1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/seccomp.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rculist.h> 46 #include <linux/rtmutex.h> 47 48 #include <linux/time.h> 49 #include <linux/param.h> 50 #include <linux/resource.h> 51 #include <linux/timer.h> 52 #include <linux/hrtimer.h> 53 #include <linux/kcov.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void cpu_load_update_nohz_start(void); 181 extern void cpu_load_update_nohz_stop(void); 182 #else 183 static inline void cpu_load_update_nohz_start(void) { } 184 static inline void cpu_load_update_nohz_stop(void) { } 185 #endif 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_NEW 2048 223 #define TASK_STATE_MAX 4096 224 225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" 226 227 extern char ___assert_task_state[1 - 2*!!( 228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 229 230 /* Convenience macros for the sake of set_task_state */ 231 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 232 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 233 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 234 235 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 236 237 /* Convenience macros for the sake of wake_up */ 238 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 239 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 240 241 /* get_task_state() */ 242 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 245 246 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 247 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 248 #define task_is_stopped_or_traced(task) \ 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 250 #define task_contributes_to_load(task) \ 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 252 (task->flags & PF_FROZEN) == 0 && \ 253 (task->state & TASK_NOLOAD) == 0) 254 255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 256 257 #define __set_task_state(tsk, state_value) \ 258 do { \ 259 (tsk)->task_state_change = _THIS_IP_; \ 260 (tsk)->state = (state_value); \ 261 } while (0) 262 #define set_task_state(tsk, state_value) \ 263 do { \ 264 (tsk)->task_state_change = _THIS_IP_; \ 265 smp_store_mb((tsk)->state, (state_value)); \ 266 } while (0) 267 268 /* 269 * set_current_state() includes a barrier so that the write of current->state 270 * is correctly serialised wrt the caller's subsequent test of whether to 271 * actually sleep: 272 * 273 * set_current_state(TASK_UNINTERRUPTIBLE); 274 * if (do_i_need_to_sleep()) 275 * schedule(); 276 * 277 * If the caller does not need such serialisation then use __set_current_state() 278 */ 279 #define __set_current_state(state_value) \ 280 do { \ 281 current->task_state_change = _THIS_IP_; \ 282 current->state = (state_value); \ 283 } while (0) 284 #define set_current_state(state_value) \ 285 do { \ 286 current->task_state_change = _THIS_IP_; \ 287 smp_store_mb(current->state, (state_value)); \ 288 } while (0) 289 290 #else 291 292 #define __set_task_state(tsk, state_value) \ 293 do { (tsk)->state = (state_value); } while (0) 294 #define set_task_state(tsk, state_value) \ 295 smp_store_mb((tsk)->state, (state_value)) 296 297 /* 298 * set_current_state() includes a barrier so that the write of current->state 299 * is correctly serialised wrt the caller's subsequent test of whether to 300 * actually sleep: 301 * 302 * set_current_state(TASK_UNINTERRUPTIBLE); 303 * if (do_i_need_to_sleep()) 304 * schedule(); 305 * 306 * If the caller does not need such serialisation then use __set_current_state() 307 */ 308 #define __set_current_state(state_value) \ 309 do { current->state = (state_value); } while (0) 310 #define set_current_state(state_value) \ 311 smp_store_mb(current->state, (state_value)) 312 313 #endif 314 315 /* Task command name length */ 316 #define TASK_COMM_LEN 16 317 318 #include <linux/spinlock.h> 319 320 /* 321 * This serializes "schedule()" and also protects 322 * the run-queue from deletions/modifications (but 323 * _adding_ to the beginning of the run-queue has 324 * a separate lock). 325 */ 326 extern rwlock_t tasklist_lock; 327 extern spinlock_t mmlist_lock; 328 329 struct task_struct; 330 331 #ifdef CONFIG_PROVE_RCU 332 extern int lockdep_tasklist_lock_is_held(void); 333 #endif /* #ifdef CONFIG_PROVE_RCU */ 334 335 extern void sched_init(void); 336 extern void sched_init_smp(void); 337 extern asmlinkage void schedule_tail(struct task_struct *prev); 338 extern void init_idle(struct task_struct *idle, int cpu); 339 extern void init_idle_bootup_task(struct task_struct *idle); 340 341 extern cpumask_var_t cpu_isolated_map; 342 343 extern int runqueue_is_locked(int cpu); 344 345 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 346 extern void nohz_balance_enter_idle(int cpu); 347 extern void set_cpu_sd_state_idle(void); 348 extern int get_nohz_timer_target(void); 349 #else 350 static inline void nohz_balance_enter_idle(int cpu) { } 351 static inline void set_cpu_sd_state_idle(void) { } 352 #endif 353 354 /* 355 * Only dump TASK_* tasks. (0 for all tasks) 356 */ 357 extern void show_state_filter(unsigned long state_filter); 358 359 static inline void show_state(void) 360 { 361 show_state_filter(0); 362 } 363 364 extern void show_regs(struct pt_regs *); 365 366 /* 367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 368 * task), SP is the stack pointer of the first frame that should be shown in the back 369 * trace (or NULL if the entire call-chain of the task should be shown). 370 */ 371 extern void show_stack(struct task_struct *task, unsigned long *sp); 372 373 extern void cpu_init (void); 374 extern void trap_init(void); 375 extern void update_process_times(int user); 376 extern void scheduler_tick(void); 377 extern int sched_cpu_starting(unsigned int cpu); 378 extern int sched_cpu_activate(unsigned int cpu); 379 extern int sched_cpu_deactivate(unsigned int cpu); 380 381 #ifdef CONFIG_HOTPLUG_CPU 382 extern int sched_cpu_dying(unsigned int cpu); 383 #else 384 # define sched_cpu_dying NULL 385 #endif 386 387 extern void sched_show_task(struct task_struct *p); 388 389 #ifdef CONFIG_LOCKUP_DETECTOR 390 extern void touch_softlockup_watchdog_sched(void); 391 extern void touch_softlockup_watchdog(void); 392 extern void touch_softlockup_watchdog_sync(void); 393 extern void touch_all_softlockup_watchdogs(void); 394 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 395 void __user *buffer, 396 size_t *lenp, loff_t *ppos); 397 extern unsigned int softlockup_panic; 398 extern unsigned int hardlockup_panic; 399 void lockup_detector_init(void); 400 #else 401 static inline void touch_softlockup_watchdog_sched(void) 402 { 403 } 404 static inline void touch_softlockup_watchdog(void) 405 { 406 } 407 static inline void touch_softlockup_watchdog_sync(void) 408 { 409 } 410 static inline void touch_all_softlockup_watchdogs(void) 411 { 412 } 413 static inline void lockup_detector_init(void) 414 { 415 } 416 #endif 417 418 #ifdef CONFIG_DETECT_HUNG_TASK 419 void reset_hung_task_detector(void); 420 #else 421 static inline void reset_hung_task_detector(void) 422 { 423 } 424 #endif 425 426 /* Attach to any functions which should be ignored in wchan output. */ 427 #define __sched __attribute__((__section__(".sched.text"))) 428 429 /* Linker adds these: start and end of __sched functions */ 430 extern char __sched_text_start[], __sched_text_end[]; 431 432 /* Is this address in the __sched functions? */ 433 extern int in_sched_functions(unsigned long addr); 434 435 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 436 extern signed long schedule_timeout(signed long timeout); 437 extern signed long schedule_timeout_interruptible(signed long timeout); 438 extern signed long schedule_timeout_killable(signed long timeout); 439 extern signed long schedule_timeout_uninterruptible(signed long timeout); 440 extern signed long schedule_timeout_idle(signed long timeout); 441 asmlinkage void schedule(void); 442 extern void schedule_preempt_disabled(void); 443 444 extern long io_schedule_timeout(long timeout); 445 446 static inline void io_schedule(void) 447 { 448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 449 } 450 451 void __noreturn do_task_dead(void); 452 453 struct nsproxy; 454 struct user_namespace; 455 456 #ifdef CONFIG_MMU 457 extern void arch_pick_mmap_layout(struct mm_struct *mm); 458 extern unsigned long 459 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 460 unsigned long, unsigned long); 461 extern unsigned long 462 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 463 unsigned long len, unsigned long pgoff, 464 unsigned long flags); 465 #else 466 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 467 #endif 468 469 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 470 #define SUID_DUMP_USER 1 /* Dump as user of process */ 471 #define SUID_DUMP_ROOT 2 /* Dump as root */ 472 473 /* mm flags */ 474 475 /* for SUID_DUMP_* above */ 476 #define MMF_DUMPABLE_BITS 2 477 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 478 479 extern void set_dumpable(struct mm_struct *mm, int value); 480 /* 481 * This returns the actual value of the suid_dumpable flag. For things 482 * that are using this for checking for privilege transitions, it must 483 * test against SUID_DUMP_USER rather than treating it as a boolean 484 * value. 485 */ 486 static inline int __get_dumpable(unsigned long mm_flags) 487 { 488 return mm_flags & MMF_DUMPABLE_MASK; 489 } 490 491 static inline int get_dumpable(struct mm_struct *mm) 492 { 493 return __get_dumpable(mm->flags); 494 } 495 496 /* coredump filter bits */ 497 #define MMF_DUMP_ANON_PRIVATE 2 498 #define MMF_DUMP_ANON_SHARED 3 499 #define MMF_DUMP_MAPPED_PRIVATE 4 500 #define MMF_DUMP_MAPPED_SHARED 5 501 #define MMF_DUMP_ELF_HEADERS 6 502 #define MMF_DUMP_HUGETLB_PRIVATE 7 503 #define MMF_DUMP_HUGETLB_SHARED 8 504 #define MMF_DUMP_DAX_PRIVATE 9 505 #define MMF_DUMP_DAX_SHARED 10 506 507 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 508 #define MMF_DUMP_FILTER_BITS 9 509 #define MMF_DUMP_FILTER_MASK \ 510 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 511 #define MMF_DUMP_FILTER_DEFAULT \ 512 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 513 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 514 515 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 516 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 517 #else 518 # define MMF_DUMP_MASK_DEFAULT_ELF 0 519 #endif 520 /* leave room for more dump flags */ 521 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 522 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 523 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 524 525 #define MMF_HAS_UPROBES 19 /* has uprobes */ 526 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 527 #define MMF_OOM_REAPED 21 /* mm has been already reaped */ 528 #define MMF_OOM_NOT_REAPABLE 22 /* mm couldn't be reaped */ 529 530 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 531 532 struct sighand_struct { 533 atomic_t count; 534 struct k_sigaction action[_NSIG]; 535 spinlock_t siglock; 536 wait_queue_head_t signalfd_wqh; 537 }; 538 539 struct pacct_struct { 540 int ac_flag; 541 long ac_exitcode; 542 unsigned long ac_mem; 543 cputime_t ac_utime, ac_stime; 544 unsigned long ac_minflt, ac_majflt; 545 }; 546 547 struct cpu_itimer { 548 cputime_t expires; 549 cputime_t incr; 550 u32 error; 551 u32 incr_error; 552 }; 553 554 /** 555 * struct prev_cputime - snaphsot of system and user cputime 556 * @utime: time spent in user mode 557 * @stime: time spent in system mode 558 * @lock: protects the above two fields 559 * 560 * Stores previous user/system time values such that we can guarantee 561 * monotonicity. 562 */ 563 struct prev_cputime { 564 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 565 cputime_t utime; 566 cputime_t stime; 567 raw_spinlock_t lock; 568 #endif 569 }; 570 571 static inline void prev_cputime_init(struct prev_cputime *prev) 572 { 573 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 574 prev->utime = prev->stime = 0; 575 raw_spin_lock_init(&prev->lock); 576 #endif 577 } 578 579 /** 580 * struct task_cputime - collected CPU time counts 581 * @utime: time spent in user mode, in &cputime_t units 582 * @stime: time spent in kernel mode, in &cputime_t units 583 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 584 * 585 * This structure groups together three kinds of CPU time that are tracked for 586 * threads and thread groups. Most things considering CPU time want to group 587 * these counts together and treat all three of them in parallel. 588 */ 589 struct task_cputime { 590 cputime_t utime; 591 cputime_t stime; 592 unsigned long long sum_exec_runtime; 593 }; 594 595 /* Alternate field names when used to cache expirations. */ 596 #define virt_exp utime 597 #define prof_exp stime 598 #define sched_exp sum_exec_runtime 599 600 #define INIT_CPUTIME \ 601 (struct task_cputime) { \ 602 .utime = 0, \ 603 .stime = 0, \ 604 .sum_exec_runtime = 0, \ 605 } 606 607 /* 608 * This is the atomic variant of task_cputime, which can be used for 609 * storing and updating task_cputime statistics without locking. 610 */ 611 struct task_cputime_atomic { 612 atomic64_t utime; 613 atomic64_t stime; 614 atomic64_t sum_exec_runtime; 615 }; 616 617 #define INIT_CPUTIME_ATOMIC \ 618 (struct task_cputime_atomic) { \ 619 .utime = ATOMIC64_INIT(0), \ 620 .stime = ATOMIC64_INIT(0), \ 621 .sum_exec_runtime = ATOMIC64_INIT(0), \ 622 } 623 624 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 625 626 /* 627 * Disable preemption until the scheduler is running -- use an unconditional 628 * value so that it also works on !PREEMPT_COUNT kernels. 629 * 630 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 631 */ 632 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 633 634 /* 635 * Initial preempt_count value; reflects the preempt_count schedule invariant 636 * which states that during context switches: 637 * 638 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 639 * 640 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 641 * Note: See finish_task_switch(). 642 */ 643 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 644 645 /** 646 * struct thread_group_cputimer - thread group interval timer counts 647 * @cputime_atomic: atomic thread group interval timers. 648 * @running: true when there are timers running and 649 * @cputime_atomic receives updates. 650 * @checking_timer: true when a thread in the group is in the 651 * process of checking for thread group timers. 652 * 653 * This structure contains the version of task_cputime, above, that is 654 * used for thread group CPU timer calculations. 655 */ 656 struct thread_group_cputimer { 657 struct task_cputime_atomic cputime_atomic; 658 bool running; 659 bool checking_timer; 660 }; 661 662 #include <linux/rwsem.h> 663 struct autogroup; 664 665 /* 666 * NOTE! "signal_struct" does not have its own 667 * locking, because a shared signal_struct always 668 * implies a shared sighand_struct, so locking 669 * sighand_struct is always a proper superset of 670 * the locking of signal_struct. 671 */ 672 struct signal_struct { 673 atomic_t sigcnt; 674 atomic_t live; 675 int nr_threads; 676 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */ 677 struct list_head thread_head; 678 679 wait_queue_head_t wait_chldexit; /* for wait4() */ 680 681 /* current thread group signal load-balancing target: */ 682 struct task_struct *curr_target; 683 684 /* shared signal handling: */ 685 struct sigpending shared_pending; 686 687 /* thread group exit support */ 688 int group_exit_code; 689 /* overloaded: 690 * - notify group_exit_task when ->count is equal to notify_count 691 * - everyone except group_exit_task is stopped during signal delivery 692 * of fatal signals, group_exit_task processes the signal. 693 */ 694 int notify_count; 695 struct task_struct *group_exit_task; 696 697 /* thread group stop support, overloads group_exit_code too */ 698 int group_stop_count; 699 unsigned int flags; /* see SIGNAL_* flags below */ 700 701 /* 702 * PR_SET_CHILD_SUBREAPER marks a process, like a service 703 * manager, to re-parent orphan (double-forking) child processes 704 * to this process instead of 'init'. The service manager is 705 * able to receive SIGCHLD signals and is able to investigate 706 * the process until it calls wait(). All children of this 707 * process will inherit a flag if they should look for a 708 * child_subreaper process at exit. 709 */ 710 unsigned int is_child_subreaper:1; 711 unsigned int has_child_subreaper:1; 712 713 /* POSIX.1b Interval Timers */ 714 int posix_timer_id; 715 struct list_head posix_timers; 716 717 /* ITIMER_REAL timer for the process */ 718 struct hrtimer real_timer; 719 struct pid *leader_pid; 720 ktime_t it_real_incr; 721 722 /* 723 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 724 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 725 * values are defined to 0 and 1 respectively 726 */ 727 struct cpu_itimer it[2]; 728 729 /* 730 * Thread group totals for process CPU timers. 731 * See thread_group_cputimer(), et al, for details. 732 */ 733 struct thread_group_cputimer cputimer; 734 735 /* Earliest-expiration cache. */ 736 struct task_cputime cputime_expires; 737 738 #ifdef CONFIG_NO_HZ_FULL 739 atomic_t tick_dep_mask; 740 #endif 741 742 struct list_head cpu_timers[3]; 743 744 struct pid *tty_old_pgrp; 745 746 /* boolean value for session group leader */ 747 int leader; 748 749 struct tty_struct *tty; /* NULL if no tty */ 750 751 #ifdef CONFIG_SCHED_AUTOGROUP 752 struct autogroup *autogroup; 753 #endif 754 /* 755 * Cumulative resource counters for dead threads in the group, 756 * and for reaped dead child processes forked by this group. 757 * Live threads maintain their own counters and add to these 758 * in __exit_signal, except for the group leader. 759 */ 760 seqlock_t stats_lock; 761 cputime_t utime, stime, cutime, cstime; 762 cputime_t gtime; 763 cputime_t cgtime; 764 struct prev_cputime prev_cputime; 765 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 766 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 767 unsigned long inblock, oublock, cinblock, coublock; 768 unsigned long maxrss, cmaxrss; 769 struct task_io_accounting ioac; 770 771 /* 772 * Cumulative ns of schedule CPU time fo dead threads in the 773 * group, not including a zombie group leader, (This only differs 774 * from jiffies_to_ns(utime + stime) if sched_clock uses something 775 * other than jiffies.) 776 */ 777 unsigned long long sum_sched_runtime; 778 779 /* 780 * We don't bother to synchronize most readers of this at all, 781 * because there is no reader checking a limit that actually needs 782 * to get both rlim_cur and rlim_max atomically, and either one 783 * alone is a single word that can safely be read normally. 784 * getrlimit/setrlimit use task_lock(current->group_leader) to 785 * protect this instead of the siglock, because they really 786 * have no need to disable irqs. 787 */ 788 struct rlimit rlim[RLIM_NLIMITS]; 789 790 #ifdef CONFIG_BSD_PROCESS_ACCT 791 struct pacct_struct pacct; /* per-process accounting information */ 792 #endif 793 #ifdef CONFIG_TASKSTATS 794 struct taskstats *stats; 795 #endif 796 #ifdef CONFIG_AUDIT 797 unsigned audit_tty; 798 struct tty_audit_buf *tty_audit_buf; 799 #endif 800 801 /* 802 * Thread is the potential origin of an oom condition; kill first on 803 * oom 804 */ 805 bool oom_flag_origin; 806 short oom_score_adj; /* OOM kill score adjustment */ 807 short oom_score_adj_min; /* OOM kill score adjustment min value. 808 * Only settable by CAP_SYS_RESOURCE. */ 809 810 struct mutex cred_guard_mutex; /* guard against foreign influences on 811 * credential calculations 812 * (notably. ptrace) */ 813 }; 814 815 /* 816 * Bits in flags field of signal_struct. 817 */ 818 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 819 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 820 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 821 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 822 /* 823 * Pending notifications to parent. 824 */ 825 #define SIGNAL_CLD_STOPPED 0x00000010 826 #define SIGNAL_CLD_CONTINUED 0x00000020 827 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 828 829 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 830 831 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 832 static inline int signal_group_exit(const struct signal_struct *sig) 833 { 834 return (sig->flags & SIGNAL_GROUP_EXIT) || 835 (sig->group_exit_task != NULL); 836 } 837 838 /* 839 * Some day this will be a full-fledged user tracking system.. 840 */ 841 struct user_struct { 842 atomic_t __count; /* reference count */ 843 atomic_t processes; /* How many processes does this user have? */ 844 atomic_t sigpending; /* How many pending signals does this user have? */ 845 #ifdef CONFIG_INOTIFY_USER 846 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 847 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 848 #endif 849 #ifdef CONFIG_FANOTIFY 850 atomic_t fanotify_listeners; 851 #endif 852 #ifdef CONFIG_EPOLL 853 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 854 #endif 855 #ifdef CONFIG_POSIX_MQUEUE 856 /* protected by mq_lock */ 857 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 858 #endif 859 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 860 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 861 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 862 863 #ifdef CONFIG_KEYS 864 struct key *uid_keyring; /* UID specific keyring */ 865 struct key *session_keyring; /* UID's default session keyring */ 866 #endif 867 868 /* Hash table maintenance information */ 869 struct hlist_node uidhash_node; 870 kuid_t uid; 871 872 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 873 atomic_long_t locked_vm; 874 #endif 875 }; 876 877 extern int uids_sysfs_init(void); 878 879 extern struct user_struct *find_user(kuid_t); 880 881 extern struct user_struct root_user; 882 #define INIT_USER (&root_user) 883 884 885 struct backing_dev_info; 886 struct reclaim_state; 887 888 #ifdef CONFIG_SCHED_INFO 889 struct sched_info { 890 /* cumulative counters */ 891 unsigned long pcount; /* # of times run on this cpu */ 892 unsigned long long run_delay; /* time spent waiting on a runqueue */ 893 894 /* timestamps */ 895 unsigned long long last_arrival,/* when we last ran on a cpu */ 896 last_queued; /* when we were last queued to run */ 897 }; 898 #endif /* CONFIG_SCHED_INFO */ 899 900 #ifdef CONFIG_TASK_DELAY_ACCT 901 struct task_delay_info { 902 spinlock_t lock; 903 unsigned int flags; /* Private per-task flags */ 904 905 /* For each stat XXX, add following, aligned appropriately 906 * 907 * struct timespec XXX_start, XXX_end; 908 * u64 XXX_delay; 909 * u32 XXX_count; 910 * 911 * Atomicity of updates to XXX_delay, XXX_count protected by 912 * single lock above (split into XXX_lock if contention is an issue). 913 */ 914 915 /* 916 * XXX_count is incremented on every XXX operation, the delay 917 * associated with the operation is added to XXX_delay. 918 * XXX_delay contains the accumulated delay time in nanoseconds. 919 */ 920 u64 blkio_start; /* Shared by blkio, swapin */ 921 u64 blkio_delay; /* wait for sync block io completion */ 922 u64 swapin_delay; /* wait for swapin block io completion */ 923 u32 blkio_count; /* total count of the number of sync block */ 924 /* io operations performed */ 925 u32 swapin_count; /* total count of the number of swapin block */ 926 /* io operations performed */ 927 928 u64 freepages_start; 929 u64 freepages_delay; /* wait for memory reclaim */ 930 u32 freepages_count; /* total count of memory reclaim */ 931 }; 932 #endif /* CONFIG_TASK_DELAY_ACCT */ 933 934 static inline int sched_info_on(void) 935 { 936 #ifdef CONFIG_SCHEDSTATS 937 return 1; 938 #elif defined(CONFIG_TASK_DELAY_ACCT) 939 extern int delayacct_on; 940 return delayacct_on; 941 #else 942 return 0; 943 #endif 944 } 945 946 #ifdef CONFIG_SCHEDSTATS 947 void force_schedstat_enabled(void); 948 #endif 949 950 enum cpu_idle_type { 951 CPU_IDLE, 952 CPU_NOT_IDLE, 953 CPU_NEWLY_IDLE, 954 CPU_MAX_IDLE_TYPES 955 }; 956 957 /* 958 * Integer metrics need fixed point arithmetic, e.g., sched/fair 959 * has a few: load, load_avg, util_avg, freq, and capacity. 960 * 961 * We define a basic fixed point arithmetic range, and then formalize 962 * all these metrics based on that basic range. 963 */ 964 # define SCHED_FIXEDPOINT_SHIFT 10 965 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 966 967 /* 968 * Increase resolution of cpu_capacity calculations 969 */ 970 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 971 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 972 973 /* 974 * Wake-queues are lists of tasks with a pending wakeup, whose 975 * callers have already marked the task as woken internally, 976 * and can thus carry on. A common use case is being able to 977 * do the wakeups once the corresponding user lock as been 978 * released. 979 * 980 * We hold reference to each task in the list across the wakeup, 981 * thus guaranteeing that the memory is still valid by the time 982 * the actual wakeups are performed in wake_up_q(). 983 * 984 * One per task suffices, because there's never a need for a task to be 985 * in two wake queues simultaneously; it is forbidden to abandon a task 986 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 987 * already in a wake queue, the wakeup will happen soon and the second 988 * waker can just skip it. 989 * 990 * The WAKE_Q macro declares and initializes the list head. 991 * wake_up_q() does NOT reinitialize the list; it's expected to be 992 * called near the end of a function, where the fact that the queue is 993 * not used again will be easy to see by inspection. 994 * 995 * Note that this can cause spurious wakeups. schedule() callers 996 * must ensure the call is done inside a loop, confirming that the 997 * wakeup condition has in fact occurred. 998 */ 999 struct wake_q_node { 1000 struct wake_q_node *next; 1001 }; 1002 1003 struct wake_q_head { 1004 struct wake_q_node *first; 1005 struct wake_q_node **lastp; 1006 }; 1007 1008 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1009 1010 #define WAKE_Q(name) \ 1011 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1012 1013 extern void wake_q_add(struct wake_q_head *head, 1014 struct task_struct *task); 1015 extern void wake_up_q(struct wake_q_head *head); 1016 1017 /* 1018 * sched-domains (multiprocessor balancing) declarations: 1019 */ 1020 #ifdef CONFIG_SMP 1021 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1022 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1023 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1024 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1025 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1026 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1027 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */ 1028 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */ 1029 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1030 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1031 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1032 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1033 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1034 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1035 #define SD_NUMA 0x4000 /* cross-node balancing */ 1036 1037 #ifdef CONFIG_SCHED_SMT 1038 static inline int cpu_smt_flags(void) 1039 { 1040 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1041 } 1042 #endif 1043 1044 #ifdef CONFIG_SCHED_MC 1045 static inline int cpu_core_flags(void) 1046 { 1047 return SD_SHARE_PKG_RESOURCES; 1048 } 1049 #endif 1050 1051 #ifdef CONFIG_NUMA 1052 static inline int cpu_numa_flags(void) 1053 { 1054 return SD_NUMA; 1055 } 1056 #endif 1057 1058 struct sched_domain_attr { 1059 int relax_domain_level; 1060 }; 1061 1062 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1063 .relax_domain_level = -1, \ 1064 } 1065 1066 extern int sched_domain_level_max; 1067 1068 struct sched_group; 1069 1070 struct sched_domain_shared { 1071 atomic_t ref; 1072 atomic_t nr_busy_cpus; 1073 int has_idle_cores; 1074 }; 1075 1076 struct sched_domain { 1077 /* These fields must be setup */ 1078 struct sched_domain *parent; /* top domain must be null terminated */ 1079 struct sched_domain *child; /* bottom domain must be null terminated */ 1080 struct sched_group *groups; /* the balancing groups of the domain */ 1081 unsigned long min_interval; /* Minimum balance interval ms */ 1082 unsigned long max_interval; /* Maximum balance interval ms */ 1083 unsigned int busy_factor; /* less balancing by factor if busy */ 1084 unsigned int imbalance_pct; /* No balance until over watermark */ 1085 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1086 unsigned int busy_idx; 1087 unsigned int idle_idx; 1088 unsigned int newidle_idx; 1089 unsigned int wake_idx; 1090 unsigned int forkexec_idx; 1091 unsigned int smt_gain; 1092 1093 int nohz_idle; /* NOHZ IDLE status */ 1094 int flags; /* See SD_* */ 1095 int level; 1096 1097 /* Runtime fields. */ 1098 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1099 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1100 unsigned int nr_balance_failed; /* initialise to 0 */ 1101 1102 /* idle_balance() stats */ 1103 u64 max_newidle_lb_cost; 1104 unsigned long next_decay_max_lb_cost; 1105 1106 u64 avg_scan_cost; /* select_idle_sibling */ 1107 1108 #ifdef CONFIG_SCHEDSTATS 1109 /* load_balance() stats */ 1110 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1111 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1112 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1113 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1114 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1115 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1116 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1117 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1118 1119 /* Active load balancing */ 1120 unsigned int alb_count; 1121 unsigned int alb_failed; 1122 unsigned int alb_pushed; 1123 1124 /* SD_BALANCE_EXEC stats */ 1125 unsigned int sbe_count; 1126 unsigned int sbe_balanced; 1127 unsigned int sbe_pushed; 1128 1129 /* SD_BALANCE_FORK stats */ 1130 unsigned int sbf_count; 1131 unsigned int sbf_balanced; 1132 unsigned int sbf_pushed; 1133 1134 /* try_to_wake_up() stats */ 1135 unsigned int ttwu_wake_remote; 1136 unsigned int ttwu_move_affine; 1137 unsigned int ttwu_move_balance; 1138 #endif 1139 #ifdef CONFIG_SCHED_DEBUG 1140 char *name; 1141 #endif 1142 union { 1143 void *private; /* used during construction */ 1144 struct rcu_head rcu; /* used during destruction */ 1145 }; 1146 struct sched_domain_shared *shared; 1147 1148 unsigned int span_weight; 1149 /* 1150 * Span of all CPUs in this domain. 1151 * 1152 * NOTE: this field is variable length. (Allocated dynamically 1153 * by attaching extra space to the end of the structure, 1154 * depending on how many CPUs the kernel has booted up with) 1155 */ 1156 unsigned long span[0]; 1157 }; 1158 1159 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1160 { 1161 return to_cpumask(sd->span); 1162 } 1163 1164 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1165 struct sched_domain_attr *dattr_new); 1166 1167 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1168 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1169 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1170 1171 bool cpus_share_cache(int this_cpu, int that_cpu); 1172 1173 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1174 typedef int (*sched_domain_flags_f)(void); 1175 1176 #define SDTL_OVERLAP 0x01 1177 1178 struct sd_data { 1179 struct sched_domain **__percpu sd; 1180 struct sched_domain_shared **__percpu sds; 1181 struct sched_group **__percpu sg; 1182 struct sched_group_capacity **__percpu sgc; 1183 }; 1184 1185 struct sched_domain_topology_level { 1186 sched_domain_mask_f mask; 1187 sched_domain_flags_f sd_flags; 1188 int flags; 1189 int numa_level; 1190 struct sd_data data; 1191 #ifdef CONFIG_SCHED_DEBUG 1192 char *name; 1193 #endif 1194 }; 1195 1196 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1197 extern void wake_up_if_idle(int cpu); 1198 1199 #ifdef CONFIG_SCHED_DEBUG 1200 # define SD_INIT_NAME(type) .name = #type 1201 #else 1202 # define SD_INIT_NAME(type) 1203 #endif 1204 1205 #else /* CONFIG_SMP */ 1206 1207 struct sched_domain_attr; 1208 1209 static inline void 1210 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1211 struct sched_domain_attr *dattr_new) 1212 { 1213 } 1214 1215 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1216 { 1217 return true; 1218 } 1219 1220 #endif /* !CONFIG_SMP */ 1221 1222 1223 struct io_context; /* See blkdev.h */ 1224 1225 1226 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1227 extern void prefetch_stack(struct task_struct *t); 1228 #else 1229 static inline void prefetch_stack(struct task_struct *t) { } 1230 #endif 1231 1232 struct audit_context; /* See audit.c */ 1233 struct mempolicy; 1234 struct pipe_inode_info; 1235 struct uts_namespace; 1236 1237 struct load_weight { 1238 unsigned long weight; 1239 u32 inv_weight; 1240 }; 1241 1242 /* 1243 * The load_avg/util_avg accumulates an infinite geometric series 1244 * (see __update_load_avg() in kernel/sched/fair.c). 1245 * 1246 * [load_avg definition] 1247 * 1248 * load_avg = runnable% * scale_load_down(load) 1249 * 1250 * where runnable% is the time ratio that a sched_entity is runnable. 1251 * For cfs_rq, it is the aggregated load_avg of all runnable and 1252 * blocked sched_entities. 1253 * 1254 * load_avg may also take frequency scaling into account: 1255 * 1256 * load_avg = runnable% * scale_load_down(load) * freq% 1257 * 1258 * where freq% is the CPU frequency normalized to the highest frequency. 1259 * 1260 * [util_avg definition] 1261 * 1262 * util_avg = running% * SCHED_CAPACITY_SCALE 1263 * 1264 * where running% is the time ratio that a sched_entity is running on 1265 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1266 * and blocked sched_entities. 1267 * 1268 * util_avg may also factor frequency scaling and CPU capacity scaling: 1269 * 1270 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1271 * 1272 * where freq% is the same as above, and capacity% is the CPU capacity 1273 * normalized to the greatest capacity (due to uarch differences, etc). 1274 * 1275 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1276 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1277 * we therefore scale them to as large a range as necessary. This is for 1278 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1279 * 1280 * [Overflow issue] 1281 * 1282 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1283 * with the highest load (=88761), always runnable on a single cfs_rq, 1284 * and should not overflow as the number already hits PID_MAX_LIMIT. 1285 * 1286 * For all other cases (including 32-bit kernels), struct load_weight's 1287 * weight will overflow first before we do, because: 1288 * 1289 * Max(load_avg) <= Max(load.weight) 1290 * 1291 * Then it is the load_weight's responsibility to consider overflow 1292 * issues. 1293 */ 1294 struct sched_avg { 1295 u64 last_update_time, load_sum; 1296 u32 util_sum, period_contrib; 1297 unsigned long load_avg, util_avg; 1298 }; 1299 1300 #ifdef CONFIG_SCHEDSTATS 1301 struct sched_statistics { 1302 u64 wait_start; 1303 u64 wait_max; 1304 u64 wait_count; 1305 u64 wait_sum; 1306 u64 iowait_count; 1307 u64 iowait_sum; 1308 1309 u64 sleep_start; 1310 u64 sleep_max; 1311 s64 sum_sleep_runtime; 1312 1313 u64 block_start; 1314 u64 block_max; 1315 u64 exec_max; 1316 u64 slice_max; 1317 1318 u64 nr_migrations_cold; 1319 u64 nr_failed_migrations_affine; 1320 u64 nr_failed_migrations_running; 1321 u64 nr_failed_migrations_hot; 1322 u64 nr_forced_migrations; 1323 1324 u64 nr_wakeups; 1325 u64 nr_wakeups_sync; 1326 u64 nr_wakeups_migrate; 1327 u64 nr_wakeups_local; 1328 u64 nr_wakeups_remote; 1329 u64 nr_wakeups_affine; 1330 u64 nr_wakeups_affine_attempts; 1331 u64 nr_wakeups_passive; 1332 u64 nr_wakeups_idle; 1333 }; 1334 #endif 1335 1336 struct sched_entity { 1337 struct load_weight load; /* for load-balancing */ 1338 struct rb_node run_node; 1339 struct list_head group_node; 1340 unsigned int on_rq; 1341 1342 u64 exec_start; 1343 u64 sum_exec_runtime; 1344 u64 vruntime; 1345 u64 prev_sum_exec_runtime; 1346 1347 u64 nr_migrations; 1348 1349 #ifdef CONFIG_SCHEDSTATS 1350 struct sched_statistics statistics; 1351 #endif 1352 1353 #ifdef CONFIG_FAIR_GROUP_SCHED 1354 int depth; 1355 struct sched_entity *parent; 1356 /* rq on which this entity is (to be) queued: */ 1357 struct cfs_rq *cfs_rq; 1358 /* rq "owned" by this entity/group: */ 1359 struct cfs_rq *my_q; 1360 #endif 1361 1362 #ifdef CONFIG_SMP 1363 /* 1364 * Per entity load average tracking. 1365 * 1366 * Put into separate cache line so it does not 1367 * collide with read-mostly values above. 1368 */ 1369 struct sched_avg avg ____cacheline_aligned_in_smp; 1370 #endif 1371 }; 1372 1373 struct sched_rt_entity { 1374 struct list_head run_list; 1375 unsigned long timeout; 1376 unsigned long watchdog_stamp; 1377 unsigned int time_slice; 1378 unsigned short on_rq; 1379 unsigned short on_list; 1380 1381 struct sched_rt_entity *back; 1382 #ifdef CONFIG_RT_GROUP_SCHED 1383 struct sched_rt_entity *parent; 1384 /* rq on which this entity is (to be) queued: */ 1385 struct rt_rq *rt_rq; 1386 /* rq "owned" by this entity/group: */ 1387 struct rt_rq *my_q; 1388 #endif 1389 }; 1390 1391 struct sched_dl_entity { 1392 struct rb_node rb_node; 1393 1394 /* 1395 * Original scheduling parameters. Copied here from sched_attr 1396 * during sched_setattr(), they will remain the same until 1397 * the next sched_setattr(). 1398 */ 1399 u64 dl_runtime; /* maximum runtime for each instance */ 1400 u64 dl_deadline; /* relative deadline of each instance */ 1401 u64 dl_period; /* separation of two instances (period) */ 1402 u64 dl_bw; /* dl_runtime / dl_deadline */ 1403 1404 /* 1405 * Actual scheduling parameters. Initialized with the values above, 1406 * they are continously updated during task execution. Note that 1407 * the remaining runtime could be < 0 in case we are in overrun. 1408 */ 1409 s64 runtime; /* remaining runtime for this instance */ 1410 u64 deadline; /* absolute deadline for this instance */ 1411 unsigned int flags; /* specifying the scheduler behaviour */ 1412 1413 /* 1414 * Some bool flags: 1415 * 1416 * @dl_throttled tells if we exhausted the runtime. If so, the 1417 * task has to wait for a replenishment to be performed at the 1418 * next firing of dl_timer. 1419 * 1420 * @dl_boosted tells if we are boosted due to DI. If so we are 1421 * outside bandwidth enforcement mechanism (but only until we 1422 * exit the critical section); 1423 * 1424 * @dl_yielded tells if task gave up the cpu before consuming 1425 * all its available runtime during the last job. 1426 */ 1427 int dl_throttled, dl_boosted, dl_yielded; 1428 1429 /* 1430 * Bandwidth enforcement timer. Each -deadline task has its 1431 * own bandwidth to be enforced, thus we need one timer per task. 1432 */ 1433 struct hrtimer dl_timer; 1434 }; 1435 1436 union rcu_special { 1437 struct { 1438 u8 blocked; 1439 u8 need_qs; 1440 u8 exp_need_qs; 1441 u8 pad; /* Otherwise the compiler can store garbage here. */ 1442 } b; /* Bits. */ 1443 u32 s; /* Set of bits. */ 1444 }; 1445 struct rcu_node; 1446 1447 enum perf_event_task_context { 1448 perf_invalid_context = -1, 1449 perf_hw_context = 0, 1450 perf_sw_context, 1451 perf_nr_task_contexts, 1452 }; 1453 1454 /* Track pages that require TLB flushes */ 1455 struct tlbflush_unmap_batch { 1456 /* 1457 * Each bit set is a CPU that potentially has a TLB entry for one of 1458 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1459 */ 1460 struct cpumask cpumask; 1461 1462 /* True if any bit in cpumask is set */ 1463 bool flush_required; 1464 1465 /* 1466 * If true then the PTE was dirty when unmapped. The entry must be 1467 * flushed before IO is initiated or a stale TLB entry potentially 1468 * allows an update without redirtying the page. 1469 */ 1470 bool writable; 1471 }; 1472 1473 struct task_struct { 1474 #ifdef CONFIG_THREAD_INFO_IN_TASK 1475 /* 1476 * For reasons of header soup (see current_thread_info()), this 1477 * must be the first element of task_struct. 1478 */ 1479 struct thread_info thread_info; 1480 #endif 1481 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1482 void *stack; 1483 atomic_t usage; 1484 unsigned int flags; /* per process flags, defined below */ 1485 unsigned int ptrace; 1486 1487 #ifdef CONFIG_SMP 1488 struct llist_node wake_entry; 1489 int on_cpu; 1490 #ifdef CONFIG_THREAD_INFO_IN_TASK 1491 unsigned int cpu; /* current CPU */ 1492 #endif 1493 unsigned int wakee_flips; 1494 unsigned long wakee_flip_decay_ts; 1495 struct task_struct *last_wakee; 1496 1497 int wake_cpu; 1498 #endif 1499 int on_rq; 1500 1501 int prio, static_prio, normal_prio; 1502 unsigned int rt_priority; 1503 const struct sched_class *sched_class; 1504 struct sched_entity se; 1505 struct sched_rt_entity rt; 1506 #ifdef CONFIG_CGROUP_SCHED 1507 struct task_group *sched_task_group; 1508 #endif 1509 struct sched_dl_entity dl; 1510 1511 #ifdef CONFIG_PREEMPT_NOTIFIERS 1512 /* list of struct preempt_notifier: */ 1513 struct hlist_head preempt_notifiers; 1514 #endif 1515 1516 #ifdef CONFIG_BLK_DEV_IO_TRACE 1517 unsigned int btrace_seq; 1518 #endif 1519 1520 unsigned int policy; 1521 int nr_cpus_allowed; 1522 cpumask_t cpus_allowed; 1523 1524 #ifdef CONFIG_PREEMPT_RCU 1525 int rcu_read_lock_nesting; 1526 union rcu_special rcu_read_unlock_special; 1527 struct list_head rcu_node_entry; 1528 struct rcu_node *rcu_blocked_node; 1529 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1530 #ifdef CONFIG_TASKS_RCU 1531 unsigned long rcu_tasks_nvcsw; 1532 bool rcu_tasks_holdout; 1533 struct list_head rcu_tasks_holdout_list; 1534 int rcu_tasks_idle_cpu; 1535 #endif /* #ifdef CONFIG_TASKS_RCU */ 1536 1537 #ifdef CONFIG_SCHED_INFO 1538 struct sched_info sched_info; 1539 #endif 1540 1541 struct list_head tasks; 1542 #ifdef CONFIG_SMP 1543 struct plist_node pushable_tasks; 1544 struct rb_node pushable_dl_tasks; 1545 #endif 1546 1547 struct mm_struct *mm, *active_mm; 1548 /* per-thread vma caching */ 1549 u32 vmacache_seqnum; 1550 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1551 #if defined(SPLIT_RSS_COUNTING) 1552 struct task_rss_stat rss_stat; 1553 #endif 1554 /* task state */ 1555 int exit_state; 1556 int exit_code, exit_signal; 1557 int pdeath_signal; /* The signal sent when the parent dies */ 1558 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1559 1560 /* Used for emulating ABI behavior of previous Linux versions */ 1561 unsigned int personality; 1562 1563 /* scheduler bits, serialized by scheduler locks */ 1564 unsigned sched_reset_on_fork:1; 1565 unsigned sched_contributes_to_load:1; 1566 unsigned sched_migrated:1; 1567 unsigned sched_remote_wakeup:1; 1568 unsigned :0; /* force alignment to the next boundary */ 1569 1570 /* unserialized, strictly 'current' */ 1571 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1572 unsigned in_iowait:1; 1573 #if !defined(TIF_RESTORE_SIGMASK) 1574 unsigned restore_sigmask:1; 1575 #endif 1576 #ifdef CONFIG_MEMCG 1577 unsigned memcg_may_oom:1; 1578 #ifndef CONFIG_SLOB 1579 unsigned memcg_kmem_skip_account:1; 1580 #endif 1581 #endif 1582 #ifdef CONFIG_COMPAT_BRK 1583 unsigned brk_randomized:1; 1584 #endif 1585 1586 unsigned long atomic_flags; /* Flags needing atomic access. */ 1587 1588 struct restart_block restart_block; 1589 1590 pid_t pid; 1591 pid_t tgid; 1592 1593 #ifdef CONFIG_CC_STACKPROTECTOR 1594 /* Canary value for the -fstack-protector gcc feature */ 1595 unsigned long stack_canary; 1596 #endif 1597 /* 1598 * pointers to (original) parent process, youngest child, younger sibling, 1599 * older sibling, respectively. (p->father can be replaced with 1600 * p->real_parent->pid) 1601 */ 1602 struct task_struct __rcu *real_parent; /* real parent process */ 1603 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1604 /* 1605 * children/sibling forms the list of my natural children 1606 */ 1607 struct list_head children; /* list of my children */ 1608 struct list_head sibling; /* linkage in my parent's children list */ 1609 struct task_struct *group_leader; /* threadgroup leader */ 1610 1611 /* 1612 * ptraced is the list of tasks this task is using ptrace on. 1613 * This includes both natural children and PTRACE_ATTACH targets. 1614 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1615 */ 1616 struct list_head ptraced; 1617 struct list_head ptrace_entry; 1618 1619 /* PID/PID hash table linkage. */ 1620 struct pid_link pids[PIDTYPE_MAX]; 1621 struct list_head thread_group; 1622 struct list_head thread_node; 1623 1624 struct completion *vfork_done; /* for vfork() */ 1625 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1626 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1627 1628 cputime_t utime, stime, utimescaled, stimescaled; 1629 cputime_t gtime; 1630 struct prev_cputime prev_cputime; 1631 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1632 seqcount_t vtime_seqcount; 1633 unsigned long long vtime_snap; 1634 enum { 1635 /* Task is sleeping or running in a CPU with VTIME inactive */ 1636 VTIME_INACTIVE = 0, 1637 /* Task runs in userspace in a CPU with VTIME active */ 1638 VTIME_USER, 1639 /* Task runs in kernelspace in a CPU with VTIME active */ 1640 VTIME_SYS, 1641 } vtime_snap_whence; 1642 #endif 1643 1644 #ifdef CONFIG_NO_HZ_FULL 1645 atomic_t tick_dep_mask; 1646 #endif 1647 unsigned long nvcsw, nivcsw; /* context switch counts */ 1648 u64 start_time; /* monotonic time in nsec */ 1649 u64 real_start_time; /* boot based time in nsec */ 1650 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1651 unsigned long min_flt, maj_flt; 1652 1653 struct task_cputime cputime_expires; 1654 struct list_head cpu_timers[3]; 1655 1656 /* process credentials */ 1657 const struct cred __rcu *real_cred; /* objective and real subjective task 1658 * credentials (COW) */ 1659 const struct cred __rcu *cred; /* effective (overridable) subjective task 1660 * credentials (COW) */ 1661 char comm[TASK_COMM_LEN]; /* executable name excluding path 1662 - access with [gs]et_task_comm (which lock 1663 it with task_lock()) 1664 - initialized normally by setup_new_exec */ 1665 /* file system info */ 1666 struct nameidata *nameidata; 1667 #ifdef CONFIG_SYSVIPC 1668 /* ipc stuff */ 1669 struct sysv_sem sysvsem; 1670 struct sysv_shm sysvshm; 1671 #endif 1672 #ifdef CONFIG_DETECT_HUNG_TASK 1673 /* hung task detection */ 1674 unsigned long last_switch_count; 1675 #endif 1676 /* filesystem information */ 1677 struct fs_struct *fs; 1678 /* open file information */ 1679 struct files_struct *files; 1680 /* namespaces */ 1681 struct nsproxy *nsproxy; 1682 /* signal handlers */ 1683 struct signal_struct *signal; 1684 struct sighand_struct *sighand; 1685 1686 sigset_t blocked, real_blocked; 1687 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1688 struct sigpending pending; 1689 1690 unsigned long sas_ss_sp; 1691 size_t sas_ss_size; 1692 unsigned sas_ss_flags; 1693 1694 struct callback_head *task_works; 1695 1696 struct audit_context *audit_context; 1697 #ifdef CONFIG_AUDITSYSCALL 1698 kuid_t loginuid; 1699 unsigned int sessionid; 1700 #endif 1701 struct seccomp seccomp; 1702 1703 /* Thread group tracking */ 1704 u32 parent_exec_id; 1705 u32 self_exec_id; 1706 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1707 * mempolicy */ 1708 spinlock_t alloc_lock; 1709 1710 /* Protection of the PI data structures: */ 1711 raw_spinlock_t pi_lock; 1712 1713 struct wake_q_node wake_q; 1714 1715 #ifdef CONFIG_RT_MUTEXES 1716 /* PI waiters blocked on a rt_mutex held by this task */ 1717 struct rb_root pi_waiters; 1718 struct rb_node *pi_waiters_leftmost; 1719 /* Deadlock detection and priority inheritance handling */ 1720 struct rt_mutex_waiter *pi_blocked_on; 1721 #endif 1722 1723 #ifdef CONFIG_DEBUG_MUTEXES 1724 /* mutex deadlock detection */ 1725 struct mutex_waiter *blocked_on; 1726 #endif 1727 #ifdef CONFIG_TRACE_IRQFLAGS 1728 unsigned int irq_events; 1729 unsigned long hardirq_enable_ip; 1730 unsigned long hardirq_disable_ip; 1731 unsigned int hardirq_enable_event; 1732 unsigned int hardirq_disable_event; 1733 int hardirqs_enabled; 1734 int hardirq_context; 1735 unsigned long softirq_disable_ip; 1736 unsigned long softirq_enable_ip; 1737 unsigned int softirq_disable_event; 1738 unsigned int softirq_enable_event; 1739 int softirqs_enabled; 1740 int softirq_context; 1741 #endif 1742 #ifdef CONFIG_LOCKDEP 1743 # define MAX_LOCK_DEPTH 48UL 1744 u64 curr_chain_key; 1745 int lockdep_depth; 1746 unsigned int lockdep_recursion; 1747 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1748 gfp_t lockdep_reclaim_gfp; 1749 #endif 1750 #ifdef CONFIG_UBSAN 1751 unsigned int in_ubsan; 1752 #endif 1753 1754 /* journalling filesystem info */ 1755 void *journal_info; 1756 1757 /* stacked block device info */ 1758 struct bio_list *bio_list; 1759 1760 #ifdef CONFIG_BLOCK 1761 /* stack plugging */ 1762 struct blk_plug *plug; 1763 #endif 1764 1765 /* VM state */ 1766 struct reclaim_state *reclaim_state; 1767 1768 struct backing_dev_info *backing_dev_info; 1769 1770 struct io_context *io_context; 1771 1772 unsigned long ptrace_message; 1773 siginfo_t *last_siginfo; /* For ptrace use. */ 1774 struct task_io_accounting ioac; 1775 #if defined(CONFIG_TASK_XACCT) 1776 u64 acct_rss_mem1; /* accumulated rss usage */ 1777 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1778 cputime_t acct_timexpd; /* stime + utime since last update */ 1779 #endif 1780 #ifdef CONFIG_CPUSETS 1781 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1782 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1783 int cpuset_mem_spread_rotor; 1784 int cpuset_slab_spread_rotor; 1785 #endif 1786 #ifdef CONFIG_CGROUPS 1787 /* Control Group info protected by css_set_lock */ 1788 struct css_set __rcu *cgroups; 1789 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1790 struct list_head cg_list; 1791 #endif 1792 #ifdef CONFIG_FUTEX 1793 struct robust_list_head __user *robust_list; 1794 #ifdef CONFIG_COMPAT 1795 struct compat_robust_list_head __user *compat_robust_list; 1796 #endif 1797 struct list_head pi_state_list; 1798 struct futex_pi_state *pi_state_cache; 1799 #endif 1800 #ifdef CONFIG_PERF_EVENTS 1801 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1802 struct mutex perf_event_mutex; 1803 struct list_head perf_event_list; 1804 #endif 1805 #ifdef CONFIG_DEBUG_PREEMPT 1806 unsigned long preempt_disable_ip; 1807 #endif 1808 #ifdef CONFIG_NUMA 1809 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1810 short il_next; 1811 short pref_node_fork; 1812 #endif 1813 #ifdef CONFIG_NUMA_BALANCING 1814 int numa_scan_seq; 1815 unsigned int numa_scan_period; 1816 unsigned int numa_scan_period_max; 1817 int numa_preferred_nid; 1818 unsigned long numa_migrate_retry; 1819 u64 node_stamp; /* migration stamp */ 1820 u64 last_task_numa_placement; 1821 u64 last_sum_exec_runtime; 1822 struct callback_head numa_work; 1823 1824 struct list_head numa_entry; 1825 struct numa_group *numa_group; 1826 1827 /* 1828 * numa_faults is an array split into four regions: 1829 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1830 * in this precise order. 1831 * 1832 * faults_memory: Exponential decaying average of faults on a per-node 1833 * basis. Scheduling placement decisions are made based on these 1834 * counts. The values remain static for the duration of a PTE scan. 1835 * faults_cpu: Track the nodes the process was running on when a NUMA 1836 * hinting fault was incurred. 1837 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1838 * during the current scan window. When the scan completes, the counts 1839 * in faults_memory and faults_cpu decay and these values are copied. 1840 */ 1841 unsigned long *numa_faults; 1842 unsigned long total_numa_faults; 1843 1844 /* 1845 * numa_faults_locality tracks if faults recorded during the last 1846 * scan window were remote/local or failed to migrate. The task scan 1847 * period is adapted based on the locality of the faults with different 1848 * weights depending on whether they were shared or private faults 1849 */ 1850 unsigned long numa_faults_locality[3]; 1851 1852 unsigned long numa_pages_migrated; 1853 #endif /* CONFIG_NUMA_BALANCING */ 1854 1855 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1856 struct tlbflush_unmap_batch tlb_ubc; 1857 #endif 1858 1859 struct rcu_head rcu; 1860 1861 /* 1862 * cache last used pipe for splice 1863 */ 1864 struct pipe_inode_info *splice_pipe; 1865 1866 struct page_frag task_frag; 1867 1868 #ifdef CONFIG_TASK_DELAY_ACCT 1869 struct task_delay_info *delays; 1870 #endif 1871 #ifdef CONFIG_FAULT_INJECTION 1872 int make_it_fail; 1873 #endif 1874 /* 1875 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1876 * balance_dirty_pages() for some dirty throttling pause 1877 */ 1878 int nr_dirtied; 1879 int nr_dirtied_pause; 1880 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1881 1882 #ifdef CONFIG_LATENCYTOP 1883 int latency_record_count; 1884 struct latency_record latency_record[LT_SAVECOUNT]; 1885 #endif 1886 /* 1887 * time slack values; these are used to round up poll() and 1888 * select() etc timeout values. These are in nanoseconds. 1889 */ 1890 u64 timer_slack_ns; 1891 u64 default_timer_slack_ns; 1892 1893 #ifdef CONFIG_KASAN 1894 unsigned int kasan_depth; 1895 #endif 1896 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1897 /* Index of current stored address in ret_stack */ 1898 int curr_ret_stack; 1899 /* Stack of return addresses for return function tracing */ 1900 struct ftrace_ret_stack *ret_stack; 1901 /* time stamp for last schedule */ 1902 unsigned long long ftrace_timestamp; 1903 /* 1904 * Number of functions that haven't been traced 1905 * because of depth overrun. 1906 */ 1907 atomic_t trace_overrun; 1908 /* Pause for the tracing */ 1909 atomic_t tracing_graph_pause; 1910 #endif 1911 #ifdef CONFIG_TRACING 1912 /* state flags for use by tracers */ 1913 unsigned long trace; 1914 /* bitmask and counter of trace recursion */ 1915 unsigned long trace_recursion; 1916 #endif /* CONFIG_TRACING */ 1917 #ifdef CONFIG_KCOV 1918 /* Coverage collection mode enabled for this task (0 if disabled). */ 1919 enum kcov_mode kcov_mode; 1920 /* Size of the kcov_area. */ 1921 unsigned kcov_size; 1922 /* Buffer for coverage collection. */ 1923 void *kcov_area; 1924 /* kcov desciptor wired with this task or NULL. */ 1925 struct kcov *kcov; 1926 #endif 1927 #ifdef CONFIG_MEMCG 1928 struct mem_cgroup *memcg_in_oom; 1929 gfp_t memcg_oom_gfp_mask; 1930 int memcg_oom_order; 1931 1932 /* number of pages to reclaim on returning to userland */ 1933 unsigned int memcg_nr_pages_over_high; 1934 #endif 1935 #ifdef CONFIG_UPROBES 1936 struct uprobe_task *utask; 1937 #endif 1938 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1939 unsigned int sequential_io; 1940 unsigned int sequential_io_avg; 1941 #endif 1942 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1943 unsigned long task_state_change; 1944 #endif 1945 int pagefault_disabled; 1946 #ifdef CONFIG_MMU 1947 struct task_struct *oom_reaper_list; 1948 #endif 1949 #ifdef CONFIG_VMAP_STACK 1950 struct vm_struct *stack_vm_area; 1951 #endif 1952 #ifdef CONFIG_THREAD_INFO_IN_TASK 1953 /* A live task holds one reference. */ 1954 atomic_t stack_refcount; 1955 #endif 1956 /* CPU-specific state of this task */ 1957 struct thread_struct thread; 1958 /* 1959 * WARNING: on x86, 'thread_struct' contains a variable-sized 1960 * structure. It *MUST* be at the end of 'task_struct'. 1961 * 1962 * Do not put anything below here! 1963 */ 1964 }; 1965 1966 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1967 extern int arch_task_struct_size __read_mostly; 1968 #else 1969 # define arch_task_struct_size (sizeof(struct task_struct)) 1970 #endif 1971 1972 #ifdef CONFIG_VMAP_STACK 1973 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 1974 { 1975 return t->stack_vm_area; 1976 } 1977 #else 1978 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 1979 { 1980 return NULL; 1981 } 1982 #endif 1983 1984 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1985 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1986 1987 static inline int tsk_nr_cpus_allowed(struct task_struct *p) 1988 { 1989 return p->nr_cpus_allowed; 1990 } 1991 1992 #define TNF_MIGRATED 0x01 1993 #define TNF_NO_GROUP 0x02 1994 #define TNF_SHARED 0x04 1995 #define TNF_FAULT_LOCAL 0x08 1996 #define TNF_MIGRATE_FAIL 0x10 1997 1998 static inline bool in_vfork(struct task_struct *tsk) 1999 { 2000 bool ret; 2001 2002 /* 2003 * need RCU to access ->real_parent if CLONE_VM was used along with 2004 * CLONE_PARENT. 2005 * 2006 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 2007 * imply CLONE_VM 2008 * 2009 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 2010 * ->real_parent is not necessarily the task doing vfork(), so in 2011 * theory we can't rely on task_lock() if we want to dereference it. 2012 * 2013 * And in this case we can't trust the real_parent->mm == tsk->mm 2014 * check, it can be false negative. But we do not care, if init or 2015 * another oom-unkillable task does this it should blame itself. 2016 */ 2017 rcu_read_lock(); 2018 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; 2019 rcu_read_unlock(); 2020 2021 return ret; 2022 } 2023 2024 #ifdef CONFIG_NUMA_BALANCING 2025 extern void task_numa_fault(int last_node, int node, int pages, int flags); 2026 extern pid_t task_numa_group_id(struct task_struct *p); 2027 extern void set_numabalancing_state(bool enabled); 2028 extern void task_numa_free(struct task_struct *p); 2029 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 2030 int src_nid, int dst_cpu); 2031 #else 2032 static inline void task_numa_fault(int last_node, int node, int pages, 2033 int flags) 2034 { 2035 } 2036 static inline pid_t task_numa_group_id(struct task_struct *p) 2037 { 2038 return 0; 2039 } 2040 static inline void set_numabalancing_state(bool enabled) 2041 { 2042 } 2043 static inline void task_numa_free(struct task_struct *p) 2044 { 2045 } 2046 static inline bool should_numa_migrate_memory(struct task_struct *p, 2047 struct page *page, int src_nid, int dst_cpu) 2048 { 2049 return true; 2050 } 2051 #endif 2052 2053 static inline struct pid *task_pid(struct task_struct *task) 2054 { 2055 return task->pids[PIDTYPE_PID].pid; 2056 } 2057 2058 static inline struct pid *task_tgid(struct task_struct *task) 2059 { 2060 return task->group_leader->pids[PIDTYPE_PID].pid; 2061 } 2062 2063 /* 2064 * Without tasklist or rcu lock it is not safe to dereference 2065 * the result of task_pgrp/task_session even if task == current, 2066 * we can race with another thread doing sys_setsid/sys_setpgid. 2067 */ 2068 static inline struct pid *task_pgrp(struct task_struct *task) 2069 { 2070 return task->group_leader->pids[PIDTYPE_PGID].pid; 2071 } 2072 2073 static inline struct pid *task_session(struct task_struct *task) 2074 { 2075 return task->group_leader->pids[PIDTYPE_SID].pid; 2076 } 2077 2078 struct pid_namespace; 2079 2080 /* 2081 * the helpers to get the task's different pids as they are seen 2082 * from various namespaces 2083 * 2084 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2085 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2086 * current. 2087 * task_xid_nr_ns() : id seen from the ns specified; 2088 * 2089 * set_task_vxid() : assigns a virtual id to a task; 2090 * 2091 * see also pid_nr() etc in include/linux/pid.h 2092 */ 2093 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2094 struct pid_namespace *ns); 2095 2096 static inline pid_t task_pid_nr(struct task_struct *tsk) 2097 { 2098 return tsk->pid; 2099 } 2100 2101 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2102 struct pid_namespace *ns) 2103 { 2104 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2105 } 2106 2107 static inline pid_t task_pid_vnr(struct task_struct *tsk) 2108 { 2109 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2110 } 2111 2112 2113 static inline pid_t task_tgid_nr(struct task_struct *tsk) 2114 { 2115 return tsk->tgid; 2116 } 2117 2118 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2119 2120 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2121 { 2122 return pid_vnr(task_tgid(tsk)); 2123 } 2124 2125 2126 static inline int pid_alive(const struct task_struct *p); 2127 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2128 { 2129 pid_t pid = 0; 2130 2131 rcu_read_lock(); 2132 if (pid_alive(tsk)) 2133 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2134 rcu_read_unlock(); 2135 2136 return pid; 2137 } 2138 2139 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2140 { 2141 return task_ppid_nr_ns(tsk, &init_pid_ns); 2142 } 2143 2144 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2145 struct pid_namespace *ns) 2146 { 2147 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2148 } 2149 2150 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2151 { 2152 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2153 } 2154 2155 2156 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2157 struct pid_namespace *ns) 2158 { 2159 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2160 } 2161 2162 static inline pid_t task_session_vnr(struct task_struct *tsk) 2163 { 2164 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2165 } 2166 2167 /* obsolete, do not use */ 2168 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2169 { 2170 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2171 } 2172 2173 /** 2174 * pid_alive - check that a task structure is not stale 2175 * @p: Task structure to be checked. 2176 * 2177 * Test if a process is not yet dead (at most zombie state) 2178 * If pid_alive fails, then pointers within the task structure 2179 * can be stale and must not be dereferenced. 2180 * 2181 * Return: 1 if the process is alive. 0 otherwise. 2182 */ 2183 static inline int pid_alive(const struct task_struct *p) 2184 { 2185 return p->pids[PIDTYPE_PID].pid != NULL; 2186 } 2187 2188 /** 2189 * is_global_init - check if a task structure is init. Since init 2190 * is free to have sub-threads we need to check tgid. 2191 * @tsk: Task structure to be checked. 2192 * 2193 * Check if a task structure is the first user space task the kernel created. 2194 * 2195 * Return: 1 if the task structure is init. 0 otherwise. 2196 */ 2197 static inline int is_global_init(struct task_struct *tsk) 2198 { 2199 return task_tgid_nr(tsk) == 1; 2200 } 2201 2202 extern struct pid *cad_pid; 2203 2204 extern void free_task(struct task_struct *tsk); 2205 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2206 2207 extern void __put_task_struct(struct task_struct *t); 2208 2209 static inline void put_task_struct(struct task_struct *t) 2210 { 2211 if (atomic_dec_and_test(&t->usage)) 2212 __put_task_struct(t); 2213 } 2214 2215 struct task_struct *task_rcu_dereference(struct task_struct **ptask); 2216 struct task_struct *try_get_task_struct(struct task_struct **ptask); 2217 2218 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2219 extern void task_cputime(struct task_struct *t, 2220 cputime_t *utime, cputime_t *stime); 2221 extern void task_cputime_scaled(struct task_struct *t, 2222 cputime_t *utimescaled, cputime_t *stimescaled); 2223 extern cputime_t task_gtime(struct task_struct *t); 2224 #else 2225 static inline void task_cputime(struct task_struct *t, 2226 cputime_t *utime, cputime_t *stime) 2227 { 2228 if (utime) 2229 *utime = t->utime; 2230 if (stime) 2231 *stime = t->stime; 2232 } 2233 2234 static inline void task_cputime_scaled(struct task_struct *t, 2235 cputime_t *utimescaled, 2236 cputime_t *stimescaled) 2237 { 2238 if (utimescaled) 2239 *utimescaled = t->utimescaled; 2240 if (stimescaled) 2241 *stimescaled = t->stimescaled; 2242 } 2243 2244 static inline cputime_t task_gtime(struct task_struct *t) 2245 { 2246 return t->gtime; 2247 } 2248 #endif 2249 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2250 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2251 2252 /* 2253 * Per process flags 2254 */ 2255 #define PF_EXITING 0x00000004 /* getting shut down */ 2256 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2257 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2258 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2259 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2260 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2261 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2262 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2263 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2264 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2265 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2266 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2267 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2268 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2269 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2270 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2271 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2272 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2273 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2274 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2275 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2276 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2277 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2278 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2279 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2280 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2281 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2282 2283 /* 2284 * Only the _current_ task can read/write to tsk->flags, but other 2285 * tasks can access tsk->flags in readonly mode for example 2286 * with tsk_used_math (like during threaded core dumping). 2287 * There is however an exception to this rule during ptrace 2288 * or during fork: the ptracer task is allowed to write to the 2289 * child->flags of its traced child (same goes for fork, the parent 2290 * can write to the child->flags), because we're guaranteed the 2291 * child is not running and in turn not changing child->flags 2292 * at the same time the parent does it. 2293 */ 2294 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2295 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2296 #define clear_used_math() clear_stopped_child_used_math(current) 2297 #define set_used_math() set_stopped_child_used_math(current) 2298 #define conditional_stopped_child_used_math(condition, child) \ 2299 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2300 #define conditional_used_math(condition) \ 2301 conditional_stopped_child_used_math(condition, current) 2302 #define copy_to_stopped_child_used_math(child) \ 2303 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2304 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2305 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2306 #define used_math() tsk_used_math(current) 2307 2308 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2309 * __GFP_FS is also cleared as it implies __GFP_IO. 2310 */ 2311 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2312 { 2313 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2314 flags &= ~(__GFP_IO | __GFP_FS); 2315 return flags; 2316 } 2317 2318 static inline unsigned int memalloc_noio_save(void) 2319 { 2320 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2321 current->flags |= PF_MEMALLOC_NOIO; 2322 return flags; 2323 } 2324 2325 static inline void memalloc_noio_restore(unsigned int flags) 2326 { 2327 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2328 } 2329 2330 /* Per-process atomic flags. */ 2331 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2332 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2333 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2334 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2335 2336 2337 #define TASK_PFA_TEST(name, func) \ 2338 static inline bool task_##func(struct task_struct *p) \ 2339 { return test_bit(PFA_##name, &p->atomic_flags); } 2340 #define TASK_PFA_SET(name, func) \ 2341 static inline void task_set_##func(struct task_struct *p) \ 2342 { set_bit(PFA_##name, &p->atomic_flags); } 2343 #define TASK_PFA_CLEAR(name, func) \ 2344 static inline void task_clear_##func(struct task_struct *p) \ 2345 { clear_bit(PFA_##name, &p->atomic_flags); } 2346 2347 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2348 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2349 2350 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2351 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2352 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2353 2354 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2355 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2356 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2357 2358 TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2359 TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2360 2361 /* 2362 * task->jobctl flags 2363 */ 2364 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2365 2366 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2367 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2368 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2369 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2370 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2371 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2372 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2373 2374 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2375 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2376 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2377 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2378 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2379 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2380 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2381 2382 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2383 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2384 2385 extern bool task_set_jobctl_pending(struct task_struct *task, 2386 unsigned long mask); 2387 extern void task_clear_jobctl_trapping(struct task_struct *task); 2388 extern void task_clear_jobctl_pending(struct task_struct *task, 2389 unsigned long mask); 2390 2391 static inline void rcu_copy_process(struct task_struct *p) 2392 { 2393 #ifdef CONFIG_PREEMPT_RCU 2394 p->rcu_read_lock_nesting = 0; 2395 p->rcu_read_unlock_special.s = 0; 2396 p->rcu_blocked_node = NULL; 2397 INIT_LIST_HEAD(&p->rcu_node_entry); 2398 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2399 #ifdef CONFIG_TASKS_RCU 2400 p->rcu_tasks_holdout = false; 2401 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2402 p->rcu_tasks_idle_cpu = -1; 2403 #endif /* #ifdef CONFIG_TASKS_RCU */ 2404 } 2405 2406 static inline void tsk_restore_flags(struct task_struct *task, 2407 unsigned long orig_flags, unsigned long flags) 2408 { 2409 task->flags &= ~flags; 2410 task->flags |= orig_flags & flags; 2411 } 2412 2413 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2414 const struct cpumask *trial); 2415 extern int task_can_attach(struct task_struct *p, 2416 const struct cpumask *cs_cpus_allowed); 2417 #ifdef CONFIG_SMP 2418 extern void do_set_cpus_allowed(struct task_struct *p, 2419 const struct cpumask *new_mask); 2420 2421 extern int set_cpus_allowed_ptr(struct task_struct *p, 2422 const struct cpumask *new_mask); 2423 #else 2424 static inline void do_set_cpus_allowed(struct task_struct *p, 2425 const struct cpumask *new_mask) 2426 { 2427 } 2428 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2429 const struct cpumask *new_mask) 2430 { 2431 if (!cpumask_test_cpu(0, new_mask)) 2432 return -EINVAL; 2433 return 0; 2434 } 2435 #endif 2436 2437 #ifdef CONFIG_NO_HZ_COMMON 2438 void calc_load_enter_idle(void); 2439 void calc_load_exit_idle(void); 2440 #else 2441 static inline void calc_load_enter_idle(void) { } 2442 static inline void calc_load_exit_idle(void) { } 2443 #endif /* CONFIG_NO_HZ_COMMON */ 2444 2445 /* 2446 * Do not use outside of architecture code which knows its limitations. 2447 * 2448 * sched_clock() has no promise of monotonicity or bounded drift between 2449 * CPUs, use (which you should not) requires disabling IRQs. 2450 * 2451 * Please use one of the three interfaces below. 2452 */ 2453 extern unsigned long long notrace sched_clock(void); 2454 /* 2455 * See the comment in kernel/sched/clock.c 2456 */ 2457 extern u64 running_clock(void); 2458 extern u64 sched_clock_cpu(int cpu); 2459 2460 2461 extern void sched_clock_init(void); 2462 2463 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2464 static inline void sched_clock_tick(void) 2465 { 2466 } 2467 2468 static inline void sched_clock_idle_sleep_event(void) 2469 { 2470 } 2471 2472 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2473 { 2474 } 2475 2476 static inline u64 cpu_clock(int cpu) 2477 { 2478 return sched_clock(); 2479 } 2480 2481 static inline u64 local_clock(void) 2482 { 2483 return sched_clock(); 2484 } 2485 #else 2486 /* 2487 * Architectures can set this to 1 if they have specified 2488 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2489 * but then during bootup it turns out that sched_clock() 2490 * is reliable after all: 2491 */ 2492 extern int sched_clock_stable(void); 2493 extern void set_sched_clock_stable(void); 2494 extern void clear_sched_clock_stable(void); 2495 2496 extern void sched_clock_tick(void); 2497 extern void sched_clock_idle_sleep_event(void); 2498 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2499 2500 /* 2501 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2502 * time source that is monotonic per cpu argument and has bounded drift 2503 * between cpus. 2504 * 2505 * ######################### BIG FAT WARNING ########################## 2506 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2507 * # go backwards !! # 2508 * #################################################################### 2509 */ 2510 static inline u64 cpu_clock(int cpu) 2511 { 2512 return sched_clock_cpu(cpu); 2513 } 2514 2515 static inline u64 local_clock(void) 2516 { 2517 return sched_clock_cpu(raw_smp_processor_id()); 2518 } 2519 #endif 2520 2521 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2522 /* 2523 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2524 * The reason for this explicit opt-in is not to have perf penalty with 2525 * slow sched_clocks. 2526 */ 2527 extern void enable_sched_clock_irqtime(void); 2528 extern void disable_sched_clock_irqtime(void); 2529 #else 2530 static inline void enable_sched_clock_irqtime(void) {} 2531 static inline void disable_sched_clock_irqtime(void) {} 2532 #endif 2533 2534 extern unsigned long long 2535 task_sched_runtime(struct task_struct *task); 2536 2537 /* sched_exec is called by processes performing an exec */ 2538 #ifdef CONFIG_SMP 2539 extern void sched_exec(void); 2540 #else 2541 #define sched_exec() {} 2542 #endif 2543 2544 extern void sched_clock_idle_sleep_event(void); 2545 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2546 2547 #ifdef CONFIG_HOTPLUG_CPU 2548 extern void idle_task_exit(void); 2549 #else 2550 static inline void idle_task_exit(void) {} 2551 #endif 2552 2553 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2554 extern void wake_up_nohz_cpu(int cpu); 2555 #else 2556 static inline void wake_up_nohz_cpu(int cpu) { } 2557 #endif 2558 2559 #ifdef CONFIG_NO_HZ_FULL 2560 extern u64 scheduler_tick_max_deferment(void); 2561 #endif 2562 2563 #ifdef CONFIG_SCHED_AUTOGROUP 2564 extern void sched_autogroup_create_attach(struct task_struct *p); 2565 extern void sched_autogroup_detach(struct task_struct *p); 2566 extern void sched_autogroup_fork(struct signal_struct *sig); 2567 extern void sched_autogroup_exit(struct signal_struct *sig); 2568 #ifdef CONFIG_PROC_FS 2569 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2570 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2571 #endif 2572 #else 2573 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2574 static inline void sched_autogroup_detach(struct task_struct *p) { } 2575 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2576 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2577 #endif 2578 2579 extern int yield_to(struct task_struct *p, bool preempt); 2580 extern void set_user_nice(struct task_struct *p, long nice); 2581 extern int task_prio(const struct task_struct *p); 2582 /** 2583 * task_nice - return the nice value of a given task. 2584 * @p: the task in question. 2585 * 2586 * Return: The nice value [ -20 ... 0 ... 19 ]. 2587 */ 2588 static inline int task_nice(const struct task_struct *p) 2589 { 2590 return PRIO_TO_NICE((p)->static_prio); 2591 } 2592 extern int can_nice(const struct task_struct *p, const int nice); 2593 extern int task_curr(const struct task_struct *p); 2594 extern int idle_cpu(int cpu); 2595 extern int sched_setscheduler(struct task_struct *, int, 2596 const struct sched_param *); 2597 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2598 const struct sched_param *); 2599 extern int sched_setattr(struct task_struct *, 2600 const struct sched_attr *); 2601 extern struct task_struct *idle_task(int cpu); 2602 /** 2603 * is_idle_task - is the specified task an idle task? 2604 * @p: the task in question. 2605 * 2606 * Return: 1 if @p is an idle task. 0 otherwise. 2607 */ 2608 static inline bool is_idle_task(const struct task_struct *p) 2609 { 2610 return p->pid == 0; 2611 } 2612 extern struct task_struct *curr_task(int cpu); 2613 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 2614 2615 void yield(void); 2616 2617 union thread_union { 2618 #ifndef CONFIG_THREAD_INFO_IN_TASK 2619 struct thread_info thread_info; 2620 #endif 2621 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2622 }; 2623 2624 #ifndef __HAVE_ARCH_KSTACK_END 2625 static inline int kstack_end(void *addr) 2626 { 2627 /* Reliable end of stack detection: 2628 * Some APM bios versions misalign the stack 2629 */ 2630 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2631 } 2632 #endif 2633 2634 extern union thread_union init_thread_union; 2635 extern struct task_struct init_task; 2636 2637 extern struct mm_struct init_mm; 2638 2639 extern struct pid_namespace init_pid_ns; 2640 2641 /* 2642 * find a task by one of its numerical ids 2643 * 2644 * find_task_by_pid_ns(): 2645 * finds a task by its pid in the specified namespace 2646 * find_task_by_vpid(): 2647 * finds a task by its virtual pid 2648 * 2649 * see also find_vpid() etc in include/linux/pid.h 2650 */ 2651 2652 extern struct task_struct *find_task_by_vpid(pid_t nr); 2653 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2654 struct pid_namespace *ns); 2655 2656 /* per-UID process charging. */ 2657 extern struct user_struct * alloc_uid(kuid_t); 2658 static inline struct user_struct *get_uid(struct user_struct *u) 2659 { 2660 atomic_inc(&u->__count); 2661 return u; 2662 } 2663 extern void free_uid(struct user_struct *); 2664 2665 #include <asm/current.h> 2666 2667 extern void xtime_update(unsigned long ticks); 2668 2669 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2670 extern int wake_up_process(struct task_struct *tsk); 2671 extern void wake_up_new_task(struct task_struct *tsk); 2672 #ifdef CONFIG_SMP 2673 extern void kick_process(struct task_struct *tsk); 2674 #else 2675 static inline void kick_process(struct task_struct *tsk) { } 2676 #endif 2677 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2678 extern void sched_dead(struct task_struct *p); 2679 2680 extern void proc_caches_init(void); 2681 extern void flush_signals(struct task_struct *); 2682 extern void ignore_signals(struct task_struct *); 2683 extern void flush_signal_handlers(struct task_struct *, int force_default); 2684 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2685 2686 static inline int kernel_dequeue_signal(siginfo_t *info) 2687 { 2688 struct task_struct *tsk = current; 2689 siginfo_t __info; 2690 int ret; 2691 2692 spin_lock_irq(&tsk->sighand->siglock); 2693 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2694 spin_unlock_irq(&tsk->sighand->siglock); 2695 2696 return ret; 2697 } 2698 2699 static inline void kernel_signal_stop(void) 2700 { 2701 spin_lock_irq(¤t->sighand->siglock); 2702 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2703 __set_current_state(TASK_STOPPED); 2704 spin_unlock_irq(¤t->sighand->siglock); 2705 2706 schedule(); 2707 } 2708 2709 extern void release_task(struct task_struct * p); 2710 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2711 extern int force_sigsegv(int, struct task_struct *); 2712 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2713 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2714 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2715 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2716 const struct cred *, u32); 2717 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2718 extern int kill_pid(struct pid *pid, int sig, int priv); 2719 extern int kill_proc_info(int, struct siginfo *, pid_t); 2720 extern __must_check bool do_notify_parent(struct task_struct *, int); 2721 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2722 extern void force_sig(int, struct task_struct *); 2723 extern int send_sig(int, struct task_struct *, int); 2724 extern int zap_other_threads(struct task_struct *p); 2725 extern struct sigqueue *sigqueue_alloc(void); 2726 extern void sigqueue_free(struct sigqueue *); 2727 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2728 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2729 2730 #ifdef TIF_RESTORE_SIGMASK 2731 /* 2732 * Legacy restore_sigmask accessors. These are inefficient on 2733 * SMP architectures because they require atomic operations. 2734 */ 2735 2736 /** 2737 * set_restore_sigmask() - make sure saved_sigmask processing gets done 2738 * 2739 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 2740 * will run before returning to user mode, to process the flag. For 2741 * all callers, TIF_SIGPENDING is already set or it's no harm to set 2742 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 2743 * arch code will notice on return to user mode, in case those bits 2744 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 2745 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 2746 */ 2747 static inline void set_restore_sigmask(void) 2748 { 2749 set_thread_flag(TIF_RESTORE_SIGMASK); 2750 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2751 } 2752 static inline void clear_restore_sigmask(void) 2753 { 2754 clear_thread_flag(TIF_RESTORE_SIGMASK); 2755 } 2756 static inline bool test_restore_sigmask(void) 2757 { 2758 return test_thread_flag(TIF_RESTORE_SIGMASK); 2759 } 2760 static inline bool test_and_clear_restore_sigmask(void) 2761 { 2762 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 2763 } 2764 2765 #else /* TIF_RESTORE_SIGMASK */ 2766 2767 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 2768 static inline void set_restore_sigmask(void) 2769 { 2770 current->restore_sigmask = true; 2771 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2772 } 2773 static inline void clear_restore_sigmask(void) 2774 { 2775 current->restore_sigmask = false; 2776 } 2777 static inline bool test_restore_sigmask(void) 2778 { 2779 return current->restore_sigmask; 2780 } 2781 static inline bool test_and_clear_restore_sigmask(void) 2782 { 2783 if (!current->restore_sigmask) 2784 return false; 2785 current->restore_sigmask = false; 2786 return true; 2787 } 2788 #endif 2789 2790 static inline void restore_saved_sigmask(void) 2791 { 2792 if (test_and_clear_restore_sigmask()) 2793 __set_current_blocked(¤t->saved_sigmask); 2794 } 2795 2796 static inline sigset_t *sigmask_to_save(void) 2797 { 2798 sigset_t *res = ¤t->blocked; 2799 if (unlikely(test_restore_sigmask())) 2800 res = ¤t->saved_sigmask; 2801 return res; 2802 } 2803 2804 static inline int kill_cad_pid(int sig, int priv) 2805 { 2806 return kill_pid(cad_pid, sig, priv); 2807 } 2808 2809 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2810 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2811 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2812 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2813 2814 /* 2815 * True if we are on the alternate signal stack. 2816 */ 2817 static inline int on_sig_stack(unsigned long sp) 2818 { 2819 /* 2820 * If the signal stack is SS_AUTODISARM then, by construction, we 2821 * can't be on the signal stack unless user code deliberately set 2822 * SS_AUTODISARM when we were already on it. 2823 * 2824 * This improves reliability: if user state gets corrupted such that 2825 * the stack pointer points very close to the end of the signal stack, 2826 * then this check will enable the signal to be handled anyway. 2827 */ 2828 if (current->sas_ss_flags & SS_AUTODISARM) 2829 return 0; 2830 2831 #ifdef CONFIG_STACK_GROWSUP 2832 return sp >= current->sas_ss_sp && 2833 sp - current->sas_ss_sp < current->sas_ss_size; 2834 #else 2835 return sp > current->sas_ss_sp && 2836 sp - current->sas_ss_sp <= current->sas_ss_size; 2837 #endif 2838 } 2839 2840 static inline int sas_ss_flags(unsigned long sp) 2841 { 2842 if (!current->sas_ss_size) 2843 return SS_DISABLE; 2844 2845 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2846 } 2847 2848 static inline void sas_ss_reset(struct task_struct *p) 2849 { 2850 p->sas_ss_sp = 0; 2851 p->sas_ss_size = 0; 2852 p->sas_ss_flags = SS_DISABLE; 2853 } 2854 2855 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2856 { 2857 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2858 #ifdef CONFIG_STACK_GROWSUP 2859 return current->sas_ss_sp; 2860 #else 2861 return current->sas_ss_sp + current->sas_ss_size; 2862 #endif 2863 return sp; 2864 } 2865 2866 /* 2867 * Routines for handling mm_structs 2868 */ 2869 extern struct mm_struct * mm_alloc(void); 2870 2871 /* mmdrop drops the mm and the page tables */ 2872 extern void __mmdrop(struct mm_struct *); 2873 static inline void mmdrop(struct mm_struct *mm) 2874 { 2875 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2876 __mmdrop(mm); 2877 } 2878 2879 static inline bool mmget_not_zero(struct mm_struct *mm) 2880 { 2881 return atomic_inc_not_zero(&mm->mm_users); 2882 } 2883 2884 /* mmput gets rid of the mappings and all user-space */ 2885 extern void mmput(struct mm_struct *); 2886 #ifdef CONFIG_MMU 2887 /* same as above but performs the slow path from the async context. Can 2888 * be called from the atomic context as well 2889 */ 2890 extern void mmput_async(struct mm_struct *); 2891 #endif 2892 2893 /* Grab a reference to a task's mm, if it is not already going away */ 2894 extern struct mm_struct *get_task_mm(struct task_struct *task); 2895 /* 2896 * Grab a reference to a task's mm, if it is not already going away 2897 * and ptrace_may_access with the mode parameter passed to it 2898 * succeeds. 2899 */ 2900 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2901 /* Remove the current tasks stale references to the old mm_struct */ 2902 extern void mm_release(struct task_struct *, struct mm_struct *); 2903 2904 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2905 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2906 struct task_struct *, unsigned long); 2907 #else 2908 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2909 struct task_struct *); 2910 2911 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2912 * via pt_regs, so ignore the tls argument passed via C. */ 2913 static inline int copy_thread_tls( 2914 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2915 struct task_struct *p, unsigned long tls) 2916 { 2917 return copy_thread(clone_flags, sp, arg, p); 2918 } 2919 #endif 2920 extern void flush_thread(void); 2921 2922 #ifdef CONFIG_HAVE_EXIT_THREAD 2923 extern void exit_thread(struct task_struct *tsk); 2924 #else 2925 static inline void exit_thread(struct task_struct *tsk) 2926 { 2927 } 2928 #endif 2929 2930 extern void exit_files(struct task_struct *); 2931 extern void __cleanup_sighand(struct sighand_struct *); 2932 2933 extern void exit_itimers(struct signal_struct *); 2934 extern void flush_itimer_signals(void); 2935 2936 extern void do_group_exit(int); 2937 2938 extern int do_execve(struct filename *, 2939 const char __user * const __user *, 2940 const char __user * const __user *); 2941 extern int do_execveat(int, struct filename *, 2942 const char __user * const __user *, 2943 const char __user * const __user *, 2944 int); 2945 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2946 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2947 struct task_struct *fork_idle(int); 2948 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2949 2950 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2951 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2952 { 2953 __set_task_comm(tsk, from, false); 2954 } 2955 extern char *get_task_comm(char *to, struct task_struct *tsk); 2956 2957 #ifdef CONFIG_SMP 2958 void scheduler_ipi(void); 2959 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2960 #else 2961 static inline void scheduler_ipi(void) { } 2962 static inline unsigned long wait_task_inactive(struct task_struct *p, 2963 long match_state) 2964 { 2965 return 1; 2966 } 2967 #endif 2968 2969 #define tasklist_empty() \ 2970 list_empty(&init_task.tasks) 2971 2972 #define next_task(p) \ 2973 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2974 2975 #define for_each_process(p) \ 2976 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2977 2978 extern bool current_is_single_threaded(void); 2979 2980 /* 2981 * Careful: do_each_thread/while_each_thread is a double loop so 2982 * 'break' will not work as expected - use goto instead. 2983 */ 2984 #define do_each_thread(g, t) \ 2985 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2986 2987 #define while_each_thread(g, t) \ 2988 while ((t = next_thread(t)) != g) 2989 2990 #define __for_each_thread(signal, t) \ 2991 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2992 2993 #define for_each_thread(p, t) \ 2994 __for_each_thread((p)->signal, t) 2995 2996 /* Careful: this is a double loop, 'break' won't work as expected. */ 2997 #define for_each_process_thread(p, t) \ 2998 for_each_process(p) for_each_thread(p, t) 2999 3000 static inline int get_nr_threads(struct task_struct *tsk) 3001 { 3002 return tsk->signal->nr_threads; 3003 } 3004 3005 static inline bool thread_group_leader(struct task_struct *p) 3006 { 3007 return p->exit_signal >= 0; 3008 } 3009 3010 /* Do to the insanities of de_thread it is possible for a process 3011 * to have the pid of the thread group leader without actually being 3012 * the thread group leader. For iteration through the pids in proc 3013 * all we care about is that we have a task with the appropriate 3014 * pid, we don't actually care if we have the right task. 3015 */ 3016 static inline bool has_group_leader_pid(struct task_struct *p) 3017 { 3018 return task_pid(p) == p->signal->leader_pid; 3019 } 3020 3021 static inline 3022 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 3023 { 3024 return p1->signal == p2->signal; 3025 } 3026 3027 static inline struct task_struct *next_thread(const struct task_struct *p) 3028 { 3029 return list_entry_rcu(p->thread_group.next, 3030 struct task_struct, thread_group); 3031 } 3032 3033 static inline int thread_group_empty(struct task_struct *p) 3034 { 3035 return list_empty(&p->thread_group); 3036 } 3037 3038 #define delay_group_leader(p) \ 3039 (thread_group_leader(p) && !thread_group_empty(p)) 3040 3041 /* 3042 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 3043 * subscriptions and synchronises with wait4(). Also used in procfs. Also 3044 * pins the final release of task.io_context. Also protects ->cpuset and 3045 * ->cgroup.subsys[]. And ->vfork_done. 3046 * 3047 * Nests both inside and outside of read_lock(&tasklist_lock). 3048 * It must not be nested with write_lock_irq(&tasklist_lock), 3049 * neither inside nor outside. 3050 */ 3051 static inline void task_lock(struct task_struct *p) 3052 { 3053 spin_lock(&p->alloc_lock); 3054 } 3055 3056 static inline void task_unlock(struct task_struct *p) 3057 { 3058 spin_unlock(&p->alloc_lock); 3059 } 3060 3061 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 3062 unsigned long *flags); 3063 3064 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 3065 unsigned long *flags) 3066 { 3067 struct sighand_struct *ret; 3068 3069 ret = __lock_task_sighand(tsk, flags); 3070 (void)__cond_lock(&tsk->sighand->siglock, ret); 3071 return ret; 3072 } 3073 3074 static inline void unlock_task_sighand(struct task_struct *tsk, 3075 unsigned long *flags) 3076 { 3077 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 3078 } 3079 3080 /** 3081 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 3082 * @tsk: task causing the changes 3083 * 3084 * All operations which modify a threadgroup - a new thread joining the 3085 * group, death of a member thread (the assertion of PF_EXITING) and 3086 * exec(2) dethreading the process and replacing the leader - are wrapped 3087 * by threadgroup_change_{begin|end}(). This is to provide a place which 3088 * subsystems needing threadgroup stability can hook into for 3089 * synchronization. 3090 */ 3091 static inline void threadgroup_change_begin(struct task_struct *tsk) 3092 { 3093 might_sleep(); 3094 cgroup_threadgroup_change_begin(tsk); 3095 } 3096 3097 /** 3098 * threadgroup_change_end - mark the end of changes to a threadgroup 3099 * @tsk: task causing the changes 3100 * 3101 * See threadgroup_change_begin(). 3102 */ 3103 static inline void threadgroup_change_end(struct task_struct *tsk) 3104 { 3105 cgroup_threadgroup_change_end(tsk); 3106 } 3107 3108 #ifdef CONFIG_THREAD_INFO_IN_TASK 3109 3110 static inline struct thread_info *task_thread_info(struct task_struct *task) 3111 { 3112 return &task->thread_info; 3113 } 3114 3115 /* 3116 * When accessing the stack of a non-current task that might exit, use 3117 * try_get_task_stack() instead. task_stack_page will return a pointer 3118 * that could get freed out from under you. 3119 */ 3120 static inline void *task_stack_page(const struct task_struct *task) 3121 { 3122 return task->stack; 3123 } 3124 3125 #define setup_thread_stack(new,old) do { } while(0) 3126 3127 static inline unsigned long *end_of_stack(const struct task_struct *task) 3128 { 3129 return task->stack; 3130 } 3131 3132 #elif !defined(__HAVE_THREAD_FUNCTIONS) 3133 3134 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 3135 #define task_stack_page(task) ((void *)(task)->stack) 3136 3137 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 3138 { 3139 *task_thread_info(p) = *task_thread_info(org); 3140 task_thread_info(p)->task = p; 3141 } 3142 3143 /* 3144 * Return the address of the last usable long on the stack. 3145 * 3146 * When the stack grows down, this is just above the thread 3147 * info struct. Going any lower will corrupt the threadinfo. 3148 * 3149 * When the stack grows up, this is the highest address. 3150 * Beyond that position, we corrupt data on the next page. 3151 */ 3152 static inline unsigned long *end_of_stack(struct task_struct *p) 3153 { 3154 #ifdef CONFIG_STACK_GROWSUP 3155 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 3156 #else 3157 return (unsigned long *)(task_thread_info(p) + 1); 3158 #endif 3159 } 3160 3161 #endif 3162 3163 #ifdef CONFIG_THREAD_INFO_IN_TASK 3164 static inline void *try_get_task_stack(struct task_struct *tsk) 3165 { 3166 return atomic_inc_not_zero(&tsk->stack_refcount) ? 3167 task_stack_page(tsk) : NULL; 3168 } 3169 3170 extern void put_task_stack(struct task_struct *tsk); 3171 #else 3172 static inline void *try_get_task_stack(struct task_struct *tsk) 3173 { 3174 return task_stack_page(tsk); 3175 } 3176 3177 static inline void put_task_stack(struct task_struct *tsk) {} 3178 #endif 3179 3180 #define task_stack_end_corrupted(task) \ 3181 (*(end_of_stack(task)) != STACK_END_MAGIC) 3182 3183 static inline int object_is_on_stack(void *obj) 3184 { 3185 void *stack = task_stack_page(current); 3186 3187 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3188 } 3189 3190 extern void thread_stack_cache_init(void); 3191 3192 #ifdef CONFIG_DEBUG_STACK_USAGE 3193 static inline unsigned long stack_not_used(struct task_struct *p) 3194 { 3195 unsigned long *n = end_of_stack(p); 3196 3197 do { /* Skip over canary */ 3198 # ifdef CONFIG_STACK_GROWSUP 3199 n--; 3200 # else 3201 n++; 3202 # endif 3203 } while (!*n); 3204 3205 # ifdef CONFIG_STACK_GROWSUP 3206 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3207 # else 3208 return (unsigned long)n - (unsigned long)end_of_stack(p); 3209 # endif 3210 } 3211 #endif 3212 extern void set_task_stack_end_magic(struct task_struct *tsk); 3213 3214 /* set thread flags in other task's structures 3215 * - see asm/thread_info.h for TIF_xxxx flags available 3216 */ 3217 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3218 { 3219 set_ti_thread_flag(task_thread_info(tsk), flag); 3220 } 3221 3222 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3223 { 3224 clear_ti_thread_flag(task_thread_info(tsk), flag); 3225 } 3226 3227 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3228 { 3229 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3230 } 3231 3232 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3233 { 3234 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3235 } 3236 3237 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3238 { 3239 return test_ti_thread_flag(task_thread_info(tsk), flag); 3240 } 3241 3242 static inline void set_tsk_need_resched(struct task_struct *tsk) 3243 { 3244 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3245 } 3246 3247 static inline void clear_tsk_need_resched(struct task_struct *tsk) 3248 { 3249 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3250 } 3251 3252 static inline int test_tsk_need_resched(struct task_struct *tsk) 3253 { 3254 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3255 } 3256 3257 static inline int restart_syscall(void) 3258 { 3259 set_tsk_thread_flag(current, TIF_SIGPENDING); 3260 return -ERESTARTNOINTR; 3261 } 3262 3263 static inline int signal_pending(struct task_struct *p) 3264 { 3265 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3266 } 3267 3268 static inline int __fatal_signal_pending(struct task_struct *p) 3269 { 3270 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3271 } 3272 3273 static inline int fatal_signal_pending(struct task_struct *p) 3274 { 3275 return signal_pending(p) && __fatal_signal_pending(p); 3276 } 3277 3278 static inline int signal_pending_state(long state, struct task_struct *p) 3279 { 3280 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3281 return 0; 3282 if (!signal_pending(p)) 3283 return 0; 3284 3285 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3286 } 3287 3288 /* 3289 * cond_resched() and cond_resched_lock(): latency reduction via 3290 * explicit rescheduling in places that are safe. The return 3291 * value indicates whether a reschedule was done in fact. 3292 * cond_resched_lock() will drop the spinlock before scheduling, 3293 * cond_resched_softirq() will enable bhs before scheduling. 3294 */ 3295 #ifndef CONFIG_PREEMPT 3296 extern int _cond_resched(void); 3297 #else 3298 static inline int _cond_resched(void) { return 0; } 3299 #endif 3300 3301 #define cond_resched() ({ \ 3302 ___might_sleep(__FILE__, __LINE__, 0); \ 3303 _cond_resched(); \ 3304 }) 3305 3306 extern int __cond_resched_lock(spinlock_t *lock); 3307 3308 #define cond_resched_lock(lock) ({ \ 3309 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3310 __cond_resched_lock(lock); \ 3311 }) 3312 3313 extern int __cond_resched_softirq(void); 3314 3315 #define cond_resched_softirq() ({ \ 3316 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3317 __cond_resched_softirq(); \ 3318 }) 3319 3320 static inline void cond_resched_rcu(void) 3321 { 3322 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3323 rcu_read_unlock(); 3324 cond_resched(); 3325 rcu_read_lock(); 3326 #endif 3327 } 3328 3329 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3330 { 3331 #ifdef CONFIG_DEBUG_PREEMPT 3332 return p->preempt_disable_ip; 3333 #else 3334 return 0; 3335 #endif 3336 } 3337 3338 /* 3339 * Does a critical section need to be broken due to another 3340 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3341 * but a general need for low latency) 3342 */ 3343 static inline int spin_needbreak(spinlock_t *lock) 3344 { 3345 #ifdef CONFIG_PREEMPT 3346 return spin_is_contended(lock); 3347 #else 3348 return 0; 3349 #endif 3350 } 3351 3352 /* 3353 * Idle thread specific functions to determine the need_resched 3354 * polling state. 3355 */ 3356 #ifdef TIF_POLLING_NRFLAG 3357 static inline int tsk_is_polling(struct task_struct *p) 3358 { 3359 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3360 } 3361 3362 static inline void __current_set_polling(void) 3363 { 3364 set_thread_flag(TIF_POLLING_NRFLAG); 3365 } 3366 3367 static inline bool __must_check current_set_polling_and_test(void) 3368 { 3369 __current_set_polling(); 3370 3371 /* 3372 * Polling state must be visible before we test NEED_RESCHED, 3373 * paired by resched_curr() 3374 */ 3375 smp_mb__after_atomic(); 3376 3377 return unlikely(tif_need_resched()); 3378 } 3379 3380 static inline void __current_clr_polling(void) 3381 { 3382 clear_thread_flag(TIF_POLLING_NRFLAG); 3383 } 3384 3385 static inline bool __must_check current_clr_polling_and_test(void) 3386 { 3387 __current_clr_polling(); 3388 3389 /* 3390 * Polling state must be visible before we test NEED_RESCHED, 3391 * paired by resched_curr() 3392 */ 3393 smp_mb__after_atomic(); 3394 3395 return unlikely(tif_need_resched()); 3396 } 3397 3398 #else 3399 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3400 static inline void __current_set_polling(void) { } 3401 static inline void __current_clr_polling(void) { } 3402 3403 static inline bool __must_check current_set_polling_and_test(void) 3404 { 3405 return unlikely(tif_need_resched()); 3406 } 3407 static inline bool __must_check current_clr_polling_and_test(void) 3408 { 3409 return unlikely(tif_need_resched()); 3410 } 3411 #endif 3412 3413 static inline void current_clr_polling(void) 3414 { 3415 __current_clr_polling(); 3416 3417 /* 3418 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3419 * Once the bit is cleared, we'll get IPIs with every new 3420 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3421 * fold. 3422 */ 3423 smp_mb(); /* paired with resched_curr() */ 3424 3425 preempt_fold_need_resched(); 3426 } 3427 3428 static __always_inline bool need_resched(void) 3429 { 3430 return unlikely(tif_need_resched()); 3431 } 3432 3433 /* 3434 * Thread group CPU time accounting. 3435 */ 3436 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3437 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3438 3439 /* 3440 * Reevaluate whether the task has signals pending delivery. 3441 * Wake the task if so. 3442 * This is required every time the blocked sigset_t changes. 3443 * callers must hold sighand->siglock. 3444 */ 3445 extern void recalc_sigpending_and_wake(struct task_struct *t); 3446 extern void recalc_sigpending(void); 3447 3448 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3449 3450 static inline void signal_wake_up(struct task_struct *t, bool resume) 3451 { 3452 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3453 } 3454 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3455 { 3456 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3457 } 3458 3459 /* 3460 * Wrappers for p->thread_info->cpu access. No-op on UP. 3461 */ 3462 #ifdef CONFIG_SMP 3463 3464 static inline unsigned int task_cpu(const struct task_struct *p) 3465 { 3466 #ifdef CONFIG_THREAD_INFO_IN_TASK 3467 return p->cpu; 3468 #else 3469 return task_thread_info(p)->cpu; 3470 #endif 3471 } 3472 3473 static inline int task_node(const struct task_struct *p) 3474 { 3475 return cpu_to_node(task_cpu(p)); 3476 } 3477 3478 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3479 3480 #else 3481 3482 static inline unsigned int task_cpu(const struct task_struct *p) 3483 { 3484 return 0; 3485 } 3486 3487 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3488 { 3489 } 3490 3491 #endif /* CONFIG_SMP */ 3492 3493 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3494 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3495 3496 #ifdef CONFIG_CGROUP_SCHED 3497 extern struct task_group root_task_group; 3498 #endif /* CONFIG_CGROUP_SCHED */ 3499 3500 extern int task_can_switch_user(struct user_struct *up, 3501 struct task_struct *tsk); 3502 3503 #ifdef CONFIG_TASK_XACCT 3504 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3505 { 3506 tsk->ioac.rchar += amt; 3507 } 3508 3509 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3510 { 3511 tsk->ioac.wchar += amt; 3512 } 3513 3514 static inline void inc_syscr(struct task_struct *tsk) 3515 { 3516 tsk->ioac.syscr++; 3517 } 3518 3519 static inline void inc_syscw(struct task_struct *tsk) 3520 { 3521 tsk->ioac.syscw++; 3522 } 3523 #else 3524 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3525 { 3526 } 3527 3528 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3529 { 3530 } 3531 3532 static inline void inc_syscr(struct task_struct *tsk) 3533 { 3534 } 3535 3536 static inline void inc_syscw(struct task_struct *tsk) 3537 { 3538 } 3539 #endif 3540 3541 #ifndef TASK_SIZE_OF 3542 #define TASK_SIZE_OF(tsk) TASK_SIZE 3543 #endif 3544 3545 #ifdef CONFIG_MEMCG 3546 extern void mm_update_next_owner(struct mm_struct *mm); 3547 #else 3548 static inline void mm_update_next_owner(struct mm_struct *mm) 3549 { 3550 } 3551 #endif /* CONFIG_MEMCG */ 3552 3553 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3554 unsigned int limit) 3555 { 3556 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3557 } 3558 3559 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3560 unsigned int limit) 3561 { 3562 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3563 } 3564 3565 static inline unsigned long rlimit(unsigned int limit) 3566 { 3567 return task_rlimit(current, limit); 3568 } 3569 3570 static inline unsigned long rlimit_max(unsigned int limit) 3571 { 3572 return task_rlimit_max(current, limit); 3573 } 3574 3575 #define SCHED_CPUFREQ_RT (1U << 0) 3576 #define SCHED_CPUFREQ_DL (1U << 1) 3577 #define SCHED_CPUFREQ_IOWAIT (1U << 2) 3578 3579 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL) 3580 3581 #ifdef CONFIG_CPU_FREQ 3582 struct update_util_data { 3583 void (*func)(struct update_util_data *data, u64 time, unsigned int flags); 3584 }; 3585 3586 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3587 void (*func)(struct update_util_data *data, u64 time, 3588 unsigned int flags)); 3589 void cpufreq_remove_update_util_hook(int cpu); 3590 #endif /* CONFIG_CPU_FREQ */ 3591 3592 #endif 3593