1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/plist.h> 20 #include <linux/rbtree.h> 21 #include <linux/thread_info.h> 22 #include <linux/cpumask.h> 23 #include <linux/errno.h> 24 #include <linux/nodemask.h> 25 #include <linux/mm_types.h> 26 #include <linux/preempt_mask.h> 27 28 #include <asm/page.h> 29 #include <asm/ptrace.h> 30 #include <asm/cputime.h> 31 32 #include <linux/smp.h> 33 #include <linux/sem.h> 34 #include <linux/signal.h> 35 #include <linux/compiler.h> 36 #include <linux/completion.h> 37 #include <linux/pid.h> 38 #include <linux/percpu.h> 39 #include <linux/topology.h> 40 #include <linux/proportions.h> 41 #include <linux/seccomp.h> 42 #include <linux/rcupdate.h> 43 #include <linux/rculist.h> 44 #include <linux/rtmutex.h> 45 46 #include <linux/time.h> 47 #include <linux/param.h> 48 #include <linux/resource.h> 49 #include <linux/timer.h> 50 #include <linux/hrtimer.h> 51 #include <linux/task_io_accounting.h> 52 #include <linux/latencytop.h> 53 #include <linux/cred.h> 54 #include <linux/llist.h> 55 #include <linux/uidgid.h> 56 #include <linux/gfp.h> 57 58 #include <asm/processor.h> 59 60 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 61 62 /* 63 * Extended scheduling parameters data structure. 64 * 65 * This is needed because the original struct sched_param can not be 66 * altered without introducing ABI issues with legacy applications 67 * (e.g., in sched_getparam()). 68 * 69 * However, the possibility of specifying more than just a priority for 70 * the tasks may be useful for a wide variety of application fields, e.g., 71 * multimedia, streaming, automation and control, and many others. 72 * 73 * This variant (sched_attr) is meant at describing a so-called 74 * sporadic time-constrained task. In such model a task is specified by: 75 * - the activation period or minimum instance inter-arrival time; 76 * - the maximum (or average, depending on the actual scheduling 77 * discipline) computation time of all instances, a.k.a. runtime; 78 * - the deadline (relative to the actual activation time) of each 79 * instance. 80 * Very briefly, a periodic (sporadic) task asks for the execution of 81 * some specific computation --which is typically called an instance-- 82 * (at most) every period. Moreover, each instance typically lasts no more 83 * than the runtime and must be completed by time instant t equal to 84 * the instance activation time + the deadline. 85 * 86 * This is reflected by the actual fields of the sched_attr structure: 87 * 88 * @size size of the structure, for fwd/bwd compat. 89 * 90 * @sched_policy task's scheduling policy 91 * @sched_flags for customizing the scheduler behaviour 92 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 93 * @sched_priority task's static priority (SCHED_FIFO/RR) 94 * @sched_deadline representative of the task's deadline 95 * @sched_runtime representative of the task's runtime 96 * @sched_period representative of the task's period 97 * 98 * Given this task model, there are a multiplicity of scheduling algorithms 99 * and policies, that can be used to ensure all the tasks will make their 100 * timing constraints. 101 * 102 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 103 * only user of this new interface. More information about the algorithm 104 * available in the scheduling class file or in Documentation/. 105 */ 106 struct sched_attr { 107 u32 size; 108 109 u32 sched_policy; 110 u64 sched_flags; 111 112 /* SCHED_NORMAL, SCHED_BATCH */ 113 s32 sched_nice; 114 115 /* SCHED_FIFO, SCHED_RR */ 116 u32 sched_priority; 117 118 /* SCHED_DEADLINE */ 119 u64 sched_runtime; 120 u64 sched_deadline; 121 u64 sched_period; 122 }; 123 124 struct exec_domain; 125 struct futex_pi_state; 126 struct robust_list_head; 127 struct bio_list; 128 struct fs_struct; 129 struct perf_event_context; 130 struct blk_plug; 131 132 /* 133 * List of flags we want to share for kernel threads, 134 * if only because they are not used by them anyway. 135 */ 136 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 137 138 /* 139 * These are the constant used to fake the fixed-point load-average 140 * counting. Some notes: 141 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 142 * a load-average precision of 10 bits integer + 11 bits fractional 143 * - if you want to count load-averages more often, you need more 144 * precision, or rounding will get you. With 2-second counting freq, 145 * the EXP_n values would be 1981, 2034 and 2043 if still using only 146 * 11 bit fractions. 147 */ 148 extern unsigned long avenrun[]; /* Load averages */ 149 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 150 151 #define FSHIFT 11 /* nr of bits of precision */ 152 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 153 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 154 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 155 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 156 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 157 158 #define CALC_LOAD(load,exp,n) \ 159 load *= exp; \ 160 load += n*(FIXED_1-exp); \ 161 load >>= FSHIFT; 162 163 extern unsigned long total_forks; 164 extern int nr_threads; 165 DECLARE_PER_CPU(unsigned long, process_counts); 166 extern int nr_processes(void); 167 extern unsigned long nr_running(void); 168 extern unsigned long nr_iowait(void); 169 extern unsigned long nr_iowait_cpu(int cpu); 170 extern unsigned long this_cpu_load(void); 171 172 173 extern void calc_global_load(unsigned long ticks); 174 extern void update_cpu_load_nohz(void); 175 176 extern unsigned long get_parent_ip(unsigned long addr); 177 178 extern void dump_cpu_task(int cpu); 179 180 struct seq_file; 181 struct cfs_rq; 182 struct task_group; 183 #ifdef CONFIG_SCHED_DEBUG 184 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 185 extern void proc_sched_set_task(struct task_struct *p); 186 extern void 187 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 188 #endif 189 190 /* 191 * Task state bitmask. NOTE! These bits are also 192 * encoded in fs/proc/array.c: get_task_state(). 193 * 194 * We have two separate sets of flags: task->state 195 * is about runnability, while task->exit_state are 196 * about the task exiting. Confusing, but this way 197 * modifying one set can't modify the other one by 198 * mistake. 199 */ 200 #define TASK_RUNNING 0 201 #define TASK_INTERRUPTIBLE 1 202 #define TASK_UNINTERRUPTIBLE 2 203 #define __TASK_STOPPED 4 204 #define __TASK_TRACED 8 205 /* in tsk->exit_state */ 206 #define EXIT_ZOMBIE 16 207 #define EXIT_DEAD 32 208 /* in tsk->state again */ 209 #define TASK_DEAD 64 210 #define TASK_WAKEKILL 128 211 #define TASK_WAKING 256 212 #define TASK_PARKED 512 213 #define TASK_STATE_MAX 1024 214 215 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 216 217 extern char ___assert_task_state[1 - 2*!!( 218 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 219 220 /* Convenience macros for the sake of set_task_state */ 221 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 222 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 223 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 224 225 /* Convenience macros for the sake of wake_up */ 226 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 227 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 228 229 /* get_task_state() */ 230 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 231 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 232 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 233 234 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 235 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 236 #define task_is_stopped_or_traced(task) \ 237 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 238 #define task_contributes_to_load(task) \ 239 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 240 (task->flags & PF_FROZEN) == 0) 241 242 #define __set_task_state(tsk, state_value) \ 243 do { (tsk)->state = (state_value); } while (0) 244 #define set_task_state(tsk, state_value) \ 245 set_mb((tsk)->state, (state_value)) 246 247 /* 248 * set_current_state() includes a barrier so that the write of current->state 249 * is correctly serialised wrt the caller's subsequent test of whether to 250 * actually sleep: 251 * 252 * set_current_state(TASK_UNINTERRUPTIBLE); 253 * if (do_i_need_to_sleep()) 254 * schedule(); 255 * 256 * If the caller does not need such serialisation then use __set_current_state() 257 */ 258 #define __set_current_state(state_value) \ 259 do { current->state = (state_value); } while (0) 260 #define set_current_state(state_value) \ 261 set_mb(current->state, (state_value)) 262 263 /* Task command name length */ 264 #define TASK_COMM_LEN 16 265 266 #include <linux/spinlock.h> 267 268 /* 269 * This serializes "schedule()" and also protects 270 * the run-queue from deletions/modifications (but 271 * _adding_ to the beginning of the run-queue has 272 * a separate lock). 273 */ 274 extern rwlock_t tasklist_lock; 275 extern spinlock_t mmlist_lock; 276 277 struct task_struct; 278 279 #ifdef CONFIG_PROVE_RCU 280 extern int lockdep_tasklist_lock_is_held(void); 281 #endif /* #ifdef CONFIG_PROVE_RCU */ 282 283 extern void sched_init(void); 284 extern void sched_init_smp(void); 285 extern asmlinkage void schedule_tail(struct task_struct *prev); 286 extern void init_idle(struct task_struct *idle, int cpu); 287 extern void init_idle_bootup_task(struct task_struct *idle); 288 289 extern int runqueue_is_locked(int cpu); 290 291 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 292 extern void nohz_balance_enter_idle(int cpu); 293 extern void set_cpu_sd_state_idle(void); 294 extern int get_nohz_timer_target(void); 295 #else 296 static inline void nohz_balance_enter_idle(int cpu) { } 297 static inline void set_cpu_sd_state_idle(void) { } 298 #endif 299 300 /* 301 * Only dump TASK_* tasks. (0 for all tasks) 302 */ 303 extern void show_state_filter(unsigned long state_filter); 304 305 static inline void show_state(void) 306 { 307 show_state_filter(0); 308 } 309 310 extern void show_regs(struct pt_regs *); 311 312 /* 313 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 314 * task), SP is the stack pointer of the first frame that should be shown in the back 315 * trace (or NULL if the entire call-chain of the task should be shown). 316 */ 317 extern void show_stack(struct task_struct *task, unsigned long *sp); 318 319 void io_schedule(void); 320 long io_schedule_timeout(long timeout); 321 322 extern void cpu_init (void); 323 extern void trap_init(void); 324 extern void update_process_times(int user); 325 extern void scheduler_tick(void); 326 327 extern void sched_show_task(struct task_struct *p); 328 329 #ifdef CONFIG_LOCKUP_DETECTOR 330 extern void touch_softlockup_watchdog(void); 331 extern void touch_softlockup_watchdog_sync(void); 332 extern void touch_all_softlockup_watchdogs(void); 333 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 334 void __user *buffer, 335 size_t *lenp, loff_t *ppos); 336 extern unsigned int softlockup_panic; 337 void lockup_detector_init(void); 338 #else 339 static inline void touch_softlockup_watchdog(void) 340 { 341 } 342 static inline void touch_softlockup_watchdog_sync(void) 343 { 344 } 345 static inline void touch_all_softlockup_watchdogs(void) 346 { 347 } 348 static inline void lockup_detector_init(void) 349 { 350 } 351 #endif 352 353 #ifdef CONFIG_DETECT_HUNG_TASK 354 void reset_hung_task_detector(void); 355 #else 356 static inline void reset_hung_task_detector(void) 357 { 358 } 359 #endif 360 361 /* Attach to any functions which should be ignored in wchan output. */ 362 #define __sched __attribute__((__section__(".sched.text"))) 363 364 /* Linker adds these: start and end of __sched functions */ 365 extern char __sched_text_start[], __sched_text_end[]; 366 367 /* Is this address in the __sched functions? */ 368 extern int in_sched_functions(unsigned long addr); 369 370 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 371 extern signed long schedule_timeout(signed long timeout); 372 extern signed long schedule_timeout_interruptible(signed long timeout); 373 extern signed long schedule_timeout_killable(signed long timeout); 374 extern signed long schedule_timeout_uninterruptible(signed long timeout); 375 asmlinkage void schedule(void); 376 extern void schedule_preempt_disabled(void); 377 378 struct nsproxy; 379 struct user_namespace; 380 381 #ifdef CONFIG_MMU 382 extern void arch_pick_mmap_layout(struct mm_struct *mm); 383 extern unsigned long 384 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 385 unsigned long, unsigned long); 386 extern unsigned long 387 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 388 unsigned long len, unsigned long pgoff, 389 unsigned long flags); 390 #else 391 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 392 #endif 393 394 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 395 #define SUID_DUMP_USER 1 /* Dump as user of process */ 396 #define SUID_DUMP_ROOT 2 /* Dump as root */ 397 398 /* mm flags */ 399 400 /* for SUID_DUMP_* above */ 401 #define MMF_DUMPABLE_BITS 2 402 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 403 404 extern void set_dumpable(struct mm_struct *mm, int value); 405 /* 406 * This returns the actual value of the suid_dumpable flag. For things 407 * that are using this for checking for privilege transitions, it must 408 * test against SUID_DUMP_USER rather than treating it as a boolean 409 * value. 410 */ 411 static inline int __get_dumpable(unsigned long mm_flags) 412 { 413 return mm_flags & MMF_DUMPABLE_MASK; 414 } 415 416 static inline int get_dumpable(struct mm_struct *mm) 417 { 418 return __get_dumpable(mm->flags); 419 } 420 421 /* coredump filter bits */ 422 #define MMF_DUMP_ANON_PRIVATE 2 423 #define MMF_DUMP_ANON_SHARED 3 424 #define MMF_DUMP_MAPPED_PRIVATE 4 425 #define MMF_DUMP_MAPPED_SHARED 5 426 #define MMF_DUMP_ELF_HEADERS 6 427 #define MMF_DUMP_HUGETLB_PRIVATE 7 428 #define MMF_DUMP_HUGETLB_SHARED 8 429 430 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 431 #define MMF_DUMP_FILTER_BITS 7 432 #define MMF_DUMP_FILTER_MASK \ 433 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 434 #define MMF_DUMP_FILTER_DEFAULT \ 435 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 436 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 437 438 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 439 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 440 #else 441 # define MMF_DUMP_MASK_DEFAULT_ELF 0 442 #endif 443 /* leave room for more dump flags */ 444 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 445 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 446 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 447 448 #define MMF_HAS_UPROBES 19 /* has uprobes */ 449 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 450 451 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 452 453 struct sighand_struct { 454 atomic_t count; 455 struct k_sigaction action[_NSIG]; 456 spinlock_t siglock; 457 wait_queue_head_t signalfd_wqh; 458 }; 459 460 struct pacct_struct { 461 int ac_flag; 462 long ac_exitcode; 463 unsigned long ac_mem; 464 cputime_t ac_utime, ac_stime; 465 unsigned long ac_minflt, ac_majflt; 466 }; 467 468 struct cpu_itimer { 469 cputime_t expires; 470 cputime_t incr; 471 u32 error; 472 u32 incr_error; 473 }; 474 475 /** 476 * struct cputime - snaphsot of system and user cputime 477 * @utime: time spent in user mode 478 * @stime: time spent in system mode 479 * 480 * Gathers a generic snapshot of user and system time. 481 */ 482 struct cputime { 483 cputime_t utime; 484 cputime_t stime; 485 }; 486 487 /** 488 * struct task_cputime - collected CPU time counts 489 * @utime: time spent in user mode, in &cputime_t units 490 * @stime: time spent in kernel mode, in &cputime_t units 491 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 492 * 493 * This is an extension of struct cputime that includes the total runtime 494 * spent by the task from the scheduler point of view. 495 * 496 * As a result, this structure groups together three kinds of CPU time 497 * that are tracked for threads and thread groups. Most things considering 498 * CPU time want to group these counts together and treat all three 499 * of them in parallel. 500 */ 501 struct task_cputime { 502 cputime_t utime; 503 cputime_t stime; 504 unsigned long long sum_exec_runtime; 505 }; 506 /* Alternate field names when used to cache expirations. */ 507 #define prof_exp stime 508 #define virt_exp utime 509 #define sched_exp sum_exec_runtime 510 511 #define INIT_CPUTIME \ 512 (struct task_cputime) { \ 513 .utime = 0, \ 514 .stime = 0, \ 515 .sum_exec_runtime = 0, \ 516 } 517 518 #ifdef CONFIG_PREEMPT_COUNT 519 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 520 #else 521 #define PREEMPT_DISABLED PREEMPT_ENABLED 522 #endif 523 524 /* 525 * Disable preemption until the scheduler is running. 526 * Reset by start_kernel()->sched_init()->init_idle(). 527 * 528 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 529 * before the scheduler is active -- see should_resched(). 530 */ 531 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 532 533 /** 534 * struct thread_group_cputimer - thread group interval timer counts 535 * @cputime: thread group interval timers. 536 * @running: non-zero when there are timers running and 537 * @cputime receives updates. 538 * @lock: lock for fields in this struct. 539 * 540 * This structure contains the version of task_cputime, above, that is 541 * used for thread group CPU timer calculations. 542 */ 543 struct thread_group_cputimer { 544 struct task_cputime cputime; 545 int running; 546 raw_spinlock_t lock; 547 }; 548 549 #include <linux/rwsem.h> 550 struct autogroup; 551 552 /* 553 * NOTE! "signal_struct" does not have its own 554 * locking, because a shared signal_struct always 555 * implies a shared sighand_struct, so locking 556 * sighand_struct is always a proper superset of 557 * the locking of signal_struct. 558 */ 559 struct signal_struct { 560 atomic_t sigcnt; 561 atomic_t live; 562 int nr_threads; 563 struct list_head thread_head; 564 565 wait_queue_head_t wait_chldexit; /* for wait4() */ 566 567 /* current thread group signal load-balancing target: */ 568 struct task_struct *curr_target; 569 570 /* shared signal handling: */ 571 struct sigpending shared_pending; 572 573 /* thread group exit support */ 574 int group_exit_code; 575 /* overloaded: 576 * - notify group_exit_task when ->count is equal to notify_count 577 * - everyone except group_exit_task is stopped during signal delivery 578 * of fatal signals, group_exit_task processes the signal. 579 */ 580 int notify_count; 581 struct task_struct *group_exit_task; 582 583 /* thread group stop support, overloads group_exit_code too */ 584 int group_stop_count; 585 unsigned int flags; /* see SIGNAL_* flags below */ 586 587 /* 588 * PR_SET_CHILD_SUBREAPER marks a process, like a service 589 * manager, to re-parent orphan (double-forking) child processes 590 * to this process instead of 'init'. The service manager is 591 * able to receive SIGCHLD signals and is able to investigate 592 * the process until it calls wait(). All children of this 593 * process will inherit a flag if they should look for a 594 * child_subreaper process at exit. 595 */ 596 unsigned int is_child_subreaper:1; 597 unsigned int has_child_subreaper:1; 598 599 /* POSIX.1b Interval Timers */ 600 int posix_timer_id; 601 struct list_head posix_timers; 602 603 /* ITIMER_REAL timer for the process */ 604 struct hrtimer real_timer; 605 struct pid *leader_pid; 606 ktime_t it_real_incr; 607 608 /* 609 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 610 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 611 * values are defined to 0 and 1 respectively 612 */ 613 struct cpu_itimer it[2]; 614 615 /* 616 * Thread group totals for process CPU timers. 617 * See thread_group_cputimer(), et al, for details. 618 */ 619 struct thread_group_cputimer cputimer; 620 621 /* Earliest-expiration cache. */ 622 struct task_cputime cputime_expires; 623 624 struct list_head cpu_timers[3]; 625 626 struct pid *tty_old_pgrp; 627 628 /* boolean value for session group leader */ 629 int leader; 630 631 struct tty_struct *tty; /* NULL if no tty */ 632 633 #ifdef CONFIG_SCHED_AUTOGROUP 634 struct autogroup *autogroup; 635 #endif 636 /* 637 * Cumulative resource counters for dead threads in the group, 638 * and for reaped dead child processes forked by this group. 639 * Live threads maintain their own counters and add to these 640 * in __exit_signal, except for the group leader. 641 */ 642 cputime_t utime, stime, cutime, cstime; 643 cputime_t gtime; 644 cputime_t cgtime; 645 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 646 struct cputime prev_cputime; 647 #endif 648 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 649 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 650 unsigned long inblock, oublock, cinblock, coublock; 651 unsigned long maxrss, cmaxrss; 652 struct task_io_accounting ioac; 653 654 /* 655 * Cumulative ns of schedule CPU time fo dead threads in the 656 * group, not including a zombie group leader, (This only differs 657 * from jiffies_to_ns(utime + stime) if sched_clock uses something 658 * other than jiffies.) 659 */ 660 unsigned long long sum_sched_runtime; 661 662 /* 663 * We don't bother to synchronize most readers of this at all, 664 * because there is no reader checking a limit that actually needs 665 * to get both rlim_cur and rlim_max atomically, and either one 666 * alone is a single word that can safely be read normally. 667 * getrlimit/setrlimit use task_lock(current->group_leader) to 668 * protect this instead of the siglock, because they really 669 * have no need to disable irqs. 670 */ 671 struct rlimit rlim[RLIM_NLIMITS]; 672 673 #ifdef CONFIG_BSD_PROCESS_ACCT 674 struct pacct_struct pacct; /* per-process accounting information */ 675 #endif 676 #ifdef CONFIG_TASKSTATS 677 struct taskstats *stats; 678 #endif 679 #ifdef CONFIG_AUDIT 680 unsigned audit_tty; 681 unsigned audit_tty_log_passwd; 682 struct tty_audit_buf *tty_audit_buf; 683 #endif 684 #ifdef CONFIG_CGROUPS 685 /* 686 * group_rwsem prevents new tasks from entering the threadgroup and 687 * member tasks from exiting,a more specifically, setting of 688 * PF_EXITING. fork and exit paths are protected with this rwsem 689 * using threadgroup_change_begin/end(). Users which require 690 * threadgroup to remain stable should use threadgroup_[un]lock() 691 * which also takes care of exec path. Currently, cgroup is the 692 * only user. 693 */ 694 struct rw_semaphore group_rwsem; 695 #endif 696 697 oom_flags_t oom_flags; 698 short oom_score_adj; /* OOM kill score adjustment */ 699 short oom_score_adj_min; /* OOM kill score adjustment min value. 700 * Only settable by CAP_SYS_RESOURCE. */ 701 702 struct mutex cred_guard_mutex; /* guard against foreign influences on 703 * credential calculations 704 * (notably. ptrace) */ 705 }; 706 707 /* 708 * Bits in flags field of signal_struct. 709 */ 710 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 711 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 712 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 713 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 714 /* 715 * Pending notifications to parent. 716 */ 717 #define SIGNAL_CLD_STOPPED 0x00000010 718 #define SIGNAL_CLD_CONTINUED 0x00000020 719 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 720 721 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 722 723 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 724 static inline int signal_group_exit(const struct signal_struct *sig) 725 { 726 return (sig->flags & SIGNAL_GROUP_EXIT) || 727 (sig->group_exit_task != NULL); 728 } 729 730 /* 731 * Some day this will be a full-fledged user tracking system.. 732 */ 733 struct user_struct { 734 atomic_t __count; /* reference count */ 735 atomic_t processes; /* How many processes does this user have? */ 736 atomic_t files; /* How many open files does this user have? */ 737 atomic_t sigpending; /* How many pending signals does this user have? */ 738 #ifdef CONFIG_INOTIFY_USER 739 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 740 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 741 #endif 742 #ifdef CONFIG_FANOTIFY 743 atomic_t fanotify_listeners; 744 #endif 745 #ifdef CONFIG_EPOLL 746 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 747 #endif 748 #ifdef CONFIG_POSIX_MQUEUE 749 /* protected by mq_lock */ 750 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 751 #endif 752 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 753 754 #ifdef CONFIG_KEYS 755 struct key *uid_keyring; /* UID specific keyring */ 756 struct key *session_keyring; /* UID's default session keyring */ 757 #endif 758 759 /* Hash table maintenance information */ 760 struct hlist_node uidhash_node; 761 kuid_t uid; 762 763 #ifdef CONFIG_PERF_EVENTS 764 atomic_long_t locked_vm; 765 #endif 766 }; 767 768 extern int uids_sysfs_init(void); 769 770 extern struct user_struct *find_user(kuid_t); 771 772 extern struct user_struct root_user; 773 #define INIT_USER (&root_user) 774 775 776 struct backing_dev_info; 777 struct reclaim_state; 778 779 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 780 struct sched_info { 781 /* cumulative counters */ 782 unsigned long pcount; /* # of times run on this cpu */ 783 unsigned long long run_delay; /* time spent waiting on a runqueue */ 784 785 /* timestamps */ 786 unsigned long long last_arrival,/* when we last ran on a cpu */ 787 last_queued; /* when we were last queued to run */ 788 }; 789 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 790 791 #ifdef CONFIG_TASK_DELAY_ACCT 792 struct task_delay_info { 793 spinlock_t lock; 794 unsigned int flags; /* Private per-task flags */ 795 796 /* For each stat XXX, add following, aligned appropriately 797 * 798 * struct timespec XXX_start, XXX_end; 799 * u64 XXX_delay; 800 * u32 XXX_count; 801 * 802 * Atomicity of updates to XXX_delay, XXX_count protected by 803 * single lock above (split into XXX_lock if contention is an issue). 804 */ 805 806 /* 807 * XXX_count is incremented on every XXX operation, the delay 808 * associated with the operation is added to XXX_delay. 809 * XXX_delay contains the accumulated delay time in nanoseconds. 810 */ 811 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 812 u64 blkio_delay; /* wait for sync block io completion */ 813 u64 swapin_delay; /* wait for swapin block io completion */ 814 u32 blkio_count; /* total count of the number of sync block */ 815 /* io operations performed */ 816 u32 swapin_count; /* total count of the number of swapin block */ 817 /* io operations performed */ 818 819 struct timespec freepages_start, freepages_end; 820 u64 freepages_delay; /* wait for memory reclaim */ 821 u32 freepages_count; /* total count of memory reclaim */ 822 }; 823 #endif /* CONFIG_TASK_DELAY_ACCT */ 824 825 static inline int sched_info_on(void) 826 { 827 #ifdef CONFIG_SCHEDSTATS 828 return 1; 829 #elif defined(CONFIG_TASK_DELAY_ACCT) 830 extern int delayacct_on; 831 return delayacct_on; 832 #else 833 return 0; 834 #endif 835 } 836 837 enum cpu_idle_type { 838 CPU_IDLE, 839 CPU_NOT_IDLE, 840 CPU_NEWLY_IDLE, 841 CPU_MAX_IDLE_TYPES 842 }; 843 844 /* 845 * Increase resolution of cpu_power calculations 846 */ 847 #define SCHED_POWER_SHIFT 10 848 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 849 850 /* 851 * sched-domains (multiprocessor balancing) declarations: 852 */ 853 #ifdef CONFIG_SMP 854 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 855 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 856 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 857 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 858 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 859 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 860 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 861 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 862 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 863 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 864 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 865 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 866 #define SD_NUMA 0x4000 /* cross-node balancing */ 867 868 extern int __weak arch_sd_sibiling_asym_packing(void); 869 870 struct sched_domain_attr { 871 int relax_domain_level; 872 }; 873 874 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 875 .relax_domain_level = -1, \ 876 } 877 878 extern int sched_domain_level_max; 879 880 struct sched_group; 881 882 struct sched_domain { 883 /* These fields must be setup */ 884 struct sched_domain *parent; /* top domain must be null terminated */ 885 struct sched_domain *child; /* bottom domain must be null terminated */ 886 struct sched_group *groups; /* the balancing groups of the domain */ 887 unsigned long min_interval; /* Minimum balance interval ms */ 888 unsigned long max_interval; /* Maximum balance interval ms */ 889 unsigned int busy_factor; /* less balancing by factor if busy */ 890 unsigned int imbalance_pct; /* No balance until over watermark */ 891 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 892 unsigned int busy_idx; 893 unsigned int idle_idx; 894 unsigned int newidle_idx; 895 unsigned int wake_idx; 896 unsigned int forkexec_idx; 897 unsigned int smt_gain; 898 899 int nohz_idle; /* NOHZ IDLE status */ 900 int flags; /* See SD_* */ 901 int level; 902 903 /* Runtime fields. */ 904 unsigned long last_balance; /* init to jiffies. units in jiffies */ 905 unsigned int balance_interval; /* initialise to 1. units in ms. */ 906 unsigned int nr_balance_failed; /* initialise to 0 */ 907 908 /* idle_balance() stats */ 909 u64 max_newidle_lb_cost; 910 unsigned long next_decay_max_lb_cost; 911 912 #ifdef CONFIG_SCHEDSTATS 913 /* load_balance() stats */ 914 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 915 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 916 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 917 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 918 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 919 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 920 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 921 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 922 923 /* Active load balancing */ 924 unsigned int alb_count; 925 unsigned int alb_failed; 926 unsigned int alb_pushed; 927 928 /* SD_BALANCE_EXEC stats */ 929 unsigned int sbe_count; 930 unsigned int sbe_balanced; 931 unsigned int sbe_pushed; 932 933 /* SD_BALANCE_FORK stats */ 934 unsigned int sbf_count; 935 unsigned int sbf_balanced; 936 unsigned int sbf_pushed; 937 938 /* try_to_wake_up() stats */ 939 unsigned int ttwu_wake_remote; 940 unsigned int ttwu_move_affine; 941 unsigned int ttwu_move_balance; 942 #endif 943 #ifdef CONFIG_SCHED_DEBUG 944 char *name; 945 #endif 946 union { 947 void *private; /* used during construction */ 948 struct rcu_head rcu; /* used during destruction */ 949 }; 950 951 unsigned int span_weight; 952 /* 953 * Span of all CPUs in this domain. 954 * 955 * NOTE: this field is variable length. (Allocated dynamically 956 * by attaching extra space to the end of the structure, 957 * depending on how many CPUs the kernel has booted up with) 958 */ 959 unsigned long span[0]; 960 }; 961 962 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 963 { 964 return to_cpumask(sd->span); 965 } 966 967 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 968 struct sched_domain_attr *dattr_new); 969 970 /* Allocate an array of sched domains, for partition_sched_domains(). */ 971 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 972 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 973 974 bool cpus_share_cache(int this_cpu, int that_cpu); 975 976 #else /* CONFIG_SMP */ 977 978 struct sched_domain_attr; 979 980 static inline void 981 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 982 struct sched_domain_attr *dattr_new) 983 { 984 } 985 986 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 987 { 988 return true; 989 } 990 991 #endif /* !CONFIG_SMP */ 992 993 994 struct io_context; /* See blkdev.h */ 995 996 997 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 998 extern void prefetch_stack(struct task_struct *t); 999 #else 1000 static inline void prefetch_stack(struct task_struct *t) { } 1001 #endif 1002 1003 struct audit_context; /* See audit.c */ 1004 struct mempolicy; 1005 struct pipe_inode_info; 1006 struct uts_namespace; 1007 1008 struct load_weight { 1009 unsigned long weight; 1010 u32 inv_weight; 1011 }; 1012 1013 struct sched_avg { 1014 /* 1015 * These sums represent an infinite geometric series and so are bound 1016 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1017 * choices of y < 1-2^(-32)*1024. 1018 */ 1019 u32 runnable_avg_sum, runnable_avg_period; 1020 u64 last_runnable_update; 1021 s64 decay_count; 1022 unsigned long load_avg_contrib; 1023 }; 1024 1025 #ifdef CONFIG_SCHEDSTATS 1026 struct sched_statistics { 1027 u64 wait_start; 1028 u64 wait_max; 1029 u64 wait_count; 1030 u64 wait_sum; 1031 u64 iowait_count; 1032 u64 iowait_sum; 1033 1034 u64 sleep_start; 1035 u64 sleep_max; 1036 s64 sum_sleep_runtime; 1037 1038 u64 block_start; 1039 u64 block_max; 1040 u64 exec_max; 1041 u64 slice_max; 1042 1043 u64 nr_migrations_cold; 1044 u64 nr_failed_migrations_affine; 1045 u64 nr_failed_migrations_running; 1046 u64 nr_failed_migrations_hot; 1047 u64 nr_forced_migrations; 1048 1049 u64 nr_wakeups; 1050 u64 nr_wakeups_sync; 1051 u64 nr_wakeups_migrate; 1052 u64 nr_wakeups_local; 1053 u64 nr_wakeups_remote; 1054 u64 nr_wakeups_affine; 1055 u64 nr_wakeups_affine_attempts; 1056 u64 nr_wakeups_passive; 1057 u64 nr_wakeups_idle; 1058 }; 1059 #endif 1060 1061 struct sched_entity { 1062 struct load_weight load; /* for load-balancing */ 1063 struct rb_node run_node; 1064 struct list_head group_node; 1065 unsigned int on_rq; 1066 1067 u64 exec_start; 1068 u64 sum_exec_runtime; 1069 u64 vruntime; 1070 u64 prev_sum_exec_runtime; 1071 1072 u64 nr_migrations; 1073 1074 #ifdef CONFIG_SCHEDSTATS 1075 struct sched_statistics statistics; 1076 #endif 1077 1078 #ifdef CONFIG_FAIR_GROUP_SCHED 1079 struct sched_entity *parent; 1080 /* rq on which this entity is (to be) queued: */ 1081 struct cfs_rq *cfs_rq; 1082 /* rq "owned" by this entity/group: */ 1083 struct cfs_rq *my_q; 1084 #endif 1085 1086 #ifdef CONFIG_SMP 1087 /* Per-entity load-tracking */ 1088 struct sched_avg avg; 1089 #endif 1090 }; 1091 1092 struct sched_rt_entity { 1093 struct list_head run_list; 1094 unsigned long timeout; 1095 unsigned long watchdog_stamp; 1096 unsigned int time_slice; 1097 1098 struct sched_rt_entity *back; 1099 #ifdef CONFIG_RT_GROUP_SCHED 1100 struct sched_rt_entity *parent; 1101 /* rq on which this entity is (to be) queued: */ 1102 struct rt_rq *rt_rq; 1103 /* rq "owned" by this entity/group: */ 1104 struct rt_rq *my_q; 1105 #endif 1106 }; 1107 1108 struct sched_dl_entity { 1109 struct rb_node rb_node; 1110 1111 /* 1112 * Original scheduling parameters. Copied here from sched_attr 1113 * during sched_setscheduler2(), they will remain the same until 1114 * the next sched_setscheduler2(). 1115 */ 1116 u64 dl_runtime; /* maximum runtime for each instance */ 1117 u64 dl_deadline; /* relative deadline of each instance */ 1118 u64 dl_period; /* separation of two instances (period) */ 1119 u64 dl_bw; /* dl_runtime / dl_deadline */ 1120 1121 /* 1122 * Actual scheduling parameters. Initialized with the values above, 1123 * they are continously updated during task execution. Note that 1124 * the remaining runtime could be < 0 in case we are in overrun. 1125 */ 1126 s64 runtime; /* remaining runtime for this instance */ 1127 u64 deadline; /* absolute deadline for this instance */ 1128 unsigned int flags; /* specifying the scheduler behaviour */ 1129 1130 /* 1131 * Some bool flags: 1132 * 1133 * @dl_throttled tells if we exhausted the runtime. If so, the 1134 * task has to wait for a replenishment to be performed at the 1135 * next firing of dl_timer. 1136 * 1137 * @dl_new tells if a new instance arrived. If so we must 1138 * start executing it with full runtime and reset its absolute 1139 * deadline; 1140 * 1141 * @dl_boosted tells if we are boosted due to DI. If so we are 1142 * outside bandwidth enforcement mechanism (but only until we 1143 * exit the critical section). 1144 */ 1145 int dl_throttled, dl_new, dl_boosted; 1146 1147 /* 1148 * Bandwidth enforcement timer. Each -deadline task has its 1149 * own bandwidth to be enforced, thus we need one timer per task. 1150 */ 1151 struct hrtimer dl_timer; 1152 }; 1153 1154 struct rcu_node; 1155 1156 enum perf_event_task_context { 1157 perf_invalid_context = -1, 1158 perf_hw_context = 0, 1159 perf_sw_context, 1160 perf_nr_task_contexts, 1161 }; 1162 1163 struct task_struct { 1164 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1165 void *stack; 1166 atomic_t usage; 1167 unsigned int flags; /* per process flags, defined below */ 1168 unsigned int ptrace; 1169 1170 #ifdef CONFIG_SMP 1171 struct llist_node wake_entry; 1172 int on_cpu; 1173 struct task_struct *last_wakee; 1174 unsigned long wakee_flips; 1175 unsigned long wakee_flip_decay_ts; 1176 1177 int wake_cpu; 1178 #endif 1179 int on_rq; 1180 1181 int prio, static_prio, normal_prio; 1182 unsigned int rt_priority; 1183 const struct sched_class *sched_class; 1184 struct sched_entity se; 1185 struct sched_rt_entity rt; 1186 #ifdef CONFIG_CGROUP_SCHED 1187 struct task_group *sched_task_group; 1188 #endif 1189 struct sched_dl_entity dl; 1190 1191 #ifdef CONFIG_PREEMPT_NOTIFIERS 1192 /* list of struct preempt_notifier: */ 1193 struct hlist_head preempt_notifiers; 1194 #endif 1195 1196 #ifdef CONFIG_BLK_DEV_IO_TRACE 1197 unsigned int btrace_seq; 1198 #endif 1199 1200 unsigned int policy; 1201 int nr_cpus_allowed; 1202 cpumask_t cpus_allowed; 1203 1204 #ifdef CONFIG_PREEMPT_RCU 1205 int rcu_read_lock_nesting; 1206 char rcu_read_unlock_special; 1207 struct list_head rcu_node_entry; 1208 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1209 #ifdef CONFIG_TREE_PREEMPT_RCU 1210 struct rcu_node *rcu_blocked_node; 1211 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1212 #ifdef CONFIG_RCU_BOOST 1213 struct rt_mutex *rcu_boost_mutex; 1214 #endif /* #ifdef CONFIG_RCU_BOOST */ 1215 1216 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1217 struct sched_info sched_info; 1218 #endif 1219 1220 struct list_head tasks; 1221 #ifdef CONFIG_SMP 1222 struct plist_node pushable_tasks; 1223 struct rb_node pushable_dl_tasks; 1224 #endif 1225 1226 struct mm_struct *mm, *active_mm; 1227 #ifdef CONFIG_COMPAT_BRK 1228 unsigned brk_randomized:1; 1229 #endif 1230 #if defined(SPLIT_RSS_COUNTING) 1231 struct task_rss_stat rss_stat; 1232 #endif 1233 /* task state */ 1234 int exit_state; 1235 int exit_code, exit_signal; 1236 int pdeath_signal; /* The signal sent when the parent dies */ 1237 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1238 1239 /* Used for emulating ABI behavior of previous Linux versions */ 1240 unsigned int personality; 1241 1242 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1243 * execve */ 1244 unsigned in_iowait:1; 1245 1246 /* task may not gain privileges */ 1247 unsigned no_new_privs:1; 1248 1249 /* Revert to default priority/policy when forking */ 1250 unsigned sched_reset_on_fork:1; 1251 unsigned sched_contributes_to_load:1; 1252 1253 pid_t pid; 1254 pid_t tgid; 1255 1256 #ifdef CONFIG_CC_STACKPROTECTOR 1257 /* Canary value for the -fstack-protector gcc feature */ 1258 unsigned long stack_canary; 1259 #endif 1260 /* 1261 * pointers to (original) parent process, youngest child, younger sibling, 1262 * older sibling, respectively. (p->father can be replaced with 1263 * p->real_parent->pid) 1264 */ 1265 struct task_struct __rcu *real_parent; /* real parent process */ 1266 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1267 /* 1268 * children/sibling forms the list of my natural children 1269 */ 1270 struct list_head children; /* list of my children */ 1271 struct list_head sibling; /* linkage in my parent's children list */ 1272 struct task_struct *group_leader; /* threadgroup leader */ 1273 1274 /* 1275 * ptraced is the list of tasks this task is using ptrace on. 1276 * This includes both natural children and PTRACE_ATTACH targets. 1277 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1278 */ 1279 struct list_head ptraced; 1280 struct list_head ptrace_entry; 1281 1282 /* PID/PID hash table linkage. */ 1283 struct pid_link pids[PIDTYPE_MAX]; 1284 struct list_head thread_group; 1285 struct list_head thread_node; 1286 1287 struct completion *vfork_done; /* for vfork() */ 1288 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1289 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1290 1291 cputime_t utime, stime, utimescaled, stimescaled; 1292 cputime_t gtime; 1293 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1294 struct cputime prev_cputime; 1295 #endif 1296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1297 seqlock_t vtime_seqlock; 1298 unsigned long long vtime_snap; 1299 enum { 1300 VTIME_SLEEPING = 0, 1301 VTIME_USER, 1302 VTIME_SYS, 1303 } vtime_snap_whence; 1304 #endif 1305 unsigned long nvcsw, nivcsw; /* context switch counts */ 1306 struct timespec start_time; /* monotonic time */ 1307 struct timespec real_start_time; /* boot based time */ 1308 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1309 unsigned long min_flt, maj_flt; 1310 1311 struct task_cputime cputime_expires; 1312 struct list_head cpu_timers[3]; 1313 1314 /* process credentials */ 1315 const struct cred __rcu *real_cred; /* objective and real subjective task 1316 * credentials (COW) */ 1317 const struct cred __rcu *cred; /* effective (overridable) subjective task 1318 * credentials (COW) */ 1319 char comm[TASK_COMM_LEN]; /* executable name excluding path 1320 - access with [gs]et_task_comm (which lock 1321 it with task_lock()) 1322 - initialized normally by setup_new_exec */ 1323 /* file system info */ 1324 int link_count, total_link_count; 1325 #ifdef CONFIG_SYSVIPC 1326 /* ipc stuff */ 1327 struct sysv_sem sysvsem; 1328 #endif 1329 #ifdef CONFIG_DETECT_HUNG_TASK 1330 /* hung task detection */ 1331 unsigned long last_switch_count; 1332 #endif 1333 /* CPU-specific state of this task */ 1334 struct thread_struct thread; 1335 /* filesystem information */ 1336 struct fs_struct *fs; 1337 /* open file information */ 1338 struct files_struct *files; 1339 /* namespaces */ 1340 struct nsproxy *nsproxy; 1341 /* signal handlers */ 1342 struct signal_struct *signal; 1343 struct sighand_struct *sighand; 1344 1345 sigset_t blocked, real_blocked; 1346 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1347 struct sigpending pending; 1348 1349 unsigned long sas_ss_sp; 1350 size_t sas_ss_size; 1351 int (*notifier)(void *priv); 1352 void *notifier_data; 1353 sigset_t *notifier_mask; 1354 struct callback_head *task_works; 1355 1356 struct audit_context *audit_context; 1357 #ifdef CONFIG_AUDITSYSCALL 1358 kuid_t loginuid; 1359 unsigned int sessionid; 1360 #endif 1361 struct seccomp seccomp; 1362 1363 /* Thread group tracking */ 1364 u32 parent_exec_id; 1365 u32 self_exec_id; 1366 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1367 * mempolicy */ 1368 spinlock_t alloc_lock; 1369 1370 /* Protection of the PI data structures: */ 1371 raw_spinlock_t pi_lock; 1372 1373 #ifdef CONFIG_RT_MUTEXES 1374 /* PI waiters blocked on a rt_mutex held by this task */ 1375 struct rb_root pi_waiters; 1376 struct rb_node *pi_waiters_leftmost; 1377 /* Deadlock detection and priority inheritance handling */ 1378 struct rt_mutex_waiter *pi_blocked_on; 1379 /* Top pi_waiters task */ 1380 struct task_struct *pi_top_task; 1381 #endif 1382 1383 #ifdef CONFIG_DEBUG_MUTEXES 1384 /* mutex deadlock detection */ 1385 struct mutex_waiter *blocked_on; 1386 #endif 1387 #ifdef CONFIG_TRACE_IRQFLAGS 1388 unsigned int irq_events; 1389 unsigned long hardirq_enable_ip; 1390 unsigned long hardirq_disable_ip; 1391 unsigned int hardirq_enable_event; 1392 unsigned int hardirq_disable_event; 1393 int hardirqs_enabled; 1394 int hardirq_context; 1395 unsigned long softirq_disable_ip; 1396 unsigned long softirq_enable_ip; 1397 unsigned int softirq_disable_event; 1398 unsigned int softirq_enable_event; 1399 int softirqs_enabled; 1400 int softirq_context; 1401 #endif 1402 #ifdef CONFIG_LOCKDEP 1403 # define MAX_LOCK_DEPTH 48UL 1404 u64 curr_chain_key; 1405 int lockdep_depth; 1406 unsigned int lockdep_recursion; 1407 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1408 gfp_t lockdep_reclaim_gfp; 1409 #endif 1410 1411 /* journalling filesystem info */ 1412 void *journal_info; 1413 1414 /* stacked block device info */ 1415 struct bio_list *bio_list; 1416 1417 #ifdef CONFIG_BLOCK 1418 /* stack plugging */ 1419 struct blk_plug *plug; 1420 #endif 1421 1422 /* VM state */ 1423 struct reclaim_state *reclaim_state; 1424 1425 struct backing_dev_info *backing_dev_info; 1426 1427 struct io_context *io_context; 1428 1429 unsigned long ptrace_message; 1430 siginfo_t *last_siginfo; /* For ptrace use. */ 1431 struct task_io_accounting ioac; 1432 #if defined(CONFIG_TASK_XACCT) 1433 u64 acct_rss_mem1; /* accumulated rss usage */ 1434 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1435 cputime_t acct_timexpd; /* stime + utime since last update */ 1436 #endif 1437 #ifdef CONFIG_CPUSETS 1438 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1439 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1440 int cpuset_mem_spread_rotor; 1441 int cpuset_slab_spread_rotor; 1442 #endif 1443 #ifdef CONFIG_CGROUPS 1444 /* Control Group info protected by css_set_lock */ 1445 struct css_set __rcu *cgroups; 1446 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1447 struct list_head cg_list; 1448 #endif 1449 #ifdef CONFIG_FUTEX 1450 struct robust_list_head __user *robust_list; 1451 #ifdef CONFIG_COMPAT 1452 struct compat_robust_list_head __user *compat_robust_list; 1453 #endif 1454 struct list_head pi_state_list; 1455 struct futex_pi_state *pi_state_cache; 1456 #endif 1457 #ifdef CONFIG_PERF_EVENTS 1458 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1459 struct mutex perf_event_mutex; 1460 struct list_head perf_event_list; 1461 #endif 1462 #ifdef CONFIG_NUMA 1463 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1464 short il_next; 1465 short pref_node_fork; 1466 #endif 1467 #ifdef CONFIG_NUMA_BALANCING 1468 int numa_scan_seq; 1469 unsigned int numa_scan_period; 1470 unsigned int numa_scan_period_max; 1471 int numa_preferred_nid; 1472 int numa_migrate_deferred; 1473 unsigned long numa_migrate_retry; 1474 u64 node_stamp; /* migration stamp */ 1475 struct callback_head numa_work; 1476 1477 struct list_head numa_entry; 1478 struct numa_group *numa_group; 1479 1480 /* 1481 * Exponential decaying average of faults on a per-node basis. 1482 * Scheduling placement decisions are made based on the these counts. 1483 * The values remain static for the duration of a PTE scan 1484 */ 1485 unsigned long *numa_faults; 1486 unsigned long total_numa_faults; 1487 1488 /* 1489 * numa_faults_buffer records faults per node during the current 1490 * scan window. When the scan completes, the counts in numa_faults 1491 * decay and these values are copied. 1492 */ 1493 unsigned long *numa_faults_buffer; 1494 1495 /* 1496 * numa_faults_locality tracks if faults recorded during the last 1497 * scan window were remote/local. The task scan period is adapted 1498 * based on the locality of the faults with different weights 1499 * depending on whether they were shared or private faults 1500 */ 1501 unsigned long numa_faults_locality[2]; 1502 1503 unsigned long numa_pages_migrated; 1504 #endif /* CONFIG_NUMA_BALANCING */ 1505 1506 struct rcu_head rcu; 1507 1508 /* 1509 * cache last used pipe for splice 1510 */ 1511 struct pipe_inode_info *splice_pipe; 1512 1513 struct page_frag task_frag; 1514 1515 #ifdef CONFIG_TASK_DELAY_ACCT 1516 struct task_delay_info *delays; 1517 #endif 1518 #ifdef CONFIG_FAULT_INJECTION 1519 int make_it_fail; 1520 #endif 1521 /* 1522 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1523 * balance_dirty_pages() for some dirty throttling pause 1524 */ 1525 int nr_dirtied; 1526 int nr_dirtied_pause; 1527 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1528 1529 #ifdef CONFIG_LATENCYTOP 1530 int latency_record_count; 1531 struct latency_record latency_record[LT_SAVECOUNT]; 1532 #endif 1533 /* 1534 * time slack values; these are used to round up poll() and 1535 * select() etc timeout values. These are in nanoseconds. 1536 */ 1537 unsigned long timer_slack_ns; 1538 unsigned long default_timer_slack_ns; 1539 1540 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1541 /* Index of current stored address in ret_stack */ 1542 int curr_ret_stack; 1543 /* Stack of return addresses for return function tracing */ 1544 struct ftrace_ret_stack *ret_stack; 1545 /* time stamp for last schedule */ 1546 unsigned long long ftrace_timestamp; 1547 /* 1548 * Number of functions that haven't been traced 1549 * because of depth overrun. 1550 */ 1551 atomic_t trace_overrun; 1552 /* Pause for the tracing */ 1553 atomic_t tracing_graph_pause; 1554 #endif 1555 #ifdef CONFIG_TRACING 1556 /* state flags for use by tracers */ 1557 unsigned long trace; 1558 /* bitmask and counter of trace recursion */ 1559 unsigned long trace_recursion; 1560 #endif /* CONFIG_TRACING */ 1561 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1562 struct memcg_batch_info { 1563 int do_batch; /* incremented when batch uncharge started */ 1564 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1565 unsigned long nr_pages; /* uncharged usage */ 1566 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1567 } memcg_batch; 1568 unsigned int memcg_kmem_skip_account; 1569 struct memcg_oom_info { 1570 struct mem_cgroup *memcg; 1571 gfp_t gfp_mask; 1572 int order; 1573 unsigned int may_oom:1; 1574 } memcg_oom; 1575 #endif 1576 #ifdef CONFIG_UPROBES 1577 struct uprobe_task *utask; 1578 #endif 1579 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1580 unsigned int sequential_io; 1581 unsigned int sequential_io_avg; 1582 #endif 1583 }; 1584 1585 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1586 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1587 1588 #define TNF_MIGRATED 0x01 1589 #define TNF_NO_GROUP 0x02 1590 #define TNF_SHARED 0x04 1591 #define TNF_FAULT_LOCAL 0x08 1592 1593 #ifdef CONFIG_NUMA_BALANCING 1594 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1595 extern pid_t task_numa_group_id(struct task_struct *p); 1596 extern void set_numabalancing_state(bool enabled); 1597 extern void task_numa_free(struct task_struct *p); 1598 1599 extern unsigned int sysctl_numa_balancing_migrate_deferred; 1600 #else 1601 static inline void task_numa_fault(int last_node, int node, int pages, 1602 int flags) 1603 { 1604 } 1605 static inline pid_t task_numa_group_id(struct task_struct *p) 1606 { 1607 return 0; 1608 } 1609 static inline void set_numabalancing_state(bool enabled) 1610 { 1611 } 1612 static inline void task_numa_free(struct task_struct *p) 1613 { 1614 } 1615 #endif 1616 1617 static inline struct pid *task_pid(struct task_struct *task) 1618 { 1619 return task->pids[PIDTYPE_PID].pid; 1620 } 1621 1622 static inline struct pid *task_tgid(struct task_struct *task) 1623 { 1624 return task->group_leader->pids[PIDTYPE_PID].pid; 1625 } 1626 1627 /* 1628 * Without tasklist or rcu lock it is not safe to dereference 1629 * the result of task_pgrp/task_session even if task == current, 1630 * we can race with another thread doing sys_setsid/sys_setpgid. 1631 */ 1632 static inline struct pid *task_pgrp(struct task_struct *task) 1633 { 1634 return task->group_leader->pids[PIDTYPE_PGID].pid; 1635 } 1636 1637 static inline struct pid *task_session(struct task_struct *task) 1638 { 1639 return task->group_leader->pids[PIDTYPE_SID].pid; 1640 } 1641 1642 struct pid_namespace; 1643 1644 /* 1645 * the helpers to get the task's different pids as they are seen 1646 * from various namespaces 1647 * 1648 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1649 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1650 * current. 1651 * task_xid_nr_ns() : id seen from the ns specified; 1652 * 1653 * set_task_vxid() : assigns a virtual id to a task; 1654 * 1655 * see also pid_nr() etc in include/linux/pid.h 1656 */ 1657 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1658 struct pid_namespace *ns); 1659 1660 static inline pid_t task_pid_nr(struct task_struct *tsk) 1661 { 1662 return tsk->pid; 1663 } 1664 1665 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1666 struct pid_namespace *ns) 1667 { 1668 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1669 } 1670 1671 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1672 { 1673 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1674 } 1675 1676 1677 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1678 { 1679 return tsk->tgid; 1680 } 1681 1682 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1683 1684 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1685 { 1686 return pid_vnr(task_tgid(tsk)); 1687 } 1688 1689 1690 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1691 struct pid_namespace *ns) 1692 { 1693 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1694 } 1695 1696 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1697 { 1698 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1699 } 1700 1701 1702 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1703 struct pid_namespace *ns) 1704 { 1705 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1706 } 1707 1708 static inline pid_t task_session_vnr(struct task_struct *tsk) 1709 { 1710 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1711 } 1712 1713 /* obsolete, do not use */ 1714 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1715 { 1716 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1717 } 1718 1719 /** 1720 * pid_alive - check that a task structure is not stale 1721 * @p: Task structure to be checked. 1722 * 1723 * Test if a process is not yet dead (at most zombie state) 1724 * If pid_alive fails, then pointers within the task structure 1725 * can be stale and must not be dereferenced. 1726 * 1727 * Return: 1 if the process is alive. 0 otherwise. 1728 */ 1729 static inline int pid_alive(struct task_struct *p) 1730 { 1731 return p->pids[PIDTYPE_PID].pid != NULL; 1732 } 1733 1734 /** 1735 * is_global_init - check if a task structure is init 1736 * @tsk: Task structure to be checked. 1737 * 1738 * Check if a task structure is the first user space task the kernel created. 1739 * 1740 * Return: 1 if the task structure is init. 0 otherwise. 1741 */ 1742 static inline int is_global_init(struct task_struct *tsk) 1743 { 1744 return tsk->pid == 1; 1745 } 1746 1747 extern struct pid *cad_pid; 1748 1749 extern void free_task(struct task_struct *tsk); 1750 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1751 1752 extern void __put_task_struct(struct task_struct *t); 1753 1754 static inline void put_task_struct(struct task_struct *t) 1755 { 1756 if (atomic_dec_and_test(&t->usage)) 1757 __put_task_struct(t); 1758 } 1759 1760 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1761 extern void task_cputime(struct task_struct *t, 1762 cputime_t *utime, cputime_t *stime); 1763 extern void task_cputime_scaled(struct task_struct *t, 1764 cputime_t *utimescaled, cputime_t *stimescaled); 1765 extern cputime_t task_gtime(struct task_struct *t); 1766 #else 1767 static inline void task_cputime(struct task_struct *t, 1768 cputime_t *utime, cputime_t *stime) 1769 { 1770 if (utime) 1771 *utime = t->utime; 1772 if (stime) 1773 *stime = t->stime; 1774 } 1775 1776 static inline void task_cputime_scaled(struct task_struct *t, 1777 cputime_t *utimescaled, 1778 cputime_t *stimescaled) 1779 { 1780 if (utimescaled) 1781 *utimescaled = t->utimescaled; 1782 if (stimescaled) 1783 *stimescaled = t->stimescaled; 1784 } 1785 1786 static inline cputime_t task_gtime(struct task_struct *t) 1787 { 1788 return t->gtime; 1789 } 1790 #endif 1791 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1792 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1793 1794 /* 1795 * Per process flags 1796 */ 1797 #define PF_EXITING 0x00000004 /* getting shut down */ 1798 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1799 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1800 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1801 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1802 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1803 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1804 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1805 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1806 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1807 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1808 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1809 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1810 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1811 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1812 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1813 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1814 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1815 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1816 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1817 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1818 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1819 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1820 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1821 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1822 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1823 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1824 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1825 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1826 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1827 1828 /* 1829 * Only the _current_ task can read/write to tsk->flags, but other 1830 * tasks can access tsk->flags in readonly mode for example 1831 * with tsk_used_math (like during threaded core dumping). 1832 * There is however an exception to this rule during ptrace 1833 * or during fork: the ptracer task is allowed to write to the 1834 * child->flags of its traced child (same goes for fork, the parent 1835 * can write to the child->flags), because we're guaranteed the 1836 * child is not running and in turn not changing child->flags 1837 * at the same time the parent does it. 1838 */ 1839 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1840 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1841 #define clear_used_math() clear_stopped_child_used_math(current) 1842 #define set_used_math() set_stopped_child_used_math(current) 1843 #define conditional_stopped_child_used_math(condition, child) \ 1844 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1845 #define conditional_used_math(condition) \ 1846 conditional_stopped_child_used_math(condition, current) 1847 #define copy_to_stopped_child_used_math(child) \ 1848 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1849 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1850 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1851 #define used_math() tsk_used_math(current) 1852 1853 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1854 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1855 { 1856 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1857 flags &= ~__GFP_IO; 1858 return flags; 1859 } 1860 1861 static inline unsigned int memalloc_noio_save(void) 1862 { 1863 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1864 current->flags |= PF_MEMALLOC_NOIO; 1865 return flags; 1866 } 1867 1868 static inline void memalloc_noio_restore(unsigned int flags) 1869 { 1870 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1871 } 1872 1873 /* 1874 * task->jobctl flags 1875 */ 1876 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1877 1878 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1879 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1880 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1881 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1882 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1883 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1884 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1885 1886 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1887 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1888 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1889 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1890 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1891 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1892 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1893 1894 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1895 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1896 1897 extern bool task_set_jobctl_pending(struct task_struct *task, 1898 unsigned int mask); 1899 extern void task_clear_jobctl_trapping(struct task_struct *task); 1900 extern void task_clear_jobctl_pending(struct task_struct *task, 1901 unsigned int mask); 1902 1903 #ifdef CONFIG_PREEMPT_RCU 1904 1905 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1906 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1907 1908 static inline void rcu_copy_process(struct task_struct *p) 1909 { 1910 p->rcu_read_lock_nesting = 0; 1911 p->rcu_read_unlock_special = 0; 1912 #ifdef CONFIG_TREE_PREEMPT_RCU 1913 p->rcu_blocked_node = NULL; 1914 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1915 #ifdef CONFIG_RCU_BOOST 1916 p->rcu_boost_mutex = NULL; 1917 #endif /* #ifdef CONFIG_RCU_BOOST */ 1918 INIT_LIST_HEAD(&p->rcu_node_entry); 1919 } 1920 1921 #else 1922 1923 static inline void rcu_copy_process(struct task_struct *p) 1924 { 1925 } 1926 1927 #endif 1928 1929 static inline void tsk_restore_flags(struct task_struct *task, 1930 unsigned long orig_flags, unsigned long flags) 1931 { 1932 task->flags &= ~flags; 1933 task->flags |= orig_flags & flags; 1934 } 1935 1936 #ifdef CONFIG_SMP 1937 extern void do_set_cpus_allowed(struct task_struct *p, 1938 const struct cpumask *new_mask); 1939 1940 extern int set_cpus_allowed_ptr(struct task_struct *p, 1941 const struct cpumask *new_mask); 1942 #else 1943 static inline void do_set_cpus_allowed(struct task_struct *p, 1944 const struct cpumask *new_mask) 1945 { 1946 } 1947 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1948 const struct cpumask *new_mask) 1949 { 1950 if (!cpumask_test_cpu(0, new_mask)) 1951 return -EINVAL; 1952 return 0; 1953 } 1954 #endif 1955 1956 #ifdef CONFIG_NO_HZ_COMMON 1957 void calc_load_enter_idle(void); 1958 void calc_load_exit_idle(void); 1959 #else 1960 static inline void calc_load_enter_idle(void) { } 1961 static inline void calc_load_exit_idle(void) { } 1962 #endif /* CONFIG_NO_HZ_COMMON */ 1963 1964 #ifndef CONFIG_CPUMASK_OFFSTACK 1965 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1966 { 1967 return set_cpus_allowed_ptr(p, &new_mask); 1968 } 1969 #endif 1970 1971 /* 1972 * Do not use outside of architecture code which knows its limitations. 1973 * 1974 * sched_clock() has no promise of monotonicity or bounded drift between 1975 * CPUs, use (which you should not) requires disabling IRQs. 1976 * 1977 * Please use one of the three interfaces below. 1978 */ 1979 extern unsigned long long notrace sched_clock(void); 1980 /* 1981 * See the comment in kernel/sched/clock.c 1982 */ 1983 extern u64 cpu_clock(int cpu); 1984 extern u64 local_clock(void); 1985 extern u64 sched_clock_cpu(int cpu); 1986 1987 1988 extern void sched_clock_init(void); 1989 1990 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1991 static inline void sched_clock_tick(void) 1992 { 1993 } 1994 1995 static inline void sched_clock_idle_sleep_event(void) 1996 { 1997 } 1998 1999 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2000 { 2001 } 2002 #else 2003 /* 2004 * Architectures can set this to 1 if they have specified 2005 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2006 * but then during bootup it turns out that sched_clock() 2007 * is reliable after all: 2008 */ 2009 extern int sched_clock_stable(void); 2010 extern void set_sched_clock_stable(void); 2011 extern void clear_sched_clock_stable(void); 2012 2013 extern void sched_clock_tick(void); 2014 extern void sched_clock_idle_sleep_event(void); 2015 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2016 #endif 2017 2018 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2019 /* 2020 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2021 * The reason for this explicit opt-in is not to have perf penalty with 2022 * slow sched_clocks. 2023 */ 2024 extern void enable_sched_clock_irqtime(void); 2025 extern void disable_sched_clock_irqtime(void); 2026 #else 2027 static inline void enable_sched_clock_irqtime(void) {} 2028 static inline void disable_sched_clock_irqtime(void) {} 2029 #endif 2030 2031 extern unsigned long long 2032 task_sched_runtime(struct task_struct *task); 2033 2034 /* sched_exec is called by processes performing an exec */ 2035 #ifdef CONFIG_SMP 2036 extern void sched_exec(void); 2037 #else 2038 #define sched_exec() {} 2039 #endif 2040 2041 extern void sched_clock_idle_sleep_event(void); 2042 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2043 2044 #ifdef CONFIG_HOTPLUG_CPU 2045 extern void idle_task_exit(void); 2046 #else 2047 static inline void idle_task_exit(void) {} 2048 #endif 2049 2050 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2051 extern void wake_up_nohz_cpu(int cpu); 2052 #else 2053 static inline void wake_up_nohz_cpu(int cpu) { } 2054 #endif 2055 2056 #ifdef CONFIG_NO_HZ_FULL 2057 extern bool sched_can_stop_tick(void); 2058 extern u64 scheduler_tick_max_deferment(void); 2059 #else 2060 static inline bool sched_can_stop_tick(void) { return false; } 2061 #endif 2062 2063 #ifdef CONFIG_SCHED_AUTOGROUP 2064 extern void sched_autogroup_create_attach(struct task_struct *p); 2065 extern void sched_autogroup_detach(struct task_struct *p); 2066 extern void sched_autogroup_fork(struct signal_struct *sig); 2067 extern void sched_autogroup_exit(struct signal_struct *sig); 2068 #ifdef CONFIG_PROC_FS 2069 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2070 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2071 #endif 2072 #else 2073 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2074 static inline void sched_autogroup_detach(struct task_struct *p) { } 2075 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2076 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2077 #endif 2078 2079 extern bool yield_to(struct task_struct *p, bool preempt); 2080 extern void set_user_nice(struct task_struct *p, long nice); 2081 extern int task_prio(const struct task_struct *p); 2082 extern int task_nice(const struct task_struct *p); 2083 extern int can_nice(const struct task_struct *p, const int nice); 2084 extern int task_curr(const struct task_struct *p); 2085 extern int idle_cpu(int cpu); 2086 extern int sched_setscheduler(struct task_struct *, int, 2087 const struct sched_param *); 2088 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2089 const struct sched_param *); 2090 extern int sched_setattr(struct task_struct *, 2091 const struct sched_attr *); 2092 extern struct task_struct *idle_task(int cpu); 2093 /** 2094 * is_idle_task - is the specified task an idle task? 2095 * @p: the task in question. 2096 * 2097 * Return: 1 if @p is an idle task. 0 otherwise. 2098 */ 2099 static inline bool is_idle_task(const struct task_struct *p) 2100 { 2101 return p->pid == 0; 2102 } 2103 extern struct task_struct *curr_task(int cpu); 2104 extern void set_curr_task(int cpu, struct task_struct *p); 2105 2106 void yield(void); 2107 2108 /* 2109 * The default (Linux) execution domain. 2110 */ 2111 extern struct exec_domain default_exec_domain; 2112 2113 union thread_union { 2114 struct thread_info thread_info; 2115 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2116 }; 2117 2118 #ifndef __HAVE_ARCH_KSTACK_END 2119 static inline int kstack_end(void *addr) 2120 { 2121 /* Reliable end of stack detection: 2122 * Some APM bios versions misalign the stack 2123 */ 2124 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2125 } 2126 #endif 2127 2128 extern union thread_union init_thread_union; 2129 extern struct task_struct init_task; 2130 2131 extern struct mm_struct init_mm; 2132 2133 extern struct pid_namespace init_pid_ns; 2134 2135 /* 2136 * find a task by one of its numerical ids 2137 * 2138 * find_task_by_pid_ns(): 2139 * finds a task by its pid in the specified namespace 2140 * find_task_by_vpid(): 2141 * finds a task by its virtual pid 2142 * 2143 * see also find_vpid() etc in include/linux/pid.h 2144 */ 2145 2146 extern struct task_struct *find_task_by_vpid(pid_t nr); 2147 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2148 struct pid_namespace *ns); 2149 2150 /* per-UID process charging. */ 2151 extern struct user_struct * alloc_uid(kuid_t); 2152 static inline struct user_struct *get_uid(struct user_struct *u) 2153 { 2154 atomic_inc(&u->__count); 2155 return u; 2156 } 2157 extern void free_uid(struct user_struct *); 2158 2159 #include <asm/current.h> 2160 2161 extern void xtime_update(unsigned long ticks); 2162 2163 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2164 extern int wake_up_process(struct task_struct *tsk); 2165 extern void wake_up_new_task(struct task_struct *tsk); 2166 #ifdef CONFIG_SMP 2167 extern void kick_process(struct task_struct *tsk); 2168 #else 2169 static inline void kick_process(struct task_struct *tsk) { } 2170 #endif 2171 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2172 extern void sched_dead(struct task_struct *p); 2173 2174 extern void proc_caches_init(void); 2175 extern void flush_signals(struct task_struct *); 2176 extern void __flush_signals(struct task_struct *); 2177 extern void ignore_signals(struct task_struct *); 2178 extern void flush_signal_handlers(struct task_struct *, int force_default); 2179 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2180 2181 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2182 { 2183 unsigned long flags; 2184 int ret; 2185 2186 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2187 ret = dequeue_signal(tsk, mask, info); 2188 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2189 2190 return ret; 2191 } 2192 2193 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2194 sigset_t *mask); 2195 extern void unblock_all_signals(void); 2196 extern void release_task(struct task_struct * p); 2197 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2198 extern int force_sigsegv(int, struct task_struct *); 2199 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2200 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2201 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2202 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2203 const struct cred *, u32); 2204 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2205 extern int kill_pid(struct pid *pid, int sig, int priv); 2206 extern int kill_proc_info(int, struct siginfo *, pid_t); 2207 extern __must_check bool do_notify_parent(struct task_struct *, int); 2208 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2209 extern void force_sig(int, struct task_struct *); 2210 extern int send_sig(int, struct task_struct *, int); 2211 extern int zap_other_threads(struct task_struct *p); 2212 extern struct sigqueue *sigqueue_alloc(void); 2213 extern void sigqueue_free(struct sigqueue *); 2214 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2215 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2216 2217 static inline void restore_saved_sigmask(void) 2218 { 2219 if (test_and_clear_restore_sigmask()) 2220 __set_current_blocked(¤t->saved_sigmask); 2221 } 2222 2223 static inline sigset_t *sigmask_to_save(void) 2224 { 2225 sigset_t *res = ¤t->blocked; 2226 if (unlikely(test_restore_sigmask())) 2227 res = ¤t->saved_sigmask; 2228 return res; 2229 } 2230 2231 static inline int kill_cad_pid(int sig, int priv) 2232 { 2233 return kill_pid(cad_pid, sig, priv); 2234 } 2235 2236 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2237 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2238 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2239 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2240 2241 /* 2242 * True if we are on the alternate signal stack. 2243 */ 2244 static inline int on_sig_stack(unsigned long sp) 2245 { 2246 #ifdef CONFIG_STACK_GROWSUP 2247 return sp >= current->sas_ss_sp && 2248 sp - current->sas_ss_sp < current->sas_ss_size; 2249 #else 2250 return sp > current->sas_ss_sp && 2251 sp - current->sas_ss_sp <= current->sas_ss_size; 2252 #endif 2253 } 2254 2255 static inline int sas_ss_flags(unsigned long sp) 2256 { 2257 return (current->sas_ss_size == 0 ? SS_DISABLE 2258 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2259 } 2260 2261 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2262 { 2263 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2264 #ifdef CONFIG_STACK_GROWSUP 2265 return current->sas_ss_sp; 2266 #else 2267 return current->sas_ss_sp + current->sas_ss_size; 2268 #endif 2269 return sp; 2270 } 2271 2272 /* 2273 * Routines for handling mm_structs 2274 */ 2275 extern struct mm_struct * mm_alloc(void); 2276 2277 /* mmdrop drops the mm and the page tables */ 2278 extern void __mmdrop(struct mm_struct *); 2279 static inline void mmdrop(struct mm_struct * mm) 2280 { 2281 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2282 __mmdrop(mm); 2283 } 2284 2285 /* mmput gets rid of the mappings and all user-space */ 2286 extern void mmput(struct mm_struct *); 2287 /* Grab a reference to a task's mm, if it is not already going away */ 2288 extern struct mm_struct *get_task_mm(struct task_struct *task); 2289 /* 2290 * Grab a reference to a task's mm, if it is not already going away 2291 * and ptrace_may_access with the mode parameter passed to it 2292 * succeeds. 2293 */ 2294 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2295 /* Remove the current tasks stale references to the old mm_struct */ 2296 extern void mm_release(struct task_struct *, struct mm_struct *); 2297 2298 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2299 struct task_struct *); 2300 extern void flush_thread(void); 2301 extern void exit_thread(void); 2302 2303 extern void exit_files(struct task_struct *); 2304 extern void __cleanup_sighand(struct sighand_struct *); 2305 2306 extern void exit_itimers(struct signal_struct *); 2307 extern void flush_itimer_signals(void); 2308 2309 extern void do_group_exit(int); 2310 2311 extern int allow_signal(int); 2312 extern int disallow_signal(int); 2313 2314 extern int do_execve(const char *, 2315 const char __user * const __user *, 2316 const char __user * const __user *); 2317 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2318 struct task_struct *fork_idle(int); 2319 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2320 2321 extern void set_task_comm(struct task_struct *tsk, char *from); 2322 extern char *get_task_comm(char *to, struct task_struct *tsk); 2323 2324 #ifdef CONFIG_SMP 2325 void scheduler_ipi(void); 2326 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2327 #else 2328 static inline void scheduler_ipi(void) { } 2329 static inline unsigned long wait_task_inactive(struct task_struct *p, 2330 long match_state) 2331 { 2332 return 1; 2333 } 2334 #endif 2335 2336 #define next_task(p) \ 2337 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2338 2339 #define for_each_process(p) \ 2340 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2341 2342 extern bool current_is_single_threaded(void); 2343 2344 /* 2345 * Careful: do_each_thread/while_each_thread is a double loop so 2346 * 'break' will not work as expected - use goto instead. 2347 */ 2348 #define do_each_thread(g, t) \ 2349 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2350 2351 #define while_each_thread(g, t) \ 2352 while ((t = next_thread(t)) != g) 2353 2354 #define __for_each_thread(signal, t) \ 2355 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2356 2357 #define for_each_thread(p, t) \ 2358 __for_each_thread((p)->signal, t) 2359 2360 /* Careful: this is a double loop, 'break' won't work as expected. */ 2361 #define for_each_process_thread(p, t) \ 2362 for_each_process(p) for_each_thread(p, t) 2363 2364 static inline int get_nr_threads(struct task_struct *tsk) 2365 { 2366 return tsk->signal->nr_threads; 2367 } 2368 2369 static inline bool thread_group_leader(struct task_struct *p) 2370 { 2371 return p->exit_signal >= 0; 2372 } 2373 2374 /* Do to the insanities of de_thread it is possible for a process 2375 * to have the pid of the thread group leader without actually being 2376 * the thread group leader. For iteration through the pids in proc 2377 * all we care about is that we have a task with the appropriate 2378 * pid, we don't actually care if we have the right task. 2379 */ 2380 static inline bool has_group_leader_pid(struct task_struct *p) 2381 { 2382 return task_pid(p) == p->signal->leader_pid; 2383 } 2384 2385 static inline 2386 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2387 { 2388 return p1->signal == p2->signal; 2389 } 2390 2391 static inline struct task_struct *next_thread(const struct task_struct *p) 2392 { 2393 return list_entry_rcu(p->thread_group.next, 2394 struct task_struct, thread_group); 2395 } 2396 2397 static inline int thread_group_empty(struct task_struct *p) 2398 { 2399 return list_empty(&p->thread_group); 2400 } 2401 2402 #define delay_group_leader(p) \ 2403 (thread_group_leader(p) && !thread_group_empty(p)) 2404 2405 /* 2406 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2407 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2408 * pins the final release of task.io_context. Also protects ->cpuset and 2409 * ->cgroup.subsys[]. And ->vfork_done. 2410 * 2411 * Nests both inside and outside of read_lock(&tasklist_lock). 2412 * It must not be nested with write_lock_irq(&tasklist_lock), 2413 * neither inside nor outside. 2414 */ 2415 static inline void task_lock(struct task_struct *p) 2416 { 2417 spin_lock(&p->alloc_lock); 2418 } 2419 2420 static inline void task_unlock(struct task_struct *p) 2421 { 2422 spin_unlock(&p->alloc_lock); 2423 } 2424 2425 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2426 unsigned long *flags); 2427 2428 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2429 unsigned long *flags) 2430 { 2431 struct sighand_struct *ret; 2432 2433 ret = __lock_task_sighand(tsk, flags); 2434 (void)__cond_lock(&tsk->sighand->siglock, ret); 2435 return ret; 2436 } 2437 2438 static inline void unlock_task_sighand(struct task_struct *tsk, 2439 unsigned long *flags) 2440 { 2441 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2442 } 2443 2444 #ifdef CONFIG_CGROUPS 2445 static inline void threadgroup_change_begin(struct task_struct *tsk) 2446 { 2447 down_read(&tsk->signal->group_rwsem); 2448 } 2449 static inline void threadgroup_change_end(struct task_struct *tsk) 2450 { 2451 up_read(&tsk->signal->group_rwsem); 2452 } 2453 2454 /** 2455 * threadgroup_lock - lock threadgroup 2456 * @tsk: member task of the threadgroup to lock 2457 * 2458 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2459 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2460 * change ->group_leader/pid. This is useful for cases where the threadgroup 2461 * needs to stay stable across blockable operations. 2462 * 2463 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2464 * synchronization. While held, no new task will be added to threadgroup 2465 * and no existing live task will have its PF_EXITING set. 2466 * 2467 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2468 * sub-thread becomes a new leader. 2469 */ 2470 static inline void threadgroup_lock(struct task_struct *tsk) 2471 { 2472 down_write(&tsk->signal->group_rwsem); 2473 } 2474 2475 /** 2476 * threadgroup_unlock - unlock threadgroup 2477 * @tsk: member task of the threadgroup to unlock 2478 * 2479 * Reverse threadgroup_lock(). 2480 */ 2481 static inline void threadgroup_unlock(struct task_struct *tsk) 2482 { 2483 up_write(&tsk->signal->group_rwsem); 2484 } 2485 #else 2486 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2487 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2488 static inline void threadgroup_lock(struct task_struct *tsk) {} 2489 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2490 #endif 2491 2492 #ifndef __HAVE_THREAD_FUNCTIONS 2493 2494 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2495 #define task_stack_page(task) ((task)->stack) 2496 2497 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2498 { 2499 *task_thread_info(p) = *task_thread_info(org); 2500 task_thread_info(p)->task = p; 2501 } 2502 2503 static inline unsigned long *end_of_stack(struct task_struct *p) 2504 { 2505 return (unsigned long *)(task_thread_info(p) + 1); 2506 } 2507 2508 #endif 2509 2510 static inline int object_is_on_stack(void *obj) 2511 { 2512 void *stack = task_stack_page(current); 2513 2514 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2515 } 2516 2517 extern void thread_info_cache_init(void); 2518 2519 #ifdef CONFIG_DEBUG_STACK_USAGE 2520 static inline unsigned long stack_not_used(struct task_struct *p) 2521 { 2522 unsigned long *n = end_of_stack(p); 2523 2524 do { /* Skip over canary */ 2525 n++; 2526 } while (!*n); 2527 2528 return (unsigned long)n - (unsigned long)end_of_stack(p); 2529 } 2530 #endif 2531 2532 /* set thread flags in other task's structures 2533 * - see asm/thread_info.h for TIF_xxxx flags available 2534 */ 2535 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2536 { 2537 set_ti_thread_flag(task_thread_info(tsk), flag); 2538 } 2539 2540 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2541 { 2542 clear_ti_thread_flag(task_thread_info(tsk), flag); 2543 } 2544 2545 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2546 { 2547 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2548 } 2549 2550 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2551 { 2552 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2553 } 2554 2555 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2556 { 2557 return test_ti_thread_flag(task_thread_info(tsk), flag); 2558 } 2559 2560 static inline void set_tsk_need_resched(struct task_struct *tsk) 2561 { 2562 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2563 } 2564 2565 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2566 { 2567 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2568 } 2569 2570 static inline int test_tsk_need_resched(struct task_struct *tsk) 2571 { 2572 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2573 } 2574 2575 static inline int restart_syscall(void) 2576 { 2577 set_tsk_thread_flag(current, TIF_SIGPENDING); 2578 return -ERESTARTNOINTR; 2579 } 2580 2581 static inline int signal_pending(struct task_struct *p) 2582 { 2583 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2584 } 2585 2586 static inline int __fatal_signal_pending(struct task_struct *p) 2587 { 2588 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2589 } 2590 2591 static inline int fatal_signal_pending(struct task_struct *p) 2592 { 2593 return signal_pending(p) && __fatal_signal_pending(p); 2594 } 2595 2596 static inline int signal_pending_state(long state, struct task_struct *p) 2597 { 2598 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2599 return 0; 2600 if (!signal_pending(p)) 2601 return 0; 2602 2603 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2604 } 2605 2606 /* 2607 * cond_resched() and cond_resched_lock(): latency reduction via 2608 * explicit rescheduling in places that are safe. The return 2609 * value indicates whether a reschedule was done in fact. 2610 * cond_resched_lock() will drop the spinlock before scheduling, 2611 * cond_resched_softirq() will enable bhs before scheduling. 2612 */ 2613 extern int _cond_resched(void); 2614 2615 #define cond_resched() ({ \ 2616 __might_sleep(__FILE__, __LINE__, 0); \ 2617 _cond_resched(); \ 2618 }) 2619 2620 extern int __cond_resched_lock(spinlock_t *lock); 2621 2622 #ifdef CONFIG_PREEMPT_COUNT 2623 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2624 #else 2625 #define PREEMPT_LOCK_OFFSET 0 2626 #endif 2627 2628 #define cond_resched_lock(lock) ({ \ 2629 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2630 __cond_resched_lock(lock); \ 2631 }) 2632 2633 extern int __cond_resched_softirq(void); 2634 2635 #define cond_resched_softirq() ({ \ 2636 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2637 __cond_resched_softirq(); \ 2638 }) 2639 2640 static inline void cond_resched_rcu(void) 2641 { 2642 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2643 rcu_read_unlock(); 2644 cond_resched(); 2645 rcu_read_lock(); 2646 #endif 2647 } 2648 2649 /* 2650 * Does a critical section need to be broken due to another 2651 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2652 * but a general need for low latency) 2653 */ 2654 static inline int spin_needbreak(spinlock_t *lock) 2655 { 2656 #ifdef CONFIG_PREEMPT 2657 return spin_is_contended(lock); 2658 #else 2659 return 0; 2660 #endif 2661 } 2662 2663 /* 2664 * Idle thread specific functions to determine the need_resched 2665 * polling state. We have two versions, one based on TS_POLLING in 2666 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2667 * thread_info.flags 2668 */ 2669 #ifdef TS_POLLING 2670 static inline int tsk_is_polling(struct task_struct *p) 2671 { 2672 return task_thread_info(p)->status & TS_POLLING; 2673 } 2674 static inline void __current_set_polling(void) 2675 { 2676 current_thread_info()->status |= TS_POLLING; 2677 } 2678 2679 static inline bool __must_check current_set_polling_and_test(void) 2680 { 2681 __current_set_polling(); 2682 2683 /* 2684 * Polling state must be visible before we test NEED_RESCHED, 2685 * paired by resched_task() 2686 */ 2687 smp_mb(); 2688 2689 return unlikely(tif_need_resched()); 2690 } 2691 2692 static inline void __current_clr_polling(void) 2693 { 2694 current_thread_info()->status &= ~TS_POLLING; 2695 } 2696 2697 static inline bool __must_check current_clr_polling_and_test(void) 2698 { 2699 __current_clr_polling(); 2700 2701 /* 2702 * Polling state must be visible before we test NEED_RESCHED, 2703 * paired by resched_task() 2704 */ 2705 smp_mb(); 2706 2707 return unlikely(tif_need_resched()); 2708 } 2709 #elif defined(TIF_POLLING_NRFLAG) 2710 static inline int tsk_is_polling(struct task_struct *p) 2711 { 2712 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2713 } 2714 2715 static inline void __current_set_polling(void) 2716 { 2717 set_thread_flag(TIF_POLLING_NRFLAG); 2718 } 2719 2720 static inline bool __must_check current_set_polling_and_test(void) 2721 { 2722 __current_set_polling(); 2723 2724 /* 2725 * Polling state must be visible before we test NEED_RESCHED, 2726 * paired by resched_task() 2727 * 2728 * XXX: assumes set/clear bit are identical barrier wise. 2729 */ 2730 smp_mb__after_clear_bit(); 2731 2732 return unlikely(tif_need_resched()); 2733 } 2734 2735 static inline void __current_clr_polling(void) 2736 { 2737 clear_thread_flag(TIF_POLLING_NRFLAG); 2738 } 2739 2740 static inline bool __must_check current_clr_polling_and_test(void) 2741 { 2742 __current_clr_polling(); 2743 2744 /* 2745 * Polling state must be visible before we test NEED_RESCHED, 2746 * paired by resched_task() 2747 */ 2748 smp_mb__after_clear_bit(); 2749 2750 return unlikely(tif_need_resched()); 2751 } 2752 2753 #else 2754 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2755 static inline void __current_set_polling(void) { } 2756 static inline void __current_clr_polling(void) { } 2757 2758 static inline bool __must_check current_set_polling_and_test(void) 2759 { 2760 return unlikely(tif_need_resched()); 2761 } 2762 static inline bool __must_check current_clr_polling_and_test(void) 2763 { 2764 return unlikely(tif_need_resched()); 2765 } 2766 #endif 2767 2768 static inline void current_clr_polling(void) 2769 { 2770 __current_clr_polling(); 2771 2772 /* 2773 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2774 * Once the bit is cleared, we'll get IPIs with every new 2775 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2776 * fold. 2777 */ 2778 smp_mb(); /* paired with resched_task() */ 2779 2780 preempt_fold_need_resched(); 2781 } 2782 2783 static __always_inline bool need_resched(void) 2784 { 2785 return unlikely(tif_need_resched()); 2786 } 2787 2788 /* 2789 * Thread group CPU time accounting. 2790 */ 2791 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2792 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2793 2794 static inline void thread_group_cputime_init(struct signal_struct *sig) 2795 { 2796 raw_spin_lock_init(&sig->cputimer.lock); 2797 } 2798 2799 /* 2800 * Reevaluate whether the task has signals pending delivery. 2801 * Wake the task if so. 2802 * This is required every time the blocked sigset_t changes. 2803 * callers must hold sighand->siglock. 2804 */ 2805 extern void recalc_sigpending_and_wake(struct task_struct *t); 2806 extern void recalc_sigpending(void); 2807 2808 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2809 2810 static inline void signal_wake_up(struct task_struct *t, bool resume) 2811 { 2812 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2813 } 2814 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2815 { 2816 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2817 } 2818 2819 /* 2820 * Wrappers for p->thread_info->cpu access. No-op on UP. 2821 */ 2822 #ifdef CONFIG_SMP 2823 2824 static inline unsigned int task_cpu(const struct task_struct *p) 2825 { 2826 return task_thread_info(p)->cpu; 2827 } 2828 2829 static inline int task_node(const struct task_struct *p) 2830 { 2831 return cpu_to_node(task_cpu(p)); 2832 } 2833 2834 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2835 2836 #else 2837 2838 static inline unsigned int task_cpu(const struct task_struct *p) 2839 { 2840 return 0; 2841 } 2842 2843 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2844 { 2845 } 2846 2847 #endif /* CONFIG_SMP */ 2848 2849 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2850 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2851 2852 #ifdef CONFIG_CGROUP_SCHED 2853 extern struct task_group root_task_group; 2854 #endif /* CONFIG_CGROUP_SCHED */ 2855 2856 extern int task_can_switch_user(struct user_struct *up, 2857 struct task_struct *tsk); 2858 2859 #ifdef CONFIG_TASK_XACCT 2860 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2861 { 2862 tsk->ioac.rchar += amt; 2863 } 2864 2865 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2866 { 2867 tsk->ioac.wchar += amt; 2868 } 2869 2870 static inline void inc_syscr(struct task_struct *tsk) 2871 { 2872 tsk->ioac.syscr++; 2873 } 2874 2875 static inline void inc_syscw(struct task_struct *tsk) 2876 { 2877 tsk->ioac.syscw++; 2878 } 2879 #else 2880 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2881 { 2882 } 2883 2884 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2885 { 2886 } 2887 2888 static inline void inc_syscr(struct task_struct *tsk) 2889 { 2890 } 2891 2892 static inline void inc_syscw(struct task_struct *tsk) 2893 { 2894 } 2895 #endif 2896 2897 #ifndef TASK_SIZE_OF 2898 #define TASK_SIZE_OF(tsk) TASK_SIZE 2899 #endif 2900 2901 #ifdef CONFIG_MM_OWNER 2902 extern void mm_update_next_owner(struct mm_struct *mm); 2903 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2904 #else 2905 static inline void mm_update_next_owner(struct mm_struct *mm) 2906 { 2907 } 2908 2909 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2910 { 2911 } 2912 #endif /* CONFIG_MM_OWNER */ 2913 2914 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2915 unsigned int limit) 2916 { 2917 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2918 } 2919 2920 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2921 unsigned int limit) 2922 { 2923 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2924 } 2925 2926 static inline unsigned long rlimit(unsigned int limit) 2927 { 2928 return task_rlimit(current, limit); 2929 } 2930 2931 static inline unsigned long rlimit_max(unsigned int limit) 2932 { 2933 return task_rlimit_max(current, limit); 2934 } 2935 2936 #endif 2937