xref: /linux/include/linux/sched.h (revision d8ea757b25ec82687c497fc90aa83f9bcea24b5b)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47 
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62 
63 #include <asm/processor.h>
64 
65 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
66 
67 /*
68  * Extended scheduling parameters data structure.
69  *
70  * This is needed because the original struct sched_param can not be
71  * altered without introducing ABI issues with legacy applications
72  * (e.g., in sched_getparam()).
73  *
74  * However, the possibility of specifying more than just a priority for
75  * the tasks may be useful for a wide variety of application fields, e.g.,
76  * multimedia, streaming, automation and control, and many others.
77  *
78  * This variant (sched_attr) is meant at describing a so-called
79  * sporadic time-constrained task. In such model a task is specified by:
80  *  - the activation period or minimum instance inter-arrival time;
81  *  - the maximum (or average, depending on the actual scheduling
82  *    discipline) computation time of all instances, a.k.a. runtime;
83  *  - the deadline (relative to the actual activation time) of each
84  *    instance.
85  * Very briefly, a periodic (sporadic) task asks for the execution of
86  * some specific computation --which is typically called an instance--
87  * (at most) every period. Moreover, each instance typically lasts no more
88  * than the runtime and must be completed by time instant t equal to
89  * the instance activation time + the deadline.
90  *
91  * This is reflected by the actual fields of the sched_attr structure:
92  *
93  *  @size		size of the structure, for fwd/bwd compat.
94  *
95  *  @sched_policy	task's scheduling policy
96  *  @sched_flags	for customizing the scheduler behaviour
97  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
98  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
99  *  @sched_deadline	representative of the task's deadline
100  *  @sched_runtime	representative of the task's runtime
101  *  @sched_period	representative of the task's period
102  *
103  * Given this task model, there are a multiplicity of scheduling algorithms
104  * and policies, that can be used to ensure all the tasks will make their
105  * timing constraints.
106  *
107  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108  * only user of this new interface. More information about the algorithm
109  * available in the scheduling class file or in Documentation/.
110  */
111 struct sched_attr {
112 	u32 size;
113 
114 	u32 sched_policy;
115 	u64 sched_flags;
116 
117 	/* SCHED_NORMAL, SCHED_BATCH */
118 	s32 sched_nice;
119 
120 	/* SCHED_FIFO, SCHED_RR */
121 	u32 sched_priority;
122 
123 	/* SCHED_DEADLINE */
124 	u64 sched_runtime;
125 	u64 sched_deadline;
126 	u64 sched_period;
127 };
128 
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137 
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141 
142 /*
143  * These are the constant used to fake the fixed-point load-average
144  * counting. Some notes:
145  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
146  *    a load-average precision of 10 bits integer + 11 bits fractional
147  *  - if you want to count load-averages more often, you need more
148  *    precision, or rounding will get you. With 2-second counting freq,
149  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
150  *    11 bit fractions.
151  */
152 extern unsigned long avenrun[];		/* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154 
155 #define FSHIFT		11		/* nr of bits of precision */
156 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
157 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
158 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5		2014		/* 1/exp(5sec/5min) */
160 #define EXP_15		2037		/* 1/exp(5sec/15min) */
161 
162 #define CALC_LOAD(load,exp,n) \
163 	load *= exp; \
164 	load += n*(FIXED_1-exp); \
165 	load >>= FSHIFT;
166 
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176 
177 extern void calc_global_load(unsigned long ticks);
178 
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void cpu_load_update_nohz_start(void);
181 extern void cpu_load_update_nohz_stop(void);
182 #else
183 static inline void cpu_load_update_nohz_start(void) { }
184 static inline void cpu_load_update_nohz_stop(void) { }
185 #endif
186 
187 extern void dump_cpu_task(int cpu);
188 
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196 
197 /*
198  * Task state bitmask. NOTE! These bits are also
199  * encoded in fs/proc/array.c: get_task_state().
200  *
201  * We have two separate sets of flags: task->state
202  * is about runnability, while task->exit_state are
203  * about the task exiting. Confusing, but this way
204  * modifying one set can't modify the other one by
205  * mistake.
206  */
207 #define TASK_RUNNING		0
208 #define TASK_INTERRUPTIBLE	1
209 #define TASK_UNINTERRUPTIBLE	2
210 #define __TASK_STOPPED		4
211 #define __TASK_TRACED		8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD		16
214 #define EXIT_ZOMBIE		32
215 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD		64
218 #define TASK_WAKEKILL		128
219 #define TASK_WAKING		256
220 #define TASK_PARKED		512
221 #define TASK_NOLOAD		1024
222 #define TASK_NEW		2048
223 #define TASK_STATE_MAX		4096
224 
225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
226 
227 extern char ___assert_task_state[1 - 2*!!(
228 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
229 
230 /* Convenience macros for the sake of set_task_state */
231 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
233 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
234 
235 #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236 
237 /* Convenience macros for the sake of wake_up */
238 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
239 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
240 
241 /* get_task_state() */
242 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
243 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
244 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
245 
246 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
247 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
248 #define task_is_stopped_or_traced(task)	\
249 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
250 #define task_contributes_to_load(task)	\
251 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
252 				 (task->flags & PF_FROZEN) == 0 && \
253 				 (task->state & TASK_NOLOAD) == 0)
254 
255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256 
257 #define __set_task_state(tsk, state_value)			\
258 	do {							\
259 		(tsk)->task_state_change = _THIS_IP_;		\
260 		(tsk)->state = (state_value);			\
261 	} while (0)
262 #define set_task_state(tsk, state_value)			\
263 	do {							\
264 		(tsk)->task_state_change = _THIS_IP_;		\
265 		smp_store_mb((tsk)->state, (state_value));		\
266 	} while (0)
267 
268 /*
269  * set_current_state() includes a barrier so that the write of current->state
270  * is correctly serialised wrt the caller's subsequent test of whether to
271  * actually sleep:
272  *
273  *	set_current_state(TASK_UNINTERRUPTIBLE);
274  *	if (do_i_need_to_sleep())
275  *		schedule();
276  *
277  * If the caller does not need such serialisation then use __set_current_state()
278  */
279 #define __set_current_state(state_value)			\
280 	do {							\
281 		current->task_state_change = _THIS_IP_;		\
282 		current->state = (state_value);			\
283 	} while (0)
284 #define set_current_state(state_value)				\
285 	do {							\
286 		current->task_state_change = _THIS_IP_;		\
287 		smp_store_mb(current->state, (state_value));		\
288 	} while (0)
289 
290 #else
291 
292 #define __set_task_state(tsk, state_value)		\
293 	do { (tsk)->state = (state_value); } while (0)
294 #define set_task_state(tsk, state_value)		\
295 	smp_store_mb((tsk)->state, (state_value))
296 
297 /*
298  * set_current_state() includes a barrier so that the write of current->state
299  * is correctly serialised wrt the caller's subsequent test of whether to
300  * actually sleep:
301  *
302  *	set_current_state(TASK_UNINTERRUPTIBLE);
303  *	if (do_i_need_to_sleep())
304  *		schedule();
305  *
306  * If the caller does not need such serialisation then use __set_current_state()
307  */
308 #define __set_current_state(state_value)		\
309 	do { current->state = (state_value); } while (0)
310 #define set_current_state(state_value)			\
311 	smp_store_mb(current->state, (state_value))
312 
313 #endif
314 
315 /* Task command name length */
316 #define TASK_COMM_LEN 16
317 
318 #include <linux/spinlock.h>
319 
320 /*
321  * This serializes "schedule()" and also protects
322  * the run-queue from deletions/modifications (but
323  * _adding_ to the beginning of the run-queue has
324  * a separate lock).
325  */
326 extern rwlock_t tasklist_lock;
327 extern spinlock_t mmlist_lock;
328 
329 struct task_struct;
330 
331 #ifdef CONFIG_PROVE_RCU
332 extern int lockdep_tasklist_lock_is_held(void);
333 #endif /* #ifdef CONFIG_PROVE_RCU */
334 
335 extern void sched_init(void);
336 extern void sched_init_smp(void);
337 extern asmlinkage void schedule_tail(struct task_struct *prev);
338 extern void init_idle(struct task_struct *idle, int cpu);
339 extern void init_idle_bootup_task(struct task_struct *idle);
340 
341 extern cpumask_var_t cpu_isolated_map;
342 
343 extern int runqueue_is_locked(int cpu);
344 
345 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
346 extern void nohz_balance_enter_idle(int cpu);
347 extern void set_cpu_sd_state_idle(void);
348 extern int get_nohz_timer_target(void);
349 #else
350 static inline void nohz_balance_enter_idle(int cpu) { }
351 static inline void set_cpu_sd_state_idle(void) { }
352 #endif
353 
354 /*
355  * Only dump TASK_* tasks. (0 for all tasks)
356  */
357 extern void show_state_filter(unsigned long state_filter);
358 
359 static inline void show_state(void)
360 {
361 	show_state_filter(0);
362 }
363 
364 extern void show_regs(struct pt_regs *);
365 
366 /*
367  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368  * task), SP is the stack pointer of the first frame that should be shown in the back
369  * trace (or NULL if the entire call-chain of the task should be shown).
370  */
371 extern void show_stack(struct task_struct *task, unsigned long *sp);
372 
373 extern void cpu_init (void);
374 extern void trap_init(void);
375 extern void update_process_times(int user);
376 extern void scheduler_tick(void);
377 extern int sched_cpu_starting(unsigned int cpu);
378 extern int sched_cpu_activate(unsigned int cpu);
379 extern int sched_cpu_deactivate(unsigned int cpu);
380 
381 #ifdef CONFIG_HOTPLUG_CPU
382 extern int sched_cpu_dying(unsigned int cpu);
383 #else
384 # define sched_cpu_dying	NULL
385 #endif
386 
387 extern void sched_show_task(struct task_struct *p);
388 
389 #ifdef CONFIG_LOCKUP_DETECTOR
390 extern void touch_softlockup_watchdog_sched(void);
391 extern void touch_softlockup_watchdog(void);
392 extern void touch_softlockup_watchdog_sync(void);
393 extern void touch_all_softlockup_watchdogs(void);
394 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 				  void __user *buffer,
396 				  size_t *lenp, loff_t *ppos);
397 extern unsigned int  softlockup_panic;
398 extern unsigned int  hardlockup_panic;
399 void lockup_detector_init(void);
400 #else
401 static inline void touch_softlockup_watchdog_sched(void)
402 {
403 }
404 static inline void touch_softlockup_watchdog(void)
405 {
406 }
407 static inline void touch_softlockup_watchdog_sync(void)
408 {
409 }
410 static inline void touch_all_softlockup_watchdogs(void)
411 {
412 }
413 static inline void lockup_detector_init(void)
414 {
415 }
416 #endif
417 
418 #ifdef CONFIG_DETECT_HUNG_TASK
419 void reset_hung_task_detector(void);
420 #else
421 static inline void reset_hung_task_detector(void)
422 {
423 }
424 #endif
425 
426 /* Attach to any functions which should be ignored in wchan output. */
427 #define __sched		__attribute__((__section__(".sched.text")))
428 
429 /* Linker adds these: start and end of __sched functions */
430 extern char __sched_text_start[], __sched_text_end[];
431 
432 /* Is this address in the __sched functions? */
433 extern int in_sched_functions(unsigned long addr);
434 
435 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
436 extern signed long schedule_timeout(signed long timeout);
437 extern signed long schedule_timeout_interruptible(signed long timeout);
438 extern signed long schedule_timeout_killable(signed long timeout);
439 extern signed long schedule_timeout_uninterruptible(signed long timeout);
440 extern signed long schedule_timeout_idle(signed long timeout);
441 asmlinkage void schedule(void);
442 extern void schedule_preempt_disabled(void);
443 
444 extern long io_schedule_timeout(long timeout);
445 
446 static inline void io_schedule(void)
447 {
448 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449 }
450 
451 void __noreturn do_task_dead(void);
452 
453 struct nsproxy;
454 struct user_namespace;
455 
456 #ifdef CONFIG_MMU
457 extern void arch_pick_mmap_layout(struct mm_struct *mm);
458 extern unsigned long
459 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
460 		       unsigned long, unsigned long);
461 extern unsigned long
462 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
463 			  unsigned long len, unsigned long pgoff,
464 			  unsigned long flags);
465 #else
466 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
467 #endif
468 
469 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
470 #define SUID_DUMP_USER		1	/* Dump as user of process */
471 #define SUID_DUMP_ROOT		2	/* Dump as root */
472 
473 /* mm flags */
474 
475 /* for SUID_DUMP_* above */
476 #define MMF_DUMPABLE_BITS 2
477 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
478 
479 extern void set_dumpable(struct mm_struct *mm, int value);
480 /*
481  * This returns the actual value of the suid_dumpable flag. For things
482  * that are using this for checking for privilege transitions, it must
483  * test against SUID_DUMP_USER rather than treating it as a boolean
484  * value.
485  */
486 static inline int __get_dumpable(unsigned long mm_flags)
487 {
488 	return mm_flags & MMF_DUMPABLE_MASK;
489 }
490 
491 static inline int get_dumpable(struct mm_struct *mm)
492 {
493 	return __get_dumpable(mm->flags);
494 }
495 
496 /* coredump filter bits */
497 #define MMF_DUMP_ANON_PRIVATE	2
498 #define MMF_DUMP_ANON_SHARED	3
499 #define MMF_DUMP_MAPPED_PRIVATE	4
500 #define MMF_DUMP_MAPPED_SHARED	5
501 #define MMF_DUMP_ELF_HEADERS	6
502 #define MMF_DUMP_HUGETLB_PRIVATE 7
503 #define MMF_DUMP_HUGETLB_SHARED  8
504 #define MMF_DUMP_DAX_PRIVATE	9
505 #define MMF_DUMP_DAX_SHARED	10
506 
507 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
508 #define MMF_DUMP_FILTER_BITS	9
509 #define MMF_DUMP_FILTER_MASK \
510 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
511 #define MMF_DUMP_FILTER_DEFAULT \
512 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
513 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
514 
515 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
516 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
517 #else
518 # define MMF_DUMP_MASK_DEFAULT_ELF	0
519 #endif
520 					/* leave room for more dump flags */
521 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
522 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
523 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
524 
525 #define MMF_HAS_UPROBES		19	/* has uprobes */
526 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
527 #define MMF_OOM_REAPED		21	/* mm has been already reaped */
528 #define MMF_OOM_NOT_REAPABLE	22	/* mm couldn't be reaped */
529 
530 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
531 
532 struct sighand_struct {
533 	atomic_t		count;
534 	struct k_sigaction	action[_NSIG];
535 	spinlock_t		siglock;
536 	wait_queue_head_t	signalfd_wqh;
537 };
538 
539 struct pacct_struct {
540 	int			ac_flag;
541 	long			ac_exitcode;
542 	unsigned long		ac_mem;
543 	cputime_t		ac_utime, ac_stime;
544 	unsigned long		ac_minflt, ac_majflt;
545 };
546 
547 struct cpu_itimer {
548 	cputime_t expires;
549 	cputime_t incr;
550 	u32 error;
551 	u32 incr_error;
552 };
553 
554 /**
555  * struct prev_cputime - snaphsot of system and user cputime
556  * @utime: time spent in user mode
557  * @stime: time spent in system mode
558  * @lock: protects the above two fields
559  *
560  * Stores previous user/system time values such that we can guarantee
561  * monotonicity.
562  */
563 struct prev_cputime {
564 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
565 	cputime_t utime;
566 	cputime_t stime;
567 	raw_spinlock_t lock;
568 #endif
569 };
570 
571 static inline void prev_cputime_init(struct prev_cputime *prev)
572 {
573 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
574 	prev->utime = prev->stime = 0;
575 	raw_spin_lock_init(&prev->lock);
576 #endif
577 }
578 
579 /**
580  * struct task_cputime - collected CPU time counts
581  * @utime:		time spent in user mode, in &cputime_t units
582  * @stime:		time spent in kernel mode, in &cputime_t units
583  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
584  *
585  * This structure groups together three kinds of CPU time that are tracked for
586  * threads and thread groups.  Most things considering CPU time want to group
587  * these counts together and treat all three of them in parallel.
588  */
589 struct task_cputime {
590 	cputime_t utime;
591 	cputime_t stime;
592 	unsigned long long sum_exec_runtime;
593 };
594 
595 /* Alternate field names when used to cache expirations. */
596 #define virt_exp	utime
597 #define prof_exp	stime
598 #define sched_exp	sum_exec_runtime
599 
600 #define INIT_CPUTIME	\
601 	(struct task_cputime) {					\
602 		.utime = 0,					\
603 		.stime = 0,					\
604 		.sum_exec_runtime = 0,				\
605 	}
606 
607 /*
608  * This is the atomic variant of task_cputime, which can be used for
609  * storing and updating task_cputime statistics without locking.
610  */
611 struct task_cputime_atomic {
612 	atomic64_t utime;
613 	atomic64_t stime;
614 	atomic64_t sum_exec_runtime;
615 };
616 
617 #define INIT_CPUTIME_ATOMIC \
618 	(struct task_cputime_atomic) {				\
619 		.utime = ATOMIC64_INIT(0),			\
620 		.stime = ATOMIC64_INIT(0),			\
621 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
622 	}
623 
624 #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
625 
626 /*
627  * Disable preemption until the scheduler is running -- use an unconditional
628  * value so that it also works on !PREEMPT_COUNT kernels.
629  *
630  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
631  */
632 #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
633 
634 /*
635  * Initial preempt_count value; reflects the preempt_count schedule invariant
636  * which states that during context switches:
637  *
638  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
639  *
640  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
641  * Note: See finish_task_switch().
642  */
643 #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
644 
645 /**
646  * struct thread_group_cputimer - thread group interval timer counts
647  * @cputime_atomic:	atomic thread group interval timers.
648  * @running:		true when there are timers running and
649  *			@cputime_atomic receives updates.
650  * @checking_timer:	true when a thread in the group is in the
651  *			process of checking for thread group timers.
652  *
653  * This structure contains the version of task_cputime, above, that is
654  * used for thread group CPU timer calculations.
655  */
656 struct thread_group_cputimer {
657 	struct task_cputime_atomic cputime_atomic;
658 	bool running;
659 	bool checking_timer;
660 };
661 
662 #include <linux/rwsem.h>
663 struct autogroup;
664 
665 /*
666  * NOTE! "signal_struct" does not have its own
667  * locking, because a shared signal_struct always
668  * implies a shared sighand_struct, so locking
669  * sighand_struct is always a proper superset of
670  * the locking of signal_struct.
671  */
672 struct signal_struct {
673 	atomic_t		sigcnt;
674 	atomic_t		live;
675 	int			nr_threads;
676 	atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
677 	struct list_head	thread_head;
678 
679 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
680 
681 	/* current thread group signal load-balancing target: */
682 	struct task_struct	*curr_target;
683 
684 	/* shared signal handling: */
685 	struct sigpending	shared_pending;
686 
687 	/* thread group exit support */
688 	int			group_exit_code;
689 	/* overloaded:
690 	 * - notify group_exit_task when ->count is equal to notify_count
691 	 * - everyone except group_exit_task is stopped during signal delivery
692 	 *   of fatal signals, group_exit_task processes the signal.
693 	 */
694 	int			notify_count;
695 	struct task_struct	*group_exit_task;
696 
697 	/* thread group stop support, overloads group_exit_code too */
698 	int			group_stop_count;
699 	unsigned int		flags; /* see SIGNAL_* flags below */
700 
701 	/*
702 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
703 	 * manager, to re-parent orphan (double-forking) child processes
704 	 * to this process instead of 'init'. The service manager is
705 	 * able to receive SIGCHLD signals and is able to investigate
706 	 * the process until it calls wait(). All children of this
707 	 * process will inherit a flag if they should look for a
708 	 * child_subreaper process at exit.
709 	 */
710 	unsigned int		is_child_subreaper:1;
711 	unsigned int		has_child_subreaper:1;
712 
713 	/* POSIX.1b Interval Timers */
714 	int			posix_timer_id;
715 	struct list_head	posix_timers;
716 
717 	/* ITIMER_REAL timer for the process */
718 	struct hrtimer real_timer;
719 	struct pid *leader_pid;
720 	ktime_t it_real_incr;
721 
722 	/*
723 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
724 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
725 	 * values are defined to 0 and 1 respectively
726 	 */
727 	struct cpu_itimer it[2];
728 
729 	/*
730 	 * Thread group totals for process CPU timers.
731 	 * See thread_group_cputimer(), et al, for details.
732 	 */
733 	struct thread_group_cputimer cputimer;
734 
735 	/* Earliest-expiration cache. */
736 	struct task_cputime cputime_expires;
737 
738 #ifdef CONFIG_NO_HZ_FULL
739 	atomic_t tick_dep_mask;
740 #endif
741 
742 	struct list_head cpu_timers[3];
743 
744 	struct pid *tty_old_pgrp;
745 
746 	/* boolean value for session group leader */
747 	int leader;
748 
749 	struct tty_struct *tty; /* NULL if no tty */
750 
751 #ifdef CONFIG_SCHED_AUTOGROUP
752 	struct autogroup *autogroup;
753 #endif
754 	/*
755 	 * Cumulative resource counters for dead threads in the group,
756 	 * and for reaped dead child processes forked by this group.
757 	 * Live threads maintain their own counters and add to these
758 	 * in __exit_signal, except for the group leader.
759 	 */
760 	seqlock_t stats_lock;
761 	cputime_t utime, stime, cutime, cstime;
762 	cputime_t gtime;
763 	cputime_t cgtime;
764 	struct prev_cputime prev_cputime;
765 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
766 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
767 	unsigned long inblock, oublock, cinblock, coublock;
768 	unsigned long maxrss, cmaxrss;
769 	struct task_io_accounting ioac;
770 
771 	/*
772 	 * Cumulative ns of schedule CPU time fo dead threads in the
773 	 * group, not including a zombie group leader, (This only differs
774 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
775 	 * other than jiffies.)
776 	 */
777 	unsigned long long sum_sched_runtime;
778 
779 	/*
780 	 * We don't bother to synchronize most readers of this at all,
781 	 * because there is no reader checking a limit that actually needs
782 	 * to get both rlim_cur and rlim_max atomically, and either one
783 	 * alone is a single word that can safely be read normally.
784 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
785 	 * protect this instead of the siglock, because they really
786 	 * have no need to disable irqs.
787 	 */
788 	struct rlimit rlim[RLIM_NLIMITS];
789 
790 #ifdef CONFIG_BSD_PROCESS_ACCT
791 	struct pacct_struct pacct;	/* per-process accounting information */
792 #endif
793 #ifdef CONFIG_TASKSTATS
794 	struct taskstats *stats;
795 #endif
796 #ifdef CONFIG_AUDIT
797 	unsigned audit_tty;
798 	struct tty_audit_buf *tty_audit_buf;
799 #endif
800 
801 	/*
802 	 * Thread is the potential origin of an oom condition; kill first on
803 	 * oom
804 	 */
805 	bool oom_flag_origin;
806 	short oom_score_adj;		/* OOM kill score adjustment */
807 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
808 					 * Only settable by CAP_SYS_RESOURCE. */
809 
810 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
811 					 * credential calculations
812 					 * (notably. ptrace) */
813 };
814 
815 /*
816  * Bits in flags field of signal_struct.
817  */
818 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
819 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
820 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
821 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
822 /*
823  * Pending notifications to parent.
824  */
825 #define SIGNAL_CLD_STOPPED	0x00000010
826 #define SIGNAL_CLD_CONTINUED	0x00000020
827 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
828 
829 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
830 
831 /* If true, all threads except ->group_exit_task have pending SIGKILL */
832 static inline int signal_group_exit(const struct signal_struct *sig)
833 {
834 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
835 		(sig->group_exit_task != NULL);
836 }
837 
838 /*
839  * Some day this will be a full-fledged user tracking system..
840  */
841 struct user_struct {
842 	atomic_t __count;	/* reference count */
843 	atomic_t processes;	/* How many processes does this user have? */
844 	atomic_t sigpending;	/* How many pending signals does this user have? */
845 #ifdef CONFIG_INOTIFY_USER
846 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
847 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
848 #endif
849 #ifdef CONFIG_FANOTIFY
850 	atomic_t fanotify_listeners;
851 #endif
852 #ifdef CONFIG_EPOLL
853 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
854 #endif
855 #ifdef CONFIG_POSIX_MQUEUE
856 	/* protected by mq_lock	*/
857 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
858 #endif
859 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
860 	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
861 	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
862 
863 #ifdef CONFIG_KEYS
864 	struct key *uid_keyring;	/* UID specific keyring */
865 	struct key *session_keyring;	/* UID's default session keyring */
866 #endif
867 
868 	/* Hash table maintenance information */
869 	struct hlist_node uidhash_node;
870 	kuid_t uid;
871 
872 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
873 	atomic_long_t locked_vm;
874 #endif
875 };
876 
877 extern int uids_sysfs_init(void);
878 
879 extern struct user_struct *find_user(kuid_t);
880 
881 extern struct user_struct root_user;
882 #define INIT_USER (&root_user)
883 
884 
885 struct backing_dev_info;
886 struct reclaim_state;
887 
888 #ifdef CONFIG_SCHED_INFO
889 struct sched_info {
890 	/* cumulative counters */
891 	unsigned long pcount;	      /* # of times run on this cpu */
892 	unsigned long long run_delay; /* time spent waiting on a runqueue */
893 
894 	/* timestamps */
895 	unsigned long long last_arrival,/* when we last ran on a cpu */
896 			   last_queued;	/* when we were last queued to run */
897 };
898 #endif /* CONFIG_SCHED_INFO */
899 
900 #ifdef CONFIG_TASK_DELAY_ACCT
901 struct task_delay_info {
902 	spinlock_t	lock;
903 	unsigned int	flags;	/* Private per-task flags */
904 
905 	/* For each stat XXX, add following, aligned appropriately
906 	 *
907 	 * struct timespec XXX_start, XXX_end;
908 	 * u64 XXX_delay;
909 	 * u32 XXX_count;
910 	 *
911 	 * Atomicity of updates to XXX_delay, XXX_count protected by
912 	 * single lock above (split into XXX_lock if contention is an issue).
913 	 */
914 
915 	/*
916 	 * XXX_count is incremented on every XXX operation, the delay
917 	 * associated with the operation is added to XXX_delay.
918 	 * XXX_delay contains the accumulated delay time in nanoseconds.
919 	 */
920 	u64 blkio_start;	/* Shared by blkio, swapin */
921 	u64 blkio_delay;	/* wait for sync block io completion */
922 	u64 swapin_delay;	/* wait for swapin block io completion */
923 	u32 blkio_count;	/* total count of the number of sync block */
924 				/* io operations performed */
925 	u32 swapin_count;	/* total count of the number of swapin block */
926 				/* io operations performed */
927 
928 	u64 freepages_start;
929 	u64 freepages_delay;	/* wait for memory reclaim */
930 	u32 freepages_count;	/* total count of memory reclaim */
931 };
932 #endif	/* CONFIG_TASK_DELAY_ACCT */
933 
934 static inline int sched_info_on(void)
935 {
936 #ifdef CONFIG_SCHEDSTATS
937 	return 1;
938 #elif defined(CONFIG_TASK_DELAY_ACCT)
939 	extern int delayacct_on;
940 	return delayacct_on;
941 #else
942 	return 0;
943 #endif
944 }
945 
946 #ifdef CONFIG_SCHEDSTATS
947 void force_schedstat_enabled(void);
948 #endif
949 
950 enum cpu_idle_type {
951 	CPU_IDLE,
952 	CPU_NOT_IDLE,
953 	CPU_NEWLY_IDLE,
954 	CPU_MAX_IDLE_TYPES
955 };
956 
957 /*
958  * Integer metrics need fixed point arithmetic, e.g., sched/fair
959  * has a few: load, load_avg, util_avg, freq, and capacity.
960  *
961  * We define a basic fixed point arithmetic range, and then formalize
962  * all these metrics based on that basic range.
963  */
964 # define SCHED_FIXEDPOINT_SHIFT	10
965 # define SCHED_FIXEDPOINT_SCALE	(1L << SCHED_FIXEDPOINT_SHIFT)
966 
967 /*
968  * Increase resolution of cpu_capacity calculations
969  */
970 #define SCHED_CAPACITY_SHIFT	SCHED_FIXEDPOINT_SHIFT
971 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
972 
973 /*
974  * Wake-queues are lists of tasks with a pending wakeup, whose
975  * callers have already marked the task as woken internally,
976  * and can thus carry on. A common use case is being able to
977  * do the wakeups once the corresponding user lock as been
978  * released.
979  *
980  * We hold reference to each task in the list across the wakeup,
981  * thus guaranteeing that the memory is still valid by the time
982  * the actual wakeups are performed in wake_up_q().
983  *
984  * One per task suffices, because there's never a need for a task to be
985  * in two wake queues simultaneously; it is forbidden to abandon a task
986  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
987  * already in a wake queue, the wakeup will happen soon and the second
988  * waker can just skip it.
989  *
990  * The WAKE_Q macro declares and initializes the list head.
991  * wake_up_q() does NOT reinitialize the list; it's expected to be
992  * called near the end of a function, where the fact that the queue is
993  * not used again will be easy to see by inspection.
994  *
995  * Note that this can cause spurious wakeups. schedule() callers
996  * must ensure the call is done inside a loop, confirming that the
997  * wakeup condition has in fact occurred.
998  */
999 struct wake_q_node {
1000 	struct wake_q_node *next;
1001 };
1002 
1003 struct wake_q_head {
1004 	struct wake_q_node *first;
1005 	struct wake_q_node **lastp;
1006 };
1007 
1008 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1009 
1010 #define WAKE_Q(name)					\
1011 	struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1012 
1013 extern void wake_q_add(struct wake_q_head *head,
1014 		       struct task_struct *task);
1015 extern void wake_up_q(struct wake_q_head *head);
1016 
1017 /*
1018  * sched-domains (multiprocessor balancing) declarations:
1019  */
1020 #ifdef CONFIG_SMP
1021 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
1022 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
1023 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
1024 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
1025 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
1026 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
1027 #define SD_ASYM_CPUCAPACITY	0x0040  /* Groups have different max cpu capacities */
1028 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu capacity */
1029 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
1030 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
1031 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
1032 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1033 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1034 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1035 #define SD_NUMA			0x4000	/* cross-node balancing */
1036 
1037 #ifdef CONFIG_SCHED_SMT
1038 static inline int cpu_smt_flags(void)
1039 {
1040 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1041 }
1042 #endif
1043 
1044 #ifdef CONFIG_SCHED_MC
1045 static inline int cpu_core_flags(void)
1046 {
1047 	return SD_SHARE_PKG_RESOURCES;
1048 }
1049 #endif
1050 
1051 #ifdef CONFIG_NUMA
1052 static inline int cpu_numa_flags(void)
1053 {
1054 	return SD_NUMA;
1055 }
1056 #endif
1057 
1058 struct sched_domain_attr {
1059 	int relax_domain_level;
1060 };
1061 
1062 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1063 	.relax_domain_level = -1,			\
1064 }
1065 
1066 extern int sched_domain_level_max;
1067 
1068 struct sched_group;
1069 
1070 struct sched_domain_shared {
1071 	atomic_t	ref;
1072 	atomic_t	nr_busy_cpus;
1073 	int		has_idle_cores;
1074 };
1075 
1076 struct sched_domain {
1077 	/* These fields must be setup */
1078 	struct sched_domain *parent;	/* top domain must be null terminated */
1079 	struct sched_domain *child;	/* bottom domain must be null terminated */
1080 	struct sched_group *groups;	/* the balancing groups of the domain */
1081 	unsigned long min_interval;	/* Minimum balance interval ms */
1082 	unsigned long max_interval;	/* Maximum balance interval ms */
1083 	unsigned int busy_factor;	/* less balancing by factor if busy */
1084 	unsigned int imbalance_pct;	/* No balance until over watermark */
1085 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1086 	unsigned int busy_idx;
1087 	unsigned int idle_idx;
1088 	unsigned int newidle_idx;
1089 	unsigned int wake_idx;
1090 	unsigned int forkexec_idx;
1091 	unsigned int smt_gain;
1092 
1093 	int nohz_idle;			/* NOHZ IDLE status */
1094 	int flags;			/* See SD_* */
1095 	int level;
1096 
1097 	/* Runtime fields. */
1098 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1099 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1100 	unsigned int nr_balance_failed; /* initialise to 0 */
1101 
1102 	/* idle_balance() stats */
1103 	u64 max_newidle_lb_cost;
1104 	unsigned long next_decay_max_lb_cost;
1105 
1106 	u64 avg_scan_cost;		/* select_idle_sibling */
1107 
1108 #ifdef CONFIG_SCHEDSTATS
1109 	/* load_balance() stats */
1110 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1111 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1112 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1113 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1114 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1115 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1116 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1117 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1118 
1119 	/* Active load balancing */
1120 	unsigned int alb_count;
1121 	unsigned int alb_failed;
1122 	unsigned int alb_pushed;
1123 
1124 	/* SD_BALANCE_EXEC stats */
1125 	unsigned int sbe_count;
1126 	unsigned int sbe_balanced;
1127 	unsigned int sbe_pushed;
1128 
1129 	/* SD_BALANCE_FORK stats */
1130 	unsigned int sbf_count;
1131 	unsigned int sbf_balanced;
1132 	unsigned int sbf_pushed;
1133 
1134 	/* try_to_wake_up() stats */
1135 	unsigned int ttwu_wake_remote;
1136 	unsigned int ttwu_move_affine;
1137 	unsigned int ttwu_move_balance;
1138 #endif
1139 #ifdef CONFIG_SCHED_DEBUG
1140 	char *name;
1141 #endif
1142 	union {
1143 		void *private;		/* used during construction */
1144 		struct rcu_head rcu;	/* used during destruction */
1145 	};
1146 	struct sched_domain_shared *shared;
1147 
1148 	unsigned int span_weight;
1149 	/*
1150 	 * Span of all CPUs in this domain.
1151 	 *
1152 	 * NOTE: this field is variable length. (Allocated dynamically
1153 	 * by attaching extra space to the end of the structure,
1154 	 * depending on how many CPUs the kernel has booted up with)
1155 	 */
1156 	unsigned long span[0];
1157 };
1158 
1159 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1160 {
1161 	return to_cpumask(sd->span);
1162 }
1163 
1164 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1165 				    struct sched_domain_attr *dattr_new);
1166 
1167 /* Allocate an array of sched domains, for partition_sched_domains(). */
1168 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1169 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1170 
1171 bool cpus_share_cache(int this_cpu, int that_cpu);
1172 
1173 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1174 typedef int (*sched_domain_flags_f)(void);
1175 
1176 #define SDTL_OVERLAP	0x01
1177 
1178 struct sd_data {
1179 	struct sched_domain **__percpu sd;
1180 	struct sched_domain_shared **__percpu sds;
1181 	struct sched_group **__percpu sg;
1182 	struct sched_group_capacity **__percpu sgc;
1183 };
1184 
1185 struct sched_domain_topology_level {
1186 	sched_domain_mask_f mask;
1187 	sched_domain_flags_f sd_flags;
1188 	int		    flags;
1189 	int		    numa_level;
1190 	struct sd_data      data;
1191 #ifdef CONFIG_SCHED_DEBUG
1192 	char                *name;
1193 #endif
1194 };
1195 
1196 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1197 extern void wake_up_if_idle(int cpu);
1198 
1199 #ifdef CONFIG_SCHED_DEBUG
1200 # define SD_INIT_NAME(type)		.name = #type
1201 #else
1202 # define SD_INIT_NAME(type)
1203 #endif
1204 
1205 #else /* CONFIG_SMP */
1206 
1207 struct sched_domain_attr;
1208 
1209 static inline void
1210 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1211 			struct sched_domain_attr *dattr_new)
1212 {
1213 }
1214 
1215 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1216 {
1217 	return true;
1218 }
1219 
1220 #endif	/* !CONFIG_SMP */
1221 
1222 
1223 struct io_context;			/* See blkdev.h */
1224 
1225 
1226 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1227 extern void prefetch_stack(struct task_struct *t);
1228 #else
1229 static inline void prefetch_stack(struct task_struct *t) { }
1230 #endif
1231 
1232 struct audit_context;		/* See audit.c */
1233 struct mempolicy;
1234 struct pipe_inode_info;
1235 struct uts_namespace;
1236 
1237 struct load_weight {
1238 	unsigned long weight;
1239 	u32 inv_weight;
1240 };
1241 
1242 /*
1243  * The load_avg/util_avg accumulates an infinite geometric series
1244  * (see __update_load_avg() in kernel/sched/fair.c).
1245  *
1246  * [load_avg definition]
1247  *
1248  *   load_avg = runnable% * scale_load_down(load)
1249  *
1250  * where runnable% is the time ratio that a sched_entity is runnable.
1251  * For cfs_rq, it is the aggregated load_avg of all runnable and
1252  * blocked sched_entities.
1253  *
1254  * load_avg may also take frequency scaling into account:
1255  *
1256  *   load_avg = runnable% * scale_load_down(load) * freq%
1257  *
1258  * where freq% is the CPU frequency normalized to the highest frequency.
1259  *
1260  * [util_avg definition]
1261  *
1262  *   util_avg = running% * SCHED_CAPACITY_SCALE
1263  *
1264  * where running% is the time ratio that a sched_entity is running on
1265  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1266  * and blocked sched_entities.
1267  *
1268  * util_avg may also factor frequency scaling and CPU capacity scaling:
1269  *
1270  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1271  *
1272  * where freq% is the same as above, and capacity% is the CPU capacity
1273  * normalized to the greatest capacity (due to uarch differences, etc).
1274  *
1275  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1276  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1277  * we therefore scale them to as large a range as necessary. This is for
1278  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1279  *
1280  * [Overflow issue]
1281  *
1282  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1283  * with the highest load (=88761), always runnable on a single cfs_rq,
1284  * and should not overflow as the number already hits PID_MAX_LIMIT.
1285  *
1286  * For all other cases (including 32-bit kernels), struct load_weight's
1287  * weight will overflow first before we do, because:
1288  *
1289  *    Max(load_avg) <= Max(load.weight)
1290  *
1291  * Then it is the load_weight's responsibility to consider overflow
1292  * issues.
1293  */
1294 struct sched_avg {
1295 	u64 last_update_time, load_sum;
1296 	u32 util_sum, period_contrib;
1297 	unsigned long load_avg, util_avg;
1298 };
1299 
1300 #ifdef CONFIG_SCHEDSTATS
1301 struct sched_statistics {
1302 	u64			wait_start;
1303 	u64			wait_max;
1304 	u64			wait_count;
1305 	u64			wait_sum;
1306 	u64			iowait_count;
1307 	u64			iowait_sum;
1308 
1309 	u64			sleep_start;
1310 	u64			sleep_max;
1311 	s64			sum_sleep_runtime;
1312 
1313 	u64			block_start;
1314 	u64			block_max;
1315 	u64			exec_max;
1316 	u64			slice_max;
1317 
1318 	u64			nr_migrations_cold;
1319 	u64			nr_failed_migrations_affine;
1320 	u64			nr_failed_migrations_running;
1321 	u64			nr_failed_migrations_hot;
1322 	u64			nr_forced_migrations;
1323 
1324 	u64			nr_wakeups;
1325 	u64			nr_wakeups_sync;
1326 	u64			nr_wakeups_migrate;
1327 	u64			nr_wakeups_local;
1328 	u64			nr_wakeups_remote;
1329 	u64			nr_wakeups_affine;
1330 	u64			nr_wakeups_affine_attempts;
1331 	u64			nr_wakeups_passive;
1332 	u64			nr_wakeups_idle;
1333 };
1334 #endif
1335 
1336 struct sched_entity {
1337 	struct load_weight	load;		/* for load-balancing */
1338 	struct rb_node		run_node;
1339 	struct list_head	group_node;
1340 	unsigned int		on_rq;
1341 
1342 	u64			exec_start;
1343 	u64			sum_exec_runtime;
1344 	u64			vruntime;
1345 	u64			prev_sum_exec_runtime;
1346 
1347 	u64			nr_migrations;
1348 
1349 #ifdef CONFIG_SCHEDSTATS
1350 	struct sched_statistics statistics;
1351 #endif
1352 
1353 #ifdef CONFIG_FAIR_GROUP_SCHED
1354 	int			depth;
1355 	struct sched_entity	*parent;
1356 	/* rq on which this entity is (to be) queued: */
1357 	struct cfs_rq		*cfs_rq;
1358 	/* rq "owned" by this entity/group: */
1359 	struct cfs_rq		*my_q;
1360 #endif
1361 
1362 #ifdef CONFIG_SMP
1363 	/*
1364 	 * Per entity load average tracking.
1365 	 *
1366 	 * Put into separate cache line so it does not
1367 	 * collide with read-mostly values above.
1368 	 */
1369 	struct sched_avg	avg ____cacheline_aligned_in_smp;
1370 #endif
1371 };
1372 
1373 struct sched_rt_entity {
1374 	struct list_head run_list;
1375 	unsigned long timeout;
1376 	unsigned long watchdog_stamp;
1377 	unsigned int time_slice;
1378 	unsigned short on_rq;
1379 	unsigned short on_list;
1380 
1381 	struct sched_rt_entity *back;
1382 #ifdef CONFIG_RT_GROUP_SCHED
1383 	struct sched_rt_entity	*parent;
1384 	/* rq on which this entity is (to be) queued: */
1385 	struct rt_rq		*rt_rq;
1386 	/* rq "owned" by this entity/group: */
1387 	struct rt_rq		*my_q;
1388 #endif
1389 };
1390 
1391 struct sched_dl_entity {
1392 	struct rb_node	rb_node;
1393 
1394 	/*
1395 	 * Original scheduling parameters. Copied here from sched_attr
1396 	 * during sched_setattr(), they will remain the same until
1397 	 * the next sched_setattr().
1398 	 */
1399 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1400 	u64 dl_deadline;	/* relative deadline of each instance	*/
1401 	u64 dl_period;		/* separation of two instances (period) */
1402 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1403 
1404 	/*
1405 	 * Actual scheduling parameters. Initialized with the values above,
1406 	 * they are continously updated during task execution. Note that
1407 	 * the remaining runtime could be < 0 in case we are in overrun.
1408 	 */
1409 	s64 runtime;		/* remaining runtime for this instance	*/
1410 	u64 deadline;		/* absolute deadline for this instance	*/
1411 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1412 
1413 	/*
1414 	 * Some bool flags:
1415 	 *
1416 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1417 	 * task has to wait for a replenishment to be performed at the
1418 	 * next firing of dl_timer.
1419 	 *
1420 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1421 	 * outside bandwidth enforcement mechanism (but only until we
1422 	 * exit the critical section);
1423 	 *
1424 	 * @dl_yielded tells if task gave up the cpu before consuming
1425 	 * all its available runtime during the last job.
1426 	 */
1427 	int dl_throttled, dl_boosted, dl_yielded;
1428 
1429 	/*
1430 	 * Bandwidth enforcement timer. Each -deadline task has its
1431 	 * own bandwidth to be enforced, thus we need one timer per task.
1432 	 */
1433 	struct hrtimer dl_timer;
1434 };
1435 
1436 union rcu_special {
1437 	struct {
1438 		u8 blocked;
1439 		u8 need_qs;
1440 		u8 exp_need_qs;
1441 		u8 pad;	/* Otherwise the compiler can store garbage here. */
1442 	} b; /* Bits. */
1443 	u32 s; /* Set of bits. */
1444 };
1445 struct rcu_node;
1446 
1447 enum perf_event_task_context {
1448 	perf_invalid_context = -1,
1449 	perf_hw_context = 0,
1450 	perf_sw_context,
1451 	perf_nr_task_contexts,
1452 };
1453 
1454 /* Track pages that require TLB flushes */
1455 struct tlbflush_unmap_batch {
1456 	/*
1457 	 * Each bit set is a CPU that potentially has a TLB entry for one of
1458 	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1459 	 */
1460 	struct cpumask cpumask;
1461 
1462 	/* True if any bit in cpumask is set */
1463 	bool flush_required;
1464 
1465 	/*
1466 	 * If true then the PTE was dirty when unmapped. The entry must be
1467 	 * flushed before IO is initiated or a stale TLB entry potentially
1468 	 * allows an update without redirtying the page.
1469 	 */
1470 	bool writable;
1471 };
1472 
1473 struct task_struct {
1474 #ifdef CONFIG_THREAD_INFO_IN_TASK
1475 	/*
1476 	 * For reasons of header soup (see current_thread_info()), this
1477 	 * must be the first element of task_struct.
1478 	 */
1479 	struct thread_info thread_info;
1480 #endif
1481 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1482 	void *stack;
1483 	atomic_t usage;
1484 	unsigned int flags;	/* per process flags, defined below */
1485 	unsigned int ptrace;
1486 
1487 #ifdef CONFIG_SMP
1488 	struct llist_node wake_entry;
1489 	int on_cpu;
1490 #ifdef CONFIG_THREAD_INFO_IN_TASK
1491 	unsigned int cpu;	/* current CPU */
1492 #endif
1493 	unsigned int wakee_flips;
1494 	unsigned long wakee_flip_decay_ts;
1495 	struct task_struct *last_wakee;
1496 
1497 	int wake_cpu;
1498 #endif
1499 	int on_rq;
1500 
1501 	int prio, static_prio, normal_prio;
1502 	unsigned int rt_priority;
1503 	const struct sched_class *sched_class;
1504 	struct sched_entity se;
1505 	struct sched_rt_entity rt;
1506 #ifdef CONFIG_CGROUP_SCHED
1507 	struct task_group *sched_task_group;
1508 #endif
1509 	struct sched_dl_entity dl;
1510 
1511 #ifdef CONFIG_PREEMPT_NOTIFIERS
1512 	/* list of struct preempt_notifier: */
1513 	struct hlist_head preempt_notifiers;
1514 #endif
1515 
1516 #ifdef CONFIG_BLK_DEV_IO_TRACE
1517 	unsigned int btrace_seq;
1518 #endif
1519 
1520 	unsigned int policy;
1521 	int nr_cpus_allowed;
1522 	cpumask_t cpus_allowed;
1523 
1524 #ifdef CONFIG_PREEMPT_RCU
1525 	int rcu_read_lock_nesting;
1526 	union rcu_special rcu_read_unlock_special;
1527 	struct list_head rcu_node_entry;
1528 	struct rcu_node *rcu_blocked_node;
1529 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1530 #ifdef CONFIG_TASKS_RCU
1531 	unsigned long rcu_tasks_nvcsw;
1532 	bool rcu_tasks_holdout;
1533 	struct list_head rcu_tasks_holdout_list;
1534 	int rcu_tasks_idle_cpu;
1535 #endif /* #ifdef CONFIG_TASKS_RCU */
1536 
1537 #ifdef CONFIG_SCHED_INFO
1538 	struct sched_info sched_info;
1539 #endif
1540 
1541 	struct list_head tasks;
1542 #ifdef CONFIG_SMP
1543 	struct plist_node pushable_tasks;
1544 	struct rb_node pushable_dl_tasks;
1545 #endif
1546 
1547 	struct mm_struct *mm, *active_mm;
1548 	/* per-thread vma caching */
1549 	u32 vmacache_seqnum;
1550 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1551 #if defined(SPLIT_RSS_COUNTING)
1552 	struct task_rss_stat	rss_stat;
1553 #endif
1554 /* task state */
1555 	int exit_state;
1556 	int exit_code, exit_signal;
1557 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1558 	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1559 
1560 	/* Used for emulating ABI behavior of previous Linux versions */
1561 	unsigned int personality;
1562 
1563 	/* scheduler bits, serialized by scheduler locks */
1564 	unsigned sched_reset_on_fork:1;
1565 	unsigned sched_contributes_to_load:1;
1566 	unsigned sched_migrated:1;
1567 	unsigned sched_remote_wakeup:1;
1568 	unsigned :0; /* force alignment to the next boundary */
1569 
1570 	/* unserialized, strictly 'current' */
1571 	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1572 	unsigned in_iowait:1;
1573 #if !defined(TIF_RESTORE_SIGMASK)
1574 	unsigned restore_sigmask:1;
1575 #endif
1576 #ifdef CONFIG_MEMCG
1577 	unsigned memcg_may_oom:1;
1578 #ifndef CONFIG_SLOB
1579 	unsigned memcg_kmem_skip_account:1;
1580 #endif
1581 #endif
1582 #ifdef CONFIG_COMPAT_BRK
1583 	unsigned brk_randomized:1;
1584 #endif
1585 
1586 	unsigned long atomic_flags; /* Flags needing atomic access. */
1587 
1588 	struct restart_block restart_block;
1589 
1590 	pid_t pid;
1591 	pid_t tgid;
1592 
1593 #ifdef CONFIG_CC_STACKPROTECTOR
1594 	/* Canary value for the -fstack-protector gcc feature */
1595 	unsigned long stack_canary;
1596 #endif
1597 	/*
1598 	 * pointers to (original) parent process, youngest child, younger sibling,
1599 	 * older sibling, respectively.  (p->father can be replaced with
1600 	 * p->real_parent->pid)
1601 	 */
1602 	struct task_struct __rcu *real_parent; /* real parent process */
1603 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1604 	/*
1605 	 * children/sibling forms the list of my natural children
1606 	 */
1607 	struct list_head children;	/* list of my children */
1608 	struct list_head sibling;	/* linkage in my parent's children list */
1609 	struct task_struct *group_leader;	/* threadgroup leader */
1610 
1611 	/*
1612 	 * ptraced is the list of tasks this task is using ptrace on.
1613 	 * This includes both natural children and PTRACE_ATTACH targets.
1614 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1615 	 */
1616 	struct list_head ptraced;
1617 	struct list_head ptrace_entry;
1618 
1619 	/* PID/PID hash table linkage. */
1620 	struct pid_link pids[PIDTYPE_MAX];
1621 	struct list_head thread_group;
1622 	struct list_head thread_node;
1623 
1624 	struct completion *vfork_done;		/* for vfork() */
1625 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1626 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1627 
1628 	cputime_t utime, stime, utimescaled, stimescaled;
1629 	cputime_t gtime;
1630 	struct prev_cputime prev_cputime;
1631 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1632 	seqcount_t vtime_seqcount;
1633 	unsigned long long vtime_snap;
1634 	enum {
1635 		/* Task is sleeping or running in a CPU with VTIME inactive */
1636 		VTIME_INACTIVE = 0,
1637 		/* Task runs in userspace in a CPU with VTIME active */
1638 		VTIME_USER,
1639 		/* Task runs in kernelspace in a CPU with VTIME active */
1640 		VTIME_SYS,
1641 	} vtime_snap_whence;
1642 #endif
1643 
1644 #ifdef CONFIG_NO_HZ_FULL
1645 	atomic_t tick_dep_mask;
1646 #endif
1647 	unsigned long nvcsw, nivcsw; /* context switch counts */
1648 	u64 start_time;		/* monotonic time in nsec */
1649 	u64 real_start_time;	/* boot based time in nsec */
1650 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1651 	unsigned long min_flt, maj_flt;
1652 
1653 	struct task_cputime cputime_expires;
1654 	struct list_head cpu_timers[3];
1655 
1656 /* process credentials */
1657 	const struct cred __rcu *real_cred; /* objective and real subjective task
1658 					 * credentials (COW) */
1659 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1660 					 * credentials (COW) */
1661 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1662 				     - access with [gs]et_task_comm (which lock
1663 				       it with task_lock())
1664 				     - initialized normally by setup_new_exec */
1665 /* file system info */
1666 	struct nameidata *nameidata;
1667 #ifdef CONFIG_SYSVIPC
1668 /* ipc stuff */
1669 	struct sysv_sem sysvsem;
1670 	struct sysv_shm sysvshm;
1671 #endif
1672 #ifdef CONFIG_DETECT_HUNG_TASK
1673 /* hung task detection */
1674 	unsigned long last_switch_count;
1675 #endif
1676 /* filesystem information */
1677 	struct fs_struct *fs;
1678 /* open file information */
1679 	struct files_struct *files;
1680 /* namespaces */
1681 	struct nsproxy *nsproxy;
1682 /* signal handlers */
1683 	struct signal_struct *signal;
1684 	struct sighand_struct *sighand;
1685 
1686 	sigset_t blocked, real_blocked;
1687 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1688 	struct sigpending pending;
1689 
1690 	unsigned long sas_ss_sp;
1691 	size_t sas_ss_size;
1692 	unsigned sas_ss_flags;
1693 
1694 	struct callback_head *task_works;
1695 
1696 	struct audit_context *audit_context;
1697 #ifdef CONFIG_AUDITSYSCALL
1698 	kuid_t loginuid;
1699 	unsigned int sessionid;
1700 #endif
1701 	struct seccomp seccomp;
1702 
1703 /* Thread group tracking */
1704    	u32 parent_exec_id;
1705    	u32 self_exec_id;
1706 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1707  * mempolicy */
1708 	spinlock_t alloc_lock;
1709 
1710 	/* Protection of the PI data structures: */
1711 	raw_spinlock_t pi_lock;
1712 
1713 	struct wake_q_node wake_q;
1714 
1715 #ifdef CONFIG_RT_MUTEXES
1716 	/* PI waiters blocked on a rt_mutex held by this task */
1717 	struct rb_root pi_waiters;
1718 	struct rb_node *pi_waiters_leftmost;
1719 	/* Deadlock detection and priority inheritance handling */
1720 	struct rt_mutex_waiter *pi_blocked_on;
1721 #endif
1722 
1723 #ifdef CONFIG_DEBUG_MUTEXES
1724 	/* mutex deadlock detection */
1725 	struct mutex_waiter *blocked_on;
1726 #endif
1727 #ifdef CONFIG_TRACE_IRQFLAGS
1728 	unsigned int irq_events;
1729 	unsigned long hardirq_enable_ip;
1730 	unsigned long hardirq_disable_ip;
1731 	unsigned int hardirq_enable_event;
1732 	unsigned int hardirq_disable_event;
1733 	int hardirqs_enabled;
1734 	int hardirq_context;
1735 	unsigned long softirq_disable_ip;
1736 	unsigned long softirq_enable_ip;
1737 	unsigned int softirq_disable_event;
1738 	unsigned int softirq_enable_event;
1739 	int softirqs_enabled;
1740 	int softirq_context;
1741 #endif
1742 #ifdef CONFIG_LOCKDEP
1743 # define MAX_LOCK_DEPTH 48UL
1744 	u64 curr_chain_key;
1745 	int lockdep_depth;
1746 	unsigned int lockdep_recursion;
1747 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1748 	gfp_t lockdep_reclaim_gfp;
1749 #endif
1750 #ifdef CONFIG_UBSAN
1751 	unsigned int in_ubsan;
1752 #endif
1753 
1754 /* journalling filesystem info */
1755 	void *journal_info;
1756 
1757 /* stacked block device info */
1758 	struct bio_list *bio_list;
1759 
1760 #ifdef CONFIG_BLOCK
1761 /* stack plugging */
1762 	struct blk_plug *plug;
1763 #endif
1764 
1765 /* VM state */
1766 	struct reclaim_state *reclaim_state;
1767 
1768 	struct backing_dev_info *backing_dev_info;
1769 
1770 	struct io_context *io_context;
1771 
1772 	unsigned long ptrace_message;
1773 	siginfo_t *last_siginfo; /* For ptrace use.  */
1774 	struct task_io_accounting ioac;
1775 #if defined(CONFIG_TASK_XACCT)
1776 	u64 acct_rss_mem1;	/* accumulated rss usage */
1777 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1778 	cputime_t acct_timexpd;	/* stime + utime since last update */
1779 #endif
1780 #ifdef CONFIG_CPUSETS
1781 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1782 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1783 	int cpuset_mem_spread_rotor;
1784 	int cpuset_slab_spread_rotor;
1785 #endif
1786 #ifdef CONFIG_CGROUPS
1787 	/* Control Group info protected by css_set_lock */
1788 	struct css_set __rcu *cgroups;
1789 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1790 	struct list_head cg_list;
1791 #endif
1792 #ifdef CONFIG_FUTEX
1793 	struct robust_list_head __user *robust_list;
1794 #ifdef CONFIG_COMPAT
1795 	struct compat_robust_list_head __user *compat_robust_list;
1796 #endif
1797 	struct list_head pi_state_list;
1798 	struct futex_pi_state *pi_state_cache;
1799 #endif
1800 #ifdef CONFIG_PERF_EVENTS
1801 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1802 	struct mutex perf_event_mutex;
1803 	struct list_head perf_event_list;
1804 #endif
1805 #ifdef CONFIG_DEBUG_PREEMPT
1806 	unsigned long preempt_disable_ip;
1807 #endif
1808 #ifdef CONFIG_NUMA
1809 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1810 	short il_next;
1811 	short pref_node_fork;
1812 #endif
1813 #ifdef CONFIG_NUMA_BALANCING
1814 	int numa_scan_seq;
1815 	unsigned int numa_scan_period;
1816 	unsigned int numa_scan_period_max;
1817 	int numa_preferred_nid;
1818 	unsigned long numa_migrate_retry;
1819 	u64 node_stamp;			/* migration stamp  */
1820 	u64 last_task_numa_placement;
1821 	u64 last_sum_exec_runtime;
1822 	struct callback_head numa_work;
1823 
1824 	struct list_head numa_entry;
1825 	struct numa_group *numa_group;
1826 
1827 	/*
1828 	 * numa_faults is an array split into four regions:
1829 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1830 	 * in this precise order.
1831 	 *
1832 	 * faults_memory: Exponential decaying average of faults on a per-node
1833 	 * basis. Scheduling placement decisions are made based on these
1834 	 * counts. The values remain static for the duration of a PTE scan.
1835 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1836 	 * hinting fault was incurred.
1837 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1838 	 * during the current scan window. When the scan completes, the counts
1839 	 * in faults_memory and faults_cpu decay and these values are copied.
1840 	 */
1841 	unsigned long *numa_faults;
1842 	unsigned long total_numa_faults;
1843 
1844 	/*
1845 	 * numa_faults_locality tracks if faults recorded during the last
1846 	 * scan window were remote/local or failed to migrate. The task scan
1847 	 * period is adapted based on the locality of the faults with different
1848 	 * weights depending on whether they were shared or private faults
1849 	 */
1850 	unsigned long numa_faults_locality[3];
1851 
1852 	unsigned long numa_pages_migrated;
1853 #endif /* CONFIG_NUMA_BALANCING */
1854 
1855 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1856 	struct tlbflush_unmap_batch tlb_ubc;
1857 #endif
1858 
1859 	struct rcu_head rcu;
1860 
1861 	/*
1862 	 * cache last used pipe for splice
1863 	 */
1864 	struct pipe_inode_info *splice_pipe;
1865 
1866 	struct page_frag task_frag;
1867 
1868 #ifdef	CONFIG_TASK_DELAY_ACCT
1869 	struct task_delay_info *delays;
1870 #endif
1871 #ifdef CONFIG_FAULT_INJECTION
1872 	int make_it_fail;
1873 #endif
1874 	/*
1875 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1876 	 * balance_dirty_pages() for some dirty throttling pause
1877 	 */
1878 	int nr_dirtied;
1879 	int nr_dirtied_pause;
1880 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1881 
1882 #ifdef CONFIG_LATENCYTOP
1883 	int latency_record_count;
1884 	struct latency_record latency_record[LT_SAVECOUNT];
1885 #endif
1886 	/*
1887 	 * time slack values; these are used to round up poll() and
1888 	 * select() etc timeout values. These are in nanoseconds.
1889 	 */
1890 	u64 timer_slack_ns;
1891 	u64 default_timer_slack_ns;
1892 
1893 #ifdef CONFIG_KASAN
1894 	unsigned int kasan_depth;
1895 #endif
1896 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1897 	/* Index of current stored address in ret_stack */
1898 	int curr_ret_stack;
1899 	/* Stack of return addresses for return function tracing */
1900 	struct ftrace_ret_stack	*ret_stack;
1901 	/* time stamp for last schedule */
1902 	unsigned long long ftrace_timestamp;
1903 	/*
1904 	 * Number of functions that haven't been traced
1905 	 * because of depth overrun.
1906 	 */
1907 	atomic_t trace_overrun;
1908 	/* Pause for the tracing */
1909 	atomic_t tracing_graph_pause;
1910 #endif
1911 #ifdef CONFIG_TRACING
1912 	/* state flags for use by tracers */
1913 	unsigned long trace;
1914 	/* bitmask and counter of trace recursion */
1915 	unsigned long trace_recursion;
1916 #endif /* CONFIG_TRACING */
1917 #ifdef CONFIG_KCOV
1918 	/* Coverage collection mode enabled for this task (0 if disabled). */
1919 	enum kcov_mode kcov_mode;
1920 	/* Size of the kcov_area. */
1921 	unsigned	kcov_size;
1922 	/* Buffer for coverage collection. */
1923 	void		*kcov_area;
1924 	/* kcov desciptor wired with this task or NULL. */
1925 	struct kcov	*kcov;
1926 #endif
1927 #ifdef CONFIG_MEMCG
1928 	struct mem_cgroup *memcg_in_oom;
1929 	gfp_t memcg_oom_gfp_mask;
1930 	int memcg_oom_order;
1931 
1932 	/* number of pages to reclaim on returning to userland */
1933 	unsigned int memcg_nr_pages_over_high;
1934 #endif
1935 #ifdef CONFIG_UPROBES
1936 	struct uprobe_task *utask;
1937 #endif
1938 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1939 	unsigned int	sequential_io;
1940 	unsigned int	sequential_io_avg;
1941 #endif
1942 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1943 	unsigned long	task_state_change;
1944 #endif
1945 	int pagefault_disabled;
1946 #ifdef CONFIG_MMU
1947 	struct task_struct *oom_reaper_list;
1948 #endif
1949 #ifdef CONFIG_VMAP_STACK
1950 	struct vm_struct *stack_vm_area;
1951 #endif
1952 #ifdef CONFIG_THREAD_INFO_IN_TASK
1953 	/* A live task holds one reference. */
1954 	atomic_t stack_refcount;
1955 #endif
1956 /* CPU-specific state of this task */
1957 	struct thread_struct thread;
1958 /*
1959  * WARNING: on x86, 'thread_struct' contains a variable-sized
1960  * structure.  It *MUST* be at the end of 'task_struct'.
1961  *
1962  * Do not put anything below here!
1963  */
1964 };
1965 
1966 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1967 extern int arch_task_struct_size __read_mostly;
1968 #else
1969 # define arch_task_struct_size (sizeof(struct task_struct))
1970 #endif
1971 
1972 #ifdef CONFIG_VMAP_STACK
1973 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1974 {
1975 	return t->stack_vm_area;
1976 }
1977 #else
1978 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1979 {
1980 	return NULL;
1981 }
1982 #endif
1983 
1984 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1985 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1986 
1987 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1988 {
1989 	return p->nr_cpus_allowed;
1990 }
1991 
1992 #define TNF_MIGRATED	0x01
1993 #define TNF_NO_GROUP	0x02
1994 #define TNF_SHARED	0x04
1995 #define TNF_FAULT_LOCAL	0x08
1996 #define TNF_MIGRATE_FAIL 0x10
1997 
1998 static inline bool in_vfork(struct task_struct *tsk)
1999 {
2000 	bool ret;
2001 
2002 	/*
2003 	 * need RCU to access ->real_parent if CLONE_VM was used along with
2004 	 * CLONE_PARENT.
2005 	 *
2006 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2007 	 * imply CLONE_VM
2008 	 *
2009 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2010 	 * ->real_parent is not necessarily the task doing vfork(), so in
2011 	 * theory we can't rely on task_lock() if we want to dereference it.
2012 	 *
2013 	 * And in this case we can't trust the real_parent->mm == tsk->mm
2014 	 * check, it can be false negative. But we do not care, if init or
2015 	 * another oom-unkillable task does this it should blame itself.
2016 	 */
2017 	rcu_read_lock();
2018 	ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2019 	rcu_read_unlock();
2020 
2021 	return ret;
2022 }
2023 
2024 #ifdef CONFIG_NUMA_BALANCING
2025 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2026 extern pid_t task_numa_group_id(struct task_struct *p);
2027 extern void set_numabalancing_state(bool enabled);
2028 extern void task_numa_free(struct task_struct *p);
2029 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2030 					int src_nid, int dst_cpu);
2031 #else
2032 static inline void task_numa_fault(int last_node, int node, int pages,
2033 				   int flags)
2034 {
2035 }
2036 static inline pid_t task_numa_group_id(struct task_struct *p)
2037 {
2038 	return 0;
2039 }
2040 static inline void set_numabalancing_state(bool enabled)
2041 {
2042 }
2043 static inline void task_numa_free(struct task_struct *p)
2044 {
2045 }
2046 static inline bool should_numa_migrate_memory(struct task_struct *p,
2047 				struct page *page, int src_nid, int dst_cpu)
2048 {
2049 	return true;
2050 }
2051 #endif
2052 
2053 static inline struct pid *task_pid(struct task_struct *task)
2054 {
2055 	return task->pids[PIDTYPE_PID].pid;
2056 }
2057 
2058 static inline struct pid *task_tgid(struct task_struct *task)
2059 {
2060 	return task->group_leader->pids[PIDTYPE_PID].pid;
2061 }
2062 
2063 /*
2064  * Without tasklist or rcu lock it is not safe to dereference
2065  * the result of task_pgrp/task_session even if task == current,
2066  * we can race with another thread doing sys_setsid/sys_setpgid.
2067  */
2068 static inline struct pid *task_pgrp(struct task_struct *task)
2069 {
2070 	return task->group_leader->pids[PIDTYPE_PGID].pid;
2071 }
2072 
2073 static inline struct pid *task_session(struct task_struct *task)
2074 {
2075 	return task->group_leader->pids[PIDTYPE_SID].pid;
2076 }
2077 
2078 struct pid_namespace;
2079 
2080 /*
2081  * the helpers to get the task's different pids as they are seen
2082  * from various namespaces
2083  *
2084  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2085  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2086  *                     current.
2087  * task_xid_nr_ns()  : id seen from the ns specified;
2088  *
2089  * set_task_vxid()   : assigns a virtual id to a task;
2090  *
2091  * see also pid_nr() etc in include/linux/pid.h
2092  */
2093 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2094 			struct pid_namespace *ns);
2095 
2096 static inline pid_t task_pid_nr(struct task_struct *tsk)
2097 {
2098 	return tsk->pid;
2099 }
2100 
2101 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2102 					struct pid_namespace *ns)
2103 {
2104 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2105 }
2106 
2107 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2108 {
2109 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2110 }
2111 
2112 
2113 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2114 {
2115 	return tsk->tgid;
2116 }
2117 
2118 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2119 
2120 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2121 {
2122 	return pid_vnr(task_tgid(tsk));
2123 }
2124 
2125 
2126 static inline int pid_alive(const struct task_struct *p);
2127 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2128 {
2129 	pid_t pid = 0;
2130 
2131 	rcu_read_lock();
2132 	if (pid_alive(tsk))
2133 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2134 	rcu_read_unlock();
2135 
2136 	return pid;
2137 }
2138 
2139 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2140 {
2141 	return task_ppid_nr_ns(tsk, &init_pid_ns);
2142 }
2143 
2144 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2145 					struct pid_namespace *ns)
2146 {
2147 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2148 }
2149 
2150 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2151 {
2152 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2153 }
2154 
2155 
2156 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2157 					struct pid_namespace *ns)
2158 {
2159 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2160 }
2161 
2162 static inline pid_t task_session_vnr(struct task_struct *tsk)
2163 {
2164 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2165 }
2166 
2167 /* obsolete, do not use */
2168 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2169 {
2170 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2171 }
2172 
2173 /**
2174  * pid_alive - check that a task structure is not stale
2175  * @p: Task structure to be checked.
2176  *
2177  * Test if a process is not yet dead (at most zombie state)
2178  * If pid_alive fails, then pointers within the task structure
2179  * can be stale and must not be dereferenced.
2180  *
2181  * Return: 1 if the process is alive. 0 otherwise.
2182  */
2183 static inline int pid_alive(const struct task_struct *p)
2184 {
2185 	return p->pids[PIDTYPE_PID].pid != NULL;
2186 }
2187 
2188 /**
2189  * is_global_init - check if a task structure is init. Since init
2190  * is free to have sub-threads we need to check tgid.
2191  * @tsk: Task structure to be checked.
2192  *
2193  * Check if a task structure is the first user space task the kernel created.
2194  *
2195  * Return: 1 if the task structure is init. 0 otherwise.
2196  */
2197 static inline int is_global_init(struct task_struct *tsk)
2198 {
2199 	return task_tgid_nr(tsk) == 1;
2200 }
2201 
2202 extern struct pid *cad_pid;
2203 
2204 extern void free_task(struct task_struct *tsk);
2205 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2206 
2207 extern void __put_task_struct(struct task_struct *t);
2208 
2209 static inline void put_task_struct(struct task_struct *t)
2210 {
2211 	if (atomic_dec_and_test(&t->usage))
2212 		__put_task_struct(t);
2213 }
2214 
2215 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2216 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2217 
2218 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2219 extern void task_cputime(struct task_struct *t,
2220 			 cputime_t *utime, cputime_t *stime);
2221 extern void task_cputime_scaled(struct task_struct *t,
2222 				cputime_t *utimescaled, cputime_t *stimescaled);
2223 extern cputime_t task_gtime(struct task_struct *t);
2224 #else
2225 static inline void task_cputime(struct task_struct *t,
2226 				cputime_t *utime, cputime_t *stime)
2227 {
2228 	if (utime)
2229 		*utime = t->utime;
2230 	if (stime)
2231 		*stime = t->stime;
2232 }
2233 
2234 static inline void task_cputime_scaled(struct task_struct *t,
2235 				       cputime_t *utimescaled,
2236 				       cputime_t *stimescaled)
2237 {
2238 	if (utimescaled)
2239 		*utimescaled = t->utimescaled;
2240 	if (stimescaled)
2241 		*stimescaled = t->stimescaled;
2242 }
2243 
2244 static inline cputime_t task_gtime(struct task_struct *t)
2245 {
2246 	return t->gtime;
2247 }
2248 #endif
2249 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2250 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2251 
2252 /*
2253  * Per process flags
2254  */
2255 #define PF_EXITING	0x00000004	/* getting shut down */
2256 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2257 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2258 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2259 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2260 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2261 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2262 #define PF_DUMPCORE	0x00000200	/* dumped core */
2263 #define PF_SIGNALED	0x00000400	/* killed by a signal */
2264 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2265 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2266 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2267 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2268 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2269 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2270 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2271 #define PF_KSWAPD	0x00040000	/* I am kswapd */
2272 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2273 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2274 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2275 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2276 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2277 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2278 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2279 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2280 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2281 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2282 
2283 /*
2284  * Only the _current_ task can read/write to tsk->flags, but other
2285  * tasks can access tsk->flags in readonly mode for example
2286  * with tsk_used_math (like during threaded core dumping).
2287  * There is however an exception to this rule during ptrace
2288  * or during fork: the ptracer task is allowed to write to the
2289  * child->flags of its traced child (same goes for fork, the parent
2290  * can write to the child->flags), because we're guaranteed the
2291  * child is not running and in turn not changing child->flags
2292  * at the same time the parent does it.
2293  */
2294 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2295 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2296 #define clear_used_math() clear_stopped_child_used_math(current)
2297 #define set_used_math() set_stopped_child_used_math(current)
2298 #define conditional_stopped_child_used_math(condition, child) \
2299 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2300 #define conditional_used_math(condition) \
2301 	conditional_stopped_child_used_math(condition, current)
2302 #define copy_to_stopped_child_used_math(child) \
2303 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2304 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2305 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2306 #define used_math() tsk_used_math(current)
2307 
2308 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2309  * __GFP_FS is also cleared as it implies __GFP_IO.
2310  */
2311 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2312 {
2313 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2314 		flags &= ~(__GFP_IO | __GFP_FS);
2315 	return flags;
2316 }
2317 
2318 static inline unsigned int memalloc_noio_save(void)
2319 {
2320 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2321 	current->flags |= PF_MEMALLOC_NOIO;
2322 	return flags;
2323 }
2324 
2325 static inline void memalloc_noio_restore(unsigned int flags)
2326 {
2327 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2328 }
2329 
2330 /* Per-process atomic flags. */
2331 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2332 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2333 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2334 #define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */
2335 
2336 
2337 #define TASK_PFA_TEST(name, func)					\
2338 	static inline bool task_##func(struct task_struct *p)		\
2339 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2340 #define TASK_PFA_SET(name, func)					\
2341 	static inline void task_set_##func(struct task_struct *p)	\
2342 	{ set_bit(PFA_##name, &p->atomic_flags); }
2343 #define TASK_PFA_CLEAR(name, func)					\
2344 	static inline void task_clear_##func(struct task_struct *p)	\
2345 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2346 
2347 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2348 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2349 
2350 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2351 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2352 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2353 
2354 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2355 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2356 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2357 
2358 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2359 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2360 
2361 /*
2362  * task->jobctl flags
2363  */
2364 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2365 
2366 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2367 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2368 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2369 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2370 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2371 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2372 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2373 
2374 #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2375 #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2376 #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2377 #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2378 #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2379 #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2380 #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2381 
2382 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2383 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2384 
2385 extern bool task_set_jobctl_pending(struct task_struct *task,
2386 				    unsigned long mask);
2387 extern void task_clear_jobctl_trapping(struct task_struct *task);
2388 extern void task_clear_jobctl_pending(struct task_struct *task,
2389 				      unsigned long mask);
2390 
2391 static inline void rcu_copy_process(struct task_struct *p)
2392 {
2393 #ifdef CONFIG_PREEMPT_RCU
2394 	p->rcu_read_lock_nesting = 0;
2395 	p->rcu_read_unlock_special.s = 0;
2396 	p->rcu_blocked_node = NULL;
2397 	INIT_LIST_HEAD(&p->rcu_node_entry);
2398 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2399 #ifdef CONFIG_TASKS_RCU
2400 	p->rcu_tasks_holdout = false;
2401 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2402 	p->rcu_tasks_idle_cpu = -1;
2403 #endif /* #ifdef CONFIG_TASKS_RCU */
2404 }
2405 
2406 static inline void tsk_restore_flags(struct task_struct *task,
2407 				unsigned long orig_flags, unsigned long flags)
2408 {
2409 	task->flags &= ~flags;
2410 	task->flags |= orig_flags & flags;
2411 }
2412 
2413 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2414 				     const struct cpumask *trial);
2415 extern int task_can_attach(struct task_struct *p,
2416 			   const struct cpumask *cs_cpus_allowed);
2417 #ifdef CONFIG_SMP
2418 extern void do_set_cpus_allowed(struct task_struct *p,
2419 			       const struct cpumask *new_mask);
2420 
2421 extern int set_cpus_allowed_ptr(struct task_struct *p,
2422 				const struct cpumask *new_mask);
2423 #else
2424 static inline void do_set_cpus_allowed(struct task_struct *p,
2425 				      const struct cpumask *new_mask)
2426 {
2427 }
2428 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2429 				       const struct cpumask *new_mask)
2430 {
2431 	if (!cpumask_test_cpu(0, new_mask))
2432 		return -EINVAL;
2433 	return 0;
2434 }
2435 #endif
2436 
2437 #ifdef CONFIG_NO_HZ_COMMON
2438 void calc_load_enter_idle(void);
2439 void calc_load_exit_idle(void);
2440 #else
2441 static inline void calc_load_enter_idle(void) { }
2442 static inline void calc_load_exit_idle(void) { }
2443 #endif /* CONFIG_NO_HZ_COMMON */
2444 
2445 /*
2446  * Do not use outside of architecture code which knows its limitations.
2447  *
2448  * sched_clock() has no promise of monotonicity or bounded drift between
2449  * CPUs, use (which you should not) requires disabling IRQs.
2450  *
2451  * Please use one of the three interfaces below.
2452  */
2453 extern unsigned long long notrace sched_clock(void);
2454 /*
2455  * See the comment in kernel/sched/clock.c
2456  */
2457 extern u64 running_clock(void);
2458 extern u64 sched_clock_cpu(int cpu);
2459 
2460 
2461 extern void sched_clock_init(void);
2462 
2463 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2464 static inline void sched_clock_tick(void)
2465 {
2466 }
2467 
2468 static inline void sched_clock_idle_sleep_event(void)
2469 {
2470 }
2471 
2472 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2473 {
2474 }
2475 
2476 static inline u64 cpu_clock(int cpu)
2477 {
2478 	return sched_clock();
2479 }
2480 
2481 static inline u64 local_clock(void)
2482 {
2483 	return sched_clock();
2484 }
2485 #else
2486 /*
2487  * Architectures can set this to 1 if they have specified
2488  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2489  * but then during bootup it turns out that sched_clock()
2490  * is reliable after all:
2491  */
2492 extern int sched_clock_stable(void);
2493 extern void set_sched_clock_stable(void);
2494 extern void clear_sched_clock_stable(void);
2495 
2496 extern void sched_clock_tick(void);
2497 extern void sched_clock_idle_sleep_event(void);
2498 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2499 
2500 /*
2501  * As outlined in clock.c, provides a fast, high resolution, nanosecond
2502  * time source that is monotonic per cpu argument and has bounded drift
2503  * between cpus.
2504  *
2505  * ######################### BIG FAT WARNING ##########################
2506  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2507  * # go backwards !!                                                  #
2508  * ####################################################################
2509  */
2510 static inline u64 cpu_clock(int cpu)
2511 {
2512 	return sched_clock_cpu(cpu);
2513 }
2514 
2515 static inline u64 local_clock(void)
2516 {
2517 	return sched_clock_cpu(raw_smp_processor_id());
2518 }
2519 #endif
2520 
2521 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2522 /*
2523  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2524  * The reason for this explicit opt-in is not to have perf penalty with
2525  * slow sched_clocks.
2526  */
2527 extern void enable_sched_clock_irqtime(void);
2528 extern void disable_sched_clock_irqtime(void);
2529 #else
2530 static inline void enable_sched_clock_irqtime(void) {}
2531 static inline void disable_sched_clock_irqtime(void) {}
2532 #endif
2533 
2534 extern unsigned long long
2535 task_sched_runtime(struct task_struct *task);
2536 
2537 /* sched_exec is called by processes performing an exec */
2538 #ifdef CONFIG_SMP
2539 extern void sched_exec(void);
2540 #else
2541 #define sched_exec()   {}
2542 #endif
2543 
2544 extern void sched_clock_idle_sleep_event(void);
2545 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2546 
2547 #ifdef CONFIG_HOTPLUG_CPU
2548 extern void idle_task_exit(void);
2549 #else
2550 static inline void idle_task_exit(void) {}
2551 #endif
2552 
2553 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2554 extern void wake_up_nohz_cpu(int cpu);
2555 #else
2556 static inline void wake_up_nohz_cpu(int cpu) { }
2557 #endif
2558 
2559 #ifdef CONFIG_NO_HZ_FULL
2560 extern u64 scheduler_tick_max_deferment(void);
2561 #endif
2562 
2563 #ifdef CONFIG_SCHED_AUTOGROUP
2564 extern void sched_autogroup_create_attach(struct task_struct *p);
2565 extern void sched_autogroup_detach(struct task_struct *p);
2566 extern void sched_autogroup_fork(struct signal_struct *sig);
2567 extern void sched_autogroup_exit(struct signal_struct *sig);
2568 #ifdef CONFIG_PROC_FS
2569 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2570 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2571 #endif
2572 #else
2573 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2574 static inline void sched_autogroup_detach(struct task_struct *p) { }
2575 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2576 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2577 #endif
2578 
2579 extern int yield_to(struct task_struct *p, bool preempt);
2580 extern void set_user_nice(struct task_struct *p, long nice);
2581 extern int task_prio(const struct task_struct *p);
2582 /**
2583  * task_nice - return the nice value of a given task.
2584  * @p: the task in question.
2585  *
2586  * Return: The nice value [ -20 ... 0 ... 19 ].
2587  */
2588 static inline int task_nice(const struct task_struct *p)
2589 {
2590 	return PRIO_TO_NICE((p)->static_prio);
2591 }
2592 extern int can_nice(const struct task_struct *p, const int nice);
2593 extern int task_curr(const struct task_struct *p);
2594 extern int idle_cpu(int cpu);
2595 extern int sched_setscheduler(struct task_struct *, int,
2596 			      const struct sched_param *);
2597 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2598 				      const struct sched_param *);
2599 extern int sched_setattr(struct task_struct *,
2600 			 const struct sched_attr *);
2601 extern struct task_struct *idle_task(int cpu);
2602 /**
2603  * is_idle_task - is the specified task an idle task?
2604  * @p: the task in question.
2605  *
2606  * Return: 1 if @p is an idle task. 0 otherwise.
2607  */
2608 static inline bool is_idle_task(const struct task_struct *p)
2609 {
2610 	return p->pid == 0;
2611 }
2612 extern struct task_struct *curr_task(int cpu);
2613 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2614 
2615 void yield(void);
2616 
2617 union thread_union {
2618 #ifndef CONFIG_THREAD_INFO_IN_TASK
2619 	struct thread_info thread_info;
2620 #endif
2621 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2622 };
2623 
2624 #ifndef __HAVE_ARCH_KSTACK_END
2625 static inline int kstack_end(void *addr)
2626 {
2627 	/* Reliable end of stack detection:
2628 	 * Some APM bios versions misalign the stack
2629 	 */
2630 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2631 }
2632 #endif
2633 
2634 extern union thread_union init_thread_union;
2635 extern struct task_struct init_task;
2636 
2637 extern struct   mm_struct init_mm;
2638 
2639 extern struct pid_namespace init_pid_ns;
2640 
2641 /*
2642  * find a task by one of its numerical ids
2643  *
2644  * find_task_by_pid_ns():
2645  *      finds a task by its pid in the specified namespace
2646  * find_task_by_vpid():
2647  *      finds a task by its virtual pid
2648  *
2649  * see also find_vpid() etc in include/linux/pid.h
2650  */
2651 
2652 extern struct task_struct *find_task_by_vpid(pid_t nr);
2653 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2654 		struct pid_namespace *ns);
2655 
2656 /* per-UID process charging. */
2657 extern struct user_struct * alloc_uid(kuid_t);
2658 static inline struct user_struct *get_uid(struct user_struct *u)
2659 {
2660 	atomic_inc(&u->__count);
2661 	return u;
2662 }
2663 extern void free_uid(struct user_struct *);
2664 
2665 #include <asm/current.h>
2666 
2667 extern void xtime_update(unsigned long ticks);
2668 
2669 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2670 extern int wake_up_process(struct task_struct *tsk);
2671 extern void wake_up_new_task(struct task_struct *tsk);
2672 #ifdef CONFIG_SMP
2673  extern void kick_process(struct task_struct *tsk);
2674 #else
2675  static inline void kick_process(struct task_struct *tsk) { }
2676 #endif
2677 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2678 extern void sched_dead(struct task_struct *p);
2679 
2680 extern void proc_caches_init(void);
2681 extern void flush_signals(struct task_struct *);
2682 extern void ignore_signals(struct task_struct *);
2683 extern void flush_signal_handlers(struct task_struct *, int force_default);
2684 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2685 
2686 static inline int kernel_dequeue_signal(siginfo_t *info)
2687 {
2688 	struct task_struct *tsk = current;
2689 	siginfo_t __info;
2690 	int ret;
2691 
2692 	spin_lock_irq(&tsk->sighand->siglock);
2693 	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2694 	spin_unlock_irq(&tsk->sighand->siglock);
2695 
2696 	return ret;
2697 }
2698 
2699 static inline void kernel_signal_stop(void)
2700 {
2701 	spin_lock_irq(&current->sighand->siglock);
2702 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2703 		__set_current_state(TASK_STOPPED);
2704 	spin_unlock_irq(&current->sighand->siglock);
2705 
2706 	schedule();
2707 }
2708 
2709 extern void release_task(struct task_struct * p);
2710 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2711 extern int force_sigsegv(int, struct task_struct *);
2712 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2713 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2714 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2715 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2716 				const struct cred *, u32);
2717 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2718 extern int kill_pid(struct pid *pid, int sig, int priv);
2719 extern int kill_proc_info(int, struct siginfo *, pid_t);
2720 extern __must_check bool do_notify_parent(struct task_struct *, int);
2721 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2722 extern void force_sig(int, struct task_struct *);
2723 extern int send_sig(int, struct task_struct *, int);
2724 extern int zap_other_threads(struct task_struct *p);
2725 extern struct sigqueue *sigqueue_alloc(void);
2726 extern void sigqueue_free(struct sigqueue *);
2727 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2728 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2729 
2730 #ifdef TIF_RESTORE_SIGMASK
2731 /*
2732  * Legacy restore_sigmask accessors.  These are inefficient on
2733  * SMP architectures because they require atomic operations.
2734  */
2735 
2736 /**
2737  * set_restore_sigmask() - make sure saved_sigmask processing gets done
2738  *
2739  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2740  * will run before returning to user mode, to process the flag.  For
2741  * all callers, TIF_SIGPENDING is already set or it's no harm to set
2742  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
2743  * arch code will notice on return to user mode, in case those bits
2744  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
2745  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2746  */
2747 static inline void set_restore_sigmask(void)
2748 {
2749 	set_thread_flag(TIF_RESTORE_SIGMASK);
2750 	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2751 }
2752 static inline void clear_restore_sigmask(void)
2753 {
2754 	clear_thread_flag(TIF_RESTORE_SIGMASK);
2755 }
2756 static inline bool test_restore_sigmask(void)
2757 {
2758 	return test_thread_flag(TIF_RESTORE_SIGMASK);
2759 }
2760 static inline bool test_and_clear_restore_sigmask(void)
2761 {
2762 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2763 }
2764 
2765 #else	/* TIF_RESTORE_SIGMASK */
2766 
2767 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2768 static inline void set_restore_sigmask(void)
2769 {
2770 	current->restore_sigmask = true;
2771 	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2772 }
2773 static inline void clear_restore_sigmask(void)
2774 {
2775 	current->restore_sigmask = false;
2776 }
2777 static inline bool test_restore_sigmask(void)
2778 {
2779 	return current->restore_sigmask;
2780 }
2781 static inline bool test_and_clear_restore_sigmask(void)
2782 {
2783 	if (!current->restore_sigmask)
2784 		return false;
2785 	current->restore_sigmask = false;
2786 	return true;
2787 }
2788 #endif
2789 
2790 static inline void restore_saved_sigmask(void)
2791 {
2792 	if (test_and_clear_restore_sigmask())
2793 		__set_current_blocked(&current->saved_sigmask);
2794 }
2795 
2796 static inline sigset_t *sigmask_to_save(void)
2797 {
2798 	sigset_t *res = &current->blocked;
2799 	if (unlikely(test_restore_sigmask()))
2800 		res = &current->saved_sigmask;
2801 	return res;
2802 }
2803 
2804 static inline int kill_cad_pid(int sig, int priv)
2805 {
2806 	return kill_pid(cad_pid, sig, priv);
2807 }
2808 
2809 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2810 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2811 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2812 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2813 
2814 /*
2815  * True if we are on the alternate signal stack.
2816  */
2817 static inline int on_sig_stack(unsigned long sp)
2818 {
2819 	/*
2820 	 * If the signal stack is SS_AUTODISARM then, by construction, we
2821 	 * can't be on the signal stack unless user code deliberately set
2822 	 * SS_AUTODISARM when we were already on it.
2823 	 *
2824 	 * This improves reliability: if user state gets corrupted such that
2825 	 * the stack pointer points very close to the end of the signal stack,
2826 	 * then this check will enable the signal to be handled anyway.
2827 	 */
2828 	if (current->sas_ss_flags & SS_AUTODISARM)
2829 		return 0;
2830 
2831 #ifdef CONFIG_STACK_GROWSUP
2832 	return sp >= current->sas_ss_sp &&
2833 		sp - current->sas_ss_sp < current->sas_ss_size;
2834 #else
2835 	return sp > current->sas_ss_sp &&
2836 		sp - current->sas_ss_sp <= current->sas_ss_size;
2837 #endif
2838 }
2839 
2840 static inline int sas_ss_flags(unsigned long sp)
2841 {
2842 	if (!current->sas_ss_size)
2843 		return SS_DISABLE;
2844 
2845 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2846 }
2847 
2848 static inline void sas_ss_reset(struct task_struct *p)
2849 {
2850 	p->sas_ss_sp = 0;
2851 	p->sas_ss_size = 0;
2852 	p->sas_ss_flags = SS_DISABLE;
2853 }
2854 
2855 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2856 {
2857 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2858 #ifdef CONFIG_STACK_GROWSUP
2859 		return current->sas_ss_sp;
2860 #else
2861 		return current->sas_ss_sp + current->sas_ss_size;
2862 #endif
2863 	return sp;
2864 }
2865 
2866 /*
2867  * Routines for handling mm_structs
2868  */
2869 extern struct mm_struct * mm_alloc(void);
2870 
2871 /* mmdrop drops the mm and the page tables */
2872 extern void __mmdrop(struct mm_struct *);
2873 static inline void mmdrop(struct mm_struct *mm)
2874 {
2875 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2876 		__mmdrop(mm);
2877 }
2878 
2879 static inline bool mmget_not_zero(struct mm_struct *mm)
2880 {
2881 	return atomic_inc_not_zero(&mm->mm_users);
2882 }
2883 
2884 /* mmput gets rid of the mappings and all user-space */
2885 extern void mmput(struct mm_struct *);
2886 #ifdef CONFIG_MMU
2887 /* same as above but performs the slow path from the async context. Can
2888  * be called from the atomic context as well
2889  */
2890 extern void mmput_async(struct mm_struct *);
2891 #endif
2892 
2893 /* Grab a reference to a task's mm, if it is not already going away */
2894 extern struct mm_struct *get_task_mm(struct task_struct *task);
2895 /*
2896  * Grab a reference to a task's mm, if it is not already going away
2897  * and ptrace_may_access with the mode parameter passed to it
2898  * succeeds.
2899  */
2900 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2901 /* Remove the current tasks stale references to the old mm_struct */
2902 extern void mm_release(struct task_struct *, struct mm_struct *);
2903 
2904 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2905 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2906 			struct task_struct *, unsigned long);
2907 #else
2908 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2909 			struct task_struct *);
2910 
2911 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2912  * via pt_regs, so ignore the tls argument passed via C. */
2913 static inline int copy_thread_tls(
2914 		unsigned long clone_flags, unsigned long sp, unsigned long arg,
2915 		struct task_struct *p, unsigned long tls)
2916 {
2917 	return copy_thread(clone_flags, sp, arg, p);
2918 }
2919 #endif
2920 extern void flush_thread(void);
2921 
2922 #ifdef CONFIG_HAVE_EXIT_THREAD
2923 extern void exit_thread(struct task_struct *tsk);
2924 #else
2925 static inline void exit_thread(struct task_struct *tsk)
2926 {
2927 }
2928 #endif
2929 
2930 extern void exit_files(struct task_struct *);
2931 extern void __cleanup_sighand(struct sighand_struct *);
2932 
2933 extern void exit_itimers(struct signal_struct *);
2934 extern void flush_itimer_signals(void);
2935 
2936 extern void do_group_exit(int);
2937 
2938 extern int do_execve(struct filename *,
2939 		     const char __user * const __user *,
2940 		     const char __user * const __user *);
2941 extern int do_execveat(int, struct filename *,
2942 		       const char __user * const __user *,
2943 		       const char __user * const __user *,
2944 		       int);
2945 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2946 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2947 struct task_struct *fork_idle(int);
2948 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2949 
2950 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2951 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2952 {
2953 	__set_task_comm(tsk, from, false);
2954 }
2955 extern char *get_task_comm(char *to, struct task_struct *tsk);
2956 
2957 #ifdef CONFIG_SMP
2958 void scheduler_ipi(void);
2959 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2960 #else
2961 static inline void scheduler_ipi(void) { }
2962 static inline unsigned long wait_task_inactive(struct task_struct *p,
2963 					       long match_state)
2964 {
2965 	return 1;
2966 }
2967 #endif
2968 
2969 #define tasklist_empty() \
2970 	list_empty(&init_task.tasks)
2971 
2972 #define next_task(p) \
2973 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2974 
2975 #define for_each_process(p) \
2976 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2977 
2978 extern bool current_is_single_threaded(void);
2979 
2980 /*
2981  * Careful: do_each_thread/while_each_thread is a double loop so
2982  *          'break' will not work as expected - use goto instead.
2983  */
2984 #define do_each_thread(g, t) \
2985 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2986 
2987 #define while_each_thread(g, t) \
2988 	while ((t = next_thread(t)) != g)
2989 
2990 #define __for_each_thread(signal, t)	\
2991 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2992 
2993 #define for_each_thread(p, t)		\
2994 	__for_each_thread((p)->signal, t)
2995 
2996 /* Careful: this is a double loop, 'break' won't work as expected. */
2997 #define for_each_process_thread(p, t)	\
2998 	for_each_process(p) for_each_thread(p, t)
2999 
3000 static inline int get_nr_threads(struct task_struct *tsk)
3001 {
3002 	return tsk->signal->nr_threads;
3003 }
3004 
3005 static inline bool thread_group_leader(struct task_struct *p)
3006 {
3007 	return p->exit_signal >= 0;
3008 }
3009 
3010 /* Do to the insanities of de_thread it is possible for a process
3011  * to have the pid of the thread group leader without actually being
3012  * the thread group leader.  For iteration through the pids in proc
3013  * all we care about is that we have a task with the appropriate
3014  * pid, we don't actually care if we have the right task.
3015  */
3016 static inline bool has_group_leader_pid(struct task_struct *p)
3017 {
3018 	return task_pid(p) == p->signal->leader_pid;
3019 }
3020 
3021 static inline
3022 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3023 {
3024 	return p1->signal == p2->signal;
3025 }
3026 
3027 static inline struct task_struct *next_thread(const struct task_struct *p)
3028 {
3029 	return list_entry_rcu(p->thread_group.next,
3030 			      struct task_struct, thread_group);
3031 }
3032 
3033 static inline int thread_group_empty(struct task_struct *p)
3034 {
3035 	return list_empty(&p->thread_group);
3036 }
3037 
3038 #define delay_group_leader(p) \
3039 		(thread_group_leader(p) && !thread_group_empty(p))
3040 
3041 /*
3042  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3043  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
3044  * pins the final release of task.io_context.  Also protects ->cpuset and
3045  * ->cgroup.subsys[]. And ->vfork_done.
3046  *
3047  * Nests both inside and outside of read_lock(&tasklist_lock).
3048  * It must not be nested with write_lock_irq(&tasklist_lock),
3049  * neither inside nor outside.
3050  */
3051 static inline void task_lock(struct task_struct *p)
3052 {
3053 	spin_lock(&p->alloc_lock);
3054 }
3055 
3056 static inline void task_unlock(struct task_struct *p)
3057 {
3058 	spin_unlock(&p->alloc_lock);
3059 }
3060 
3061 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3062 							unsigned long *flags);
3063 
3064 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3065 						       unsigned long *flags)
3066 {
3067 	struct sighand_struct *ret;
3068 
3069 	ret = __lock_task_sighand(tsk, flags);
3070 	(void)__cond_lock(&tsk->sighand->siglock, ret);
3071 	return ret;
3072 }
3073 
3074 static inline void unlock_task_sighand(struct task_struct *tsk,
3075 						unsigned long *flags)
3076 {
3077 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3078 }
3079 
3080 /**
3081  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3082  * @tsk: task causing the changes
3083  *
3084  * All operations which modify a threadgroup - a new thread joining the
3085  * group, death of a member thread (the assertion of PF_EXITING) and
3086  * exec(2) dethreading the process and replacing the leader - are wrapped
3087  * by threadgroup_change_{begin|end}().  This is to provide a place which
3088  * subsystems needing threadgroup stability can hook into for
3089  * synchronization.
3090  */
3091 static inline void threadgroup_change_begin(struct task_struct *tsk)
3092 {
3093 	might_sleep();
3094 	cgroup_threadgroup_change_begin(tsk);
3095 }
3096 
3097 /**
3098  * threadgroup_change_end - mark the end of changes to a threadgroup
3099  * @tsk: task causing the changes
3100  *
3101  * See threadgroup_change_begin().
3102  */
3103 static inline void threadgroup_change_end(struct task_struct *tsk)
3104 {
3105 	cgroup_threadgroup_change_end(tsk);
3106 }
3107 
3108 #ifdef CONFIG_THREAD_INFO_IN_TASK
3109 
3110 static inline struct thread_info *task_thread_info(struct task_struct *task)
3111 {
3112 	return &task->thread_info;
3113 }
3114 
3115 /*
3116  * When accessing the stack of a non-current task that might exit, use
3117  * try_get_task_stack() instead.  task_stack_page will return a pointer
3118  * that could get freed out from under you.
3119  */
3120 static inline void *task_stack_page(const struct task_struct *task)
3121 {
3122 	return task->stack;
3123 }
3124 
3125 #define setup_thread_stack(new,old)	do { } while(0)
3126 
3127 static inline unsigned long *end_of_stack(const struct task_struct *task)
3128 {
3129 	return task->stack;
3130 }
3131 
3132 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3133 
3134 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
3135 #define task_stack_page(task)	((void *)(task)->stack)
3136 
3137 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3138 {
3139 	*task_thread_info(p) = *task_thread_info(org);
3140 	task_thread_info(p)->task = p;
3141 }
3142 
3143 /*
3144  * Return the address of the last usable long on the stack.
3145  *
3146  * When the stack grows down, this is just above the thread
3147  * info struct. Going any lower will corrupt the threadinfo.
3148  *
3149  * When the stack grows up, this is the highest address.
3150  * Beyond that position, we corrupt data on the next page.
3151  */
3152 static inline unsigned long *end_of_stack(struct task_struct *p)
3153 {
3154 #ifdef CONFIG_STACK_GROWSUP
3155 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3156 #else
3157 	return (unsigned long *)(task_thread_info(p) + 1);
3158 #endif
3159 }
3160 
3161 #endif
3162 
3163 #ifdef CONFIG_THREAD_INFO_IN_TASK
3164 static inline void *try_get_task_stack(struct task_struct *tsk)
3165 {
3166 	return atomic_inc_not_zero(&tsk->stack_refcount) ?
3167 		task_stack_page(tsk) : NULL;
3168 }
3169 
3170 extern void put_task_stack(struct task_struct *tsk);
3171 #else
3172 static inline void *try_get_task_stack(struct task_struct *tsk)
3173 {
3174 	return task_stack_page(tsk);
3175 }
3176 
3177 static inline void put_task_stack(struct task_struct *tsk) {}
3178 #endif
3179 
3180 #define task_stack_end_corrupted(task) \
3181 		(*(end_of_stack(task)) != STACK_END_MAGIC)
3182 
3183 static inline int object_is_on_stack(void *obj)
3184 {
3185 	void *stack = task_stack_page(current);
3186 
3187 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3188 }
3189 
3190 extern void thread_stack_cache_init(void);
3191 
3192 #ifdef CONFIG_DEBUG_STACK_USAGE
3193 static inline unsigned long stack_not_used(struct task_struct *p)
3194 {
3195 	unsigned long *n = end_of_stack(p);
3196 
3197 	do { 	/* Skip over canary */
3198 # ifdef CONFIG_STACK_GROWSUP
3199 		n--;
3200 # else
3201 		n++;
3202 # endif
3203 	} while (!*n);
3204 
3205 # ifdef CONFIG_STACK_GROWSUP
3206 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
3207 # else
3208 	return (unsigned long)n - (unsigned long)end_of_stack(p);
3209 # endif
3210 }
3211 #endif
3212 extern void set_task_stack_end_magic(struct task_struct *tsk);
3213 
3214 /* set thread flags in other task's structures
3215  * - see asm/thread_info.h for TIF_xxxx flags available
3216  */
3217 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3218 {
3219 	set_ti_thread_flag(task_thread_info(tsk), flag);
3220 }
3221 
3222 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3223 {
3224 	clear_ti_thread_flag(task_thread_info(tsk), flag);
3225 }
3226 
3227 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3228 {
3229 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3230 }
3231 
3232 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3233 {
3234 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3235 }
3236 
3237 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3238 {
3239 	return test_ti_thread_flag(task_thread_info(tsk), flag);
3240 }
3241 
3242 static inline void set_tsk_need_resched(struct task_struct *tsk)
3243 {
3244 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3245 }
3246 
3247 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3248 {
3249 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3250 }
3251 
3252 static inline int test_tsk_need_resched(struct task_struct *tsk)
3253 {
3254 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3255 }
3256 
3257 static inline int restart_syscall(void)
3258 {
3259 	set_tsk_thread_flag(current, TIF_SIGPENDING);
3260 	return -ERESTARTNOINTR;
3261 }
3262 
3263 static inline int signal_pending(struct task_struct *p)
3264 {
3265 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3266 }
3267 
3268 static inline int __fatal_signal_pending(struct task_struct *p)
3269 {
3270 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
3271 }
3272 
3273 static inline int fatal_signal_pending(struct task_struct *p)
3274 {
3275 	return signal_pending(p) && __fatal_signal_pending(p);
3276 }
3277 
3278 static inline int signal_pending_state(long state, struct task_struct *p)
3279 {
3280 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3281 		return 0;
3282 	if (!signal_pending(p))
3283 		return 0;
3284 
3285 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3286 }
3287 
3288 /*
3289  * cond_resched() and cond_resched_lock(): latency reduction via
3290  * explicit rescheduling in places that are safe. The return
3291  * value indicates whether a reschedule was done in fact.
3292  * cond_resched_lock() will drop the spinlock before scheduling,
3293  * cond_resched_softirq() will enable bhs before scheduling.
3294  */
3295 #ifndef CONFIG_PREEMPT
3296 extern int _cond_resched(void);
3297 #else
3298 static inline int _cond_resched(void) { return 0; }
3299 #endif
3300 
3301 #define cond_resched() ({			\
3302 	___might_sleep(__FILE__, __LINE__, 0);	\
3303 	_cond_resched();			\
3304 })
3305 
3306 extern int __cond_resched_lock(spinlock_t *lock);
3307 
3308 #define cond_resched_lock(lock) ({				\
3309 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3310 	__cond_resched_lock(lock);				\
3311 })
3312 
3313 extern int __cond_resched_softirq(void);
3314 
3315 #define cond_resched_softirq() ({					\
3316 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
3317 	__cond_resched_softirq();					\
3318 })
3319 
3320 static inline void cond_resched_rcu(void)
3321 {
3322 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3323 	rcu_read_unlock();
3324 	cond_resched();
3325 	rcu_read_lock();
3326 #endif
3327 }
3328 
3329 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3330 {
3331 #ifdef CONFIG_DEBUG_PREEMPT
3332 	return p->preempt_disable_ip;
3333 #else
3334 	return 0;
3335 #endif
3336 }
3337 
3338 /*
3339  * Does a critical section need to be broken due to another
3340  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3341  * but a general need for low latency)
3342  */
3343 static inline int spin_needbreak(spinlock_t *lock)
3344 {
3345 #ifdef CONFIG_PREEMPT
3346 	return spin_is_contended(lock);
3347 #else
3348 	return 0;
3349 #endif
3350 }
3351 
3352 /*
3353  * Idle thread specific functions to determine the need_resched
3354  * polling state.
3355  */
3356 #ifdef TIF_POLLING_NRFLAG
3357 static inline int tsk_is_polling(struct task_struct *p)
3358 {
3359 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3360 }
3361 
3362 static inline void __current_set_polling(void)
3363 {
3364 	set_thread_flag(TIF_POLLING_NRFLAG);
3365 }
3366 
3367 static inline bool __must_check current_set_polling_and_test(void)
3368 {
3369 	__current_set_polling();
3370 
3371 	/*
3372 	 * Polling state must be visible before we test NEED_RESCHED,
3373 	 * paired by resched_curr()
3374 	 */
3375 	smp_mb__after_atomic();
3376 
3377 	return unlikely(tif_need_resched());
3378 }
3379 
3380 static inline void __current_clr_polling(void)
3381 {
3382 	clear_thread_flag(TIF_POLLING_NRFLAG);
3383 }
3384 
3385 static inline bool __must_check current_clr_polling_and_test(void)
3386 {
3387 	__current_clr_polling();
3388 
3389 	/*
3390 	 * Polling state must be visible before we test NEED_RESCHED,
3391 	 * paired by resched_curr()
3392 	 */
3393 	smp_mb__after_atomic();
3394 
3395 	return unlikely(tif_need_resched());
3396 }
3397 
3398 #else
3399 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3400 static inline void __current_set_polling(void) { }
3401 static inline void __current_clr_polling(void) { }
3402 
3403 static inline bool __must_check current_set_polling_and_test(void)
3404 {
3405 	return unlikely(tif_need_resched());
3406 }
3407 static inline bool __must_check current_clr_polling_and_test(void)
3408 {
3409 	return unlikely(tif_need_resched());
3410 }
3411 #endif
3412 
3413 static inline void current_clr_polling(void)
3414 {
3415 	__current_clr_polling();
3416 
3417 	/*
3418 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3419 	 * Once the bit is cleared, we'll get IPIs with every new
3420 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3421 	 * fold.
3422 	 */
3423 	smp_mb(); /* paired with resched_curr() */
3424 
3425 	preempt_fold_need_resched();
3426 }
3427 
3428 static __always_inline bool need_resched(void)
3429 {
3430 	return unlikely(tif_need_resched());
3431 }
3432 
3433 /*
3434  * Thread group CPU time accounting.
3435  */
3436 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3437 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3438 
3439 /*
3440  * Reevaluate whether the task has signals pending delivery.
3441  * Wake the task if so.
3442  * This is required every time the blocked sigset_t changes.
3443  * callers must hold sighand->siglock.
3444  */
3445 extern void recalc_sigpending_and_wake(struct task_struct *t);
3446 extern void recalc_sigpending(void);
3447 
3448 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3449 
3450 static inline void signal_wake_up(struct task_struct *t, bool resume)
3451 {
3452 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3453 }
3454 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3455 {
3456 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3457 }
3458 
3459 /*
3460  * Wrappers for p->thread_info->cpu access. No-op on UP.
3461  */
3462 #ifdef CONFIG_SMP
3463 
3464 static inline unsigned int task_cpu(const struct task_struct *p)
3465 {
3466 #ifdef CONFIG_THREAD_INFO_IN_TASK
3467 	return p->cpu;
3468 #else
3469 	return task_thread_info(p)->cpu;
3470 #endif
3471 }
3472 
3473 static inline int task_node(const struct task_struct *p)
3474 {
3475 	return cpu_to_node(task_cpu(p));
3476 }
3477 
3478 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3479 
3480 #else
3481 
3482 static inline unsigned int task_cpu(const struct task_struct *p)
3483 {
3484 	return 0;
3485 }
3486 
3487 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3488 {
3489 }
3490 
3491 #endif /* CONFIG_SMP */
3492 
3493 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3494 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3495 
3496 #ifdef CONFIG_CGROUP_SCHED
3497 extern struct task_group root_task_group;
3498 #endif /* CONFIG_CGROUP_SCHED */
3499 
3500 extern int task_can_switch_user(struct user_struct *up,
3501 					struct task_struct *tsk);
3502 
3503 #ifdef CONFIG_TASK_XACCT
3504 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3505 {
3506 	tsk->ioac.rchar += amt;
3507 }
3508 
3509 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3510 {
3511 	tsk->ioac.wchar += amt;
3512 }
3513 
3514 static inline void inc_syscr(struct task_struct *tsk)
3515 {
3516 	tsk->ioac.syscr++;
3517 }
3518 
3519 static inline void inc_syscw(struct task_struct *tsk)
3520 {
3521 	tsk->ioac.syscw++;
3522 }
3523 #else
3524 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3525 {
3526 }
3527 
3528 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3529 {
3530 }
3531 
3532 static inline void inc_syscr(struct task_struct *tsk)
3533 {
3534 }
3535 
3536 static inline void inc_syscw(struct task_struct *tsk)
3537 {
3538 }
3539 #endif
3540 
3541 #ifndef TASK_SIZE_OF
3542 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3543 #endif
3544 
3545 #ifdef CONFIG_MEMCG
3546 extern void mm_update_next_owner(struct mm_struct *mm);
3547 #else
3548 static inline void mm_update_next_owner(struct mm_struct *mm)
3549 {
3550 }
3551 #endif /* CONFIG_MEMCG */
3552 
3553 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3554 		unsigned int limit)
3555 {
3556 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3557 }
3558 
3559 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3560 		unsigned int limit)
3561 {
3562 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3563 }
3564 
3565 static inline unsigned long rlimit(unsigned int limit)
3566 {
3567 	return task_rlimit(current, limit);
3568 }
3569 
3570 static inline unsigned long rlimit_max(unsigned int limit)
3571 {
3572 	return task_rlimit_max(current, limit);
3573 }
3574 
3575 #define SCHED_CPUFREQ_RT	(1U << 0)
3576 #define SCHED_CPUFREQ_DL	(1U << 1)
3577 #define SCHED_CPUFREQ_IOWAIT	(1U << 2)
3578 
3579 #define SCHED_CPUFREQ_RT_DL	(SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3580 
3581 #ifdef CONFIG_CPU_FREQ
3582 struct update_util_data {
3583        void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3584 };
3585 
3586 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3587                        void (*func)(struct update_util_data *data, u64 time,
3588 				    unsigned int flags));
3589 void cpufreq_remove_update_util_hook(int cpu);
3590 #endif /* CONFIG_CPU_FREQ */
3591 
3592 #endif
3593