xref: /linux/include/linux/sched.h (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
27 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
28 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
29 #define CLONE_NEWNET		0x40000000	/* New network namespace */
30 #define CLONE_IO		0x80000000	/* Clone io context */
31 
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL		0
36 #define SCHED_FIFO		1
37 #define SCHED_RR		2
38 #define SCHED_BATCH		3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE		5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK     0x40000000
43 
44 #ifdef __KERNEL__
45 
46 struct sched_param {
47 	int sched_priority;
48 };
49 
50 #include <asm/param.h>	/* for HZ */
51 
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64 
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69 
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84 
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94 
95 #include <asm/processor.h>
96 
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 
104 /*
105  * List of flags we want to share for kernel threads,
106  * if only because they are not used by them anyway.
107  */
108 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109 
110 /*
111  * These are the constant used to fake the fixed-point load-average
112  * counting. Some notes:
113  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
114  *    a load-average precision of 10 bits integer + 11 bits fractional
115  *  - if you want to count load-averages more often, you need more
116  *    precision, or rounding will get you. With 2-second counting freq,
117  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
118  *    11 bit fractions.
119  */
120 extern unsigned long avenrun[];		/* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 
123 #define FSHIFT		11		/* nr of bits of precision */
124 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
125 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
126 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5		2014		/* 1/exp(5sec/5min) */
128 #define EXP_15		2037		/* 1/exp(5sec/15min) */
129 
130 #define CALC_LOAD(load,exp,n) \
131 	load *= exp; \
132 	load += n*(FIXED_1-exp); \
133 	load >>= FSHIFT;
134 
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144 
145 
146 extern void calc_global_load(void);
147 
148 extern unsigned long get_parent_ip(unsigned long addr);
149 
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171 
172 /*
173  * Task state bitmask. NOTE! These bits are also
174  * encoded in fs/proc/array.c: get_task_state().
175  *
176  * We have two separate sets of flags: task->state
177  * is about runnability, while task->exit_state are
178  * about the task exiting. Confusing, but this way
179  * modifying one set can't modify the other one by
180  * mistake.
181  */
182 #define TASK_RUNNING		0
183 #define TASK_INTERRUPTIBLE	1
184 #define TASK_UNINTERRUPTIBLE	2
185 #define __TASK_STOPPED		4
186 #define __TASK_TRACED		8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE		16
189 #define EXIT_DEAD		32
190 /* in tsk->state again */
191 #define TASK_DEAD		64
192 #define TASK_WAKEKILL		128
193 #define TASK_WAKING		256
194 #define TASK_STATE_MAX		512
195 
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197 
198 extern char ___assert_task_state[1 - 2*!!(
199 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200 
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
205 
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209 
210 /* get_task_state() */
211 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 				 __TASK_TRACED)
214 
215 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task)	((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task)	\
219 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task)	\
221 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 				 (task->flags & PF_FREEZING) == 0)
223 
224 #define __set_task_state(tsk, state_value)		\
225 	do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value)		\
227 	set_mb((tsk)->state, (state_value))
228 
229 /*
230  * set_current_state() includes a barrier so that the write of current->state
231  * is correctly serialised wrt the caller's subsequent test of whether to
232  * actually sleep:
233  *
234  *	set_current_state(TASK_UNINTERRUPTIBLE);
235  *	if (do_i_need_to_sleep())
236  *		schedule();
237  *
238  * If the caller does not need such serialisation then use __set_current_state()
239  */
240 #define __set_current_state(state_value)			\
241 	do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value)		\
243 	set_mb(current->state, (state_value))
244 
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247 
248 #include <linux/spinlock.h>
249 
250 /*
251  * This serializes "schedule()" and also protects
252  * the run-queue from deletions/modifications (but
253  * _adding_ to the beginning of the run-queue has
254  * a separate lock).
255  */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258 
259 struct task_struct;
260 
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264 
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270 
271 extern int runqueue_is_locked(int cpu);
272 
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280 
281 /*
282  * Only dump TASK_* tasks. (0 for all tasks)
283  */
284 extern void show_state_filter(unsigned long state_filter);
285 
286 static inline void show_state(void)
287 {
288 	show_state_filter(0);
289 }
290 
291 extern void show_regs(struct pt_regs *);
292 
293 /*
294  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295  * task), SP is the stack pointer of the first frame that should be shown in the back
296  * trace (or NULL if the entire call-chain of the task should be shown).
297  */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299 
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302 
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307 
308 extern void sched_show_task(struct task_struct *p);
309 
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 				  void __user *buffer,
316 				  size_t *lenp, loff_t *ppos);
317 extern unsigned int  softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330 
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int  sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 					 void __user *buffer,
338 					 size_t *lenp, loff_t *ppos);
339 #endif
340 
341 /* Attach to any functions which should be ignored in wchan output. */
342 #define __sched		__attribute__((__section__(".sched.text")))
343 
344 /* Linker adds these: start and end of __sched functions */
345 extern char __sched_text_start[], __sched_text_end[];
346 
347 /* Is this address in the __sched functions? */
348 extern int in_sched_functions(unsigned long addr);
349 
350 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
351 extern signed long schedule_timeout(signed long timeout);
352 extern signed long schedule_timeout_interruptible(signed long timeout);
353 extern signed long schedule_timeout_killable(signed long timeout);
354 extern signed long schedule_timeout_uninterruptible(signed long timeout);
355 asmlinkage void schedule(void);
356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357 
358 struct nsproxy;
359 struct user_namespace;
360 
361 /*
362  * Default maximum number of active map areas, this limits the number of vmas
363  * per mm struct. Users can overwrite this number by sysctl but there is a
364  * problem.
365  *
366  * When a program's coredump is generated as ELF format, a section is created
367  * per a vma. In ELF, the number of sections is represented in unsigned short.
368  * This means the number of sections should be smaller than 65535 at coredump.
369  * Because the kernel adds some informative sections to a image of program at
370  * generating coredump, we need some margin. The number of extra sections is
371  * 1-3 now and depends on arch. We use "5" as safe margin, here.
372  */
373 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
374 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375 
376 extern int sysctl_max_map_count;
377 
378 #include <linux/aio.h>
379 
380 #ifdef CONFIG_MMU
381 extern void arch_pick_mmap_layout(struct mm_struct *mm);
382 extern unsigned long
383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384 		       unsigned long, unsigned long);
385 extern unsigned long
386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387 			  unsigned long len, unsigned long pgoff,
388 			  unsigned long flags);
389 extern void arch_unmap_area(struct mm_struct *, unsigned long);
390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
391 #else
392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393 #endif
394 
395 
396 extern void set_dumpable(struct mm_struct *mm, int value);
397 extern int get_dumpable(struct mm_struct *mm);
398 
399 /* mm flags */
400 /* dumpable bits */
401 #define MMF_DUMPABLE      0  /* core dump is permitted */
402 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
403 
404 #define MMF_DUMPABLE_BITS 2
405 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
406 
407 /* coredump filter bits */
408 #define MMF_DUMP_ANON_PRIVATE	2
409 #define MMF_DUMP_ANON_SHARED	3
410 #define MMF_DUMP_MAPPED_PRIVATE	4
411 #define MMF_DUMP_MAPPED_SHARED	5
412 #define MMF_DUMP_ELF_HEADERS	6
413 #define MMF_DUMP_HUGETLB_PRIVATE 7
414 #define MMF_DUMP_HUGETLB_SHARED  8
415 
416 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
417 #define MMF_DUMP_FILTER_BITS	7
418 #define MMF_DUMP_FILTER_MASK \
419 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
420 #define MMF_DUMP_FILTER_DEFAULT \
421 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
422 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
423 
424 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
425 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
426 #else
427 # define MMF_DUMP_MASK_DEFAULT_ELF	0
428 #endif
429 					/* leave room for more dump flags */
430 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
431 
432 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
433 
434 struct sighand_struct {
435 	atomic_t		count;
436 	struct k_sigaction	action[_NSIG];
437 	spinlock_t		siglock;
438 	wait_queue_head_t	signalfd_wqh;
439 };
440 
441 struct pacct_struct {
442 	int			ac_flag;
443 	long			ac_exitcode;
444 	unsigned long		ac_mem;
445 	cputime_t		ac_utime, ac_stime;
446 	unsigned long		ac_minflt, ac_majflt;
447 };
448 
449 struct cpu_itimer {
450 	cputime_t expires;
451 	cputime_t incr;
452 	u32 error;
453 	u32 incr_error;
454 };
455 
456 /**
457  * struct task_cputime - collected CPU time counts
458  * @utime:		time spent in user mode, in &cputime_t units
459  * @stime:		time spent in kernel mode, in &cputime_t units
460  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
461  *
462  * This structure groups together three kinds of CPU time that are
463  * tracked for threads and thread groups.  Most things considering
464  * CPU time want to group these counts together and treat all three
465  * of them in parallel.
466  */
467 struct task_cputime {
468 	cputime_t utime;
469 	cputime_t stime;
470 	unsigned long long sum_exec_runtime;
471 };
472 /* Alternate field names when used to cache expirations. */
473 #define prof_exp	stime
474 #define virt_exp	utime
475 #define sched_exp	sum_exec_runtime
476 
477 #define INIT_CPUTIME	\
478 	(struct task_cputime) {					\
479 		.utime = cputime_zero,				\
480 		.stime = cputime_zero,				\
481 		.sum_exec_runtime = 0,				\
482 	}
483 
484 /*
485  * Disable preemption until the scheduler is running.
486  * Reset by start_kernel()->sched_init()->init_idle().
487  *
488  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
489  * before the scheduler is active -- see should_resched().
490  */
491 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
492 
493 /**
494  * struct thread_group_cputimer - thread group interval timer counts
495  * @cputime:		thread group interval timers.
496  * @running:		non-zero when there are timers running and
497  * 			@cputime receives updates.
498  * @lock:		lock for fields in this struct.
499  *
500  * This structure contains the version of task_cputime, above, that is
501  * used for thread group CPU timer calculations.
502  */
503 struct thread_group_cputimer {
504 	struct task_cputime cputime;
505 	int running;
506 	spinlock_t lock;
507 };
508 
509 /*
510  * NOTE! "signal_struct" does not have it's own
511  * locking, because a shared signal_struct always
512  * implies a shared sighand_struct, so locking
513  * sighand_struct is always a proper superset of
514  * the locking of signal_struct.
515  */
516 struct signal_struct {
517 	atomic_t		sigcnt;
518 	atomic_t		live;
519 	int			nr_threads;
520 
521 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
522 
523 	/* current thread group signal load-balancing target: */
524 	struct task_struct	*curr_target;
525 
526 	/* shared signal handling: */
527 	struct sigpending	shared_pending;
528 
529 	/* thread group exit support */
530 	int			group_exit_code;
531 	/* overloaded:
532 	 * - notify group_exit_task when ->count is equal to notify_count
533 	 * - everyone except group_exit_task is stopped during signal delivery
534 	 *   of fatal signals, group_exit_task processes the signal.
535 	 */
536 	int			notify_count;
537 	struct task_struct	*group_exit_task;
538 
539 	/* thread group stop support, overloads group_exit_code too */
540 	int			group_stop_count;
541 	unsigned int		flags; /* see SIGNAL_* flags below */
542 
543 	/* POSIX.1b Interval Timers */
544 	struct list_head posix_timers;
545 
546 	/* ITIMER_REAL timer for the process */
547 	struct hrtimer real_timer;
548 	struct pid *leader_pid;
549 	ktime_t it_real_incr;
550 
551 	/*
552 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
553 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
554 	 * values are defined to 0 and 1 respectively
555 	 */
556 	struct cpu_itimer it[2];
557 
558 	/*
559 	 * Thread group totals for process CPU timers.
560 	 * See thread_group_cputimer(), et al, for details.
561 	 */
562 	struct thread_group_cputimer cputimer;
563 
564 	/* Earliest-expiration cache. */
565 	struct task_cputime cputime_expires;
566 
567 	struct list_head cpu_timers[3];
568 
569 	struct pid *tty_old_pgrp;
570 
571 	/* boolean value for session group leader */
572 	int leader;
573 
574 	struct tty_struct *tty; /* NULL if no tty */
575 
576 	/*
577 	 * Cumulative resource counters for dead threads in the group,
578 	 * and for reaped dead child processes forked by this group.
579 	 * Live threads maintain their own counters and add to these
580 	 * in __exit_signal, except for the group leader.
581 	 */
582 	cputime_t utime, stime, cutime, cstime;
583 	cputime_t gtime;
584 	cputime_t cgtime;
585 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
586 	cputime_t prev_utime, prev_stime;
587 #endif
588 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
589 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
590 	unsigned long inblock, oublock, cinblock, coublock;
591 	unsigned long maxrss, cmaxrss;
592 	struct task_io_accounting ioac;
593 
594 	/*
595 	 * Cumulative ns of schedule CPU time fo dead threads in the
596 	 * group, not including a zombie group leader, (This only differs
597 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
598 	 * other than jiffies.)
599 	 */
600 	unsigned long long sum_sched_runtime;
601 
602 	/*
603 	 * We don't bother to synchronize most readers of this at all,
604 	 * because there is no reader checking a limit that actually needs
605 	 * to get both rlim_cur and rlim_max atomically, and either one
606 	 * alone is a single word that can safely be read normally.
607 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
608 	 * protect this instead of the siglock, because they really
609 	 * have no need to disable irqs.
610 	 */
611 	struct rlimit rlim[RLIM_NLIMITS];
612 
613 #ifdef CONFIG_BSD_PROCESS_ACCT
614 	struct pacct_struct pacct;	/* per-process accounting information */
615 #endif
616 #ifdef CONFIG_TASKSTATS
617 	struct taskstats *stats;
618 #endif
619 #ifdef CONFIG_AUDIT
620 	unsigned audit_tty;
621 	struct tty_audit_buf *tty_audit_buf;
622 #endif
623 
624 	int oom_adj;		/* OOM kill score adjustment (bit shift) */
625 	int oom_score_adj;	/* OOM kill score adjustment */
626 };
627 
628 /* Context switch must be unlocked if interrupts are to be enabled */
629 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
630 # define __ARCH_WANT_UNLOCKED_CTXSW
631 #endif
632 
633 /*
634  * Bits in flags field of signal_struct.
635  */
636 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
637 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
638 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
639 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
640 /*
641  * Pending notifications to parent.
642  */
643 #define SIGNAL_CLD_STOPPED	0x00000010
644 #define SIGNAL_CLD_CONTINUED	0x00000020
645 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
646 
647 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
648 
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
651 {
652 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
653 		(sig->group_exit_task != NULL);
654 }
655 
656 /*
657  * Some day this will be a full-fledged user tracking system..
658  */
659 struct user_struct {
660 	atomic_t __count;	/* reference count */
661 	atomic_t processes;	/* How many processes does this user have? */
662 	atomic_t files;		/* How many open files does this user have? */
663 	atomic_t sigpending;	/* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
666 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
667 #endif
668 #ifdef CONFIG_EPOLL
669 	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
670 #endif
671 #ifdef CONFIG_POSIX_MQUEUE
672 	/* protected by mq_lock	*/
673 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
674 #endif
675 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
676 
677 #ifdef CONFIG_KEYS
678 	struct key *uid_keyring;	/* UID specific keyring */
679 	struct key *session_keyring;	/* UID's default session keyring */
680 #endif
681 
682 	/* Hash table maintenance information */
683 	struct hlist_node uidhash_node;
684 	uid_t uid;
685 	struct user_namespace *user_ns;
686 
687 #ifdef CONFIG_PERF_EVENTS
688 	atomic_long_t locked_vm;
689 #endif
690 };
691 
692 extern int uids_sysfs_init(void);
693 
694 extern struct user_struct *find_user(uid_t);
695 
696 extern struct user_struct root_user;
697 #define INIT_USER (&root_user)
698 
699 
700 struct backing_dev_info;
701 struct reclaim_state;
702 
703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
704 struct sched_info {
705 	/* cumulative counters */
706 	unsigned long pcount;	      /* # of times run on this cpu */
707 	unsigned long long run_delay; /* time spent waiting on a runqueue */
708 
709 	/* timestamps */
710 	unsigned long long last_arrival,/* when we last ran on a cpu */
711 			   last_queued;	/* when we were last queued to run */
712 #ifdef CONFIG_SCHEDSTATS
713 	/* BKL stats */
714 	unsigned int bkl_count;
715 #endif
716 };
717 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
718 
719 #ifdef CONFIG_TASK_DELAY_ACCT
720 struct task_delay_info {
721 	spinlock_t	lock;
722 	unsigned int	flags;	/* Private per-task flags */
723 
724 	/* For each stat XXX, add following, aligned appropriately
725 	 *
726 	 * struct timespec XXX_start, XXX_end;
727 	 * u64 XXX_delay;
728 	 * u32 XXX_count;
729 	 *
730 	 * Atomicity of updates to XXX_delay, XXX_count protected by
731 	 * single lock above (split into XXX_lock if contention is an issue).
732 	 */
733 
734 	/*
735 	 * XXX_count is incremented on every XXX operation, the delay
736 	 * associated with the operation is added to XXX_delay.
737 	 * XXX_delay contains the accumulated delay time in nanoseconds.
738 	 */
739 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
740 	u64 blkio_delay;	/* wait for sync block io completion */
741 	u64 swapin_delay;	/* wait for swapin block io completion */
742 	u32 blkio_count;	/* total count of the number of sync block */
743 				/* io operations performed */
744 	u32 swapin_count;	/* total count of the number of swapin block */
745 				/* io operations performed */
746 
747 	struct timespec freepages_start, freepages_end;
748 	u64 freepages_delay;	/* wait for memory reclaim */
749 	u32 freepages_count;	/* total count of memory reclaim */
750 };
751 #endif	/* CONFIG_TASK_DELAY_ACCT */
752 
753 static inline int sched_info_on(void)
754 {
755 #ifdef CONFIG_SCHEDSTATS
756 	return 1;
757 #elif defined(CONFIG_TASK_DELAY_ACCT)
758 	extern int delayacct_on;
759 	return delayacct_on;
760 #else
761 	return 0;
762 #endif
763 }
764 
765 enum cpu_idle_type {
766 	CPU_IDLE,
767 	CPU_NOT_IDLE,
768 	CPU_NEWLY_IDLE,
769 	CPU_MAX_IDLE_TYPES
770 };
771 
772 /*
773  * sched-domains (multiprocessor balancing) declarations:
774  */
775 
776 /*
777  * Increase resolution of nice-level calculations:
778  */
779 #define SCHED_LOAD_SHIFT	10
780 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
781 
782 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
783 
784 #ifdef CONFIG_SMP
785 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
786 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
787 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
788 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
789 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
790 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
791 #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
792 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
793 #define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
794 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
795 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
796 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
797 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
798 
799 enum powersavings_balance_level {
800 	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
801 	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
802 					 * first for long running threads
803 					 */
804 	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
805 					 * cpu package for power savings
806 					 */
807 	MAX_POWERSAVINGS_BALANCE_LEVELS
808 };
809 
810 extern int sched_mc_power_savings, sched_smt_power_savings;
811 
812 static inline int sd_balance_for_mc_power(void)
813 {
814 	if (sched_smt_power_savings)
815 		return SD_POWERSAVINGS_BALANCE;
816 
817 	if (!sched_mc_power_savings)
818 		return SD_PREFER_SIBLING;
819 
820 	return 0;
821 }
822 
823 static inline int sd_balance_for_package_power(void)
824 {
825 	if (sched_mc_power_savings | sched_smt_power_savings)
826 		return SD_POWERSAVINGS_BALANCE;
827 
828 	return SD_PREFER_SIBLING;
829 }
830 
831 extern int __weak arch_sd_sibiling_asym_packing(void);
832 
833 /*
834  * Optimise SD flags for power savings:
835  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
836  * Keep default SD flags if sched_{smt,mc}_power_saving=0
837  */
838 
839 static inline int sd_power_saving_flags(void)
840 {
841 	if (sched_mc_power_savings | sched_smt_power_savings)
842 		return SD_BALANCE_NEWIDLE;
843 
844 	return 0;
845 }
846 
847 struct sched_group {
848 	struct sched_group *next;	/* Must be a circular list */
849 
850 	/*
851 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
852 	 * single CPU.
853 	 */
854 	unsigned int cpu_power, cpu_power_orig;
855 
856 	/*
857 	 * The CPUs this group covers.
858 	 *
859 	 * NOTE: this field is variable length. (Allocated dynamically
860 	 * by attaching extra space to the end of the structure,
861 	 * depending on how many CPUs the kernel has booted up with)
862 	 *
863 	 * It is also be embedded into static data structures at build
864 	 * time. (See 'struct static_sched_group' in kernel/sched.c)
865 	 */
866 	unsigned long cpumask[0];
867 };
868 
869 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
870 {
871 	return to_cpumask(sg->cpumask);
872 }
873 
874 enum sched_domain_level {
875 	SD_LV_NONE = 0,
876 	SD_LV_SIBLING,
877 	SD_LV_MC,
878 	SD_LV_CPU,
879 	SD_LV_NODE,
880 	SD_LV_ALLNODES,
881 	SD_LV_MAX
882 };
883 
884 struct sched_domain_attr {
885 	int relax_domain_level;
886 };
887 
888 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
889 	.relax_domain_level = -1,			\
890 }
891 
892 struct sched_domain {
893 	/* These fields must be setup */
894 	struct sched_domain *parent;	/* top domain must be null terminated */
895 	struct sched_domain *child;	/* bottom domain must be null terminated */
896 	struct sched_group *groups;	/* the balancing groups of the domain */
897 	unsigned long min_interval;	/* Minimum balance interval ms */
898 	unsigned long max_interval;	/* Maximum balance interval ms */
899 	unsigned int busy_factor;	/* less balancing by factor if busy */
900 	unsigned int imbalance_pct;	/* No balance until over watermark */
901 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
902 	unsigned int busy_idx;
903 	unsigned int idle_idx;
904 	unsigned int newidle_idx;
905 	unsigned int wake_idx;
906 	unsigned int forkexec_idx;
907 	unsigned int smt_gain;
908 	int flags;			/* See SD_* */
909 	enum sched_domain_level level;
910 
911 	/* Runtime fields. */
912 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
913 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
914 	unsigned int nr_balance_failed; /* initialise to 0 */
915 
916 	u64 last_update;
917 
918 #ifdef CONFIG_SCHEDSTATS
919 	/* load_balance() stats */
920 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
921 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
922 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
923 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
924 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
925 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
926 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
927 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
928 
929 	/* Active load balancing */
930 	unsigned int alb_count;
931 	unsigned int alb_failed;
932 	unsigned int alb_pushed;
933 
934 	/* SD_BALANCE_EXEC stats */
935 	unsigned int sbe_count;
936 	unsigned int sbe_balanced;
937 	unsigned int sbe_pushed;
938 
939 	/* SD_BALANCE_FORK stats */
940 	unsigned int sbf_count;
941 	unsigned int sbf_balanced;
942 	unsigned int sbf_pushed;
943 
944 	/* try_to_wake_up() stats */
945 	unsigned int ttwu_wake_remote;
946 	unsigned int ttwu_move_affine;
947 	unsigned int ttwu_move_balance;
948 #endif
949 #ifdef CONFIG_SCHED_DEBUG
950 	char *name;
951 #endif
952 
953 	unsigned int span_weight;
954 	/*
955 	 * Span of all CPUs in this domain.
956 	 *
957 	 * NOTE: this field is variable length. (Allocated dynamically
958 	 * by attaching extra space to the end of the structure,
959 	 * depending on how many CPUs the kernel has booted up with)
960 	 *
961 	 * It is also be embedded into static data structures at build
962 	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
963 	 */
964 	unsigned long span[0];
965 };
966 
967 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
968 {
969 	return to_cpumask(sd->span);
970 }
971 
972 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
973 				    struct sched_domain_attr *dattr_new);
974 
975 /* Allocate an array of sched domains, for partition_sched_domains(). */
976 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
977 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
978 
979 /* Test a flag in parent sched domain */
980 static inline int test_sd_parent(struct sched_domain *sd, int flag)
981 {
982 	if (sd->parent && (sd->parent->flags & flag))
983 		return 1;
984 
985 	return 0;
986 }
987 
988 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
989 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
990 
991 #else /* CONFIG_SMP */
992 
993 struct sched_domain_attr;
994 
995 static inline void
996 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
997 			struct sched_domain_attr *dattr_new)
998 {
999 }
1000 #endif	/* !CONFIG_SMP */
1001 
1002 
1003 struct io_context;			/* See blkdev.h */
1004 
1005 
1006 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1007 extern void prefetch_stack(struct task_struct *t);
1008 #else
1009 static inline void prefetch_stack(struct task_struct *t) { }
1010 #endif
1011 
1012 struct audit_context;		/* See audit.c */
1013 struct mempolicy;
1014 struct pipe_inode_info;
1015 struct uts_namespace;
1016 
1017 struct rq;
1018 struct sched_domain;
1019 
1020 /*
1021  * wake flags
1022  */
1023 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1024 #define WF_FORK		0x02		/* child wakeup after fork */
1025 
1026 #define ENQUEUE_WAKEUP		1
1027 #define ENQUEUE_WAKING		2
1028 #define ENQUEUE_HEAD		4
1029 
1030 #define DEQUEUE_SLEEP		1
1031 
1032 struct sched_class {
1033 	const struct sched_class *next;
1034 
1035 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1036 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1037 	void (*yield_task) (struct rq *rq);
1038 
1039 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1040 
1041 	struct task_struct * (*pick_next_task) (struct rq *rq);
1042 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1043 
1044 #ifdef CONFIG_SMP
1045 	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1046 			       int sd_flag, int flags);
1047 
1048 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1049 	void (*post_schedule) (struct rq *this_rq);
1050 	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1051 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1052 
1053 	void (*set_cpus_allowed)(struct task_struct *p,
1054 				 const struct cpumask *newmask);
1055 
1056 	void (*rq_online)(struct rq *rq);
1057 	void (*rq_offline)(struct rq *rq);
1058 #endif
1059 
1060 	void (*set_curr_task) (struct rq *rq);
1061 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1062 	void (*task_fork) (struct task_struct *p);
1063 
1064 	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1065 			       int running);
1066 	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1067 			     int running);
1068 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1069 			     int oldprio, int running);
1070 
1071 	unsigned int (*get_rr_interval) (struct rq *rq,
1072 					 struct task_struct *task);
1073 
1074 #ifdef CONFIG_FAIR_GROUP_SCHED
1075 	void (*moved_group) (struct task_struct *p, int on_rq);
1076 #endif
1077 };
1078 
1079 struct load_weight {
1080 	unsigned long weight, inv_weight;
1081 };
1082 
1083 #ifdef CONFIG_SCHEDSTATS
1084 struct sched_statistics {
1085 	u64			wait_start;
1086 	u64			wait_max;
1087 	u64			wait_count;
1088 	u64			wait_sum;
1089 	u64			iowait_count;
1090 	u64			iowait_sum;
1091 
1092 	u64			sleep_start;
1093 	u64			sleep_max;
1094 	s64			sum_sleep_runtime;
1095 
1096 	u64			block_start;
1097 	u64			block_max;
1098 	u64			exec_max;
1099 	u64			slice_max;
1100 
1101 	u64			nr_migrations_cold;
1102 	u64			nr_failed_migrations_affine;
1103 	u64			nr_failed_migrations_running;
1104 	u64			nr_failed_migrations_hot;
1105 	u64			nr_forced_migrations;
1106 
1107 	u64			nr_wakeups;
1108 	u64			nr_wakeups_sync;
1109 	u64			nr_wakeups_migrate;
1110 	u64			nr_wakeups_local;
1111 	u64			nr_wakeups_remote;
1112 	u64			nr_wakeups_affine;
1113 	u64			nr_wakeups_affine_attempts;
1114 	u64			nr_wakeups_passive;
1115 	u64			nr_wakeups_idle;
1116 };
1117 #endif
1118 
1119 struct sched_entity {
1120 	struct load_weight	load;		/* for load-balancing */
1121 	struct rb_node		run_node;
1122 	struct list_head	group_node;
1123 	unsigned int		on_rq;
1124 
1125 	u64			exec_start;
1126 	u64			sum_exec_runtime;
1127 	u64			vruntime;
1128 	u64			prev_sum_exec_runtime;
1129 
1130 	u64			nr_migrations;
1131 
1132 #ifdef CONFIG_SCHEDSTATS
1133 	struct sched_statistics statistics;
1134 #endif
1135 
1136 #ifdef CONFIG_FAIR_GROUP_SCHED
1137 	struct sched_entity	*parent;
1138 	/* rq on which this entity is (to be) queued: */
1139 	struct cfs_rq		*cfs_rq;
1140 	/* rq "owned" by this entity/group: */
1141 	struct cfs_rq		*my_q;
1142 #endif
1143 };
1144 
1145 struct sched_rt_entity {
1146 	struct list_head run_list;
1147 	unsigned long timeout;
1148 	unsigned int time_slice;
1149 	int nr_cpus_allowed;
1150 
1151 	struct sched_rt_entity *back;
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153 	struct sched_rt_entity	*parent;
1154 	/* rq on which this entity is (to be) queued: */
1155 	struct rt_rq		*rt_rq;
1156 	/* rq "owned" by this entity/group: */
1157 	struct rt_rq		*my_q;
1158 #endif
1159 };
1160 
1161 struct rcu_node;
1162 
1163 struct task_struct {
1164 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1165 	void *stack;
1166 	atomic_t usage;
1167 	unsigned int flags;	/* per process flags, defined below */
1168 	unsigned int ptrace;
1169 
1170 	int lock_depth;		/* BKL lock depth */
1171 
1172 #ifdef CONFIG_SMP
1173 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1174 	int oncpu;
1175 #endif
1176 #endif
1177 
1178 	int prio, static_prio, normal_prio;
1179 	unsigned int rt_priority;
1180 	const struct sched_class *sched_class;
1181 	struct sched_entity se;
1182 	struct sched_rt_entity rt;
1183 
1184 #ifdef CONFIG_PREEMPT_NOTIFIERS
1185 	/* list of struct preempt_notifier: */
1186 	struct hlist_head preempt_notifiers;
1187 #endif
1188 
1189 	/*
1190 	 * fpu_counter contains the number of consecutive context switches
1191 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1192 	 * saving becomes unlazy to save the trap. This is an unsigned char
1193 	 * so that after 256 times the counter wraps and the behavior turns
1194 	 * lazy again; this to deal with bursty apps that only use FPU for
1195 	 * a short time
1196 	 */
1197 	unsigned char fpu_counter;
1198 #ifdef CONFIG_BLK_DEV_IO_TRACE
1199 	unsigned int btrace_seq;
1200 #endif
1201 
1202 	unsigned int policy;
1203 	cpumask_t cpus_allowed;
1204 
1205 #ifdef CONFIG_TREE_PREEMPT_RCU
1206 	int rcu_read_lock_nesting;
1207 	char rcu_read_unlock_special;
1208 	struct rcu_node *rcu_blocked_node;
1209 	struct list_head rcu_node_entry;
1210 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1211 
1212 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1213 	struct sched_info sched_info;
1214 #endif
1215 
1216 	struct list_head tasks;
1217 	struct plist_node pushable_tasks;
1218 
1219 	struct mm_struct *mm, *active_mm;
1220 #if defined(SPLIT_RSS_COUNTING)
1221 	struct task_rss_stat	rss_stat;
1222 #endif
1223 /* task state */
1224 	int exit_state;
1225 	int exit_code, exit_signal;
1226 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1227 	/* ??? */
1228 	unsigned int personality;
1229 	unsigned did_exec:1;
1230 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1231 				 * execve */
1232 	unsigned in_iowait:1;
1233 
1234 
1235 	/* Revert to default priority/policy when forking */
1236 	unsigned sched_reset_on_fork:1;
1237 
1238 	pid_t pid;
1239 	pid_t tgid;
1240 
1241 #ifdef CONFIG_CC_STACKPROTECTOR
1242 	/* Canary value for the -fstack-protector gcc feature */
1243 	unsigned long stack_canary;
1244 #endif
1245 
1246 	/*
1247 	 * pointers to (original) parent process, youngest child, younger sibling,
1248 	 * older sibling, respectively.  (p->father can be replaced with
1249 	 * p->real_parent->pid)
1250 	 */
1251 	struct task_struct *real_parent; /* real parent process */
1252 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1253 	/*
1254 	 * children/sibling forms the list of my natural children
1255 	 */
1256 	struct list_head children;	/* list of my children */
1257 	struct list_head sibling;	/* linkage in my parent's children list */
1258 	struct task_struct *group_leader;	/* threadgroup leader */
1259 
1260 	/*
1261 	 * ptraced is the list of tasks this task is using ptrace on.
1262 	 * This includes both natural children and PTRACE_ATTACH targets.
1263 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1264 	 */
1265 	struct list_head ptraced;
1266 	struct list_head ptrace_entry;
1267 
1268 	/* PID/PID hash table linkage. */
1269 	struct pid_link pids[PIDTYPE_MAX];
1270 	struct list_head thread_group;
1271 
1272 	struct completion *vfork_done;		/* for vfork() */
1273 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1274 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1275 
1276 	cputime_t utime, stime, utimescaled, stimescaled;
1277 	cputime_t gtime;
1278 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1279 	cputime_t prev_utime, prev_stime;
1280 #endif
1281 	unsigned long nvcsw, nivcsw; /* context switch counts */
1282 	struct timespec start_time; 		/* monotonic time */
1283 	struct timespec real_start_time;	/* boot based time */
1284 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1285 	unsigned long min_flt, maj_flt;
1286 
1287 	struct task_cputime cputime_expires;
1288 	struct list_head cpu_timers[3];
1289 
1290 /* process credentials */
1291 	const struct cred *real_cred;	/* objective and real subjective task
1292 					 * credentials (COW) */
1293 	const struct cred *cred;	/* effective (overridable) subjective task
1294 					 * credentials (COW) */
1295 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1296 					 * credential calculations
1297 					 * (notably. ptrace) */
1298 	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1299 
1300 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1301 				     - access with [gs]et_task_comm (which lock
1302 				       it with task_lock())
1303 				     - initialized normally by setup_new_exec */
1304 /* file system info */
1305 	int link_count, total_link_count;
1306 #ifdef CONFIG_SYSVIPC
1307 /* ipc stuff */
1308 	struct sysv_sem sysvsem;
1309 #endif
1310 #ifdef CONFIG_DETECT_HUNG_TASK
1311 /* hung task detection */
1312 	unsigned long last_switch_count;
1313 #endif
1314 /* CPU-specific state of this task */
1315 	struct thread_struct thread;
1316 /* filesystem information */
1317 	struct fs_struct *fs;
1318 /* open file information */
1319 	struct files_struct *files;
1320 /* namespaces */
1321 	struct nsproxy *nsproxy;
1322 /* signal handlers */
1323 	struct signal_struct *signal;
1324 	struct sighand_struct *sighand;
1325 
1326 	sigset_t blocked, real_blocked;
1327 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1328 	struct sigpending pending;
1329 
1330 	unsigned long sas_ss_sp;
1331 	size_t sas_ss_size;
1332 	int (*notifier)(void *priv);
1333 	void *notifier_data;
1334 	sigset_t *notifier_mask;
1335 	struct audit_context *audit_context;
1336 #ifdef CONFIG_AUDITSYSCALL
1337 	uid_t loginuid;
1338 	unsigned int sessionid;
1339 #endif
1340 	seccomp_t seccomp;
1341 
1342 /* Thread group tracking */
1343    	u32 parent_exec_id;
1344    	u32 self_exec_id;
1345 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1346  * mempolicy */
1347 	spinlock_t alloc_lock;
1348 
1349 #ifdef CONFIG_GENERIC_HARDIRQS
1350 	/* IRQ handler threads */
1351 	struct irqaction *irqaction;
1352 #endif
1353 
1354 	/* Protection of the PI data structures: */
1355 	raw_spinlock_t pi_lock;
1356 
1357 #ifdef CONFIG_RT_MUTEXES
1358 	/* PI waiters blocked on a rt_mutex held by this task */
1359 	struct plist_head pi_waiters;
1360 	/* Deadlock detection and priority inheritance handling */
1361 	struct rt_mutex_waiter *pi_blocked_on;
1362 #endif
1363 
1364 #ifdef CONFIG_DEBUG_MUTEXES
1365 	/* mutex deadlock detection */
1366 	struct mutex_waiter *blocked_on;
1367 #endif
1368 #ifdef CONFIG_TRACE_IRQFLAGS
1369 	unsigned int irq_events;
1370 	unsigned long hardirq_enable_ip;
1371 	unsigned long hardirq_disable_ip;
1372 	unsigned int hardirq_enable_event;
1373 	unsigned int hardirq_disable_event;
1374 	int hardirqs_enabled;
1375 	int hardirq_context;
1376 	unsigned long softirq_disable_ip;
1377 	unsigned long softirq_enable_ip;
1378 	unsigned int softirq_disable_event;
1379 	unsigned int softirq_enable_event;
1380 	int softirqs_enabled;
1381 	int softirq_context;
1382 #endif
1383 #ifdef CONFIG_LOCKDEP
1384 # define MAX_LOCK_DEPTH 48UL
1385 	u64 curr_chain_key;
1386 	int lockdep_depth;
1387 	unsigned int lockdep_recursion;
1388 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1389 	gfp_t lockdep_reclaim_gfp;
1390 #endif
1391 
1392 /* journalling filesystem info */
1393 	void *journal_info;
1394 
1395 /* stacked block device info */
1396 	struct bio_list *bio_list;
1397 
1398 /* VM state */
1399 	struct reclaim_state *reclaim_state;
1400 
1401 	struct backing_dev_info *backing_dev_info;
1402 
1403 	struct io_context *io_context;
1404 
1405 	unsigned long ptrace_message;
1406 	siginfo_t *last_siginfo; /* For ptrace use.  */
1407 	struct task_io_accounting ioac;
1408 #if defined(CONFIG_TASK_XACCT)
1409 	u64 acct_rss_mem1;	/* accumulated rss usage */
1410 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1411 	cputime_t acct_timexpd;	/* stime + utime since last update */
1412 #endif
1413 #ifdef CONFIG_CPUSETS
1414 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1415 	int mems_allowed_change_disable;
1416 	int cpuset_mem_spread_rotor;
1417 	int cpuset_slab_spread_rotor;
1418 #endif
1419 #ifdef CONFIG_CGROUPS
1420 	/* Control Group info protected by css_set_lock */
1421 	struct css_set *cgroups;
1422 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1423 	struct list_head cg_list;
1424 #endif
1425 #ifdef CONFIG_FUTEX
1426 	struct robust_list_head __user *robust_list;
1427 #ifdef CONFIG_COMPAT
1428 	struct compat_robust_list_head __user *compat_robust_list;
1429 #endif
1430 	struct list_head pi_state_list;
1431 	struct futex_pi_state *pi_state_cache;
1432 #endif
1433 #ifdef CONFIG_PERF_EVENTS
1434 	struct perf_event_context *perf_event_ctxp;
1435 	struct mutex perf_event_mutex;
1436 	struct list_head perf_event_list;
1437 #endif
1438 #ifdef CONFIG_NUMA
1439 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1440 	short il_next;
1441 #endif
1442 	atomic_t fs_excl;	/* holding fs exclusive resources */
1443 	struct rcu_head rcu;
1444 
1445 	/*
1446 	 * cache last used pipe for splice
1447 	 */
1448 	struct pipe_inode_info *splice_pipe;
1449 #ifdef	CONFIG_TASK_DELAY_ACCT
1450 	struct task_delay_info *delays;
1451 #endif
1452 #ifdef CONFIG_FAULT_INJECTION
1453 	int make_it_fail;
1454 #endif
1455 	struct prop_local_single dirties;
1456 #ifdef CONFIG_LATENCYTOP
1457 	int latency_record_count;
1458 	struct latency_record latency_record[LT_SAVECOUNT];
1459 #endif
1460 	/*
1461 	 * time slack values; these are used to round up poll() and
1462 	 * select() etc timeout values. These are in nanoseconds.
1463 	 */
1464 	unsigned long timer_slack_ns;
1465 	unsigned long default_timer_slack_ns;
1466 
1467 	struct list_head	*scm_work_list;
1468 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1469 	/* Index of current stored address in ret_stack */
1470 	int curr_ret_stack;
1471 	/* Stack of return addresses for return function tracing */
1472 	struct ftrace_ret_stack	*ret_stack;
1473 	/* time stamp for last schedule */
1474 	unsigned long long ftrace_timestamp;
1475 	/*
1476 	 * Number of functions that haven't been traced
1477 	 * because of depth overrun.
1478 	 */
1479 	atomic_t trace_overrun;
1480 	/* Pause for the tracing */
1481 	atomic_t tracing_graph_pause;
1482 #endif
1483 #ifdef CONFIG_TRACING
1484 	/* state flags for use by tracers */
1485 	unsigned long trace;
1486 	/* bitmask of trace recursion */
1487 	unsigned long trace_recursion;
1488 #endif /* CONFIG_TRACING */
1489 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1490 	struct memcg_batch_info {
1491 		int do_batch;	/* incremented when batch uncharge started */
1492 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1493 		unsigned long bytes; 		/* uncharged usage */
1494 		unsigned long memsw_bytes; /* uncharged mem+swap usage */
1495 	} memcg_batch;
1496 #endif
1497 };
1498 
1499 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1500 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1501 
1502 /*
1503  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1504  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1505  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1506  * values are inverted: lower p->prio value means higher priority.
1507  *
1508  * The MAX_USER_RT_PRIO value allows the actual maximum
1509  * RT priority to be separate from the value exported to
1510  * user-space.  This allows kernel threads to set their
1511  * priority to a value higher than any user task. Note:
1512  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1513  */
1514 
1515 #define MAX_USER_RT_PRIO	100
1516 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1517 
1518 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1519 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1520 
1521 static inline int rt_prio(int prio)
1522 {
1523 	if (unlikely(prio < MAX_RT_PRIO))
1524 		return 1;
1525 	return 0;
1526 }
1527 
1528 static inline int rt_task(struct task_struct *p)
1529 {
1530 	return rt_prio(p->prio);
1531 }
1532 
1533 static inline struct pid *task_pid(struct task_struct *task)
1534 {
1535 	return task->pids[PIDTYPE_PID].pid;
1536 }
1537 
1538 static inline struct pid *task_tgid(struct task_struct *task)
1539 {
1540 	return task->group_leader->pids[PIDTYPE_PID].pid;
1541 }
1542 
1543 /*
1544  * Without tasklist or rcu lock it is not safe to dereference
1545  * the result of task_pgrp/task_session even if task == current,
1546  * we can race with another thread doing sys_setsid/sys_setpgid.
1547  */
1548 static inline struct pid *task_pgrp(struct task_struct *task)
1549 {
1550 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1551 }
1552 
1553 static inline struct pid *task_session(struct task_struct *task)
1554 {
1555 	return task->group_leader->pids[PIDTYPE_SID].pid;
1556 }
1557 
1558 struct pid_namespace;
1559 
1560 /*
1561  * the helpers to get the task's different pids as they are seen
1562  * from various namespaces
1563  *
1564  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1565  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1566  *                     current.
1567  * task_xid_nr_ns()  : id seen from the ns specified;
1568  *
1569  * set_task_vxid()   : assigns a virtual id to a task;
1570  *
1571  * see also pid_nr() etc in include/linux/pid.h
1572  */
1573 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1574 			struct pid_namespace *ns);
1575 
1576 static inline pid_t task_pid_nr(struct task_struct *tsk)
1577 {
1578 	return tsk->pid;
1579 }
1580 
1581 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1582 					struct pid_namespace *ns)
1583 {
1584 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1585 }
1586 
1587 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1588 {
1589 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1590 }
1591 
1592 
1593 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1594 {
1595 	return tsk->tgid;
1596 }
1597 
1598 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1599 
1600 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601 {
1602 	return pid_vnr(task_tgid(tsk));
1603 }
1604 
1605 
1606 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1607 					struct pid_namespace *ns)
1608 {
1609 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1610 }
1611 
1612 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1613 {
1614 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1615 }
1616 
1617 
1618 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1619 					struct pid_namespace *ns)
1620 {
1621 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1622 }
1623 
1624 static inline pid_t task_session_vnr(struct task_struct *tsk)
1625 {
1626 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1627 }
1628 
1629 /* obsolete, do not use */
1630 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1631 {
1632 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1633 }
1634 
1635 /**
1636  * pid_alive - check that a task structure is not stale
1637  * @p: Task structure to be checked.
1638  *
1639  * Test if a process is not yet dead (at most zombie state)
1640  * If pid_alive fails, then pointers within the task structure
1641  * can be stale and must not be dereferenced.
1642  */
1643 static inline int pid_alive(struct task_struct *p)
1644 {
1645 	return p->pids[PIDTYPE_PID].pid != NULL;
1646 }
1647 
1648 /**
1649  * is_global_init - check if a task structure is init
1650  * @tsk: Task structure to be checked.
1651  *
1652  * Check if a task structure is the first user space task the kernel created.
1653  */
1654 static inline int is_global_init(struct task_struct *tsk)
1655 {
1656 	return tsk->pid == 1;
1657 }
1658 
1659 /*
1660  * is_container_init:
1661  * check whether in the task is init in its own pid namespace.
1662  */
1663 extern int is_container_init(struct task_struct *tsk);
1664 
1665 extern struct pid *cad_pid;
1666 
1667 extern void free_task(struct task_struct *tsk);
1668 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1669 
1670 extern void __put_task_struct(struct task_struct *t);
1671 
1672 static inline void put_task_struct(struct task_struct *t)
1673 {
1674 	if (atomic_dec_and_test(&t->usage))
1675 		__put_task_struct(t);
1676 }
1677 
1678 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1679 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1680 
1681 /*
1682  * Per process flags
1683  */
1684 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1685 					/* Not implemented yet, only for 486*/
1686 #define PF_STARTING	0x00000002	/* being created */
1687 #define PF_EXITING	0x00000004	/* getting shut down */
1688 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1689 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1690 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1691 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1692 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1693 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1694 #define PF_DUMPCORE	0x00000200	/* dumped core */
1695 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1696 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1697 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1698 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1699 #define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1700 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1701 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1702 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1703 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1704 #define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1705 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1706 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1707 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1708 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1709 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1710 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1711 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1712 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1713 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1714 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1715 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1716 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1717 
1718 /*
1719  * Only the _current_ task can read/write to tsk->flags, but other
1720  * tasks can access tsk->flags in readonly mode for example
1721  * with tsk_used_math (like during threaded core dumping).
1722  * There is however an exception to this rule during ptrace
1723  * or during fork: the ptracer task is allowed to write to the
1724  * child->flags of its traced child (same goes for fork, the parent
1725  * can write to the child->flags), because we're guaranteed the
1726  * child is not running and in turn not changing child->flags
1727  * at the same time the parent does it.
1728  */
1729 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1730 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1731 #define clear_used_math() clear_stopped_child_used_math(current)
1732 #define set_used_math() set_stopped_child_used_math(current)
1733 #define conditional_stopped_child_used_math(condition, child) \
1734 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1735 #define conditional_used_math(condition) \
1736 	conditional_stopped_child_used_math(condition, current)
1737 #define copy_to_stopped_child_used_math(child) \
1738 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1739 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1740 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1741 #define used_math() tsk_used_math(current)
1742 
1743 #ifdef CONFIG_TREE_PREEMPT_RCU
1744 
1745 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1746 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1747 
1748 static inline void rcu_copy_process(struct task_struct *p)
1749 {
1750 	p->rcu_read_lock_nesting = 0;
1751 	p->rcu_read_unlock_special = 0;
1752 	p->rcu_blocked_node = NULL;
1753 	INIT_LIST_HEAD(&p->rcu_node_entry);
1754 }
1755 
1756 #else
1757 
1758 static inline void rcu_copy_process(struct task_struct *p)
1759 {
1760 }
1761 
1762 #endif
1763 
1764 #ifdef CONFIG_SMP
1765 extern int set_cpus_allowed_ptr(struct task_struct *p,
1766 				const struct cpumask *new_mask);
1767 #else
1768 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1769 				       const struct cpumask *new_mask)
1770 {
1771 	if (!cpumask_test_cpu(0, new_mask))
1772 		return -EINVAL;
1773 	return 0;
1774 }
1775 #endif
1776 
1777 #ifndef CONFIG_CPUMASK_OFFSTACK
1778 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1779 {
1780 	return set_cpus_allowed_ptr(p, &new_mask);
1781 }
1782 #endif
1783 
1784 /*
1785  * Do not use outside of architecture code which knows its limitations.
1786  *
1787  * sched_clock() has no promise of monotonicity or bounded drift between
1788  * CPUs, use (which you should not) requires disabling IRQs.
1789  *
1790  * Please use one of the three interfaces below.
1791  */
1792 extern unsigned long long notrace sched_clock(void);
1793 /*
1794  * See the comment in kernel/sched_clock.c
1795  */
1796 extern u64 cpu_clock(int cpu);
1797 extern u64 local_clock(void);
1798 extern u64 sched_clock_cpu(int cpu);
1799 
1800 
1801 extern void sched_clock_init(void);
1802 
1803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804 static inline void sched_clock_tick(void)
1805 {
1806 }
1807 
1808 static inline void sched_clock_idle_sleep_event(void)
1809 {
1810 }
1811 
1812 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1813 {
1814 }
1815 #else
1816 /*
1817  * Architectures can set this to 1 if they have specified
1818  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1819  * but then during bootup it turns out that sched_clock()
1820  * is reliable after all:
1821  */
1822 extern int sched_clock_stable;
1823 
1824 extern void sched_clock_tick(void);
1825 extern void sched_clock_idle_sleep_event(void);
1826 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1827 #endif
1828 
1829 extern unsigned long long
1830 task_sched_runtime(struct task_struct *task);
1831 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1832 
1833 /* sched_exec is called by processes performing an exec */
1834 #ifdef CONFIG_SMP
1835 extern void sched_exec(void);
1836 #else
1837 #define sched_exec()   {}
1838 #endif
1839 
1840 extern void sched_clock_idle_sleep_event(void);
1841 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1842 
1843 #ifdef CONFIG_HOTPLUG_CPU
1844 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1845 extern void idle_task_exit(void);
1846 #else
1847 static inline void idle_task_exit(void) {}
1848 #endif
1849 
1850 extern void sched_idle_next(void);
1851 
1852 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1853 extern void wake_up_idle_cpu(int cpu);
1854 #else
1855 static inline void wake_up_idle_cpu(int cpu) { }
1856 #endif
1857 
1858 extern unsigned int sysctl_sched_latency;
1859 extern unsigned int sysctl_sched_min_granularity;
1860 extern unsigned int sysctl_sched_wakeup_granularity;
1861 extern unsigned int sysctl_sched_shares_ratelimit;
1862 extern unsigned int sysctl_sched_shares_thresh;
1863 extern unsigned int sysctl_sched_child_runs_first;
1864 
1865 enum sched_tunable_scaling {
1866 	SCHED_TUNABLESCALING_NONE,
1867 	SCHED_TUNABLESCALING_LOG,
1868 	SCHED_TUNABLESCALING_LINEAR,
1869 	SCHED_TUNABLESCALING_END,
1870 };
1871 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1872 
1873 #ifdef CONFIG_SCHED_DEBUG
1874 extern unsigned int sysctl_sched_migration_cost;
1875 extern unsigned int sysctl_sched_nr_migrate;
1876 extern unsigned int sysctl_sched_time_avg;
1877 extern unsigned int sysctl_timer_migration;
1878 
1879 int sched_proc_update_handler(struct ctl_table *table, int write,
1880 		void __user *buffer, size_t *length,
1881 		loff_t *ppos);
1882 #endif
1883 #ifdef CONFIG_SCHED_DEBUG
1884 static inline unsigned int get_sysctl_timer_migration(void)
1885 {
1886 	return sysctl_timer_migration;
1887 }
1888 #else
1889 static inline unsigned int get_sysctl_timer_migration(void)
1890 {
1891 	return 1;
1892 }
1893 #endif
1894 extern unsigned int sysctl_sched_rt_period;
1895 extern int sysctl_sched_rt_runtime;
1896 
1897 int sched_rt_handler(struct ctl_table *table, int write,
1898 		void __user *buffer, size_t *lenp,
1899 		loff_t *ppos);
1900 
1901 extern unsigned int sysctl_sched_compat_yield;
1902 
1903 #ifdef CONFIG_RT_MUTEXES
1904 extern int rt_mutex_getprio(struct task_struct *p);
1905 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1906 extern void rt_mutex_adjust_pi(struct task_struct *p);
1907 #else
1908 static inline int rt_mutex_getprio(struct task_struct *p)
1909 {
1910 	return p->normal_prio;
1911 }
1912 # define rt_mutex_adjust_pi(p)		do { } while (0)
1913 #endif
1914 
1915 extern void set_user_nice(struct task_struct *p, long nice);
1916 extern int task_prio(const struct task_struct *p);
1917 extern int task_nice(const struct task_struct *p);
1918 extern int can_nice(const struct task_struct *p, const int nice);
1919 extern int task_curr(const struct task_struct *p);
1920 extern int idle_cpu(int cpu);
1921 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1922 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1923 				      struct sched_param *);
1924 extern struct task_struct *idle_task(int cpu);
1925 extern struct task_struct *curr_task(int cpu);
1926 extern void set_curr_task(int cpu, struct task_struct *p);
1927 
1928 void yield(void);
1929 
1930 /*
1931  * The default (Linux) execution domain.
1932  */
1933 extern struct exec_domain	default_exec_domain;
1934 
1935 union thread_union {
1936 	struct thread_info thread_info;
1937 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1938 };
1939 
1940 #ifndef __HAVE_ARCH_KSTACK_END
1941 static inline int kstack_end(void *addr)
1942 {
1943 	/* Reliable end of stack detection:
1944 	 * Some APM bios versions misalign the stack
1945 	 */
1946 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1947 }
1948 #endif
1949 
1950 extern union thread_union init_thread_union;
1951 extern struct task_struct init_task;
1952 
1953 extern struct   mm_struct init_mm;
1954 
1955 extern struct pid_namespace init_pid_ns;
1956 
1957 /*
1958  * find a task by one of its numerical ids
1959  *
1960  * find_task_by_pid_ns():
1961  *      finds a task by its pid in the specified namespace
1962  * find_task_by_vpid():
1963  *      finds a task by its virtual pid
1964  *
1965  * see also find_vpid() etc in include/linux/pid.h
1966  */
1967 
1968 extern struct task_struct *find_task_by_vpid(pid_t nr);
1969 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1970 		struct pid_namespace *ns);
1971 
1972 extern void __set_special_pids(struct pid *pid);
1973 
1974 /* per-UID process charging. */
1975 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1976 static inline struct user_struct *get_uid(struct user_struct *u)
1977 {
1978 	atomic_inc(&u->__count);
1979 	return u;
1980 }
1981 extern void free_uid(struct user_struct *);
1982 extern void release_uids(struct user_namespace *ns);
1983 
1984 #include <asm/current.h>
1985 
1986 extern void do_timer(unsigned long ticks);
1987 
1988 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1989 extern int wake_up_process(struct task_struct *tsk);
1990 extern void wake_up_new_task(struct task_struct *tsk,
1991 				unsigned long clone_flags);
1992 #ifdef CONFIG_SMP
1993  extern void kick_process(struct task_struct *tsk);
1994 #else
1995  static inline void kick_process(struct task_struct *tsk) { }
1996 #endif
1997 extern void sched_fork(struct task_struct *p, int clone_flags);
1998 extern void sched_dead(struct task_struct *p);
1999 
2000 extern void proc_caches_init(void);
2001 extern void flush_signals(struct task_struct *);
2002 extern void __flush_signals(struct task_struct *);
2003 extern void ignore_signals(struct task_struct *);
2004 extern void flush_signal_handlers(struct task_struct *, int force_default);
2005 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2006 
2007 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2008 {
2009 	unsigned long flags;
2010 	int ret;
2011 
2012 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2013 	ret = dequeue_signal(tsk, mask, info);
2014 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2015 
2016 	return ret;
2017 }
2018 
2019 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2020 			      sigset_t *mask);
2021 extern void unblock_all_signals(void);
2022 extern void release_task(struct task_struct * p);
2023 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2024 extern int force_sigsegv(int, struct task_struct *);
2025 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2026 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2027 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2028 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2029 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2030 extern int kill_pid(struct pid *pid, int sig, int priv);
2031 extern int kill_proc_info(int, struct siginfo *, pid_t);
2032 extern int do_notify_parent(struct task_struct *, int);
2033 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2034 extern void force_sig(int, struct task_struct *);
2035 extern int send_sig(int, struct task_struct *, int);
2036 extern int zap_other_threads(struct task_struct *p);
2037 extern struct sigqueue *sigqueue_alloc(void);
2038 extern void sigqueue_free(struct sigqueue *);
2039 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2040 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2041 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2042 
2043 static inline int kill_cad_pid(int sig, int priv)
2044 {
2045 	return kill_pid(cad_pid, sig, priv);
2046 }
2047 
2048 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2049 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2050 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2051 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2052 
2053 /*
2054  * True if we are on the alternate signal stack.
2055  */
2056 static inline int on_sig_stack(unsigned long sp)
2057 {
2058 #ifdef CONFIG_STACK_GROWSUP
2059 	return sp >= current->sas_ss_sp &&
2060 		sp - current->sas_ss_sp < current->sas_ss_size;
2061 #else
2062 	return sp > current->sas_ss_sp &&
2063 		sp - current->sas_ss_sp <= current->sas_ss_size;
2064 #endif
2065 }
2066 
2067 static inline int sas_ss_flags(unsigned long sp)
2068 {
2069 	return (current->sas_ss_size == 0 ? SS_DISABLE
2070 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2071 }
2072 
2073 /*
2074  * Routines for handling mm_structs
2075  */
2076 extern struct mm_struct * mm_alloc(void);
2077 
2078 /* mmdrop drops the mm and the page tables */
2079 extern void __mmdrop(struct mm_struct *);
2080 static inline void mmdrop(struct mm_struct * mm)
2081 {
2082 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2083 		__mmdrop(mm);
2084 }
2085 
2086 /* mmput gets rid of the mappings and all user-space */
2087 extern void mmput(struct mm_struct *);
2088 /* Grab a reference to a task's mm, if it is not already going away */
2089 extern struct mm_struct *get_task_mm(struct task_struct *task);
2090 /* Remove the current tasks stale references to the old mm_struct */
2091 extern void mm_release(struct task_struct *, struct mm_struct *);
2092 /* Allocate a new mm structure and copy contents from tsk->mm */
2093 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2094 
2095 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2096 			struct task_struct *, struct pt_regs *);
2097 extern void flush_thread(void);
2098 extern void exit_thread(void);
2099 
2100 extern void exit_files(struct task_struct *);
2101 extern void __cleanup_sighand(struct sighand_struct *);
2102 
2103 extern void exit_itimers(struct signal_struct *);
2104 extern void flush_itimer_signals(void);
2105 
2106 extern NORET_TYPE void do_group_exit(int);
2107 
2108 extern void daemonize(const char *, ...);
2109 extern int allow_signal(int);
2110 extern int disallow_signal(int);
2111 
2112 extern int do_execve(const char *,
2113 		     const char __user * const __user *,
2114 		     const char __user * const __user *, struct pt_regs *);
2115 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2116 struct task_struct *fork_idle(int);
2117 
2118 extern void set_task_comm(struct task_struct *tsk, char *from);
2119 extern char *get_task_comm(char *to, struct task_struct *tsk);
2120 
2121 #ifdef CONFIG_SMP
2122 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2123 #else
2124 static inline unsigned long wait_task_inactive(struct task_struct *p,
2125 					       long match_state)
2126 {
2127 	return 1;
2128 }
2129 #endif
2130 
2131 #define next_task(p) \
2132 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2133 
2134 #define for_each_process(p) \
2135 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2136 
2137 extern bool current_is_single_threaded(void);
2138 
2139 /*
2140  * Careful: do_each_thread/while_each_thread is a double loop so
2141  *          'break' will not work as expected - use goto instead.
2142  */
2143 #define do_each_thread(g, t) \
2144 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2145 
2146 #define while_each_thread(g, t) \
2147 	while ((t = next_thread(t)) != g)
2148 
2149 static inline int get_nr_threads(struct task_struct *tsk)
2150 {
2151 	return tsk->signal->nr_threads;
2152 }
2153 
2154 /* de_thread depends on thread_group_leader not being a pid based check */
2155 #define thread_group_leader(p)	(p == p->group_leader)
2156 
2157 /* Do to the insanities of de_thread it is possible for a process
2158  * to have the pid of the thread group leader without actually being
2159  * the thread group leader.  For iteration through the pids in proc
2160  * all we care about is that we have a task with the appropriate
2161  * pid, we don't actually care if we have the right task.
2162  */
2163 static inline int has_group_leader_pid(struct task_struct *p)
2164 {
2165 	return p->pid == p->tgid;
2166 }
2167 
2168 static inline
2169 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2170 {
2171 	return p1->tgid == p2->tgid;
2172 }
2173 
2174 static inline struct task_struct *next_thread(const struct task_struct *p)
2175 {
2176 	return list_entry_rcu(p->thread_group.next,
2177 			      struct task_struct, thread_group);
2178 }
2179 
2180 static inline int thread_group_empty(struct task_struct *p)
2181 {
2182 	return list_empty(&p->thread_group);
2183 }
2184 
2185 #define delay_group_leader(p) \
2186 		(thread_group_leader(p) && !thread_group_empty(p))
2187 
2188 static inline int task_detached(struct task_struct *p)
2189 {
2190 	return p->exit_signal == -1;
2191 }
2192 
2193 /*
2194  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2195  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2196  * pins the final release of task.io_context.  Also protects ->cpuset and
2197  * ->cgroup.subsys[].
2198  *
2199  * Nests both inside and outside of read_lock(&tasklist_lock).
2200  * It must not be nested with write_lock_irq(&tasklist_lock),
2201  * neither inside nor outside.
2202  */
2203 static inline void task_lock(struct task_struct *p)
2204 {
2205 	spin_lock(&p->alloc_lock);
2206 }
2207 
2208 static inline void task_unlock(struct task_struct *p)
2209 {
2210 	spin_unlock(&p->alloc_lock);
2211 }
2212 
2213 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2214 							unsigned long *flags);
2215 
2216 static inline void unlock_task_sighand(struct task_struct *tsk,
2217 						unsigned long *flags)
2218 {
2219 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2220 }
2221 
2222 #ifndef __HAVE_THREAD_FUNCTIONS
2223 
2224 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2225 #define task_stack_page(task)	((task)->stack)
2226 
2227 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2228 {
2229 	*task_thread_info(p) = *task_thread_info(org);
2230 	task_thread_info(p)->task = p;
2231 }
2232 
2233 static inline unsigned long *end_of_stack(struct task_struct *p)
2234 {
2235 	return (unsigned long *)(task_thread_info(p) + 1);
2236 }
2237 
2238 #endif
2239 
2240 static inline int object_is_on_stack(void *obj)
2241 {
2242 	void *stack = task_stack_page(current);
2243 
2244 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2245 }
2246 
2247 extern void thread_info_cache_init(void);
2248 
2249 #ifdef CONFIG_DEBUG_STACK_USAGE
2250 static inline unsigned long stack_not_used(struct task_struct *p)
2251 {
2252 	unsigned long *n = end_of_stack(p);
2253 
2254 	do { 	/* Skip over canary */
2255 		n++;
2256 	} while (!*n);
2257 
2258 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2259 }
2260 #endif
2261 
2262 /* set thread flags in other task's structures
2263  * - see asm/thread_info.h for TIF_xxxx flags available
2264  */
2265 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2266 {
2267 	set_ti_thread_flag(task_thread_info(tsk), flag);
2268 }
2269 
2270 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2271 {
2272 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2273 }
2274 
2275 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2276 {
2277 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2278 }
2279 
2280 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2281 {
2282 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2283 }
2284 
2285 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2286 {
2287 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2288 }
2289 
2290 static inline void set_tsk_need_resched(struct task_struct *tsk)
2291 {
2292 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2293 }
2294 
2295 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2296 {
2297 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2298 }
2299 
2300 static inline int test_tsk_need_resched(struct task_struct *tsk)
2301 {
2302 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2303 }
2304 
2305 static inline int restart_syscall(void)
2306 {
2307 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2308 	return -ERESTARTNOINTR;
2309 }
2310 
2311 static inline int signal_pending(struct task_struct *p)
2312 {
2313 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2314 }
2315 
2316 static inline int __fatal_signal_pending(struct task_struct *p)
2317 {
2318 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2319 }
2320 
2321 static inline int fatal_signal_pending(struct task_struct *p)
2322 {
2323 	return signal_pending(p) && __fatal_signal_pending(p);
2324 }
2325 
2326 static inline int signal_pending_state(long state, struct task_struct *p)
2327 {
2328 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2329 		return 0;
2330 	if (!signal_pending(p))
2331 		return 0;
2332 
2333 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2334 }
2335 
2336 static inline int need_resched(void)
2337 {
2338 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2339 }
2340 
2341 /*
2342  * cond_resched() and cond_resched_lock(): latency reduction via
2343  * explicit rescheduling in places that are safe. The return
2344  * value indicates whether a reschedule was done in fact.
2345  * cond_resched_lock() will drop the spinlock before scheduling,
2346  * cond_resched_softirq() will enable bhs before scheduling.
2347  */
2348 extern int _cond_resched(void);
2349 
2350 #define cond_resched() ({			\
2351 	__might_sleep(__FILE__, __LINE__, 0);	\
2352 	_cond_resched();			\
2353 })
2354 
2355 extern int __cond_resched_lock(spinlock_t *lock);
2356 
2357 #ifdef CONFIG_PREEMPT
2358 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2359 #else
2360 #define PREEMPT_LOCK_OFFSET	0
2361 #endif
2362 
2363 #define cond_resched_lock(lock) ({				\
2364 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2365 	__cond_resched_lock(lock);				\
2366 })
2367 
2368 extern int __cond_resched_softirq(void);
2369 
2370 #define cond_resched_softirq() ({				\
2371 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2372 	__cond_resched_softirq();				\
2373 })
2374 
2375 /*
2376  * Does a critical section need to be broken due to another
2377  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2378  * but a general need for low latency)
2379  */
2380 static inline int spin_needbreak(spinlock_t *lock)
2381 {
2382 #ifdef CONFIG_PREEMPT
2383 	return spin_is_contended(lock);
2384 #else
2385 	return 0;
2386 #endif
2387 }
2388 
2389 /*
2390  * Thread group CPU time accounting.
2391  */
2392 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2393 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2394 
2395 static inline void thread_group_cputime_init(struct signal_struct *sig)
2396 {
2397 	spin_lock_init(&sig->cputimer.lock);
2398 }
2399 
2400 /*
2401  * Reevaluate whether the task has signals pending delivery.
2402  * Wake the task if so.
2403  * This is required every time the blocked sigset_t changes.
2404  * callers must hold sighand->siglock.
2405  */
2406 extern void recalc_sigpending_and_wake(struct task_struct *t);
2407 extern void recalc_sigpending(void);
2408 
2409 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2410 
2411 /*
2412  * Wrappers for p->thread_info->cpu access. No-op on UP.
2413  */
2414 #ifdef CONFIG_SMP
2415 
2416 static inline unsigned int task_cpu(const struct task_struct *p)
2417 {
2418 	return task_thread_info(p)->cpu;
2419 }
2420 
2421 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2422 
2423 #else
2424 
2425 static inline unsigned int task_cpu(const struct task_struct *p)
2426 {
2427 	return 0;
2428 }
2429 
2430 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2431 {
2432 }
2433 
2434 #endif /* CONFIG_SMP */
2435 
2436 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2437 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2438 
2439 extern void normalize_rt_tasks(void);
2440 
2441 #ifdef CONFIG_CGROUP_SCHED
2442 
2443 extern struct task_group init_task_group;
2444 
2445 extern struct task_group *sched_create_group(struct task_group *parent);
2446 extern void sched_destroy_group(struct task_group *tg);
2447 extern void sched_move_task(struct task_struct *tsk);
2448 #ifdef CONFIG_FAIR_GROUP_SCHED
2449 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2450 extern unsigned long sched_group_shares(struct task_group *tg);
2451 #endif
2452 #ifdef CONFIG_RT_GROUP_SCHED
2453 extern int sched_group_set_rt_runtime(struct task_group *tg,
2454 				      long rt_runtime_us);
2455 extern long sched_group_rt_runtime(struct task_group *tg);
2456 extern int sched_group_set_rt_period(struct task_group *tg,
2457 				      long rt_period_us);
2458 extern long sched_group_rt_period(struct task_group *tg);
2459 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2460 #endif
2461 #endif
2462 
2463 extern int task_can_switch_user(struct user_struct *up,
2464 					struct task_struct *tsk);
2465 
2466 #ifdef CONFIG_TASK_XACCT
2467 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2468 {
2469 	tsk->ioac.rchar += amt;
2470 }
2471 
2472 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2473 {
2474 	tsk->ioac.wchar += amt;
2475 }
2476 
2477 static inline void inc_syscr(struct task_struct *tsk)
2478 {
2479 	tsk->ioac.syscr++;
2480 }
2481 
2482 static inline void inc_syscw(struct task_struct *tsk)
2483 {
2484 	tsk->ioac.syscw++;
2485 }
2486 #else
2487 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2488 {
2489 }
2490 
2491 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2492 {
2493 }
2494 
2495 static inline void inc_syscr(struct task_struct *tsk)
2496 {
2497 }
2498 
2499 static inline void inc_syscw(struct task_struct *tsk)
2500 {
2501 }
2502 #endif
2503 
2504 #ifndef TASK_SIZE_OF
2505 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2506 #endif
2507 
2508 /*
2509  * Call the function if the target task is executing on a CPU right now:
2510  */
2511 extern void task_oncpu_function_call(struct task_struct *p,
2512 				     void (*func) (void *info), void *info);
2513 
2514 
2515 #ifdef CONFIG_MM_OWNER
2516 extern void mm_update_next_owner(struct mm_struct *mm);
2517 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2518 #else
2519 static inline void mm_update_next_owner(struct mm_struct *mm)
2520 {
2521 }
2522 
2523 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2524 {
2525 }
2526 #endif /* CONFIG_MM_OWNER */
2527 
2528 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2529 		unsigned int limit)
2530 {
2531 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2532 }
2533 
2534 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2535 		unsigned int limit)
2536 {
2537 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2538 }
2539 
2540 static inline unsigned long rlimit(unsigned int limit)
2541 {
2542 	return task_rlimit(current, limit);
2543 }
2544 
2545 static inline unsigned long rlimit_max(unsigned int limit)
2546 {
2547 	return task_rlimit_max(current, limit);
2548 }
2549 
2550 #endif /* __KERNEL__ */
2551 
2552 #endif
2553