1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <asm/param.h> /* for HZ */ 5 6 #include <linux/config.h> 7 #include <linux/capability.h> 8 #include <linux/threads.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/timex.h> 12 #include <linux/jiffies.h> 13 #include <linux/rbtree.h> 14 #include <linux/thread_info.h> 15 #include <linux/cpumask.h> 16 #include <linux/errno.h> 17 #include <linux/nodemask.h> 18 19 #include <asm/system.h> 20 #include <asm/semaphore.h> 21 #include <asm/page.h> 22 #include <asm/ptrace.h> 23 #include <asm/mmu.h> 24 #include <asm/cputime.h> 25 26 #include <linux/smp.h> 27 #include <linux/sem.h> 28 #include <linux/signal.h> 29 #include <linux/securebits.h> 30 #include <linux/fs_struct.h> 31 #include <linux/compiler.h> 32 #include <linux/completion.h> 33 #include <linux/pid.h> 34 #include <linux/percpu.h> 35 #include <linux/topology.h> 36 #include <linux/seccomp.h> 37 #include <linux/rcupdate.h> 38 39 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 40 41 struct exec_domain; 42 43 /* 44 * cloning flags: 45 */ 46 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 47 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 48 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 49 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 50 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 51 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 52 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 53 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 54 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 55 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 56 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 57 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 58 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 59 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 60 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 61 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 62 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 63 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 64 65 /* 66 * List of flags we want to share for kernel threads, 67 * if only because they are not used by them anyway. 68 */ 69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 70 71 /* 72 * These are the constant used to fake the fixed-point load-average 73 * counting. Some notes: 74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 75 * a load-average precision of 10 bits integer + 11 bits fractional 76 * - if you want to count load-averages more often, you need more 77 * precision, or rounding will get you. With 2-second counting freq, 78 * the EXP_n values would be 1981, 2034 and 2043 if still using only 79 * 11 bit fractions. 80 */ 81 extern unsigned long avenrun[]; /* Load averages */ 82 83 #define FSHIFT 11 /* nr of bits of precision */ 84 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 85 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 86 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 87 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 88 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 89 90 #define CALC_LOAD(load,exp,n) \ 91 load *= exp; \ 92 load += n*(FIXED_1-exp); \ 93 load >>= FSHIFT; 94 95 extern unsigned long total_forks; 96 extern int nr_threads; 97 extern int last_pid; 98 DECLARE_PER_CPU(unsigned long, process_counts); 99 extern int nr_processes(void); 100 extern unsigned long nr_running(void); 101 extern unsigned long nr_uninterruptible(void); 102 extern unsigned long nr_iowait(void); 103 104 #include <linux/time.h> 105 #include <linux/param.h> 106 #include <linux/resource.h> 107 #include <linux/timer.h> 108 #include <linux/hrtimer.h> 109 110 #include <asm/processor.h> 111 112 /* 113 * Task state bitmask. NOTE! These bits are also 114 * encoded in fs/proc/array.c: get_task_state(). 115 * 116 * We have two separate sets of flags: task->state 117 * is about runnability, while task->exit_state are 118 * about the task exiting. Confusing, but this way 119 * modifying one set can't modify the other one by 120 * mistake. 121 */ 122 #define TASK_RUNNING 0 123 #define TASK_INTERRUPTIBLE 1 124 #define TASK_UNINTERRUPTIBLE 2 125 #define TASK_STOPPED 4 126 #define TASK_TRACED 8 127 /* in tsk->exit_state */ 128 #define EXIT_ZOMBIE 16 129 #define EXIT_DEAD 32 130 /* in tsk->state again */ 131 #define TASK_NONINTERACTIVE 64 132 133 #define __set_task_state(tsk, state_value) \ 134 do { (tsk)->state = (state_value); } while (0) 135 #define set_task_state(tsk, state_value) \ 136 set_mb((tsk)->state, (state_value)) 137 138 /* 139 * set_current_state() includes a barrier so that the write of current->state 140 * is correctly serialised wrt the caller's subsequent test of whether to 141 * actually sleep: 142 * 143 * set_current_state(TASK_UNINTERRUPTIBLE); 144 * if (do_i_need_to_sleep()) 145 * schedule(); 146 * 147 * If the caller does not need such serialisation then use __set_current_state() 148 */ 149 #define __set_current_state(state_value) \ 150 do { current->state = (state_value); } while (0) 151 #define set_current_state(state_value) \ 152 set_mb(current->state, (state_value)) 153 154 /* Task command name length */ 155 #define TASK_COMM_LEN 16 156 157 /* 158 * Scheduling policies 159 */ 160 #define SCHED_NORMAL 0 161 #define SCHED_FIFO 1 162 #define SCHED_RR 2 163 #define SCHED_BATCH 3 164 165 struct sched_param { 166 int sched_priority; 167 }; 168 169 #ifdef __KERNEL__ 170 171 #include <linux/spinlock.h> 172 173 /* 174 * This serializes "schedule()" and also protects 175 * the run-queue from deletions/modifications (but 176 * _adding_ to the beginning of the run-queue has 177 * a separate lock). 178 */ 179 extern rwlock_t tasklist_lock; 180 extern spinlock_t mmlist_lock; 181 182 typedef struct task_struct task_t; 183 184 extern void sched_init(void); 185 extern void sched_init_smp(void); 186 extern void init_idle(task_t *idle, int cpu); 187 188 extern cpumask_t nohz_cpu_mask; 189 190 extern void show_state(void); 191 extern void show_regs(struct pt_regs *); 192 193 /* 194 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 195 * task), SP is the stack pointer of the first frame that should be shown in the back 196 * trace (or NULL if the entire call-chain of the task should be shown). 197 */ 198 extern void show_stack(struct task_struct *task, unsigned long *sp); 199 200 void io_schedule(void); 201 long io_schedule_timeout(long timeout); 202 203 extern void cpu_init (void); 204 extern void trap_init(void); 205 extern void update_process_times(int user); 206 extern void scheduler_tick(void); 207 208 #ifdef CONFIG_DETECT_SOFTLOCKUP 209 extern void softlockup_tick(struct pt_regs *regs); 210 extern void spawn_softlockup_task(void); 211 extern void touch_softlockup_watchdog(void); 212 #else 213 static inline void softlockup_tick(struct pt_regs *regs) 214 { 215 } 216 static inline void spawn_softlockup_task(void) 217 { 218 } 219 static inline void touch_softlockup_watchdog(void) 220 { 221 } 222 #endif 223 224 225 /* Attach to any functions which should be ignored in wchan output. */ 226 #define __sched __attribute__((__section__(".sched.text"))) 227 /* Is this address in the __sched functions? */ 228 extern int in_sched_functions(unsigned long addr); 229 230 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 231 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 232 extern signed long schedule_timeout_interruptible(signed long timeout); 233 extern signed long schedule_timeout_uninterruptible(signed long timeout); 234 asmlinkage void schedule(void); 235 236 struct namespace; 237 238 /* Maximum number of active map areas.. This is a random (large) number */ 239 #define DEFAULT_MAX_MAP_COUNT 65536 240 241 extern int sysctl_max_map_count; 242 243 #include <linux/aio.h> 244 245 extern unsigned long 246 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 247 unsigned long, unsigned long); 248 extern unsigned long 249 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 250 unsigned long len, unsigned long pgoff, 251 unsigned long flags); 252 extern void arch_unmap_area(struct mm_struct *, unsigned long); 253 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 254 255 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 256 /* 257 * The mm counters are not protected by its page_table_lock, 258 * so must be incremented atomically. 259 */ 260 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 261 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 262 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 263 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 264 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 265 typedef atomic_long_t mm_counter_t; 266 267 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 268 /* 269 * The mm counters are protected by its page_table_lock, 270 * so can be incremented directly. 271 */ 272 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 273 #define get_mm_counter(mm, member) ((mm)->_##member) 274 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 275 #define inc_mm_counter(mm, member) (mm)->_##member++ 276 #define dec_mm_counter(mm, member) (mm)->_##member-- 277 typedef unsigned long mm_counter_t; 278 279 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 280 281 #define get_mm_rss(mm) \ 282 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 283 #define update_hiwater_rss(mm) do { \ 284 unsigned long _rss = get_mm_rss(mm); \ 285 if ((mm)->hiwater_rss < _rss) \ 286 (mm)->hiwater_rss = _rss; \ 287 } while (0) 288 #define update_hiwater_vm(mm) do { \ 289 if ((mm)->hiwater_vm < (mm)->total_vm) \ 290 (mm)->hiwater_vm = (mm)->total_vm; \ 291 } while (0) 292 293 struct mm_struct { 294 struct vm_area_struct * mmap; /* list of VMAs */ 295 struct rb_root mm_rb; 296 struct vm_area_struct * mmap_cache; /* last find_vma result */ 297 unsigned long (*get_unmapped_area) (struct file *filp, 298 unsigned long addr, unsigned long len, 299 unsigned long pgoff, unsigned long flags); 300 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 301 unsigned long mmap_base; /* base of mmap area */ 302 unsigned long task_size; /* size of task vm space */ 303 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 304 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 305 pgd_t * pgd; 306 atomic_t mm_users; /* How many users with user space? */ 307 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 308 int map_count; /* number of VMAs */ 309 struct rw_semaphore mmap_sem; 310 spinlock_t page_table_lock; /* Protects page tables and some counters */ 311 312 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 313 * together off init_mm.mmlist, and are protected 314 * by mmlist_lock 315 */ 316 317 /* Special counters, in some configurations protected by the 318 * page_table_lock, in other configurations by being atomic. 319 */ 320 mm_counter_t _file_rss; 321 mm_counter_t _anon_rss; 322 323 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 324 unsigned long hiwater_vm; /* High-water virtual memory usage */ 325 326 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 327 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 328 unsigned long start_code, end_code, start_data, end_data; 329 unsigned long start_brk, brk, start_stack; 330 unsigned long arg_start, arg_end, env_start, env_end; 331 332 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 333 334 unsigned dumpable:2; 335 cpumask_t cpu_vm_mask; 336 337 /* Architecture-specific MM context */ 338 mm_context_t context; 339 340 /* Token based thrashing protection. */ 341 unsigned long swap_token_time; 342 char recent_pagein; 343 344 /* coredumping support */ 345 int core_waiters; 346 struct completion *core_startup_done, core_done; 347 348 /* aio bits */ 349 rwlock_t ioctx_list_lock; 350 struct kioctx *ioctx_list; 351 }; 352 353 struct sighand_struct { 354 atomic_t count; 355 struct k_sigaction action[_NSIG]; 356 spinlock_t siglock; 357 struct rcu_head rcu; 358 }; 359 360 extern void sighand_free_cb(struct rcu_head *rhp); 361 362 static inline void sighand_free(struct sighand_struct *sp) 363 { 364 call_rcu(&sp->rcu, sighand_free_cb); 365 } 366 367 /* 368 * NOTE! "signal_struct" does not have it's own 369 * locking, because a shared signal_struct always 370 * implies a shared sighand_struct, so locking 371 * sighand_struct is always a proper superset of 372 * the locking of signal_struct. 373 */ 374 struct signal_struct { 375 atomic_t count; 376 atomic_t live; 377 378 wait_queue_head_t wait_chldexit; /* for wait4() */ 379 380 /* current thread group signal load-balancing target: */ 381 task_t *curr_target; 382 383 /* shared signal handling: */ 384 struct sigpending shared_pending; 385 386 /* thread group exit support */ 387 int group_exit_code; 388 /* overloaded: 389 * - notify group_exit_task when ->count is equal to notify_count 390 * - everyone except group_exit_task is stopped during signal delivery 391 * of fatal signals, group_exit_task processes the signal. 392 */ 393 struct task_struct *group_exit_task; 394 int notify_count; 395 396 /* thread group stop support, overloads group_exit_code too */ 397 int group_stop_count; 398 unsigned int flags; /* see SIGNAL_* flags below */ 399 400 /* POSIX.1b Interval Timers */ 401 struct list_head posix_timers; 402 403 /* ITIMER_REAL timer for the process */ 404 struct hrtimer real_timer; 405 ktime_t it_real_incr; 406 407 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 408 cputime_t it_prof_expires, it_virt_expires; 409 cputime_t it_prof_incr, it_virt_incr; 410 411 /* job control IDs */ 412 pid_t pgrp; 413 pid_t tty_old_pgrp; 414 pid_t session; 415 /* boolean value for session group leader */ 416 int leader; 417 418 struct tty_struct *tty; /* NULL if no tty */ 419 420 /* 421 * Cumulative resource counters for dead threads in the group, 422 * and for reaped dead child processes forked by this group. 423 * Live threads maintain their own counters and add to these 424 * in __exit_signal, except for the group leader. 425 */ 426 cputime_t utime, stime, cutime, cstime; 427 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 428 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 429 430 /* 431 * Cumulative ns of scheduled CPU time for dead threads in the 432 * group, not including a zombie group leader. (This only differs 433 * from jiffies_to_ns(utime + stime) if sched_clock uses something 434 * other than jiffies.) 435 */ 436 unsigned long long sched_time; 437 438 /* 439 * We don't bother to synchronize most readers of this at all, 440 * because there is no reader checking a limit that actually needs 441 * to get both rlim_cur and rlim_max atomically, and either one 442 * alone is a single word that can safely be read normally. 443 * getrlimit/setrlimit use task_lock(current->group_leader) to 444 * protect this instead of the siglock, because they really 445 * have no need to disable irqs. 446 */ 447 struct rlimit rlim[RLIM_NLIMITS]; 448 449 struct list_head cpu_timers[3]; 450 451 /* keep the process-shared keyrings here so that they do the right 452 * thing in threads created with CLONE_THREAD */ 453 #ifdef CONFIG_KEYS 454 struct key *session_keyring; /* keyring inherited over fork */ 455 struct key *process_keyring; /* keyring private to this process */ 456 #endif 457 }; 458 459 /* Context switch must be unlocked if interrupts are to be enabled */ 460 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 461 # define __ARCH_WANT_UNLOCKED_CTXSW 462 #endif 463 464 /* 465 * Bits in flags field of signal_struct. 466 */ 467 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 468 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 469 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 470 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 471 472 473 /* 474 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 475 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 476 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 477 * values are inverted: lower p->prio value means higher priority. 478 * 479 * The MAX_USER_RT_PRIO value allows the actual maximum 480 * RT priority to be separate from the value exported to 481 * user-space. This allows kernel threads to set their 482 * priority to a value higher than any user task. Note: 483 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 484 */ 485 486 #define MAX_USER_RT_PRIO 100 487 #define MAX_RT_PRIO MAX_USER_RT_PRIO 488 489 #define MAX_PRIO (MAX_RT_PRIO + 40) 490 491 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 492 493 /* 494 * Some day this will be a full-fledged user tracking system.. 495 */ 496 struct user_struct { 497 atomic_t __count; /* reference count */ 498 atomic_t processes; /* How many processes does this user have? */ 499 atomic_t files; /* How many open files does this user have? */ 500 atomic_t sigpending; /* How many pending signals does this user have? */ 501 #ifdef CONFIG_INOTIFY 502 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 503 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 504 #endif 505 /* protected by mq_lock */ 506 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 507 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 508 509 #ifdef CONFIG_KEYS 510 struct key *uid_keyring; /* UID specific keyring */ 511 struct key *session_keyring; /* UID's default session keyring */ 512 #endif 513 514 /* Hash table maintenance information */ 515 struct list_head uidhash_list; 516 uid_t uid; 517 }; 518 519 extern struct user_struct *find_user(uid_t); 520 521 extern struct user_struct root_user; 522 #define INIT_USER (&root_user) 523 524 typedef struct prio_array prio_array_t; 525 struct backing_dev_info; 526 struct reclaim_state; 527 528 #ifdef CONFIG_SCHEDSTATS 529 struct sched_info { 530 /* cumulative counters */ 531 unsigned long cpu_time, /* time spent on the cpu */ 532 run_delay, /* time spent waiting on a runqueue */ 533 pcnt; /* # of timeslices run on this cpu */ 534 535 /* timestamps */ 536 unsigned long last_arrival, /* when we last ran on a cpu */ 537 last_queued; /* when we were last queued to run */ 538 }; 539 540 extern struct file_operations proc_schedstat_operations; 541 #endif 542 543 enum idle_type 544 { 545 SCHED_IDLE, 546 NOT_IDLE, 547 NEWLY_IDLE, 548 MAX_IDLE_TYPES 549 }; 550 551 /* 552 * sched-domains (multiprocessor balancing) declarations: 553 */ 554 #ifdef CONFIG_SMP 555 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 556 557 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 558 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 559 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 560 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 561 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 562 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 563 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 564 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 565 566 struct sched_group { 567 struct sched_group *next; /* Must be a circular list */ 568 cpumask_t cpumask; 569 570 /* 571 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 572 * single CPU. This is read only (except for setup, hotplug CPU). 573 */ 574 unsigned long cpu_power; 575 }; 576 577 struct sched_domain { 578 /* These fields must be setup */ 579 struct sched_domain *parent; /* top domain must be null terminated */ 580 struct sched_group *groups; /* the balancing groups of the domain */ 581 cpumask_t span; /* span of all CPUs in this domain */ 582 unsigned long min_interval; /* Minimum balance interval ms */ 583 unsigned long max_interval; /* Maximum balance interval ms */ 584 unsigned int busy_factor; /* less balancing by factor if busy */ 585 unsigned int imbalance_pct; /* No balance until over watermark */ 586 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 587 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 588 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 589 unsigned int busy_idx; 590 unsigned int idle_idx; 591 unsigned int newidle_idx; 592 unsigned int wake_idx; 593 unsigned int forkexec_idx; 594 int flags; /* See SD_* */ 595 596 /* Runtime fields. */ 597 unsigned long last_balance; /* init to jiffies. units in jiffies */ 598 unsigned int balance_interval; /* initialise to 1. units in ms. */ 599 unsigned int nr_balance_failed; /* initialise to 0 */ 600 601 #ifdef CONFIG_SCHEDSTATS 602 /* load_balance() stats */ 603 unsigned long lb_cnt[MAX_IDLE_TYPES]; 604 unsigned long lb_failed[MAX_IDLE_TYPES]; 605 unsigned long lb_balanced[MAX_IDLE_TYPES]; 606 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 607 unsigned long lb_gained[MAX_IDLE_TYPES]; 608 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 609 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 610 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 611 612 /* Active load balancing */ 613 unsigned long alb_cnt; 614 unsigned long alb_failed; 615 unsigned long alb_pushed; 616 617 /* SD_BALANCE_EXEC stats */ 618 unsigned long sbe_cnt; 619 unsigned long sbe_balanced; 620 unsigned long sbe_pushed; 621 622 /* SD_BALANCE_FORK stats */ 623 unsigned long sbf_cnt; 624 unsigned long sbf_balanced; 625 unsigned long sbf_pushed; 626 627 /* try_to_wake_up() stats */ 628 unsigned long ttwu_wake_remote; 629 unsigned long ttwu_move_affine; 630 unsigned long ttwu_move_balance; 631 #endif 632 }; 633 634 extern void partition_sched_domains(cpumask_t *partition1, 635 cpumask_t *partition2); 636 637 /* 638 * Maximum cache size the migration-costs auto-tuning code will 639 * search from: 640 */ 641 extern unsigned int max_cache_size; 642 643 #endif /* CONFIG_SMP */ 644 645 646 struct io_context; /* See blkdev.h */ 647 void exit_io_context(void); 648 struct cpuset; 649 650 #define NGROUPS_SMALL 32 651 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 652 struct group_info { 653 int ngroups; 654 atomic_t usage; 655 gid_t small_block[NGROUPS_SMALL]; 656 int nblocks; 657 gid_t *blocks[0]; 658 }; 659 660 /* 661 * get_group_info() must be called with the owning task locked (via task_lock()) 662 * when task != current. The reason being that the vast majority of callers are 663 * looking at current->group_info, which can not be changed except by the 664 * current task. Changing current->group_info requires the task lock, too. 665 */ 666 #define get_group_info(group_info) do { \ 667 atomic_inc(&(group_info)->usage); \ 668 } while (0) 669 670 #define put_group_info(group_info) do { \ 671 if (atomic_dec_and_test(&(group_info)->usage)) \ 672 groups_free(group_info); \ 673 } while (0) 674 675 extern struct group_info *groups_alloc(int gidsetsize); 676 extern void groups_free(struct group_info *group_info); 677 extern int set_current_groups(struct group_info *group_info); 678 extern int groups_search(struct group_info *group_info, gid_t grp); 679 /* access the groups "array" with this macro */ 680 #define GROUP_AT(gi, i) \ 681 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 682 683 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 684 extern void prefetch_stack(struct task_struct*); 685 #else 686 static inline void prefetch_stack(struct task_struct *t) { } 687 #endif 688 689 struct audit_context; /* See audit.c */ 690 struct mempolicy; 691 692 struct task_struct { 693 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 694 struct thread_info *thread_info; 695 atomic_t usage; 696 unsigned long flags; /* per process flags, defined below */ 697 unsigned long ptrace; 698 699 int lock_depth; /* BKL lock depth */ 700 701 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 702 int oncpu; 703 #endif 704 int prio, static_prio; 705 struct list_head run_list; 706 prio_array_t *array; 707 708 unsigned short ioprio; 709 710 unsigned long sleep_avg; 711 unsigned long long timestamp, last_ran; 712 unsigned long long sched_time; /* sched_clock time spent running */ 713 int activated; 714 715 unsigned long policy; 716 cpumask_t cpus_allowed; 717 unsigned int time_slice, first_time_slice; 718 719 #ifdef CONFIG_SCHEDSTATS 720 struct sched_info sched_info; 721 #endif 722 723 struct list_head tasks; 724 /* 725 * ptrace_list/ptrace_children forms the list of my children 726 * that were stolen by a ptracer. 727 */ 728 struct list_head ptrace_children; 729 struct list_head ptrace_list; 730 731 struct mm_struct *mm, *active_mm; 732 733 /* task state */ 734 struct linux_binfmt *binfmt; 735 long exit_state; 736 int exit_code, exit_signal; 737 int pdeath_signal; /* The signal sent when the parent dies */ 738 /* ??? */ 739 unsigned long personality; 740 unsigned did_exec:1; 741 pid_t pid; 742 pid_t tgid; 743 /* 744 * pointers to (original) parent process, youngest child, younger sibling, 745 * older sibling, respectively. (p->father can be replaced with 746 * p->parent->pid) 747 */ 748 struct task_struct *real_parent; /* real parent process (when being debugged) */ 749 struct task_struct *parent; /* parent process */ 750 /* 751 * children/sibling forms the list of my children plus the 752 * tasks I'm ptracing. 753 */ 754 struct list_head children; /* list of my children */ 755 struct list_head sibling; /* linkage in my parent's children list */ 756 struct task_struct *group_leader; /* threadgroup leader */ 757 758 /* PID/PID hash table linkage. */ 759 struct pid pids[PIDTYPE_MAX]; 760 761 struct completion *vfork_done; /* for vfork() */ 762 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 763 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 764 765 unsigned long rt_priority; 766 cputime_t utime, stime; 767 unsigned long nvcsw, nivcsw; /* context switch counts */ 768 struct timespec start_time; 769 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 770 unsigned long min_flt, maj_flt; 771 772 cputime_t it_prof_expires, it_virt_expires; 773 unsigned long long it_sched_expires; 774 struct list_head cpu_timers[3]; 775 776 /* process credentials */ 777 uid_t uid,euid,suid,fsuid; 778 gid_t gid,egid,sgid,fsgid; 779 struct group_info *group_info; 780 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 781 unsigned keep_capabilities:1; 782 struct user_struct *user; 783 #ifdef CONFIG_KEYS 784 struct key *request_key_auth; /* assumed request_key authority */ 785 struct key *thread_keyring; /* keyring private to this thread */ 786 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 787 #endif 788 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 789 char comm[TASK_COMM_LEN]; /* executable name excluding path 790 - access with [gs]et_task_comm (which lock 791 it with task_lock()) 792 - initialized normally by flush_old_exec */ 793 /* file system info */ 794 int link_count, total_link_count; 795 /* ipc stuff */ 796 struct sysv_sem sysvsem; 797 /* CPU-specific state of this task */ 798 struct thread_struct thread; 799 /* filesystem information */ 800 struct fs_struct *fs; 801 /* open file information */ 802 struct files_struct *files; 803 /* namespace */ 804 struct namespace *namespace; 805 /* signal handlers */ 806 struct signal_struct *signal; 807 struct sighand_struct *sighand; 808 809 sigset_t blocked, real_blocked; 810 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 811 struct sigpending pending; 812 813 unsigned long sas_ss_sp; 814 size_t sas_ss_size; 815 int (*notifier)(void *priv); 816 void *notifier_data; 817 sigset_t *notifier_mask; 818 819 void *security; 820 struct audit_context *audit_context; 821 seccomp_t seccomp; 822 823 /* Thread group tracking */ 824 u32 parent_exec_id; 825 u32 self_exec_id; 826 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 827 spinlock_t alloc_lock; 828 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 829 spinlock_t proc_lock; 830 831 #ifdef CONFIG_DEBUG_MUTEXES 832 /* mutex deadlock detection */ 833 struct mutex_waiter *blocked_on; 834 #endif 835 836 /* journalling filesystem info */ 837 void *journal_info; 838 839 /* VM state */ 840 struct reclaim_state *reclaim_state; 841 842 struct dentry *proc_dentry; 843 struct backing_dev_info *backing_dev_info; 844 845 struct io_context *io_context; 846 847 unsigned long ptrace_message; 848 siginfo_t *last_siginfo; /* For ptrace use. */ 849 /* 850 * current io wait handle: wait queue entry to use for io waits 851 * If this thread is processing aio, this points at the waitqueue 852 * inside the currently handled kiocb. It may be NULL (i.e. default 853 * to a stack based synchronous wait) if its doing sync IO. 854 */ 855 wait_queue_t *io_wait; 856 /* i/o counters(bytes read/written, #syscalls */ 857 u64 rchar, wchar, syscr, syscw; 858 #if defined(CONFIG_BSD_PROCESS_ACCT) 859 u64 acct_rss_mem1; /* accumulated rss usage */ 860 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 861 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 862 #endif 863 #ifdef CONFIG_NUMA 864 struct mempolicy *mempolicy; 865 short il_next; 866 #endif 867 #ifdef CONFIG_CPUSETS 868 struct cpuset *cpuset; 869 nodemask_t mems_allowed; 870 int cpuset_mems_generation; 871 #endif 872 atomic_t fs_excl; /* holding fs exclusive resources */ 873 struct rcu_head rcu; 874 }; 875 876 static inline pid_t process_group(struct task_struct *tsk) 877 { 878 return tsk->signal->pgrp; 879 } 880 881 /** 882 * pid_alive - check that a task structure is not stale 883 * @p: Task structure to be checked. 884 * 885 * Test if a process is not yet dead (at most zombie state) 886 * If pid_alive fails, then pointers within the task structure 887 * can be stale and must not be dereferenced. 888 */ 889 static inline int pid_alive(struct task_struct *p) 890 { 891 return p->pids[PIDTYPE_PID].nr != 0; 892 } 893 894 extern void free_task(struct task_struct *tsk); 895 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 896 897 extern void __put_task_struct_cb(struct rcu_head *rhp); 898 899 static inline void put_task_struct(struct task_struct *t) 900 { 901 if (atomic_dec_and_test(&t->usage)) 902 call_rcu(&t->rcu, __put_task_struct_cb); 903 } 904 905 /* 906 * Per process flags 907 */ 908 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 909 /* Not implemented yet, only for 486*/ 910 #define PF_STARTING 0x00000002 /* being created */ 911 #define PF_EXITING 0x00000004 /* getting shut down */ 912 #define PF_DEAD 0x00000008 /* Dead */ 913 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 914 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 915 #define PF_DUMPCORE 0x00000200 /* dumped core */ 916 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 917 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 918 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 919 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 920 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 921 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 922 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 923 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 924 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 925 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 926 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 927 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 928 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 929 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 930 #define PF_SWAPWRITE 0x01000000 /* Allowed to write to swap */ 931 932 /* 933 * Only the _current_ task can read/write to tsk->flags, but other 934 * tasks can access tsk->flags in readonly mode for example 935 * with tsk_used_math (like during threaded core dumping). 936 * There is however an exception to this rule during ptrace 937 * or during fork: the ptracer task is allowed to write to the 938 * child->flags of its traced child (same goes for fork, the parent 939 * can write to the child->flags), because we're guaranteed the 940 * child is not running and in turn not changing child->flags 941 * at the same time the parent does it. 942 */ 943 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 944 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 945 #define clear_used_math() clear_stopped_child_used_math(current) 946 #define set_used_math() set_stopped_child_used_math(current) 947 #define conditional_stopped_child_used_math(condition, child) \ 948 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 949 #define conditional_used_math(condition) \ 950 conditional_stopped_child_used_math(condition, current) 951 #define copy_to_stopped_child_used_math(child) \ 952 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 953 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 954 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 955 #define used_math() tsk_used_math(current) 956 957 #ifdef CONFIG_SMP 958 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 959 #else 960 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 961 { 962 if (!cpu_isset(0, new_mask)) 963 return -EINVAL; 964 return 0; 965 } 966 #endif 967 968 extern unsigned long long sched_clock(void); 969 extern unsigned long long current_sched_time(const task_t *current_task); 970 971 /* sched_exec is called by processes performing an exec */ 972 #ifdef CONFIG_SMP 973 extern void sched_exec(void); 974 #else 975 #define sched_exec() {} 976 #endif 977 978 #ifdef CONFIG_HOTPLUG_CPU 979 extern void idle_task_exit(void); 980 #else 981 static inline void idle_task_exit(void) {} 982 #endif 983 984 extern void sched_idle_next(void); 985 extern void set_user_nice(task_t *p, long nice); 986 extern int task_prio(const task_t *p); 987 extern int task_nice(const task_t *p); 988 extern int can_nice(const task_t *p, const int nice); 989 extern int task_curr(const task_t *p); 990 extern int idle_cpu(int cpu); 991 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 992 extern task_t *idle_task(int cpu); 993 extern task_t *curr_task(int cpu); 994 extern void set_curr_task(int cpu, task_t *p); 995 996 void yield(void); 997 998 /* 999 * The default (Linux) execution domain. 1000 */ 1001 extern struct exec_domain default_exec_domain; 1002 1003 union thread_union { 1004 struct thread_info thread_info; 1005 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1006 }; 1007 1008 #ifndef __HAVE_ARCH_KSTACK_END 1009 static inline int kstack_end(void *addr) 1010 { 1011 /* Reliable end of stack detection: 1012 * Some APM bios versions misalign the stack 1013 */ 1014 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1015 } 1016 #endif 1017 1018 extern union thread_union init_thread_union; 1019 extern struct task_struct init_task; 1020 1021 extern struct mm_struct init_mm; 1022 1023 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1024 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1025 extern void set_special_pids(pid_t session, pid_t pgrp); 1026 extern void __set_special_pids(pid_t session, pid_t pgrp); 1027 1028 /* per-UID process charging. */ 1029 extern struct user_struct * alloc_uid(uid_t); 1030 static inline struct user_struct *get_uid(struct user_struct *u) 1031 { 1032 atomic_inc(&u->__count); 1033 return u; 1034 } 1035 extern void free_uid(struct user_struct *); 1036 extern void switch_uid(struct user_struct *); 1037 1038 #include <asm/current.h> 1039 1040 extern void do_timer(struct pt_regs *); 1041 1042 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1043 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1044 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1045 unsigned long clone_flags)); 1046 #ifdef CONFIG_SMP 1047 extern void kick_process(struct task_struct *tsk); 1048 #else 1049 static inline void kick_process(struct task_struct *tsk) { } 1050 #endif 1051 extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); 1052 extern void FASTCALL(sched_exit(task_t * p)); 1053 1054 extern int in_group_p(gid_t); 1055 extern int in_egroup_p(gid_t); 1056 1057 extern void proc_caches_init(void); 1058 extern void flush_signals(struct task_struct *); 1059 extern void flush_signal_handlers(struct task_struct *, int force_default); 1060 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1061 1062 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1063 { 1064 unsigned long flags; 1065 int ret; 1066 1067 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1068 ret = dequeue_signal(tsk, mask, info); 1069 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1070 1071 return ret; 1072 } 1073 1074 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1075 sigset_t *mask); 1076 extern void unblock_all_signals(void); 1077 extern void release_task(struct task_struct * p); 1078 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1079 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1080 extern int force_sigsegv(int, struct task_struct *); 1081 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1082 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1083 extern int kill_pg_info(int, struct siginfo *, pid_t); 1084 extern int kill_proc_info(int, struct siginfo *, pid_t); 1085 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t); 1086 extern void do_notify_parent(struct task_struct *, int); 1087 extern void force_sig(int, struct task_struct *); 1088 extern void force_sig_specific(int, struct task_struct *); 1089 extern int send_sig(int, struct task_struct *, int); 1090 extern void zap_other_threads(struct task_struct *p); 1091 extern int kill_pg(pid_t, int, int); 1092 extern int kill_sl(pid_t, int, int); 1093 extern int kill_proc(pid_t, int, int); 1094 extern struct sigqueue *sigqueue_alloc(void); 1095 extern void sigqueue_free(struct sigqueue *); 1096 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1097 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1098 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1099 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1100 1101 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1102 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1103 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1104 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1105 1106 static inline int is_si_special(const struct siginfo *info) 1107 { 1108 return info <= SEND_SIG_FORCED; 1109 } 1110 1111 /* True if we are on the alternate signal stack. */ 1112 1113 static inline int on_sig_stack(unsigned long sp) 1114 { 1115 return (sp - current->sas_ss_sp < current->sas_ss_size); 1116 } 1117 1118 static inline int sas_ss_flags(unsigned long sp) 1119 { 1120 return (current->sas_ss_size == 0 ? SS_DISABLE 1121 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1122 } 1123 1124 /* 1125 * Routines for handling mm_structs 1126 */ 1127 extern struct mm_struct * mm_alloc(void); 1128 1129 /* mmdrop drops the mm and the page tables */ 1130 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1131 static inline void mmdrop(struct mm_struct * mm) 1132 { 1133 if (atomic_dec_and_test(&mm->mm_count)) 1134 __mmdrop(mm); 1135 } 1136 1137 /* mmput gets rid of the mappings and all user-space */ 1138 extern void mmput(struct mm_struct *); 1139 /* Grab a reference to a task's mm, if it is not already going away */ 1140 extern struct mm_struct *get_task_mm(struct task_struct *task); 1141 /* Remove the current tasks stale references to the old mm_struct */ 1142 extern void mm_release(struct task_struct *, struct mm_struct *); 1143 1144 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1145 extern void flush_thread(void); 1146 extern void exit_thread(void); 1147 1148 extern void exit_files(struct task_struct *); 1149 extern void exit_signal(struct task_struct *); 1150 extern void __exit_signal(struct task_struct *); 1151 extern void exit_sighand(struct task_struct *); 1152 extern void __exit_sighand(struct task_struct *); 1153 extern void exit_itimers(struct signal_struct *); 1154 1155 extern NORET_TYPE void do_group_exit(int); 1156 1157 extern void daemonize(const char *, ...); 1158 extern int allow_signal(int); 1159 extern int disallow_signal(int); 1160 extern task_t *child_reaper; 1161 1162 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1163 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1164 task_t *fork_idle(int); 1165 1166 extern void set_task_comm(struct task_struct *tsk, char *from); 1167 extern void get_task_comm(char *to, struct task_struct *tsk); 1168 1169 #ifdef CONFIG_SMP 1170 extern void wait_task_inactive(task_t * p); 1171 #else 1172 #define wait_task_inactive(p) do { } while (0) 1173 #endif 1174 1175 #define remove_parent(p) list_del_init(&(p)->sibling) 1176 #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) 1177 1178 #define REMOVE_LINKS(p) do { \ 1179 if (thread_group_leader(p)) \ 1180 list_del_init(&(p)->tasks); \ 1181 remove_parent(p); \ 1182 } while (0) 1183 1184 #define SET_LINKS(p) do { \ 1185 if (thread_group_leader(p)) \ 1186 list_add_tail(&(p)->tasks,&init_task.tasks); \ 1187 add_parent(p, (p)->parent); \ 1188 } while (0) 1189 1190 #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) 1191 #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) 1192 1193 #define for_each_process(p) \ 1194 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1195 1196 /* 1197 * Careful: do_each_thread/while_each_thread is a double loop so 1198 * 'break' will not work as expected - use goto instead. 1199 */ 1200 #define do_each_thread(g, t) \ 1201 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1202 1203 #define while_each_thread(g, t) \ 1204 while ((t = next_thread(t)) != g) 1205 1206 extern task_t * FASTCALL(next_thread(const task_t *p)); 1207 1208 #define thread_group_leader(p) (p->pid == p->tgid) 1209 1210 static inline int thread_group_empty(task_t *p) 1211 { 1212 return list_empty(&p->pids[PIDTYPE_TGID].pid_list); 1213 } 1214 1215 #define delay_group_leader(p) \ 1216 (thread_group_leader(p) && !thread_group_empty(p)) 1217 1218 extern void unhash_process(struct task_struct *p); 1219 1220 /* 1221 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1222 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1223 * pins the final release of task.io_context. Also protects ->cpuset. 1224 * 1225 * Nests both inside and outside of read_lock(&tasklist_lock). 1226 * It must not be nested with write_lock_irq(&tasklist_lock), 1227 * neither inside nor outside. 1228 */ 1229 static inline void task_lock(struct task_struct *p) 1230 { 1231 spin_lock(&p->alloc_lock); 1232 } 1233 1234 static inline void task_unlock(struct task_struct *p) 1235 { 1236 spin_unlock(&p->alloc_lock); 1237 } 1238 1239 #ifndef __HAVE_THREAD_FUNCTIONS 1240 1241 #define task_thread_info(task) (task)->thread_info 1242 #define task_stack_page(task) ((void*)((task)->thread_info)) 1243 1244 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1245 { 1246 *task_thread_info(p) = *task_thread_info(org); 1247 task_thread_info(p)->task = p; 1248 } 1249 1250 static inline unsigned long *end_of_stack(struct task_struct *p) 1251 { 1252 return (unsigned long *)(p->thread_info + 1); 1253 } 1254 1255 #endif 1256 1257 /* set thread flags in other task's structures 1258 * - see asm/thread_info.h for TIF_xxxx flags available 1259 */ 1260 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1261 { 1262 set_ti_thread_flag(task_thread_info(tsk), flag); 1263 } 1264 1265 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1266 { 1267 clear_ti_thread_flag(task_thread_info(tsk), flag); 1268 } 1269 1270 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1271 { 1272 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1273 } 1274 1275 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1276 { 1277 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1278 } 1279 1280 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1281 { 1282 return test_ti_thread_flag(task_thread_info(tsk), flag); 1283 } 1284 1285 static inline void set_tsk_need_resched(struct task_struct *tsk) 1286 { 1287 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1288 } 1289 1290 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1291 { 1292 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1293 } 1294 1295 static inline int signal_pending(struct task_struct *p) 1296 { 1297 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1298 } 1299 1300 static inline int need_resched(void) 1301 { 1302 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1303 } 1304 1305 /* 1306 * cond_resched() and cond_resched_lock(): latency reduction via 1307 * explicit rescheduling in places that are safe. The return 1308 * value indicates whether a reschedule was done in fact. 1309 * cond_resched_lock() will drop the spinlock before scheduling, 1310 * cond_resched_softirq() will enable bhs before scheduling. 1311 */ 1312 extern int cond_resched(void); 1313 extern int cond_resched_lock(spinlock_t * lock); 1314 extern int cond_resched_softirq(void); 1315 1316 /* 1317 * Does a critical section need to be broken due to another 1318 * task waiting?: 1319 */ 1320 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1321 # define need_lockbreak(lock) ((lock)->break_lock) 1322 #else 1323 # define need_lockbreak(lock) 0 1324 #endif 1325 1326 /* 1327 * Does a critical section need to be broken due to another 1328 * task waiting or preemption being signalled: 1329 */ 1330 static inline int lock_need_resched(spinlock_t *lock) 1331 { 1332 if (need_lockbreak(lock) || need_resched()) 1333 return 1; 1334 return 0; 1335 } 1336 1337 /* Reevaluate whether the task has signals pending delivery. 1338 This is required every time the blocked sigset_t changes. 1339 callers must hold sighand->siglock. */ 1340 1341 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1342 extern void recalc_sigpending(void); 1343 1344 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1345 1346 /* 1347 * Wrappers for p->thread_info->cpu access. No-op on UP. 1348 */ 1349 #ifdef CONFIG_SMP 1350 1351 static inline unsigned int task_cpu(const struct task_struct *p) 1352 { 1353 return task_thread_info(p)->cpu; 1354 } 1355 1356 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1357 { 1358 task_thread_info(p)->cpu = cpu; 1359 } 1360 1361 #else 1362 1363 static inline unsigned int task_cpu(const struct task_struct *p) 1364 { 1365 return 0; 1366 } 1367 1368 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1369 { 1370 } 1371 1372 #endif /* CONFIG_SMP */ 1373 1374 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1375 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1376 #else 1377 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1378 { 1379 mm->mmap_base = TASK_UNMAPPED_BASE; 1380 mm->get_unmapped_area = arch_get_unmapped_area; 1381 mm->unmap_area = arch_unmap_area; 1382 } 1383 #endif 1384 1385 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1386 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1387 1388 extern void normalize_rt_tasks(void); 1389 1390 #ifdef CONFIG_PM 1391 /* 1392 * Check if a process has been frozen 1393 */ 1394 static inline int frozen(struct task_struct *p) 1395 { 1396 return p->flags & PF_FROZEN; 1397 } 1398 1399 /* 1400 * Check if there is a request to freeze a process 1401 */ 1402 static inline int freezing(struct task_struct *p) 1403 { 1404 return p->flags & PF_FREEZE; 1405 } 1406 1407 /* 1408 * Request that a process be frozen 1409 * FIXME: SMP problem. We may not modify other process' flags! 1410 */ 1411 static inline void freeze(struct task_struct *p) 1412 { 1413 p->flags |= PF_FREEZE; 1414 } 1415 1416 /* 1417 * Wake up a frozen process 1418 */ 1419 static inline int thaw_process(struct task_struct *p) 1420 { 1421 if (frozen(p)) { 1422 p->flags &= ~PF_FROZEN; 1423 wake_up_process(p); 1424 return 1; 1425 } 1426 return 0; 1427 } 1428 1429 /* 1430 * freezing is complete, mark process as frozen 1431 */ 1432 static inline void frozen_process(struct task_struct *p) 1433 { 1434 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1435 } 1436 1437 extern void refrigerator(void); 1438 extern int freeze_processes(void); 1439 extern void thaw_processes(void); 1440 1441 static inline int try_to_freeze(void) 1442 { 1443 if (freezing(current)) { 1444 refrigerator(); 1445 return 1; 1446 } else 1447 return 0; 1448 } 1449 #else 1450 static inline int frozen(struct task_struct *p) { return 0; } 1451 static inline int freezing(struct task_struct *p) { return 0; } 1452 static inline void freeze(struct task_struct *p) { BUG(); } 1453 static inline int thaw_process(struct task_struct *p) { return 1; } 1454 static inline void frozen_process(struct task_struct *p) { BUG(); } 1455 1456 static inline void refrigerator(void) {} 1457 static inline int freeze_processes(void) { BUG(); return 0; } 1458 static inline void thaw_processes(void) {} 1459 1460 static inline int try_to_freeze(void) { return 0; } 1461 1462 #endif /* CONFIG_PM */ 1463 #endif /* __KERNEL__ */ 1464 1465 #endif 1466