #ifdef CONFIG_DEBUG_PREEMPT
1234 	unsigned long			preempt_disable_ip;
1235 #endif
1236 #ifdef CONFIG_NUMA
1237 	/* Protected by alloc_lock: */
1238 	struct mempolicy		*mempolicy;
1239 	short				il_prev;
1240 	short				pref_node_fork;
1241 #endif
1242 #ifdef CONFIG_NUMA_BALANCING
1243 	int				numa_scan_seq;
1244 	unsigned int			numa_scan_period;
1245 	unsigned int			numa_scan_period_max;
1246 	int				numa_preferred_nid;
1247 	unsigned long			numa_migrate_retry;
1248 	/* Migration stamp: */
1249 	u64				node_stamp;
1250 	u64				last_task_numa_placement;
1251 	u64				last_sum_exec_runtime;
1252 	struct callback_head		numa_work;
1253 
1254 	/*
1255 	 * This pointer is only modified for current in syscall and
1256 	 * pagefault context (and for tasks being destroyed), so it can be read
1257 	 * from any of the following contexts:
1258 	 *  - RCU read-side critical section
1259 	 *  - current->numa_group from everywhere
1260 	 *  - task's runqueue locked, task not running
1261 	 */
1262 	struct numa_group __rcu		*numa_group;
1263 
1264 	/*
1265 	 * numa_faults is an array split into four regions:
1266 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1267 	 * in this precise order.
1268 	 *
1269 	 * faults_memory: Exponential decaying average of faults on a per-node
1270 	 * basis. Scheduling placement decisions are made based on these
1271 	 * counts. The values remain static for the duration of a PTE scan.
1272 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1273 	 * hinting fault was incurred.
1274 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1275 	 * during the current scan window. When the scan completes, the counts
1276 	 * in faults_memory and faults_cpu decay and these values are copied.
1277 	 */
1278 	unsigned long			*numa_faults;
1279 	unsigned long			total_numa_faults;
1280 
1281 	/*
1282 	 * numa_faults_locality tracks if faults recorded during the last
1283 	 * scan window were remote/local or failed to migrate. The task scan
1284 	 * period is adapted based on the locality of the faults with different
1285 	 * weights depending on whether they were shared or private faults
1286 	 */
1287 	unsigned long			numa_faults_locality[3];
1288 
1289 	unsigned long			numa_pages_migrated;
1290 #endif /* CONFIG_NUMA_BALANCING */
1291 
1292 #ifdef CONFIG_RSEQ
1293 	struct rseq __user *rseq;
1294 	u32 rseq_sig;
1295 	/*
1296 	 * RmW on rseq_event_mask must be performed atomically
1297 	 * with respect to preemption.
1298 	 */
1299 	unsigned long rseq_event_mask;
1300 #endif
1301 
1302 	struct tlbflush_unmap_batch	tlb_ubc;
1303 
1304 	union {
1305 		refcount_t		rcu_users;
1306 		struct rcu_head		rcu;
1307 	};
1308 
1309 	/* Cache last used pipe for splice(): */
1310 	struct pipe_inode_info		*splice_pipe;
1311 
1312 	struct page_frag		task_frag;
1313 
1314 #ifdef CONFIG_TASK_DELAY_ACCT
1315 	struct task_delay_info		*delays;
1316 #endif
1317 
1318 #ifdef CONFIG_FAULT_INJECTION
1319 	int				make_it_fail;
1320 	unsigned int			fail_nth;
1321 #endif
1322 	/*
1323 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1324 	 * balance_dirty_pages() for a dirty throttling pause:
1325 	 */
1326 	int				nr_dirtied;
1327 	int				nr_dirtied_pause;
1328 	/* Start of a write-and-pause period: */
1329 	unsigned long			dirty_paused_when;
1330 
1331 #ifdef CONFIG_LATENCYTOP
1332 	int				latency_record_count;
1333 	struct latency_record		latency_record[LT_SAVECOUNT];
1334 #endif
1335 	/*
1336 	 * Time slack values; these are used to round up poll() and
1337 	 * select() etc timeout values. These are in nanoseconds.
1338 	 */
1339 	u64				timer_slack_ns;
1340 	u64				default_timer_slack_ns;
1341 
1342 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1343 	unsigned int			kasan_depth;
1344 #endif
1345 
1346 #ifdef CONFIG_KCSAN
1347 	struct kcsan_ctx		kcsan_ctx;
1348 #ifdef CONFIG_TRACE_IRQFLAGS
1349 	struct irqtrace_events		kcsan_save_irqtrace;
1350 #endif
1351 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1352 	int				kcsan_stack_depth;
1353 #endif
1354 #endif
1355 
1356 #if IS_ENABLED(CONFIG_KUNIT)
1357 	struct kunit			*kunit_test;
1358 #endif
1359 
1360 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1361 	/* Index of current stored address in ret_stack: */
1362 	int				curr_ret_stack;
1363 	int				curr_ret_depth;
1364 
1365 	/* Stack of return addresses for return function tracing: */
1366 	struct ftrace_ret_stack		*ret_stack;
1367 
1368 	/* Timestamp for last schedule: */
1369 	unsigned long long		ftrace_timestamp;
1370 
1371 	/*
1372 	 * Number of functions that haven't been traced
1373 	 * because of depth overrun:
1374 	 */
1375 	atomic_t			trace_overrun;
1376 
1377 	/* Pause tracing: */
1378 	atomic_t			tracing_graph_pause;
1379 #endif
1380 
1381 #ifdef CONFIG_TRACING
1382 	/* State flags for use by tracers: */
1383 	unsigned long			trace;
1384 
1385 	/* Bitmask and counter of trace recursion: */
1386 	unsigned long			trace_recursion;
1387 #endif /* CONFIG_TRACING */
1388 
1389 #ifdef CONFIG_KCOV
1390 	/* See kernel/kcov.c for more details. */
1391 
1392 	/* Coverage collection mode enabled for this task (0 if disabled): */
1393 	unsigned int			kcov_mode;
1394 
1395 	/* Size of the kcov_area: */
1396 	unsigned int			kcov_size;
1397 
1398 	/* Buffer for coverage collection: */
1399 	void				*kcov_area;
1400 
1401 	/* KCOV descriptor wired with this task or NULL: */
1402 	struct kcov			*kcov;
1403 
1404 	/* KCOV common handle for remote coverage collection: */
1405 	u64				kcov_handle;
1406 
1407 	/* KCOV sequence number: */
1408 	int				kcov_sequence;
1409 
1410 	/* Collect coverage from softirq context: */
1411 	unsigned int			kcov_softirq;
1412 #endif
1413 
1414 #ifdef CONFIG_MEMCG
1415 	struct mem_cgroup		*memcg_in_oom;
1416 	gfp_t				memcg_oom_gfp_mask;
1417 	int				memcg_oom_order;
1418 
1419 	/* Number of pages to reclaim on returning to userland: */
1420 	unsigned int			memcg_nr_pages_over_high;
1421 
1422 	/* Used by memcontrol for targeted memcg charge: */
1423 	struct mem_cgroup		*active_memcg;
1424 #endif
1425 
1426 #ifdef CONFIG_BLK_CGROUP
1427 	struct request_queue		*throttle_queue;
1428 #endif
1429 
1430 #ifdef CONFIG_UPROBES
1431 	struct uprobe_task		*utask;
1432 #endif
1433 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1434 	unsigned int			sequential_io;
1435 	unsigned int			sequential_io_avg;
1436 #endif
1437 	struct kmap_ctrl		kmap_ctrl;
1438 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1439 	unsigned long			task_state_change;
1440 # ifdef CONFIG_PREEMPT_RT
1441 	unsigned long			saved_state_change;
1442 # endif
1443 #endif
1444 	int				pagefault_disabled;
1445 #ifdef CONFIG_MMU
1446 	struct task_struct		*oom_reaper_list;
1447 	struct timer_list		oom_reaper_timer;
1448 #endif
1449 #ifdef CONFIG_VMAP_STACK
1450 	struct vm_struct		*stack_vm_area;
1451 #endif
1452 #ifdef CONFIG_THREAD_INFO_IN_TASK
1453 	/* A live task holds one reference: */
1454 	refcount_t			stack_refcount;
1455 #endif
1456 #ifdef CONFIG_LIVEPATCH
1457 	int patch_state;
1458 #endif
1459 #ifdef CONFIG_SECURITY
1460 	/* Used by LSM modules for access restriction: */
1461 	void				*security;
1462 #endif
1463 #ifdef CONFIG_BPF_SYSCALL
1464 	/* Used by BPF task local storage */
1465 	struct bpf_local_storage __rcu	*bpf_storage;
1466 	/* Used for BPF run context */
1467 	struct bpf_run_ctx		*bpf_ctx;
1468 #endif
1469 
1470 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1471 	unsigned long			lowest_stack;
1472 	unsigned long			prev_lowest_stack;
1473 #endif
1474 
1475 #ifdef CONFIG_X86_MCE
1476 	void __user			*mce_vaddr;
1477 	__u64				mce_kflags;
1478 	u64				mce_addr;
1479 	__u64				mce_ripv : 1,
1480 					mce_whole_page : 1,
1481 					__mce_reserved : 62;
1482 	struct callback_head		mce_kill_me;
1483 	int				mce_count;
1484 #endif
1485 
1486 #ifdef CONFIG_KRETPROBES
1487 	struct llist_head               kretprobe_instances;
1488 #endif
1489 #ifdef CONFIG_RETHOOK
1490 	struct llist_head               rethooks;
1491 #endif
1492 
1493 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1494 	/*
1495 	 * If L1D flush is supported on mm context switch
1496 	 * then we use this callback head to queue kill work
1497 	 * to kill tasks that are not running on SMT disabled
1498 	 * cores
1499 	 */
1500 	struct callback_head		l1d_flush_kill;
1501 #endif
1502 
1503 	/*
1504 	 * New fields for task_struct should be added above here, so that
1505 	 * they are included in the randomized portion of task_struct.
1506 	 */
1507 	randomized_struct_fields_end
1508 
1509 	/* CPU-specific state of this task: */
1510 	struct thread_struct		thread;
1511 
1512 	/*
1513 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1514 	 * structure.  It *MUST* be at the end of 'task_struct'.
1515 	 *
1516 	 * Do not put anything below here!
1517 	 */
1518 };
1519 
1520 static inline struct pid *task_pid(struct task_struct *task)
1521 {
1522 	return task->thread_pid;
1523 }
1524 
1525 /*
1526  * the helpers to get the task's different pids as they are seen
1527  * from various namespaces
1528  *
1529  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1530  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1531  *                     current.
1532  * task_xid_nr_ns()  : id seen from the ns specified;
1533  *
1534  * see also pid_nr() etc in include/linux/pid.h
1535  */
1536 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1537 
1538 static inline pid_t task_pid_nr(struct task_struct *tsk)
1539 {
1540 	return tsk->pid;
1541 }
1542 
1543 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1544 {
1545 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1546 }
1547 
1548 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1549 {
1550 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1551 }
1552 
1553 
1554 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1555 {
1556 	return tsk->tgid;
1557 }
1558 
1559 /**
1560  * pid_alive - check that a task structure is not stale
1561  * @p: Task structure to be checked.
1562  *
1563  * Test if a process is not yet dead (at most zombie state)
1564  * If pid_alive fails, then pointers within the task structure
1565  * can be stale and must not be dereferenced.
1566  *
1567  * Return: 1 if the process is alive. 0 otherwise.
1568  */
1569 static inline int pid_alive(const struct task_struct *p)
1570 {
1571 	return p->thread_pid != NULL;
1572 }
1573 
1574 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575 {
1576 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1577 }
1578 
1579 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1580 {
1581 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1582 }
1583 
1584 
1585 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1586 {
1587 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1588 }
1589 
1590 static inline pid_t task_session_vnr(struct task_struct *tsk)
1591 {
1592 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1593 }
1594 
1595 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1596 {
1597 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1598 }
1599 
1600 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601 {
1602 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1603 }
1604 
1605 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1606 {
1607 	pid_t pid = 0;
1608 
1609 	rcu_read_lock();
1610 	if (pid_alive(tsk))
1611 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1612 	rcu_read_unlock();
1613 
1614 	return pid;
1615 }
1616 
1617 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1618 {
1619 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1620 }
1621 
1622 /* Obsolete, do not use: */
1623 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1624 {
1625 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1626 }
1627 
1628 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1629 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1630 
1631 static inline unsigned int __task_state_index(unsigned int tsk_state,
1632 					      unsigned int tsk_exit_state)
1633 {
1634 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1635 
1636 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1637 
1638 	if (tsk_state == TASK_IDLE)
1639 		state = TASK_REPORT_IDLE;
1640 
1641 	/*
1642 	 * We're lying here, but rather than expose a completely new task state
1643 	 * to userspace, we can make this appear as if the task has gone through
1644 	 * a regular rt_mutex_lock() call.
1645 	 */
1646 	if (tsk_state == TASK_RTLOCK_WAIT)
1647 		state = TASK_UNINTERRUPTIBLE;
1648 
1649 	return fls(state);
1650 }
1651 
1652 static inline unsigned int task_state_index(struct task_struct *tsk)
1653 {
1654 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1655 }
1656 
1657 static inline char task_index_to_char(unsigned int state)
1658 {
1659 	static const char state_char[] = "RSDTtXZPI";
1660 
1661 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1662 
1663 	return state_char[state];
1664 }
1665 
1666 static inline char task_state_to_char(struct task_struct *tsk)
1667 {
1668 	return task_index_to_char(task_state_index(tsk));
1669 }
1670 
1671 /**
1672  * is_global_init - check if a task structure is init. Since init
1673  * is free to have sub-threads we need to check tgid.
1674  * @tsk: Task structure to be checked.
1675  *
1676  * Check if a task structure is the first user space task the kernel created.
1677  *
1678  * Return: 1 if the task structure is init. 0 otherwise.
1679  */
1680 static inline int is_global_init(struct task_struct *tsk)
1681 {
1682 	return task_tgid_nr(tsk) == 1;
1683 }
1684 
1685 extern struct pid *cad_pid;
1686 
1687 /*
1688  * Per process flags
1689  */
1690 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1691 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1692 #define PF_EXITING		0x00000004	/* Getting shut down */
1693 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1694 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1695 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1696 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1697 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1698 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1699 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1700 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1701 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1702 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1703 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1704 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1705 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1706 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1707 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1708 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1709 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1710 						 * I am cleaning dirty pages from some other bdi. */
1711 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1712 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1713 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1714 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1715 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1716 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1717 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1718 
1719 /*
1720  * Only the _current_ task can read/write to tsk->flags, but other
1721  * tasks can access tsk->flags in readonly mode for example
1722  * with tsk_used_math (like during threaded core dumping).
1723  * There is however an exception to this rule during ptrace
1724  * or during fork: the ptracer task is allowed to write to the
1725  * child->flags of its traced child (same goes for fork, the parent
1726  * can write to the child->flags), because we're guaranteed the
1727  * child is not running and in turn not changing child->flags
1728  * at the same time the parent does it.
1729  */
1730 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1731 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1732 #define clear_used_math()			clear_stopped_child_used_math(current)
1733 #define set_used_math()				set_stopped_child_used_math(current)
1734 
1735 #define conditional_stopped_child_used_math(condition, child) \
1736 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1737 
1738 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1739 
1740 #define copy_to_stopped_child_used_math(child) \
1741 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1742 
1743 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1744 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1745 #define used_math()				tsk_used_math(current)
1746 
1747 static __always_inline bool is_percpu_thread(void)
1748 {
1749 #ifdef CONFIG_SMP
1750 	return (current->flags & PF_NO_SETAFFINITY) &&
1751 		(current->nr_cpus_allowed  == 1);
1752 #else
1753 	return true;
1754 #endif
1755 }
1756 
1757 /* Per-process atomic flags. */
1758 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1759 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1760 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1761 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1762 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1763 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1764 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1765 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1766 
1767 #define TASK_PFA_TEST(name, func)					\
1768 	static inline bool task_##func(struct task_struct *p)		\
1769 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1770 
1771 #define TASK_PFA_SET(name, func)					\
1772 	static inline void task_set_##func(struct task_struct *p)	\
1773 	{ set_bit(PFA_##name, &p->atomic_flags); }
1774 
1775 #define TASK_PFA_CLEAR(name, func)					\
1776 	static inline void task_clear_##func(struct task_struct *p)	\
1777 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1778 
1779 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1780 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1781 
1782 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1783 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1784 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1785 
1786 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1787 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1788 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1789 
1790 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1791 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1792 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1793 
1794 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1795 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1796 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1797 
1798 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1799 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1800 
1801 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1802 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1803 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1804 
1805 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1806 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1807 
1808 static inline void
1809 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1810 {
1811 	current->flags &= ~flags;
1812 	current->flags |= orig_flags & flags;
1813 }
1814 
1815 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1816 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1817 #ifdef CONFIG_SMP
1818 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1819 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1820 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1821 extern void release_user_cpus_ptr(struct task_struct *p);
1822 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1823 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1824 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1825 #else
1826 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1827 {
1828 }
1829 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1830 {
1831 	if (!cpumask_test_cpu(0, new_mask))
1832 		return -EINVAL;
1833 	return 0;
1834 }
1835 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1836 {
1837 	if (src->user_cpus_ptr)
1838 		return -EINVAL;
1839 	return 0;
1840 }
1841 static inline void release_user_cpus_ptr(struct task_struct *p)
1842 {
1843 	WARN_ON(p->user_cpus_ptr);
1844 }
1845 
1846 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1847 {
1848 	return 0;
1849 }
1850 #endif
1851 
1852 extern int yield_to(struct task_struct *p, bool preempt);
1853 extern void set_user_nice(struct task_struct *p, long nice);
1854 extern int task_prio(const struct task_struct *p);
1855 
1856 /**
1857  * task_nice - return the nice value of a given task.
1858  * @p: the task in question.
1859  *
1860  * Return: The nice value [ -20 ... 0 ... 19 ].
1861  */
1862 static inline int task_nice(const struct task_struct *p)
1863 {
1864 	return PRIO_TO_NICE((p)->static_prio);
1865 }
1866 
1867 extern int can_nice(const struct task_struct *p, const int nice);
1868 extern int task_curr(const struct task_struct *p);
1869 extern int idle_cpu(int cpu);
1870 extern int available_idle_cpu(int cpu);
1871 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1872 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1873 extern void sched_set_fifo(struct task_struct *p);
1874 extern void sched_set_fifo_low(struct task_struct *p);
1875 extern void sched_set_normal(struct task_struct *p, int nice);
1876 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1877 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1878 extern struct task_struct *idle_task(int cpu);
1879 
1880 /**
1881  * is_idle_task - is the specified task an idle task?
1882  * @p: the task in question.
1883  *
1884  * Return: 1 if @p is an idle task. 0 otherwise.
1885  */
1886 static __always_inline bool is_idle_task(const struct task_struct *p)
1887 {
1888 	return !!(p->flags & PF_IDLE);
1889 }
1890 
1891 extern struct task_struct *curr_task(int cpu);
1892 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1893 
1894 void yield(void);
1895 
1896 union thread_union {
1897 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1898 	struct task_struct task;
1899 #endif
1900 #ifndef CONFIG_THREAD_INFO_IN_TASK
1901 	struct thread_info thread_info;
1902 #endif
1903 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1904 };
1905 
1906 #ifndef CONFIG_THREAD_INFO_IN_TASK
1907 extern struct thread_info init_thread_info;
1908 #endif
1909 
1910 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1911 
1912 #ifdef CONFIG_THREAD_INFO_IN_TASK
1913 # define task_thread_info(task)	(&(task)->thread_info)
1914 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1915 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1916 #endif
1917 
1918 /*
1919  * find a task by one of its numerical ids
1920  *
1921  * find_task_by_pid_ns():
1922  *      finds a task by its pid in the specified namespace
1923  * find_task_by_vpid():
1924  *      finds a task by its virtual pid
1925  *
1926  * see also find_vpid() etc in include/linux/pid.h
1927  */
1928 
1929 extern struct task_struct *find_task_by_vpid(pid_t nr);
1930 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1931 
1932 /*
1933  * find a task by its virtual pid and get the task struct
1934  */
1935 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1936 
1937 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1938 extern int wake_up_process(struct task_struct *tsk);
1939 extern void wake_up_new_task(struct task_struct *tsk);
1940 
1941 #ifdef CONFIG_SMP
1942 extern void kick_process(struct task_struct *tsk);
1943 #else
1944 static inline void kick_process(struct task_struct *tsk) { }
1945 #endif
1946 
1947 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1948 
1949 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1950 {
1951 	__set_task_comm(tsk, from, false);
1952 }
1953 
1954 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1955 #define get_task_comm(buf, tsk) ({			\
1956 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1957 	__get_task_comm(buf, sizeof(buf), tsk);		\
1958 })
1959 
1960 #ifdef CONFIG_SMP
1961 static __always_inline void scheduler_ipi(void)
1962 {
1963 	/*
1964 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1965 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1966 	 * this IPI.
1967 	 */
1968 	preempt_fold_need_resched();
1969 }
1970 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1971 #else
1972 static inline void scheduler_ipi(void) { }
1973 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1974 {
1975 	return 1;
1976 }
1977 #endif
1978 
1979 /*
1980  * Set thread flags in other task's structures.
1981  * See asm/thread_info.h for TIF_xxxx flags available:
1982  */
1983 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1984 {
1985 	set_ti_thread_flag(task_thread_info(tsk), flag);
1986 }
1987 
1988 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1989 {
1990 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1991 }
1992 
1993 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1994 					  bool value)
1995 {
1996 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1997 }
1998 
1999 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2000 {
2001 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2002 }
2003 
2004 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2005 {
2006 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2007 }
2008 
2009 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2010 {
2011 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2012 }
2013 
2014 static inline void set_tsk_need_resched(struct task_struct *tsk)
2015 {
2016 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2017 }
2018 
2019 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2020 {
2021 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2022 }
2023 
2024 static inline int test_tsk_need_resched(struct task_struct *tsk)
2025 {
2026 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2027 }
2028 
2029 /*
2030  * cond_resched() and cond_resched_lock(): latency reduction via
2031  * explicit rescheduling in places that are safe. The return
2032  * value indicates whether a reschedule was done in fact.
2033  * cond_resched_lock() will drop the spinlock before scheduling,
2034  */
2035 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2036 extern int __cond_resched(void);
2037 
2038 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2039 
2040 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2041 
2042 static __always_inline int _cond_resched(void)
2043 {
2044 	return static_call_mod(cond_resched)();
2045 }
2046 
2047 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2048 extern int dynamic_cond_resched(void);
2049 
2050 static __always_inline int _cond_resched(void)
2051 {
2052 	return dynamic_cond_resched();
2053 }
2054 
2055 #else
2056 
2057 static inline int _cond_resched(void)
2058 {
2059 	return __cond_resched();
2060 }
2061 
2062 #endif /* CONFIG_PREEMPT_DYNAMIC */
2063 
2064 #else
2065 
2066 static inline int _cond_resched(void) { return 0; }
2067 
2068 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2069 
2070 #define cond_resched() ({			\
2071 	__might_resched(__FILE__, __LINE__, 0);	\
2072 	_cond_resched();			\
2073 })
2074 
2075 extern int __cond_resched_lock(spinlock_t *lock);
2076 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2077 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2078 
2079 #define MIGHT_RESCHED_RCU_SHIFT		8
2080 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2081 
2082 #ifndef CONFIG_PREEMPT_RT
2083 /*
2084  * Non RT kernels have an elevated preempt count due to the held lock,
2085  * but are not allowed to be inside a RCU read side critical section
2086  */
2087 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2088 #else
2089 /*
2090  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2091  * cond_resched*lock() has to take that into account because it checks for
2092  * preempt_count() and rcu_preempt_depth().
2093  */
2094 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2095 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2096 #endif
2097 
2098 #define cond_resched_lock(lock) ({						\
2099 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2100 	__cond_resched_lock(lock);						\
2101 })
2102 
2103 #define cond_resched_rwlock_read(lock) ({					\
2104 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2105 	__cond_resched_rwlock_read(lock);					\
2106 })
2107 
2108 #define cond_resched_rwlock_write(lock) ({					\
2109 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2110 	__cond_resched_rwlock_write(lock);					\
2111 })
2112 
2113 static inline void cond_resched_rcu(void)
2114 {
2115 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2116 	rcu_read_unlock();
2117 	cond_resched();
2118 	rcu_read_lock();
2119 #endif
2120 }
2121 
2122 #ifdef CONFIG_PREEMPT_DYNAMIC
2123 
2124 extern bool preempt_model_none(void);
2125 extern bool preempt_model_voluntary(void);
2126 extern bool preempt_model_full(void);
2127 
2128 #else
2129 
2130 static inline bool preempt_model_none(void)
2131 {
2132 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2133 }
2134 static inline bool preempt_model_voluntary(void)
2135 {
2136 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2137 }
2138 static inline bool preempt_model_full(void)
2139 {
2140 	return IS_ENABLED(CONFIG_PREEMPT);
2141 }
2142 
2143 #endif
2144 
2145 static inline bool preempt_model_rt(void)
2146 {
2147 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2148 }
2149 
2150 /*
2151  * Does the preemption model allow non-cooperative preemption?
2152  *
2153  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2154  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2155  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2156  * PREEMPT_NONE model.
2157  */
2158 static inline bool preempt_model_preemptible(void)
2159 {
2160 	return preempt_model_full() || preempt_model_rt();
2161 }
2162 
2163 /*
2164  * Does a critical section need to be broken due to another
2165  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2166  * but a general need for low latency)
2167  */
2168 static inline int spin_needbreak(spinlock_t *lock)
2169 {
2170 #ifdef CONFIG_PREEMPTION
2171 	return spin_is_contended(lock);
2172 #else
2173 	return 0;
2174 #endif
2175 }
2176 
2177 /*
2178  * Check if a rwlock is contended.
2179  * Returns non-zero if there is another task waiting on the rwlock.
2180  * Returns zero if the lock is not contended or the system / underlying
2181  * rwlock implementation does not support contention detection.
2182  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2183  * for low latency.
2184  */
2185 static inline int rwlock_needbreak(rwlock_t *lock)
2186 {
2187 #ifdef CONFIG_PREEMPTION
2188 	return rwlock_is_contended(lock);
2189 #else
2190 	return 0;
2191 #endif
2192 }
2193 
2194 static __always_inline bool need_resched(void)
2195 {
2196 	return unlikely(tif_need_resched());
2197 }
2198 
2199 /*
2200  * Wrappers for p->thread_info->cpu access. No-op on UP.
2201  */
2202 #ifdef CONFIG_SMP
2203 
2204 static inline unsigned int task_cpu(const struct task_struct *p)
2205 {
2206 	return READ_ONCE(task_thread_info(p)->cpu);
2207 }
2208 
2209 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2210 
2211 #else
2212 
2213 static inline unsigned int task_cpu(const struct task_struct *p)
2214 {
2215 	return 0;
2216 }
2217 
2218 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2219 {
2220 }
2221 
2222 #endif /* CONFIG_SMP */
2223 
2224 extern bool sched_task_on_rq(struct task_struct *p);
2225 extern unsigned long get_wchan(struct task_struct *p);
2226 
2227 /*
2228  * In order to reduce various lock holder preemption latencies provide an
2229  * interface to see if a vCPU is currently running or not.
2230  *
2231  * This allows us to terminate optimistic spin loops and block, analogous to
2232  * the native optimistic spin heuristic of testing if the lock owner task is
2233  * running or not.
2234  */
2235 #ifndef vcpu_is_preempted
2236 static inline bool vcpu_is_preempted(int cpu)
2237 {
2238 	return false;
2239 }
2240 #endif
2241 
2242 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2243 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2244 
2245 #ifndef TASK_SIZE_OF
2246 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2247 #endif
2248 
2249 #ifdef CONFIG_SMP
2250 static inline bool owner_on_cpu(struct task_struct *owner)
2251 {
2252 	/*
2253 	 * As lock holder preemption issue, we both skip spinning if
2254 	 * task is not on cpu or its cpu is preempted
2255 	 */
2256 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2257 }
2258 
2259 /* Returns effective CPU energy utilization, as seen by the scheduler */
2260 unsigned long sched_cpu_util(int cpu, unsigned long max);
2261 #endif /* CONFIG_SMP */
2262 
2263 #ifdef CONFIG_RSEQ
2264 
2265 /*
2266  * Map the event mask on the user-space ABI enum rseq_cs_flags
2267  * for direct mask checks.
2268  */
2269 enum rseq_event_mask_bits {
2270 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2271 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2272 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2273 };
2274 
2275 enum rseq_event_mask {
2276 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2277 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2278 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2279 };
2280 
2281 static inline void rseq_set_notify_resume(struct task_struct *t)
2282 {
2283 	if (t->rseq)
2284 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2285 }
2286 
2287 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2288 
2289 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2290 					     struct pt_regs *regs)
2291 {
2292 	if (current->rseq)
2293 		__rseq_handle_notify_resume(ksig, regs);
2294 }
2295 
2296 static inline void rseq_signal_deliver(struct ksignal *ksig,
2297 				       struct pt_regs *regs)
2298 {
2299 	preempt_disable();
2300 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2301 	preempt_enable();
2302 	rseq_handle_notify_resume(ksig, regs);
2303 }
2304 
2305 /* rseq_preempt() requires preemption to be disabled. */
2306 static inline void rseq_preempt(struct task_struct *t)
2307 {
2308 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2309 	rseq_set_notify_resume(t);
2310 }
2311 
2312 /* rseq_migrate() requires preemption to be disabled. */
2313 static inline void rseq_migrate(struct task_struct *t)
2314 {
2315 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2316 	rseq_set_notify_resume(t);
2317 }
2318 
2319 /*
2320  * If parent process has a registered restartable sequences area, the
2321  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2322  */
2323 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2324 {
2325 	if (clone_flags & CLONE_VM) {
2326 		t->rseq = NULL;
2327 		t->rseq_sig = 0;
2328 		t->rseq_event_mask = 0;
2329 	} else {
2330 		t->rseq = current->rseq;
2331 		t->rseq_sig = current->rseq_sig;
2332 		t->rseq_event_mask = current->rseq_event_mask;
2333 	}
2334 }
2335 
2336 static inline void rseq_execve(struct task_struct *t)
2337 {
2338 	t->rseq = NULL;
2339 	t->rseq_sig = 0;
2340 	t->rseq_event_mask = 0;
2341 }
2342 
2343 #else
2344 
2345 static inline void rseq_set_notify_resume(struct task_struct *t)
2346 {
2347 }
2348 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2349 					     struct pt_regs *regs)
2350 {
2351 }
2352 static inline void rseq_signal_deliver(struct ksignal *ksig,
2353 				       struct pt_regs *regs)
2354 {
2355 }
2356 static inline void rseq_preempt(struct task_struct *t)
2357 {
2358 }
2359 static inline void rseq_migrate(struct task_struct *t)
2360 {
2361 }
2362 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2363 {
2364 }
2365 static inline void rseq_execve(struct task_struct *t)
2366 {
2367 }
2368 
2369 #endif
2370 
2371 #ifdef CONFIG_DEBUG_RSEQ
2372 
2373 void rseq_syscall(struct pt_regs *regs);
2374 
2375 #else
2376 
2377 static inline void rseq_syscall(struct pt_regs *regs)
2378 {
2379 }
2380 
2381 #endif
2382 
2383 #ifdef CONFIG_SCHED_CORE
2384 extern void sched_core_free(struct task_struct *tsk);
2385 extern void sched_core_fork(struct task_struct *p);
2386 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2387 				unsigned long uaddr);
2388 #else
2389 static inline void sched_core_free(struct task_struct *tsk) { }
2390 static inline void sched_core_fork(struct task_struct *p) { }
2391 #endif
2392 
2393 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2394 
2395 #endif
2396