1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(void); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 extern int softlockup_thresh; 319 #else 320 static inline void touch_softlockup_watchdog(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog_sync(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 #endif 330 331 #ifdef CONFIG_DETECT_HUNG_TASK 332 extern unsigned int sysctl_hung_task_panic; 333 extern unsigned long sysctl_hung_task_check_count; 334 extern unsigned long sysctl_hung_task_timeout_secs; 335 extern unsigned long sysctl_hung_task_warnings; 336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 337 void __user *buffer, 338 size_t *lenp, loff_t *ppos); 339 #endif 340 341 /* Attach to any functions which should be ignored in wchan output. */ 342 #define __sched __attribute__((__section__(".sched.text"))) 343 344 /* Linker adds these: start and end of __sched functions */ 345 extern char __sched_text_start[], __sched_text_end[]; 346 347 /* Is this address in the __sched functions? */ 348 extern int in_sched_functions(unsigned long addr); 349 350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 351 extern signed long schedule_timeout(signed long timeout); 352 extern signed long schedule_timeout_interruptible(signed long timeout); 353 extern signed long schedule_timeout_killable(signed long timeout); 354 extern signed long schedule_timeout_uninterruptible(signed long timeout); 355 asmlinkage void schedule(void); 356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 357 358 struct nsproxy; 359 struct user_namespace; 360 361 /* 362 * Default maximum number of active map areas, this limits the number of vmas 363 * per mm struct. Users can overwrite this number by sysctl but there is a 364 * problem. 365 * 366 * When a program's coredump is generated as ELF format, a section is created 367 * per a vma. In ELF, the number of sections is represented in unsigned short. 368 * This means the number of sections should be smaller than 65535 at coredump. 369 * Because the kernel adds some informative sections to a image of program at 370 * generating coredump, we need some margin. The number of extra sections is 371 * 1-3 now and depends on arch. We use "5" as safe margin, here. 372 */ 373 #define MAPCOUNT_ELF_CORE_MARGIN (5) 374 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 375 376 extern int sysctl_max_map_count; 377 378 #include <linux/aio.h> 379 380 #ifdef CONFIG_MMU 381 extern void arch_pick_mmap_layout(struct mm_struct *mm); 382 extern unsigned long 383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 384 unsigned long, unsigned long); 385 extern unsigned long 386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 387 unsigned long len, unsigned long pgoff, 388 unsigned long flags); 389 extern void arch_unmap_area(struct mm_struct *, unsigned long); 390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 391 #else 392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 393 #endif 394 395 396 extern void set_dumpable(struct mm_struct *mm, int value); 397 extern int get_dumpable(struct mm_struct *mm); 398 399 /* mm flags */ 400 /* dumpable bits */ 401 #define MMF_DUMPABLE 0 /* core dump is permitted */ 402 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 403 404 #define MMF_DUMPABLE_BITS 2 405 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 406 407 /* coredump filter bits */ 408 #define MMF_DUMP_ANON_PRIVATE 2 409 #define MMF_DUMP_ANON_SHARED 3 410 #define MMF_DUMP_MAPPED_PRIVATE 4 411 #define MMF_DUMP_MAPPED_SHARED 5 412 #define MMF_DUMP_ELF_HEADERS 6 413 #define MMF_DUMP_HUGETLB_PRIVATE 7 414 #define MMF_DUMP_HUGETLB_SHARED 8 415 416 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 417 #define MMF_DUMP_FILTER_BITS 7 418 #define MMF_DUMP_FILTER_MASK \ 419 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 420 #define MMF_DUMP_FILTER_DEFAULT \ 421 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 422 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 423 424 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 425 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 426 #else 427 # define MMF_DUMP_MASK_DEFAULT_ELF 0 428 #endif 429 /* leave room for more dump flags */ 430 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 431 432 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 433 434 struct sighand_struct { 435 atomic_t count; 436 struct k_sigaction action[_NSIG]; 437 spinlock_t siglock; 438 wait_queue_head_t signalfd_wqh; 439 }; 440 441 struct pacct_struct { 442 int ac_flag; 443 long ac_exitcode; 444 unsigned long ac_mem; 445 cputime_t ac_utime, ac_stime; 446 unsigned long ac_minflt, ac_majflt; 447 }; 448 449 struct cpu_itimer { 450 cputime_t expires; 451 cputime_t incr; 452 u32 error; 453 u32 incr_error; 454 }; 455 456 /** 457 * struct task_cputime - collected CPU time counts 458 * @utime: time spent in user mode, in &cputime_t units 459 * @stime: time spent in kernel mode, in &cputime_t units 460 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 461 * 462 * This structure groups together three kinds of CPU time that are 463 * tracked for threads and thread groups. Most things considering 464 * CPU time want to group these counts together and treat all three 465 * of them in parallel. 466 */ 467 struct task_cputime { 468 cputime_t utime; 469 cputime_t stime; 470 unsigned long long sum_exec_runtime; 471 }; 472 /* Alternate field names when used to cache expirations. */ 473 #define prof_exp stime 474 #define virt_exp utime 475 #define sched_exp sum_exec_runtime 476 477 #define INIT_CPUTIME \ 478 (struct task_cputime) { \ 479 .utime = cputime_zero, \ 480 .stime = cputime_zero, \ 481 .sum_exec_runtime = 0, \ 482 } 483 484 /* 485 * Disable preemption until the scheduler is running. 486 * Reset by start_kernel()->sched_init()->init_idle(). 487 * 488 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 489 * before the scheduler is active -- see should_resched(). 490 */ 491 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 492 493 /** 494 * struct thread_group_cputimer - thread group interval timer counts 495 * @cputime: thread group interval timers. 496 * @running: non-zero when there are timers running and 497 * @cputime receives updates. 498 * @lock: lock for fields in this struct. 499 * 500 * This structure contains the version of task_cputime, above, that is 501 * used for thread group CPU timer calculations. 502 */ 503 struct thread_group_cputimer { 504 struct task_cputime cputime; 505 int running; 506 spinlock_t lock; 507 }; 508 509 /* 510 * NOTE! "signal_struct" does not have it's own 511 * locking, because a shared signal_struct always 512 * implies a shared sighand_struct, so locking 513 * sighand_struct is always a proper superset of 514 * the locking of signal_struct. 515 */ 516 struct signal_struct { 517 atomic_t sigcnt; 518 atomic_t live; 519 int nr_threads; 520 521 wait_queue_head_t wait_chldexit; /* for wait4() */ 522 523 /* current thread group signal load-balancing target: */ 524 struct task_struct *curr_target; 525 526 /* shared signal handling: */ 527 struct sigpending shared_pending; 528 529 /* thread group exit support */ 530 int group_exit_code; 531 /* overloaded: 532 * - notify group_exit_task when ->count is equal to notify_count 533 * - everyone except group_exit_task is stopped during signal delivery 534 * of fatal signals, group_exit_task processes the signal. 535 */ 536 int notify_count; 537 struct task_struct *group_exit_task; 538 539 /* thread group stop support, overloads group_exit_code too */ 540 int group_stop_count; 541 unsigned int flags; /* see SIGNAL_* flags below */ 542 543 /* POSIX.1b Interval Timers */ 544 struct list_head posix_timers; 545 546 /* ITIMER_REAL timer for the process */ 547 struct hrtimer real_timer; 548 struct pid *leader_pid; 549 ktime_t it_real_incr; 550 551 /* 552 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 553 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 554 * values are defined to 0 and 1 respectively 555 */ 556 struct cpu_itimer it[2]; 557 558 /* 559 * Thread group totals for process CPU timers. 560 * See thread_group_cputimer(), et al, for details. 561 */ 562 struct thread_group_cputimer cputimer; 563 564 /* Earliest-expiration cache. */ 565 struct task_cputime cputime_expires; 566 567 struct list_head cpu_timers[3]; 568 569 struct pid *tty_old_pgrp; 570 571 /* boolean value for session group leader */ 572 int leader; 573 574 struct tty_struct *tty; /* NULL if no tty */ 575 576 /* 577 * Cumulative resource counters for dead threads in the group, 578 * and for reaped dead child processes forked by this group. 579 * Live threads maintain their own counters and add to these 580 * in __exit_signal, except for the group leader. 581 */ 582 cputime_t utime, stime, cutime, cstime; 583 cputime_t gtime; 584 cputime_t cgtime; 585 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 586 cputime_t prev_utime, prev_stime; 587 #endif 588 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 589 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 590 unsigned long inblock, oublock, cinblock, coublock; 591 unsigned long maxrss, cmaxrss; 592 struct task_io_accounting ioac; 593 594 /* 595 * Cumulative ns of schedule CPU time fo dead threads in the 596 * group, not including a zombie group leader, (This only differs 597 * from jiffies_to_ns(utime + stime) if sched_clock uses something 598 * other than jiffies.) 599 */ 600 unsigned long long sum_sched_runtime; 601 602 /* 603 * We don't bother to synchronize most readers of this at all, 604 * because there is no reader checking a limit that actually needs 605 * to get both rlim_cur and rlim_max atomically, and either one 606 * alone is a single word that can safely be read normally. 607 * getrlimit/setrlimit use task_lock(current->group_leader) to 608 * protect this instead of the siglock, because they really 609 * have no need to disable irqs. 610 */ 611 struct rlimit rlim[RLIM_NLIMITS]; 612 613 #ifdef CONFIG_BSD_PROCESS_ACCT 614 struct pacct_struct pacct; /* per-process accounting information */ 615 #endif 616 #ifdef CONFIG_TASKSTATS 617 struct taskstats *stats; 618 #endif 619 #ifdef CONFIG_AUDIT 620 unsigned audit_tty; 621 struct tty_audit_buf *tty_audit_buf; 622 #endif 623 624 int oom_adj; /* OOM kill score adjustment (bit shift) */ 625 int oom_score_adj; /* OOM kill score adjustment */ 626 }; 627 628 /* Context switch must be unlocked if interrupts are to be enabled */ 629 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 630 # define __ARCH_WANT_UNLOCKED_CTXSW 631 #endif 632 633 /* 634 * Bits in flags field of signal_struct. 635 */ 636 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 637 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 638 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 639 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 640 /* 641 * Pending notifications to parent. 642 */ 643 #define SIGNAL_CLD_STOPPED 0x00000010 644 #define SIGNAL_CLD_CONTINUED 0x00000020 645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 646 647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 648 649 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 650 static inline int signal_group_exit(const struct signal_struct *sig) 651 { 652 return (sig->flags & SIGNAL_GROUP_EXIT) || 653 (sig->group_exit_task != NULL); 654 } 655 656 /* 657 * Some day this will be a full-fledged user tracking system.. 658 */ 659 struct user_struct { 660 atomic_t __count; /* reference count */ 661 atomic_t processes; /* How many processes does this user have? */ 662 atomic_t files; /* How many open files does this user have? */ 663 atomic_t sigpending; /* How many pending signals does this user have? */ 664 #ifdef CONFIG_INOTIFY_USER 665 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 667 #endif 668 #ifdef CONFIG_EPOLL 669 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 670 #endif 671 #ifdef CONFIG_POSIX_MQUEUE 672 /* protected by mq_lock */ 673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 674 #endif 675 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 676 677 #ifdef CONFIG_KEYS 678 struct key *uid_keyring; /* UID specific keyring */ 679 struct key *session_keyring; /* UID's default session keyring */ 680 #endif 681 682 /* Hash table maintenance information */ 683 struct hlist_node uidhash_node; 684 uid_t uid; 685 struct user_namespace *user_ns; 686 687 #ifdef CONFIG_PERF_EVENTS 688 atomic_long_t locked_vm; 689 #endif 690 }; 691 692 extern int uids_sysfs_init(void); 693 694 extern struct user_struct *find_user(uid_t); 695 696 extern struct user_struct root_user; 697 #define INIT_USER (&root_user) 698 699 700 struct backing_dev_info; 701 struct reclaim_state; 702 703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 704 struct sched_info { 705 /* cumulative counters */ 706 unsigned long pcount; /* # of times run on this cpu */ 707 unsigned long long run_delay; /* time spent waiting on a runqueue */ 708 709 /* timestamps */ 710 unsigned long long last_arrival,/* when we last ran on a cpu */ 711 last_queued; /* when we were last queued to run */ 712 #ifdef CONFIG_SCHEDSTATS 713 /* BKL stats */ 714 unsigned int bkl_count; 715 #endif 716 }; 717 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 718 719 #ifdef CONFIG_TASK_DELAY_ACCT 720 struct task_delay_info { 721 spinlock_t lock; 722 unsigned int flags; /* Private per-task flags */ 723 724 /* For each stat XXX, add following, aligned appropriately 725 * 726 * struct timespec XXX_start, XXX_end; 727 * u64 XXX_delay; 728 * u32 XXX_count; 729 * 730 * Atomicity of updates to XXX_delay, XXX_count protected by 731 * single lock above (split into XXX_lock if contention is an issue). 732 */ 733 734 /* 735 * XXX_count is incremented on every XXX operation, the delay 736 * associated with the operation is added to XXX_delay. 737 * XXX_delay contains the accumulated delay time in nanoseconds. 738 */ 739 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 740 u64 blkio_delay; /* wait for sync block io completion */ 741 u64 swapin_delay; /* wait for swapin block io completion */ 742 u32 blkio_count; /* total count of the number of sync block */ 743 /* io operations performed */ 744 u32 swapin_count; /* total count of the number of swapin block */ 745 /* io operations performed */ 746 747 struct timespec freepages_start, freepages_end; 748 u64 freepages_delay; /* wait for memory reclaim */ 749 u32 freepages_count; /* total count of memory reclaim */ 750 }; 751 #endif /* CONFIG_TASK_DELAY_ACCT */ 752 753 static inline int sched_info_on(void) 754 { 755 #ifdef CONFIG_SCHEDSTATS 756 return 1; 757 #elif defined(CONFIG_TASK_DELAY_ACCT) 758 extern int delayacct_on; 759 return delayacct_on; 760 #else 761 return 0; 762 #endif 763 } 764 765 enum cpu_idle_type { 766 CPU_IDLE, 767 CPU_NOT_IDLE, 768 CPU_NEWLY_IDLE, 769 CPU_MAX_IDLE_TYPES 770 }; 771 772 /* 773 * sched-domains (multiprocessor balancing) declarations: 774 */ 775 776 /* 777 * Increase resolution of nice-level calculations: 778 */ 779 #define SCHED_LOAD_SHIFT 10 780 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 781 782 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 783 784 #ifdef CONFIG_SMP 785 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 786 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 787 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 788 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 789 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 790 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 791 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 792 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 793 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 794 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 795 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 796 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 797 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 798 799 enum powersavings_balance_level { 800 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 801 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 802 * first for long running threads 803 */ 804 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 805 * cpu package for power savings 806 */ 807 MAX_POWERSAVINGS_BALANCE_LEVELS 808 }; 809 810 extern int sched_mc_power_savings, sched_smt_power_savings; 811 812 static inline int sd_balance_for_mc_power(void) 813 { 814 if (sched_smt_power_savings) 815 return SD_POWERSAVINGS_BALANCE; 816 817 if (!sched_mc_power_savings) 818 return SD_PREFER_SIBLING; 819 820 return 0; 821 } 822 823 static inline int sd_balance_for_package_power(void) 824 { 825 if (sched_mc_power_savings | sched_smt_power_savings) 826 return SD_POWERSAVINGS_BALANCE; 827 828 return SD_PREFER_SIBLING; 829 } 830 831 extern int __weak arch_sd_sibiling_asym_packing(void); 832 833 /* 834 * Optimise SD flags for power savings: 835 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 836 * Keep default SD flags if sched_{smt,mc}_power_saving=0 837 */ 838 839 static inline int sd_power_saving_flags(void) 840 { 841 if (sched_mc_power_savings | sched_smt_power_savings) 842 return SD_BALANCE_NEWIDLE; 843 844 return 0; 845 } 846 847 struct sched_group { 848 struct sched_group *next; /* Must be a circular list */ 849 850 /* 851 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 852 * single CPU. 853 */ 854 unsigned int cpu_power, cpu_power_orig; 855 856 /* 857 * The CPUs this group covers. 858 * 859 * NOTE: this field is variable length. (Allocated dynamically 860 * by attaching extra space to the end of the structure, 861 * depending on how many CPUs the kernel has booted up with) 862 * 863 * It is also be embedded into static data structures at build 864 * time. (See 'struct static_sched_group' in kernel/sched.c) 865 */ 866 unsigned long cpumask[0]; 867 }; 868 869 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 870 { 871 return to_cpumask(sg->cpumask); 872 } 873 874 enum sched_domain_level { 875 SD_LV_NONE = 0, 876 SD_LV_SIBLING, 877 SD_LV_MC, 878 SD_LV_CPU, 879 SD_LV_NODE, 880 SD_LV_ALLNODES, 881 SD_LV_MAX 882 }; 883 884 struct sched_domain_attr { 885 int relax_domain_level; 886 }; 887 888 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 889 .relax_domain_level = -1, \ 890 } 891 892 struct sched_domain { 893 /* These fields must be setup */ 894 struct sched_domain *parent; /* top domain must be null terminated */ 895 struct sched_domain *child; /* bottom domain must be null terminated */ 896 struct sched_group *groups; /* the balancing groups of the domain */ 897 unsigned long min_interval; /* Minimum balance interval ms */ 898 unsigned long max_interval; /* Maximum balance interval ms */ 899 unsigned int busy_factor; /* less balancing by factor if busy */ 900 unsigned int imbalance_pct; /* No balance until over watermark */ 901 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 902 unsigned int busy_idx; 903 unsigned int idle_idx; 904 unsigned int newidle_idx; 905 unsigned int wake_idx; 906 unsigned int forkexec_idx; 907 unsigned int smt_gain; 908 int flags; /* See SD_* */ 909 enum sched_domain_level level; 910 911 /* Runtime fields. */ 912 unsigned long last_balance; /* init to jiffies. units in jiffies */ 913 unsigned int balance_interval; /* initialise to 1. units in ms. */ 914 unsigned int nr_balance_failed; /* initialise to 0 */ 915 916 u64 last_update; 917 918 #ifdef CONFIG_SCHEDSTATS 919 /* load_balance() stats */ 920 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 921 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 922 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 923 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 924 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 925 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 926 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 927 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 928 929 /* Active load balancing */ 930 unsigned int alb_count; 931 unsigned int alb_failed; 932 unsigned int alb_pushed; 933 934 /* SD_BALANCE_EXEC stats */ 935 unsigned int sbe_count; 936 unsigned int sbe_balanced; 937 unsigned int sbe_pushed; 938 939 /* SD_BALANCE_FORK stats */ 940 unsigned int sbf_count; 941 unsigned int sbf_balanced; 942 unsigned int sbf_pushed; 943 944 /* try_to_wake_up() stats */ 945 unsigned int ttwu_wake_remote; 946 unsigned int ttwu_move_affine; 947 unsigned int ttwu_move_balance; 948 #endif 949 #ifdef CONFIG_SCHED_DEBUG 950 char *name; 951 #endif 952 953 unsigned int span_weight; 954 /* 955 * Span of all CPUs in this domain. 956 * 957 * NOTE: this field is variable length. (Allocated dynamically 958 * by attaching extra space to the end of the structure, 959 * depending on how many CPUs the kernel has booted up with) 960 * 961 * It is also be embedded into static data structures at build 962 * time. (See 'struct static_sched_domain' in kernel/sched.c) 963 */ 964 unsigned long span[0]; 965 }; 966 967 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 968 { 969 return to_cpumask(sd->span); 970 } 971 972 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 973 struct sched_domain_attr *dattr_new); 974 975 /* Allocate an array of sched domains, for partition_sched_domains(). */ 976 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 977 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 978 979 /* Test a flag in parent sched domain */ 980 static inline int test_sd_parent(struct sched_domain *sd, int flag) 981 { 982 if (sd->parent && (sd->parent->flags & flag)) 983 return 1; 984 985 return 0; 986 } 987 988 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 989 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 990 991 #else /* CONFIG_SMP */ 992 993 struct sched_domain_attr; 994 995 static inline void 996 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 997 struct sched_domain_attr *dattr_new) 998 { 999 } 1000 #endif /* !CONFIG_SMP */ 1001 1002 1003 struct io_context; /* See blkdev.h */ 1004 1005 1006 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1007 extern void prefetch_stack(struct task_struct *t); 1008 #else 1009 static inline void prefetch_stack(struct task_struct *t) { } 1010 #endif 1011 1012 struct audit_context; /* See audit.c */ 1013 struct mempolicy; 1014 struct pipe_inode_info; 1015 struct uts_namespace; 1016 1017 struct rq; 1018 struct sched_domain; 1019 1020 /* 1021 * wake flags 1022 */ 1023 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1024 #define WF_FORK 0x02 /* child wakeup after fork */ 1025 1026 #define ENQUEUE_WAKEUP 1 1027 #define ENQUEUE_WAKING 2 1028 #define ENQUEUE_HEAD 4 1029 1030 #define DEQUEUE_SLEEP 1 1031 1032 struct sched_class { 1033 const struct sched_class *next; 1034 1035 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1036 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1037 void (*yield_task) (struct rq *rq); 1038 1039 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1040 1041 struct task_struct * (*pick_next_task) (struct rq *rq); 1042 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1043 1044 #ifdef CONFIG_SMP 1045 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1046 int sd_flag, int flags); 1047 1048 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1049 void (*post_schedule) (struct rq *this_rq); 1050 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1051 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1052 1053 void (*set_cpus_allowed)(struct task_struct *p, 1054 const struct cpumask *newmask); 1055 1056 void (*rq_online)(struct rq *rq); 1057 void (*rq_offline)(struct rq *rq); 1058 #endif 1059 1060 void (*set_curr_task) (struct rq *rq); 1061 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1062 void (*task_fork) (struct task_struct *p); 1063 1064 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1065 int running); 1066 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1067 int running); 1068 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1069 int oldprio, int running); 1070 1071 unsigned int (*get_rr_interval) (struct rq *rq, 1072 struct task_struct *task); 1073 1074 #ifdef CONFIG_FAIR_GROUP_SCHED 1075 void (*moved_group) (struct task_struct *p, int on_rq); 1076 #endif 1077 }; 1078 1079 struct load_weight { 1080 unsigned long weight, inv_weight; 1081 }; 1082 1083 #ifdef CONFIG_SCHEDSTATS 1084 struct sched_statistics { 1085 u64 wait_start; 1086 u64 wait_max; 1087 u64 wait_count; 1088 u64 wait_sum; 1089 u64 iowait_count; 1090 u64 iowait_sum; 1091 1092 u64 sleep_start; 1093 u64 sleep_max; 1094 s64 sum_sleep_runtime; 1095 1096 u64 block_start; 1097 u64 block_max; 1098 u64 exec_max; 1099 u64 slice_max; 1100 1101 u64 nr_migrations_cold; 1102 u64 nr_failed_migrations_affine; 1103 u64 nr_failed_migrations_running; 1104 u64 nr_failed_migrations_hot; 1105 u64 nr_forced_migrations; 1106 1107 u64 nr_wakeups; 1108 u64 nr_wakeups_sync; 1109 u64 nr_wakeups_migrate; 1110 u64 nr_wakeups_local; 1111 u64 nr_wakeups_remote; 1112 u64 nr_wakeups_affine; 1113 u64 nr_wakeups_affine_attempts; 1114 u64 nr_wakeups_passive; 1115 u64 nr_wakeups_idle; 1116 }; 1117 #endif 1118 1119 struct sched_entity { 1120 struct load_weight load; /* for load-balancing */ 1121 struct rb_node run_node; 1122 struct list_head group_node; 1123 unsigned int on_rq; 1124 1125 u64 exec_start; 1126 u64 sum_exec_runtime; 1127 u64 vruntime; 1128 u64 prev_sum_exec_runtime; 1129 1130 u64 nr_migrations; 1131 1132 #ifdef CONFIG_SCHEDSTATS 1133 struct sched_statistics statistics; 1134 #endif 1135 1136 #ifdef CONFIG_FAIR_GROUP_SCHED 1137 struct sched_entity *parent; 1138 /* rq on which this entity is (to be) queued: */ 1139 struct cfs_rq *cfs_rq; 1140 /* rq "owned" by this entity/group: */ 1141 struct cfs_rq *my_q; 1142 #endif 1143 }; 1144 1145 struct sched_rt_entity { 1146 struct list_head run_list; 1147 unsigned long timeout; 1148 unsigned int time_slice; 1149 int nr_cpus_allowed; 1150 1151 struct sched_rt_entity *back; 1152 #ifdef CONFIG_RT_GROUP_SCHED 1153 struct sched_rt_entity *parent; 1154 /* rq on which this entity is (to be) queued: */ 1155 struct rt_rq *rt_rq; 1156 /* rq "owned" by this entity/group: */ 1157 struct rt_rq *my_q; 1158 #endif 1159 }; 1160 1161 struct rcu_node; 1162 1163 struct task_struct { 1164 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1165 void *stack; 1166 atomic_t usage; 1167 unsigned int flags; /* per process flags, defined below */ 1168 unsigned int ptrace; 1169 1170 int lock_depth; /* BKL lock depth */ 1171 1172 #ifdef CONFIG_SMP 1173 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1174 int oncpu; 1175 #endif 1176 #endif 1177 1178 int prio, static_prio, normal_prio; 1179 unsigned int rt_priority; 1180 const struct sched_class *sched_class; 1181 struct sched_entity se; 1182 struct sched_rt_entity rt; 1183 1184 #ifdef CONFIG_PREEMPT_NOTIFIERS 1185 /* list of struct preempt_notifier: */ 1186 struct hlist_head preempt_notifiers; 1187 #endif 1188 1189 /* 1190 * fpu_counter contains the number of consecutive context switches 1191 * that the FPU is used. If this is over a threshold, the lazy fpu 1192 * saving becomes unlazy to save the trap. This is an unsigned char 1193 * so that after 256 times the counter wraps and the behavior turns 1194 * lazy again; this to deal with bursty apps that only use FPU for 1195 * a short time 1196 */ 1197 unsigned char fpu_counter; 1198 #ifdef CONFIG_BLK_DEV_IO_TRACE 1199 unsigned int btrace_seq; 1200 #endif 1201 1202 unsigned int policy; 1203 cpumask_t cpus_allowed; 1204 1205 #ifdef CONFIG_TREE_PREEMPT_RCU 1206 int rcu_read_lock_nesting; 1207 char rcu_read_unlock_special; 1208 struct rcu_node *rcu_blocked_node; 1209 struct list_head rcu_node_entry; 1210 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1211 1212 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1213 struct sched_info sched_info; 1214 #endif 1215 1216 struct list_head tasks; 1217 struct plist_node pushable_tasks; 1218 1219 struct mm_struct *mm, *active_mm; 1220 #if defined(SPLIT_RSS_COUNTING) 1221 struct task_rss_stat rss_stat; 1222 #endif 1223 /* task state */ 1224 int exit_state; 1225 int exit_code, exit_signal; 1226 int pdeath_signal; /* The signal sent when the parent dies */ 1227 /* ??? */ 1228 unsigned int personality; 1229 unsigned did_exec:1; 1230 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1231 * execve */ 1232 unsigned in_iowait:1; 1233 1234 1235 /* Revert to default priority/policy when forking */ 1236 unsigned sched_reset_on_fork:1; 1237 1238 pid_t pid; 1239 pid_t tgid; 1240 1241 #ifdef CONFIG_CC_STACKPROTECTOR 1242 /* Canary value for the -fstack-protector gcc feature */ 1243 unsigned long stack_canary; 1244 #endif 1245 1246 /* 1247 * pointers to (original) parent process, youngest child, younger sibling, 1248 * older sibling, respectively. (p->father can be replaced with 1249 * p->real_parent->pid) 1250 */ 1251 struct task_struct *real_parent; /* real parent process */ 1252 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1253 /* 1254 * children/sibling forms the list of my natural children 1255 */ 1256 struct list_head children; /* list of my children */ 1257 struct list_head sibling; /* linkage in my parent's children list */ 1258 struct task_struct *group_leader; /* threadgroup leader */ 1259 1260 /* 1261 * ptraced is the list of tasks this task is using ptrace on. 1262 * This includes both natural children and PTRACE_ATTACH targets. 1263 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1264 */ 1265 struct list_head ptraced; 1266 struct list_head ptrace_entry; 1267 1268 /* PID/PID hash table linkage. */ 1269 struct pid_link pids[PIDTYPE_MAX]; 1270 struct list_head thread_group; 1271 1272 struct completion *vfork_done; /* for vfork() */ 1273 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1274 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1275 1276 cputime_t utime, stime, utimescaled, stimescaled; 1277 cputime_t gtime; 1278 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1279 cputime_t prev_utime, prev_stime; 1280 #endif 1281 unsigned long nvcsw, nivcsw; /* context switch counts */ 1282 struct timespec start_time; /* monotonic time */ 1283 struct timespec real_start_time; /* boot based time */ 1284 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1285 unsigned long min_flt, maj_flt; 1286 1287 struct task_cputime cputime_expires; 1288 struct list_head cpu_timers[3]; 1289 1290 /* process credentials */ 1291 const struct cred *real_cred; /* objective and real subjective task 1292 * credentials (COW) */ 1293 const struct cred *cred; /* effective (overridable) subjective task 1294 * credentials (COW) */ 1295 struct mutex cred_guard_mutex; /* guard against foreign influences on 1296 * credential calculations 1297 * (notably. ptrace) */ 1298 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1299 1300 char comm[TASK_COMM_LEN]; /* executable name excluding path 1301 - access with [gs]et_task_comm (which lock 1302 it with task_lock()) 1303 - initialized normally by setup_new_exec */ 1304 /* file system info */ 1305 int link_count, total_link_count; 1306 #ifdef CONFIG_SYSVIPC 1307 /* ipc stuff */ 1308 struct sysv_sem sysvsem; 1309 #endif 1310 #ifdef CONFIG_DETECT_HUNG_TASK 1311 /* hung task detection */ 1312 unsigned long last_switch_count; 1313 #endif 1314 /* CPU-specific state of this task */ 1315 struct thread_struct thread; 1316 /* filesystem information */ 1317 struct fs_struct *fs; 1318 /* open file information */ 1319 struct files_struct *files; 1320 /* namespaces */ 1321 struct nsproxy *nsproxy; 1322 /* signal handlers */ 1323 struct signal_struct *signal; 1324 struct sighand_struct *sighand; 1325 1326 sigset_t blocked, real_blocked; 1327 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1328 struct sigpending pending; 1329 1330 unsigned long sas_ss_sp; 1331 size_t sas_ss_size; 1332 int (*notifier)(void *priv); 1333 void *notifier_data; 1334 sigset_t *notifier_mask; 1335 struct audit_context *audit_context; 1336 #ifdef CONFIG_AUDITSYSCALL 1337 uid_t loginuid; 1338 unsigned int sessionid; 1339 #endif 1340 seccomp_t seccomp; 1341 1342 /* Thread group tracking */ 1343 u32 parent_exec_id; 1344 u32 self_exec_id; 1345 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1346 * mempolicy */ 1347 spinlock_t alloc_lock; 1348 1349 #ifdef CONFIG_GENERIC_HARDIRQS 1350 /* IRQ handler threads */ 1351 struct irqaction *irqaction; 1352 #endif 1353 1354 /* Protection of the PI data structures: */ 1355 raw_spinlock_t pi_lock; 1356 1357 #ifdef CONFIG_RT_MUTEXES 1358 /* PI waiters blocked on a rt_mutex held by this task */ 1359 struct plist_head pi_waiters; 1360 /* Deadlock detection and priority inheritance handling */ 1361 struct rt_mutex_waiter *pi_blocked_on; 1362 #endif 1363 1364 #ifdef CONFIG_DEBUG_MUTEXES 1365 /* mutex deadlock detection */ 1366 struct mutex_waiter *blocked_on; 1367 #endif 1368 #ifdef CONFIG_TRACE_IRQFLAGS 1369 unsigned int irq_events; 1370 unsigned long hardirq_enable_ip; 1371 unsigned long hardirq_disable_ip; 1372 unsigned int hardirq_enable_event; 1373 unsigned int hardirq_disable_event; 1374 int hardirqs_enabled; 1375 int hardirq_context; 1376 unsigned long softirq_disable_ip; 1377 unsigned long softirq_enable_ip; 1378 unsigned int softirq_disable_event; 1379 unsigned int softirq_enable_event; 1380 int softirqs_enabled; 1381 int softirq_context; 1382 #endif 1383 #ifdef CONFIG_LOCKDEP 1384 # define MAX_LOCK_DEPTH 48UL 1385 u64 curr_chain_key; 1386 int lockdep_depth; 1387 unsigned int lockdep_recursion; 1388 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1389 gfp_t lockdep_reclaim_gfp; 1390 #endif 1391 1392 /* journalling filesystem info */ 1393 void *journal_info; 1394 1395 /* stacked block device info */ 1396 struct bio_list *bio_list; 1397 1398 /* VM state */ 1399 struct reclaim_state *reclaim_state; 1400 1401 struct backing_dev_info *backing_dev_info; 1402 1403 struct io_context *io_context; 1404 1405 unsigned long ptrace_message; 1406 siginfo_t *last_siginfo; /* For ptrace use. */ 1407 struct task_io_accounting ioac; 1408 #if defined(CONFIG_TASK_XACCT) 1409 u64 acct_rss_mem1; /* accumulated rss usage */ 1410 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1411 cputime_t acct_timexpd; /* stime + utime since last update */ 1412 #endif 1413 #ifdef CONFIG_CPUSETS 1414 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1415 int mems_allowed_change_disable; 1416 int cpuset_mem_spread_rotor; 1417 int cpuset_slab_spread_rotor; 1418 #endif 1419 #ifdef CONFIG_CGROUPS 1420 /* Control Group info protected by css_set_lock */ 1421 struct css_set *cgroups; 1422 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1423 struct list_head cg_list; 1424 #endif 1425 #ifdef CONFIG_FUTEX 1426 struct robust_list_head __user *robust_list; 1427 #ifdef CONFIG_COMPAT 1428 struct compat_robust_list_head __user *compat_robust_list; 1429 #endif 1430 struct list_head pi_state_list; 1431 struct futex_pi_state *pi_state_cache; 1432 #endif 1433 #ifdef CONFIG_PERF_EVENTS 1434 struct perf_event_context *perf_event_ctxp; 1435 struct mutex perf_event_mutex; 1436 struct list_head perf_event_list; 1437 #endif 1438 #ifdef CONFIG_NUMA 1439 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1440 short il_next; 1441 #endif 1442 atomic_t fs_excl; /* holding fs exclusive resources */ 1443 struct rcu_head rcu; 1444 1445 /* 1446 * cache last used pipe for splice 1447 */ 1448 struct pipe_inode_info *splice_pipe; 1449 #ifdef CONFIG_TASK_DELAY_ACCT 1450 struct task_delay_info *delays; 1451 #endif 1452 #ifdef CONFIG_FAULT_INJECTION 1453 int make_it_fail; 1454 #endif 1455 struct prop_local_single dirties; 1456 #ifdef CONFIG_LATENCYTOP 1457 int latency_record_count; 1458 struct latency_record latency_record[LT_SAVECOUNT]; 1459 #endif 1460 /* 1461 * time slack values; these are used to round up poll() and 1462 * select() etc timeout values. These are in nanoseconds. 1463 */ 1464 unsigned long timer_slack_ns; 1465 unsigned long default_timer_slack_ns; 1466 1467 struct list_head *scm_work_list; 1468 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1469 /* Index of current stored address in ret_stack */ 1470 int curr_ret_stack; 1471 /* Stack of return addresses for return function tracing */ 1472 struct ftrace_ret_stack *ret_stack; 1473 /* time stamp for last schedule */ 1474 unsigned long long ftrace_timestamp; 1475 /* 1476 * Number of functions that haven't been traced 1477 * because of depth overrun. 1478 */ 1479 atomic_t trace_overrun; 1480 /* Pause for the tracing */ 1481 atomic_t tracing_graph_pause; 1482 #endif 1483 #ifdef CONFIG_TRACING 1484 /* state flags for use by tracers */ 1485 unsigned long trace; 1486 /* bitmask of trace recursion */ 1487 unsigned long trace_recursion; 1488 #endif /* CONFIG_TRACING */ 1489 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1490 struct memcg_batch_info { 1491 int do_batch; /* incremented when batch uncharge started */ 1492 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1493 unsigned long bytes; /* uncharged usage */ 1494 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1495 } memcg_batch; 1496 #endif 1497 }; 1498 1499 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1500 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1501 1502 /* 1503 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1504 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1505 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1506 * values are inverted: lower p->prio value means higher priority. 1507 * 1508 * The MAX_USER_RT_PRIO value allows the actual maximum 1509 * RT priority to be separate from the value exported to 1510 * user-space. This allows kernel threads to set their 1511 * priority to a value higher than any user task. Note: 1512 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1513 */ 1514 1515 #define MAX_USER_RT_PRIO 100 1516 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1517 1518 #define MAX_PRIO (MAX_RT_PRIO + 40) 1519 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1520 1521 static inline int rt_prio(int prio) 1522 { 1523 if (unlikely(prio < MAX_RT_PRIO)) 1524 return 1; 1525 return 0; 1526 } 1527 1528 static inline int rt_task(struct task_struct *p) 1529 { 1530 return rt_prio(p->prio); 1531 } 1532 1533 static inline struct pid *task_pid(struct task_struct *task) 1534 { 1535 return task->pids[PIDTYPE_PID].pid; 1536 } 1537 1538 static inline struct pid *task_tgid(struct task_struct *task) 1539 { 1540 return task->group_leader->pids[PIDTYPE_PID].pid; 1541 } 1542 1543 /* 1544 * Without tasklist or rcu lock it is not safe to dereference 1545 * the result of task_pgrp/task_session even if task == current, 1546 * we can race with another thread doing sys_setsid/sys_setpgid. 1547 */ 1548 static inline struct pid *task_pgrp(struct task_struct *task) 1549 { 1550 return task->group_leader->pids[PIDTYPE_PGID].pid; 1551 } 1552 1553 static inline struct pid *task_session(struct task_struct *task) 1554 { 1555 return task->group_leader->pids[PIDTYPE_SID].pid; 1556 } 1557 1558 struct pid_namespace; 1559 1560 /* 1561 * the helpers to get the task's different pids as they are seen 1562 * from various namespaces 1563 * 1564 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1565 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1566 * current. 1567 * task_xid_nr_ns() : id seen from the ns specified; 1568 * 1569 * set_task_vxid() : assigns a virtual id to a task; 1570 * 1571 * see also pid_nr() etc in include/linux/pid.h 1572 */ 1573 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1574 struct pid_namespace *ns); 1575 1576 static inline pid_t task_pid_nr(struct task_struct *tsk) 1577 { 1578 return tsk->pid; 1579 } 1580 1581 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1582 struct pid_namespace *ns) 1583 { 1584 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1585 } 1586 1587 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1588 { 1589 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1590 } 1591 1592 1593 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1594 { 1595 return tsk->tgid; 1596 } 1597 1598 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1599 1600 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1601 { 1602 return pid_vnr(task_tgid(tsk)); 1603 } 1604 1605 1606 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1607 struct pid_namespace *ns) 1608 { 1609 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1610 } 1611 1612 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1613 { 1614 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1615 } 1616 1617 1618 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1619 struct pid_namespace *ns) 1620 { 1621 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1622 } 1623 1624 static inline pid_t task_session_vnr(struct task_struct *tsk) 1625 { 1626 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1627 } 1628 1629 /* obsolete, do not use */ 1630 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1631 { 1632 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1633 } 1634 1635 /** 1636 * pid_alive - check that a task structure is not stale 1637 * @p: Task structure to be checked. 1638 * 1639 * Test if a process is not yet dead (at most zombie state) 1640 * If pid_alive fails, then pointers within the task structure 1641 * can be stale and must not be dereferenced. 1642 */ 1643 static inline int pid_alive(struct task_struct *p) 1644 { 1645 return p->pids[PIDTYPE_PID].pid != NULL; 1646 } 1647 1648 /** 1649 * is_global_init - check if a task structure is init 1650 * @tsk: Task structure to be checked. 1651 * 1652 * Check if a task structure is the first user space task the kernel created. 1653 */ 1654 static inline int is_global_init(struct task_struct *tsk) 1655 { 1656 return tsk->pid == 1; 1657 } 1658 1659 /* 1660 * is_container_init: 1661 * check whether in the task is init in its own pid namespace. 1662 */ 1663 extern int is_container_init(struct task_struct *tsk); 1664 1665 extern struct pid *cad_pid; 1666 1667 extern void free_task(struct task_struct *tsk); 1668 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1669 1670 extern void __put_task_struct(struct task_struct *t); 1671 1672 static inline void put_task_struct(struct task_struct *t) 1673 { 1674 if (atomic_dec_and_test(&t->usage)) 1675 __put_task_struct(t); 1676 } 1677 1678 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1679 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1680 1681 /* 1682 * Per process flags 1683 */ 1684 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1685 /* Not implemented yet, only for 486*/ 1686 #define PF_STARTING 0x00000002 /* being created */ 1687 #define PF_EXITING 0x00000004 /* getting shut down */ 1688 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1689 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1690 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1691 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1692 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1693 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1694 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1695 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1696 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1697 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1698 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1699 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1700 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1701 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1702 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1703 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1704 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1705 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1706 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1707 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1708 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1709 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1710 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1711 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1712 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1713 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1714 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1715 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1716 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1717 1718 /* 1719 * Only the _current_ task can read/write to tsk->flags, but other 1720 * tasks can access tsk->flags in readonly mode for example 1721 * with tsk_used_math (like during threaded core dumping). 1722 * There is however an exception to this rule during ptrace 1723 * or during fork: the ptracer task is allowed to write to the 1724 * child->flags of its traced child (same goes for fork, the parent 1725 * can write to the child->flags), because we're guaranteed the 1726 * child is not running and in turn not changing child->flags 1727 * at the same time the parent does it. 1728 */ 1729 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1730 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1731 #define clear_used_math() clear_stopped_child_used_math(current) 1732 #define set_used_math() set_stopped_child_used_math(current) 1733 #define conditional_stopped_child_used_math(condition, child) \ 1734 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1735 #define conditional_used_math(condition) \ 1736 conditional_stopped_child_used_math(condition, current) 1737 #define copy_to_stopped_child_used_math(child) \ 1738 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1739 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1740 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1741 #define used_math() tsk_used_math(current) 1742 1743 #ifdef CONFIG_TREE_PREEMPT_RCU 1744 1745 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1746 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1747 1748 static inline void rcu_copy_process(struct task_struct *p) 1749 { 1750 p->rcu_read_lock_nesting = 0; 1751 p->rcu_read_unlock_special = 0; 1752 p->rcu_blocked_node = NULL; 1753 INIT_LIST_HEAD(&p->rcu_node_entry); 1754 } 1755 1756 #else 1757 1758 static inline void rcu_copy_process(struct task_struct *p) 1759 { 1760 } 1761 1762 #endif 1763 1764 #ifdef CONFIG_SMP 1765 extern int set_cpus_allowed_ptr(struct task_struct *p, 1766 const struct cpumask *new_mask); 1767 #else 1768 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1769 const struct cpumask *new_mask) 1770 { 1771 if (!cpumask_test_cpu(0, new_mask)) 1772 return -EINVAL; 1773 return 0; 1774 } 1775 #endif 1776 1777 #ifndef CONFIG_CPUMASK_OFFSTACK 1778 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1779 { 1780 return set_cpus_allowed_ptr(p, &new_mask); 1781 } 1782 #endif 1783 1784 /* 1785 * Do not use outside of architecture code which knows its limitations. 1786 * 1787 * sched_clock() has no promise of monotonicity or bounded drift between 1788 * CPUs, use (which you should not) requires disabling IRQs. 1789 * 1790 * Please use one of the three interfaces below. 1791 */ 1792 extern unsigned long long notrace sched_clock(void); 1793 /* 1794 * See the comment in kernel/sched_clock.c 1795 */ 1796 extern u64 cpu_clock(int cpu); 1797 extern u64 local_clock(void); 1798 extern u64 sched_clock_cpu(int cpu); 1799 1800 1801 extern void sched_clock_init(void); 1802 1803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1804 static inline void sched_clock_tick(void) 1805 { 1806 } 1807 1808 static inline void sched_clock_idle_sleep_event(void) 1809 { 1810 } 1811 1812 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1813 { 1814 } 1815 #else 1816 /* 1817 * Architectures can set this to 1 if they have specified 1818 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1819 * but then during bootup it turns out that sched_clock() 1820 * is reliable after all: 1821 */ 1822 extern int sched_clock_stable; 1823 1824 extern void sched_clock_tick(void); 1825 extern void sched_clock_idle_sleep_event(void); 1826 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1827 #endif 1828 1829 extern unsigned long long 1830 task_sched_runtime(struct task_struct *task); 1831 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1832 1833 /* sched_exec is called by processes performing an exec */ 1834 #ifdef CONFIG_SMP 1835 extern void sched_exec(void); 1836 #else 1837 #define sched_exec() {} 1838 #endif 1839 1840 extern void sched_clock_idle_sleep_event(void); 1841 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1842 1843 #ifdef CONFIG_HOTPLUG_CPU 1844 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p); 1845 extern void idle_task_exit(void); 1846 #else 1847 static inline void idle_task_exit(void) {} 1848 #endif 1849 1850 extern void sched_idle_next(void); 1851 1852 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1853 extern void wake_up_idle_cpu(int cpu); 1854 #else 1855 static inline void wake_up_idle_cpu(int cpu) { } 1856 #endif 1857 1858 extern unsigned int sysctl_sched_latency; 1859 extern unsigned int sysctl_sched_min_granularity; 1860 extern unsigned int sysctl_sched_wakeup_granularity; 1861 extern unsigned int sysctl_sched_shares_ratelimit; 1862 extern unsigned int sysctl_sched_shares_thresh; 1863 extern unsigned int sysctl_sched_child_runs_first; 1864 1865 enum sched_tunable_scaling { 1866 SCHED_TUNABLESCALING_NONE, 1867 SCHED_TUNABLESCALING_LOG, 1868 SCHED_TUNABLESCALING_LINEAR, 1869 SCHED_TUNABLESCALING_END, 1870 }; 1871 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1872 1873 #ifdef CONFIG_SCHED_DEBUG 1874 extern unsigned int sysctl_sched_migration_cost; 1875 extern unsigned int sysctl_sched_nr_migrate; 1876 extern unsigned int sysctl_sched_time_avg; 1877 extern unsigned int sysctl_timer_migration; 1878 1879 int sched_proc_update_handler(struct ctl_table *table, int write, 1880 void __user *buffer, size_t *length, 1881 loff_t *ppos); 1882 #endif 1883 #ifdef CONFIG_SCHED_DEBUG 1884 static inline unsigned int get_sysctl_timer_migration(void) 1885 { 1886 return sysctl_timer_migration; 1887 } 1888 #else 1889 static inline unsigned int get_sysctl_timer_migration(void) 1890 { 1891 return 1; 1892 } 1893 #endif 1894 extern unsigned int sysctl_sched_rt_period; 1895 extern int sysctl_sched_rt_runtime; 1896 1897 int sched_rt_handler(struct ctl_table *table, int write, 1898 void __user *buffer, size_t *lenp, 1899 loff_t *ppos); 1900 1901 extern unsigned int sysctl_sched_compat_yield; 1902 1903 #ifdef CONFIG_RT_MUTEXES 1904 extern int rt_mutex_getprio(struct task_struct *p); 1905 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1906 extern void rt_mutex_adjust_pi(struct task_struct *p); 1907 #else 1908 static inline int rt_mutex_getprio(struct task_struct *p) 1909 { 1910 return p->normal_prio; 1911 } 1912 # define rt_mutex_adjust_pi(p) do { } while (0) 1913 #endif 1914 1915 extern void set_user_nice(struct task_struct *p, long nice); 1916 extern int task_prio(const struct task_struct *p); 1917 extern int task_nice(const struct task_struct *p); 1918 extern int can_nice(const struct task_struct *p, const int nice); 1919 extern int task_curr(const struct task_struct *p); 1920 extern int idle_cpu(int cpu); 1921 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1922 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1923 struct sched_param *); 1924 extern struct task_struct *idle_task(int cpu); 1925 extern struct task_struct *curr_task(int cpu); 1926 extern void set_curr_task(int cpu, struct task_struct *p); 1927 1928 void yield(void); 1929 1930 /* 1931 * The default (Linux) execution domain. 1932 */ 1933 extern struct exec_domain default_exec_domain; 1934 1935 union thread_union { 1936 struct thread_info thread_info; 1937 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1938 }; 1939 1940 #ifndef __HAVE_ARCH_KSTACK_END 1941 static inline int kstack_end(void *addr) 1942 { 1943 /* Reliable end of stack detection: 1944 * Some APM bios versions misalign the stack 1945 */ 1946 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1947 } 1948 #endif 1949 1950 extern union thread_union init_thread_union; 1951 extern struct task_struct init_task; 1952 1953 extern struct mm_struct init_mm; 1954 1955 extern struct pid_namespace init_pid_ns; 1956 1957 /* 1958 * find a task by one of its numerical ids 1959 * 1960 * find_task_by_pid_ns(): 1961 * finds a task by its pid in the specified namespace 1962 * find_task_by_vpid(): 1963 * finds a task by its virtual pid 1964 * 1965 * see also find_vpid() etc in include/linux/pid.h 1966 */ 1967 1968 extern struct task_struct *find_task_by_vpid(pid_t nr); 1969 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1970 struct pid_namespace *ns); 1971 1972 extern void __set_special_pids(struct pid *pid); 1973 1974 /* per-UID process charging. */ 1975 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1976 static inline struct user_struct *get_uid(struct user_struct *u) 1977 { 1978 atomic_inc(&u->__count); 1979 return u; 1980 } 1981 extern void free_uid(struct user_struct *); 1982 extern void release_uids(struct user_namespace *ns); 1983 1984 #include <asm/current.h> 1985 1986 extern void do_timer(unsigned long ticks); 1987 1988 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1989 extern int wake_up_process(struct task_struct *tsk); 1990 extern void wake_up_new_task(struct task_struct *tsk, 1991 unsigned long clone_flags); 1992 #ifdef CONFIG_SMP 1993 extern void kick_process(struct task_struct *tsk); 1994 #else 1995 static inline void kick_process(struct task_struct *tsk) { } 1996 #endif 1997 extern void sched_fork(struct task_struct *p, int clone_flags); 1998 extern void sched_dead(struct task_struct *p); 1999 2000 extern void proc_caches_init(void); 2001 extern void flush_signals(struct task_struct *); 2002 extern void __flush_signals(struct task_struct *); 2003 extern void ignore_signals(struct task_struct *); 2004 extern void flush_signal_handlers(struct task_struct *, int force_default); 2005 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2006 2007 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2008 { 2009 unsigned long flags; 2010 int ret; 2011 2012 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2013 ret = dequeue_signal(tsk, mask, info); 2014 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2015 2016 return ret; 2017 } 2018 2019 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2020 sigset_t *mask); 2021 extern void unblock_all_signals(void); 2022 extern void release_task(struct task_struct * p); 2023 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2024 extern int force_sigsegv(int, struct task_struct *); 2025 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2026 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2027 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2028 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2029 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2030 extern int kill_pid(struct pid *pid, int sig, int priv); 2031 extern int kill_proc_info(int, struct siginfo *, pid_t); 2032 extern int do_notify_parent(struct task_struct *, int); 2033 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2034 extern void force_sig(int, struct task_struct *); 2035 extern int send_sig(int, struct task_struct *, int); 2036 extern int zap_other_threads(struct task_struct *p); 2037 extern struct sigqueue *sigqueue_alloc(void); 2038 extern void sigqueue_free(struct sigqueue *); 2039 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2040 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2041 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2042 2043 static inline int kill_cad_pid(int sig, int priv) 2044 { 2045 return kill_pid(cad_pid, sig, priv); 2046 } 2047 2048 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2049 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2050 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2051 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2052 2053 /* 2054 * True if we are on the alternate signal stack. 2055 */ 2056 static inline int on_sig_stack(unsigned long sp) 2057 { 2058 #ifdef CONFIG_STACK_GROWSUP 2059 return sp >= current->sas_ss_sp && 2060 sp - current->sas_ss_sp < current->sas_ss_size; 2061 #else 2062 return sp > current->sas_ss_sp && 2063 sp - current->sas_ss_sp <= current->sas_ss_size; 2064 #endif 2065 } 2066 2067 static inline int sas_ss_flags(unsigned long sp) 2068 { 2069 return (current->sas_ss_size == 0 ? SS_DISABLE 2070 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2071 } 2072 2073 /* 2074 * Routines for handling mm_structs 2075 */ 2076 extern struct mm_struct * mm_alloc(void); 2077 2078 /* mmdrop drops the mm and the page tables */ 2079 extern void __mmdrop(struct mm_struct *); 2080 static inline void mmdrop(struct mm_struct * mm) 2081 { 2082 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2083 __mmdrop(mm); 2084 } 2085 2086 /* mmput gets rid of the mappings and all user-space */ 2087 extern void mmput(struct mm_struct *); 2088 /* Grab a reference to a task's mm, if it is not already going away */ 2089 extern struct mm_struct *get_task_mm(struct task_struct *task); 2090 /* Remove the current tasks stale references to the old mm_struct */ 2091 extern void mm_release(struct task_struct *, struct mm_struct *); 2092 /* Allocate a new mm structure and copy contents from tsk->mm */ 2093 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2094 2095 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2096 struct task_struct *, struct pt_regs *); 2097 extern void flush_thread(void); 2098 extern void exit_thread(void); 2099 2100 extern void exit_files(struct task_struct *); 2101 extern void __cleanup_sighand(struct sighand_struct *); 2102 2103 extern void exit_itimers(struct signal_struct *); 2104 extern void flush_itimer_signals(void); 2105 2106 extern NORET_TYPE void do_group_exit(int); 2107 2108 extern void daemonize(const char *, ...); 2109 extern int allow_signal(int); 2110 extern int disallow_signal(int); 2111 2112 extern int do_execve(const char *, 2113 const char __user * const __user *, 2114 const char __user * const __user *, struct pt_regs *); 2115 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2116 struct task_struct *fork_idle(int); 2117 2118 extern void set_task_comm(struct task_struct *tsk, char *from); 2119 extern char *get_task_comm(char *to, struct task_struct *tsk); 2120 2121 #ifdef CONFIG_SMP 2122 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2123 #else 2124 static inline unsigned long wait_task_inactive(struct task_struct *p, 2125 long match_state) 2126 { 2127 return 1; 2128 } 2129 #endif 2130 2131 #define next_task(p) \ 2132 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2133 2134 #define for_each_process(p) \ 2135 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2136 2137 extern bool current_is_single_threaded(void); 2138 2139 /* 2140 * Careful: do_each_thread/while_each_thread is a double loop so 2141 * 'break' will not work as expected - use goto instead. 2142 */ 2143 #define do_each_thread(g, t) \ 2144 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2145 2146 #define while_each_thread(g, t) \ 2147 while ((t = next_thread(t)) != g) 2148 2149 static inline int get_nr_threads(struct task_struct *tsk) 2150 { 2151 return tsk->signal->nr_threads; 2152 } 2153 2154 /* de_thread depends on thread_group_leader not being a pid based check */ 2155 #define thread_group_leader(p) (p == p->group_leader) 2156 2157 /* Do to the insanities of de_thread it is possible for a process 2158 * to have the pid of the thread group leader without actually being 2159 * the thread group leader. For iteration through the pids in proc 2160 * all we care about is that we have a task with the appropriate 2161 * pid, we don't actually care if we have the right task. 2162 */ 2163 static inline int has_group_leader_pid(struct task_struct *p) 2164 { 2165 return p->pid == p->tgid; 2166 } 2167 2168 static inline 2169 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2170 { 2171 return p1->tgid == p2->tgid; 2172 } 2173 2174 static inline struct task_struct *next_thread(const struct task_struct *p) 2175 { 2176 return list_entry_rcu(p->thread_group.next, 2177 struct task_struct, thread_group); 2178 } 2179 2180 static inline int thread_group_empty(struct task_struct *p) 2181 { 2182 return list_empty(&p->thread_group); 2183 } 2184 2185 #define delay_group_leader(p) \ 2186 (thread_group_leader(p) && !thread_group_empty(p)) 2187 2188 static inline int task_detached(struct task_struct *p) 2189 { 2190 return p->exit_signal == -1; 2191 } 2192 2193 /* 2194 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2195 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2196 * pins the final release of task.io_context. Also protects ->cpuset and 2197 * ->cgroup.subsys[]. 2198 * 2199 * Nests both inside and outside of read_lock(&tasklist_lock). 2200 * It must not be nested with write_lock_irq(&tasklist_lock), 2201 * neither inside nor outside. 2202 */ 2203 static inline void task_lock(struct task_struct *p) 2204 { 2205 spin_lock(&p->alloc_lock); 2206 } 2207 2208 static inline void task_unlock(struct task_struct *p) 2209 { 2210 spin_unlock(&p->alloc_lock); 2211 } 2212 2213 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2214 unsigned long *flags); 2215 2216 static inline void unlock_task_sighand(struct task_struct *tsk, 2217 unsigned long *flags) 2218 { 2219 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2220 } 2221 2222 #ifndef __HAVE_THREAD_FUNCTIONS 2223 2224 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2225 #define task_stack_page(task) ((task)->stack) 2226 2227 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2228 { 2229 *task_thread_info(p) = *task_thread_info(org); 2230 task_thread_info(p)->task = p; 2231 } 2232 2233 static inline unsigned long *end_of_stack(struct task_struct *p) 2234 { 2235 return (unsigned long *)(task_thread_info(p) + 1); 2236 } 2237 2238 #endif 2239 2240 static inline int object_is_on_stack(void *obj) 2241 { 2242 void *stack = task_stack_page(current); 2243 2244 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2245 } 2246 2247 extern void thread_info_cache_init(void); 2248 2249 #ifdef CONFIG_DEBUG_STACK_USAGE 2250 static inline unsigned long stack_not_used(struct task_struct *p) 2251 { 2252 unsigned long *n = end_of_stack(p); 2253 2254 do { /* Skip over canary */ 2255 n++; 2256 } while (!*n); 2257 2258 return (unsigned long)n - (unsigned long)end_of_stack(p); 2259 } 2260 #endif 2261 2262 /* set thread flags in other task's structures 2263 * - see asm/thread_info.h for TIF_xxxx flags available 2264 */ 2265 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2266 { 2267 set_ti_thread_flag(task_thread_info(tsk), flag); 2268 } 2269 2270 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2271 { 2272 clear_ti_thread_flag(task_thread_info(tsk), flag); 2273 } 2274 2275 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2276 { 2277 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2278 } 2279 2280 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2281 { 2282 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2283 } 2284 2285 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2286 { 2287 return test_ti_thread_flag(task_thread_info(tsk), flag); 2288 } 2289 2290 static inline void set_tsk_need_resched(struct task_struct *tsk) 2291 { 2292 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2293 } 2294 2295 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2296 { 2297 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2298 } 2299 2300 static inline int test_tsk_need_resched(struct task_struct *tsk) 2301 { 2302 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2303 } 2304 2305 static inline int restart_syscall(void) 2306 { 2307 set_tsk_thread_flag(current, TIF_SIGPENDING); 2308 return -ERESTARTNOINTR; 2309 } 2310 2311 static inline int signal_pending(struct task_struct *p) 2312 { 2313 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2314 } 2315 2316 static inline int __fatal_signal_pending(struct task_struct *p) 2317 { 2318 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2319 } 2320 2321 static inline int fatal_signal_pending(struct task_struct *p) 2322 { 2323 return signal_pending(p) && __fatal_signal_pending(p); 2324 } 2325 2326 static inline int signal_pending_state(long state, struct task_struct *p) 2327 { 2328 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2329 return 0; 2330 if (!signal_pending(p)) 2331 return 0; 2332 2333 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2334 } 2335 2336 static inline int need_resched(void) 2337 { 2338 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2339 } 2340 2341 /* 2342 * cond_resched() and cond_resched_lock(): latency reduction via 2343 * explicit rescheduling in places that are safe. The return 2344 * value indicates whether a reschedule was done in fact. 2345 * cond_resched_lock() will drop the spinlock before scheduling, 2346 * cond_resched_softirq() will enable bhs before scheduling. 2347 */ 2348 extern int _cond_resched(void); 2349 2350 #define cond_resched() ({ \ 2351 __might_sleep(__FILE__, __LINE__, 0); \ 2352 _cond_resched(); \ 2353 }) 2354 2355 extern int __cond_resched_lock(spinlock_t *lock); 2356 2357 #ifdef CONFIG_PREEMPT 2358 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2359 #else 2360 #define PREEMPT_LOCK_OFFSET 0 2361 #endif 2362 2363 #define cond_resched_lock(lock) ({ \ 2364 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2365 __cond_resched_lock(lock); \ 2366 }) 2367 2368 extern int __cond_resched_softirq(void); 2369 2370 #define cond_resched_softirq() ({ \ 2371 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2372 __cond_resched_softirq(); \ 2373 }) 2374 2375 /* 2376 * Does a critical section need to be broken due to another 2377 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2378 * but a general need for low latency) 2379 */ 2380 static inline int spin_needbreak(spinlock_t *lock) 2381 { 2382 #ifdef CONFIG_PREEMPT 2383 return spin_is_contended(lock); 2384 #else 2385 return 0; 2386 #endif 2387 } 2388 2389 /* 2390 * Thread group CPU time accounting. 2391 */ 2392 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2393 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2394 2395 static inline void thread_group_cputime_init(struct signal_struct *sig) 2396 { 2397 spin_lock_init(&sig->cputimer.lock); 2398 } 2399 2400 /* 2401 * Reevaluate whether the task has signals pending delivery. 2402 * Wake the task if so. 2403 * This is required every time the blocked sigset_t changes. 2404 * callers must hold sighand->siglock. 2405 */ 2406 extern void recalc_sigpending_and_wake(struct task_struct *t); 2407 extern void recalc_sigpending(void); 2408 2409 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2410 2411 /* 2412 * Wrappers for p->thread_info->cpu access. No-op on UP. 2413 */ 2414 #ifdef CONFIG_SMP 2415 2416 static inline unsigned int task_cpu(const struct task_struct *p) 2417 { 2418 return task_thread_info(p)->cpu; 2419 } 2420 2421 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2422 2423 #else 2424 2425 static inline unsigned int task_cpu(const struct task_struct *p) 2426 { 2427 return 0; 2428 } 2429 2430 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2431 { 2432 } 2433 2434 #endif /* CONFIG_SMP */ 2435 2436 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2437 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2438 2439 extern void normalize_rt_tasks(void); 2440 2441 #ifdef CONFIG_CGROUP_SCHED 2442 2443 extern struct task_group init_task_group; 2444 2445 extern struct task_group *sched_create_group(struct task_group *parent); 2446 extern void sched_destroy_group(struct task_group *tg); 2447 extern void sched_move_task(struct task_struct *tsk); 2448 #ifdef CONFIG_FAIR_GROUP_SCHED 2449 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2450 extern unsigned long sched_group_shares(struct task_group *tg); 2451 #endif 2452 #ifdef CONFIG_RT_GROUP_SCHED 2453 extern int sched_group_set_rt_runtime(struct task_group *tg, 2454 long rt_runtime_us); 2455 extern long sched_group_rt_runtime(struct task_group *tg); 2456 extern int sched_group_set_rt_period(struct task_group *tg, 2457 long rt_period_us); 2458 extern long sched_group_rt_period(struct task_group *tg); 2459 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2460 #endif 2461 #endif 2462 2463 extern int task_can_switch_user(struct user_struct *up, 2464 struct task_struct *tsk); 2465 2466 #ifdef CONFIG_TASK_XACCT 2467 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2468 { 2469 tsk->ioac.rchar += amt; 2470 } 2471 2472 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2473 { 2474 tsk->ioac.wchar += amt; 2475 } 2476 2477 static inline void inc_syscr(struct task_struct *tsk) 2478 { 2479 tsk->ioac.syscr++; 2480 } 2481 2482 static inline void inc_syscw(struct task_struct *tsk) 2483 { 2484 tsk->ioac.syscw++; 2485 } 2486 #else 2487 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2488 { 2489 } 2490 2491 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2492 { 2493 } 2494 2495 static inline void inc_syscr(struct task_struct *tsk) 2496 { 2497 } 2498 2499 static inline void inc_syscw(struct task_struct *tsk) 2500 { 2501 } 2502 #endif 2503 2504 #ifndef TASK_SIZE_OF 2505 #define TASK_SIZE_OF(tsk) TASK_SIZE 2506 #endif 2507 2508 /* 2509 * Call the function if the target task is executing on a CPU right now: 2510 */ 2511 extern void task_oncpu_function_call(struct task_struct *p, 2512 void (*func) (void *info), void *info); 2513 2514 2515 #ifdef CONFIG_MM_OWNER 2516 extern void mm_update_next_owner(struct mm_struct *mm); 2517 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2518 #else 2519 static inline void mm_update_next_owner(struct mm_struct *mm) 2520 { 2521 } 2522 2523 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2524 { 2525 } 2526 #endif /* CONFIG_MM_OWNER */ 2527 2528 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2529 unsigned int limit) 2530 { 2531 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2532 } 2533 2534 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2535 unsigned int limit) 2536 { 2537 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2538 } 2539 2540 static inline unsigned long rlimit(unsigned int limit) 2541 { 2542 return task_rlimit(current, limit); 2543 } 2544 2545 static inline unsigned long rlimit_max(unsigned int limit) 2546 { 2547 return task_rlimit_max(current, limit); 2548 } 2549 2550 #endif /* __KERNEL__ */ 2551 2552 #endif 2553