xref: /linux/include/linux/sched.h (revision d0f482bb06f9447d44d2cae0386a0bd768c3cc16)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct capture_control;
46 struct cfs_rq;
47 struct fs_struct;
48 struct futex_pi_state;
49 struct io_context;
50 struct io_uring_task;
51 struct mempolicy;
52 struct nameidata;
53 struct nsproxy;
54 struct perf_event_context;
55 struct pid_namespace;
56 struct pipe_inode_info;
57 struct rcu_node;
58 struct reclaim_state;
59 struct robust_list_head;
60 struct root_domain;
61 struct rq;
62 struct sched_attr;
63 struct sched_param;
64 struct seq_file;
65 struct sighand_struct;
66 struct signal_struct;
67 struct task_delay_info;
68 struct task_group;
69 
70 /*
71  * Task state bitmask. NOTE! These bits are also
72  * encoded in fs/proc/array.c: get_task_state().
73  *
74  * We have two separate sets of flags: task->state
75  * is about runnability, while task->exit_state are
76  * about the task exiting. Confusing, but this way
77  * modifying one set can't modify the other one by
78  * mistake.
79  */
80 
81 /* Used in tsk->state: */
82 #define TASK_RUNNING			0x0000
83 #define TASK_INTERRUPTIBLE		0x0001
84 #define TASK_UNINTERRUPTIBLE		0x0002
85 #define __TASK_STOPPED			0x0004
86 #define __TASK_TRACED			0x0008
87 /* Used in tsk->exit_state: */
88 #define EXIT_DEAD			0x0010
89 #define EXIT_ZOMBIE			0x0020
90 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
91 /* Used in tsk->state again: */
92 #define TASK_PARKED			0x0040
93 #define TASK_DEAD			0x0080
94 #define TASK_WAKEKILL			0x0100
95 #define TASK_WAKING			0x0200
96 #define TASK_NOLOAD			0x0400
97 #define TASK_NEW			0x0800
98 #define TASK_STATE_MAX			0x1000
99 
100 /* Convenience macros for the sake of set_current_state: */
101 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
103 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
104 
105 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106 
107 /* Convenience macros for the sake of wake_up(): */
108 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109 
110 /* get_task_state(): */
111 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 					 TASK_PARKED)
115 
116 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
117 
118 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
119 
120 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121 
122 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123 
124 /*
125  * Special states are those that do not use the normal wait-loop pattern. See
126  * the comment with set_special_state().
127  */
128 #define is_special_task_state(state)				\
129 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130 
131 #define __set_current_state(state_value)			\
132 	do {							\
133 		WARN_ON_ONCE(is_special_task_state(state_value));\
134 		current->task_state_change = _THIS_IP_;		\
135 		current->state = (state_value);			\
136 	} while (0)
137 
138 #define set_current_state(state_value)				\
139 	do {							\
140 		WARN_ON_ONCE(is_special_task_state(state_value));\
141 		current->task_state_change = _THIS_IP_;		\
142 		smp_store_mb(current->state, (state_value));	\
143 	} while (0)
144 
145 #define set_special_state(state_value)					\
146 	do {								\
147 		unsigned long flags; /* may shadow */			\
148 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
149 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
150 		current->task_state_change = _THIS_IP_;			\
151 		current->state = (state_value);				\
152 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
153 	} while (0)
154 #else
155 /*
156  * set_current_state() includes a barrier so that the write of current->state
157  * is correctly serialised wrt the caller's subsequent test of whether to
158  * actually sleep:
159  *
160  *   for (;;) {
161  *	set_current_state(TASK_UNINTERRUPTIBLE);
162  *	if (CONDITION)
163  *	   break;
164  *
165  *	schedule();
166  *   }
167  *   __set_current_state(TASK_RUNNING);
168  *
169  * If the caller does not need such serialisation (because, for instance, the
170  * CONDITION test and condition change and wakeup are under the same lock) then
171  * use __set_current_state().
172  *
173  * The above is typically ordered against the wakeup, which does:
174  *
175  *   CONDITION = 1;
176  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
177  *
178  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179  * accessing p->state.
180  *
181  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184  *
185  * However, with slightly different timing the wakeup TASK_RUNNING store can
186  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187  * a problem either because that will result in one extra go around the loop
188  * and our @cond test will save the day.
189  *
190  * Also see the comments of try_to_wake_up().
191  */
192 #define __set_current_state(state_value)				\
193 	current->state = (state_value)
194 
195 #define set_current_state(state_value)					\
196 	smp_store_mb(current->state, (state_value))
197 
198 /*
199  * set_special_state() should be used for those states when the blocking task
200  * can not use the regular condition based wait-loop. In that case we must
201  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202  * will not collide with our state change.
203  */
204 #define set_special_state(state_value)					\
205 	do {								\
206 		unsigned long flags; /* may shadow */			\
207 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
208 		current->state = (state_value);				\
209 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
210 	} while (0)
211 
212 #endif
213 
214 /* Task command name length: */
215 #define TASK_COMM_LEN			16
216 
217 extern void scheduler_tick(void);
218 
219 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
220 
221 extern long schedule_timeout(long timeout);
222 extern long schedule_timeout_interruptible(long timeout);
223 extern long schedule_timeout_killable(long timeout);
224 extern long schedule_timeout_uninterruptible(long timeout);
225 extern long schedule_timeout_idle(long timeout);
226 asmlinkage void schedule(void);
227 extern void schedule_preempt_disabled(void);
228 asmlinkage void preempt_schedule_irq(void);
229 
230 extern int __must_check io_schedule_prepare(void);
231 extern void io_schedule_finish(int token);
232 extern long io_schedule_timeout(long timeout);
233 extern void io_schedule(void);
234 
235 /**
236  * struct prev_cputime - snapshot of system and user cputime
237  * @utime: time spent in user mode
238  * @stime: time spent in system mode
239  * @lock: protects the above two fields
240  *
241  * Stores previous user/system time values such that we can guarantee
242  * monotonicity.
243  */
244 struct prev_cputime {
245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 	u64				utime;
247 	u64				stime;
248 	raw_spinlock_t			lock;
249 #endif
250 };
251 
252 enum vtime_state {
253 	/* Task is sleeping or running in a CPU with VTIME inactive: */
254 	VTIME_INACTIVE = 0,
255 	/* Task is idle */
256 	VTIME_IDLE,
257 	/* Task runs in kernelspace in a CPU with VTIME active: */
258 	VTIME_SYS,
259 	/* Task runs in userspace in a CPU with VTIME active: */
260 	VTIME_USER,
261 	/* Task runs as guests in a CPU with VTIME active: */
262 	VTIME_GUEST,
263 };
264 
265 struct vtime {
266 	seqcount_t		seqcount;
267 	unsigned long long	starttime;
268 	enum vtime_state	state;
269 	unsigned int		cpu;
270 	u64			utime;
271 	u64			stime;
272 	u64			gtime;
273 };
274 
275 /*
276  * Utilization clamp constraints.
277  * @UCLAMP_MIN:	Minimum utilization
278  * @UCLAMP_MAX:	Maximum utilization
279  * @UCLAMP_CNT:	Utilization clamp constraints count
280  */
281 enum uclamp_id {
282 	UCLAMP_MIN = 0,
283 	UCLAMP_MAX,
284 	UCLAMP_CNT
285 };
286 
287 #ifdef CONFIG_SMP
288 extern struct root_domain def_root_domain;
289 extern struct mutex sched_domains_mutex;
290 #endif
291 
292 struct sched_info {
293 #ifdef CONFIG_SCHED_INFO
294 	/* Cumulative counters: */
295 
296 	/* # of times we have run on this CPU: */
297 	unsigned long			pcount;
298 
299 	/* Time spent waiting on a runqueue: */
300 	unsigned long long		run_delay;
301 
302 	/* Timestamps: */
303 
304 	/* When did we last run on a CPU? */
305 	unsigned long long		last_arrival;
306 
307 	/* When were we last queued to run? */
308 	unsigned long long		last_queued;
309 
310 #endif /* CONFIG_SCHED_INFO */
311 };
312 
313 /*
314  * Integer metrics need fixed point arithmetic, e.g., sched/fair
315  * has a few: load, load_avg, util_avg, freq, and capacity.
316  *
317  * We define a basic fixed point arithmetic range, and then formalize
318  * all these metrics based on that basic range.
319  */
320 # define SCHED_FIXEDPOINT_SHIFT		10
321 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
322 
323 /* Increase resolution of cpu_capacity calculations */
324 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
325 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
326 
327 struct load_weight {
328 	unsigned long			weight;
329 	u32				inv_weight;
330 };
331 
332 /**
333  * struct util_est - Estimation utilization of FAIR tasks
334  * @enqueued: instantaneous estimated utilization of a task/cpu
335  * @ewma:     the Exponential Weighted Moving Average (EWMA)
336  *            utilization of a task
337  *
338  * Support data structure to track an Exponential Weighted Moving Average
339  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340  * average each time a task completes an activation. Sample's weight is chosen
341  * so that the EWMA will be relatively insensitive to transient changes to the
342  * task's workload.
343  *
344  * The enqueued attribute has a slightly different meaning for tasks and cpus:
345  * - task:   the task's util_avg at last task dequeue time
346  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347  * Thus, the util_est.enqueued of a task represents the contribution on the
348  * estimated utilization of the CPU where that task is currently enqueued.
349  *
350  * Only for tasks we track a moving average of the past instantaneous
351  * estimated utilization. This allows to absorb sporadic drops in utilization
352  * of an otherwise almost periodic task.
353  *
354  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
355  * updates. When a task is dequeued, its util_est should not be updated if its
356  * util_avg has not been updated in the meantime.
357  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
358  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
359  * for a task) it is safe to use MSB.
360  */
361 struct util_est {
362 	unsigned int			enqueued;
363 	unsigned int			ewma;
364 #define UTIL_EST_WEIGHT_SHIFT		2
365 #define UTIL_AVG_UNCHANGED		0x80000000
366 } __attribute__((__aligned__(sizeof(u64))));
367 
368 /*
369  * The load/runnable/util_avg accumulates an infinite geometric series
370  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
371  *
372  * [load_avg definition]
373  *
374  *   load_avg = runnable% * scale_load_down(load)
375  *
376  * [runnable_avg definition]
377  *
378  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
379  *
380  * [util_avg definition]
381  *
382  *   util_avg = running% * SCHED_CAPACITY_SCALE
383  *
384  * where runnable% is the time ratio that a sched_entity is runnable and
385  * running% the time ratio that a sched_entity is running.
386  *
387  * For cfs_rq, they are the aggregated values of all runnable and blocked
388  * sched_entities.
389  *
390  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
391  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
392  * for computing those signals (see update_rq_clock_pelt())
393  *
394  * N.B., the above ratios (runnable% and running%) themselves are in the
395  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
396  * to as large a range as necessary. This is for example reflected by
397  * util_avg's SCHED_CAPACITY_SCALE.
398  *
399  * [Overflow issue]
400  *
401  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
402  * with the highest load (=88761), always runnable on a single cfs_rq,
403  * and should not overflow as the number already hits PID_MAX_LIMIT.
404  *
405  * For all other cases (including 32-bit kernels), struct load_weight's
406  * weight will overflow first before we do, because:
407  *
408  *    Max(load_avg) <= Max(load.weight)
409  *
410  * Then it is the load_weight's responsibility to consider overflow
411  * issues.
412  */
413 struct sched_avg {
414 	u64				last_update_time;
415 	u64				load_sum;
416 	u64				runnable_sum;
417 	u32				util_sum;
418 	u32				period_contrib;
419 	unsigned long			load_avg;
420 	unsigned long			runnable_avg;
421 	unsigned long			util_avg;
422 	struct util_est			util_est;
423 } ____cacheline_aligned;
424 
425 struct sched_statistics {
426 #ifdef CONFIG_SCHEDSTATS
427 	u64				wait_start;
428 	u64				wait_max;
429 	u64				wait_count;
430 	u64				wait_sum;
431 	u64				iowait_count;
432 	u64				iowait_sum;
433 
434 	u64				sleep_start;
435 	u64				sleep_max;
436 	s64				sum_sleep_runtime;
437 
438 	u64				block_start;
439 	u64				block_max;
440 	u64				exec_max;
441 	u64				slice_max;
442 
443 	u64				nr_migrations_cold;
444 	u64				nr_failed_migrations_affine;
445 	u64				nr_failed_migrations_running;
446 	u64				nr_failed_migrations_hot;
447 	u64				nr_forced_migrations;
448 
449 	u64				nr_wakeups;
450 	u64				nr_wakeups_sync;
451 	u64				nr_wakeups_migrate;
452 	u64				nr_wakeups_local;
453 	u64				nr_wakeups_remote;
454 	u64				nr_wakeups_affine;
455 	u64				nr_wakeups_affine_attempts;
456 	u64				nr_wakeups_passive;
457 	u64				nr_wakeups_idle;
458 #endif
459 };
460 
461 struct sched_entity {
462 	/* For load-balancing: */
463 	struct load_weight		load;
464 	struct rb_node			run_node;
465 	struct list_head		group_node;
466 	unsigned int			on_rq;
467 
468 	u64				exec_start;
469 	u64				sum_exec_runtime;
470 	u64				vruntime;
471 	u64				prev_sum_exec_runtime;
472 
473 	u64				nr_migrations;
474 
475 	struct sched_statistics		statistics;
476 
477 #ifdef CONFIG_FAIR_GROUP_SCHED
478 	int				depth;
479 	struct sched_entity		*parent;
480 	/* rq on which this entity is (to be) queued: */
481 	struct cfs_rq			*cfs_rq;
482 	/* rq "owned" by this entity/group: */
483 	struct cfs_rq			*my_q;
484 	/* cached value of my_q->h_nr_running */
485 	unsigned long			runnable_weight;
486 #endif
487 
488 #ifdef CONFIG_SMP
489 	/*
490 	 * Per entity load average tracking.
491 	 *
492 	 * Put into separate cache line so it does not
493 	 * collide with read-mostly values above.
494 	 */
495 	struct sched_avg		avg;
496 #endif
497 };
498 
499 struct sched_rt_entity {
500 	struct list_head		run_list;
501 	unsigned long			timeout;
502 	unsigned long			watchdog_stamp;
503 	unsigned int			time_slice;
504 	unsigned short			on_rq;
505 	unsigned short			on_list;
506 
507 	struct sched_rt_entity		*back;
508 #ifdef CONFIG_RT_GROUP_SCHED
509 	struct sched_rt_entity		*parent;
510 	/* rq on which this entity is (to be) queued: */
511 	struct rt_rq			*rt_rq;
512 	/* rq "owned" by this entity/group: */
513 	struct rt_rq			*my_q;
514 #endif
515 } __randomize_layout;
516 
517 struct sched_dl_entity {
518 	struct rb_node			rb_node;
519 
520 	/*
521 	 * Original scheduling parameters. Copied here from sched_attr
522 	 * during sched_setattr(), they will remain the same until
523 	 * the next sched_setattr().
524 	 */
525 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
526 	u64				dl_deadline;	/* Relative deadline of each instance	*/
527 	u64				dl_period;	/* Separation of two instances (period) */
528 	u64				dl_bw;		/* dl_runtime / dl_period		*/
529 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
530 
531 	/*
532 	 * Actual scheduling parameters. Initialized with the values above,
533 	 * they are continuously updated during task execution. Note that
534 	 * the remaining runtime could be < 0 in case we are in overrun.
535 	 */
536 	s64				runtime;	/* Remaining runtime for this instance	*/
537 	u64				deadline;	/* Absolute deadline for this instance	*/
538 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
539 
540 	/*
541 	 * Some bool flags:
542 	 *
543 	 * @dl_throttled tells if we exhausted the runtime. If so, the
544 	 * task has to wait for a replenishment to be performed at the
545 	 * next firing of dl_timer.
546 	 *
547 	 * @dl_boosted tells if we are boosted due to DI. If so we are
548 	 * outside bandwidth enforcement mechanism (but only until we
549 	 * exit the critical section);
550 	 *
551 	 * @dl_yielded tells if task gave up the CPU before consuming
552 	 * all its available runtime during the last job.
553 	 *
554 	 * @dl_non_contending tells if the task is inactive while still
555 	 * contributing to the active utilization. In other words, it
556 	 * indicates if the inactive timer has been armed and its handler
557 	 * has not been executed yet. This flag is useful to avoid race
558 	 * conditions between the inactive timer handler and the wakeup
559 	 * code.
560 	 *
561 	 * @dl_overrun tells if the task asked to be informed about runtime
562 	 * overruns.
563 	 */
564 	unsigned int			dl_throttled      : 1;
565 	unsigned int			dl_yielded        : 1;
566 	unsigned int			dl_non_contending : 1;
567 	unsigned int			dl_overrun	  : 1;
568 
569 	/*
570 	 * Bandwidth enforcement timer. Each -deadline task has its
571 	 * own bandwidth to be enforced, thus we need one timer per task.
572 	 */
573 	struct hrtimer			dl_timer;
574 
575 	/*
576 	 * Inactive timer, responsible for decreasing the active utilization
577 	 * at the "0-lag time". When a -deadline task blocks, it contributes
578 	 * to GRUB's active utilization until the "0-lag time", hence a
579 	 * timer is needed to decrease the active utilization at the correct
580 	 * time.
581 	 */
582 	struct hrtimer inactive_timer;
583 
584 #ifdef CONFIG_RT_MUTEXES
585 	/*
586 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
587 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
588 	 * to (the original one/itself).
589 	 */
590 	struct sched_dl_entity *pi_se;
591 #endif
592 };
593 
594 #ifdef CONFIG_UCLAMP_TASK
595 /* Number of utilization clamp buckets (shorter alias) */
596 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
597 
598 /*
599  * Utilization clamp for a scheduling entity
600  * @value:		clamp value "assigned" to a se
601  * @bucket_id:		bucket index corresponding to the "assigned" value
602  * @active:		the se is currently refcounted in a rq's bucket
603  * @user_defined:	the requested clamp value comes from user-space
604  *
605  * The bucket_id is the index of the clamp bucket matching the clamp value
606  * which is pre-computed and stored to avoid expensive integer divisions from
607  * the fast path.
608  *
609  * The active bit is set whenever a task has got an "effective" value assigned,
610  * which can be different from the clamp value "requested" from user-space.
611  * This allows to know a task is refcounted in the rq's bucket corresponding
612  * to the "effective" bucket_id.
613  *
614  * The user_defined bit is set whenever a task has got a task-specific clamp
615  * value requested from userspace, i.e. the system defaults apply to this task
616  * just as a restriction. This allows to relax default clamps when a less
617  * restrictive task-specific value has been requested, thus allowing to
618  * implement a "nice" semantic. For example, a task running with a 20%
619  * default boost can still drop its own boosting to 0%.
620  */
621 struct uclamp_se {
622 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
623 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
624 	unsigned int active		: 1;
625 	unsigned int user_defined	: 1;
626 };
627 #endif /* CONFIG_UCLAMP_TASK */
628 
629 union rcu_special {
630 	struct {
631 		u8			blocked;
632 		u8			need_qs;
633 		u8			exp_hint; /* Hint for performance. */
634 		u8			need_mb; /* Readers need smp_mb(). */
635 	} b; /* Bits. */
636 	u32 s; /* Set of bits. */
637 };
638 
639 enum perf_event_task_context {
640 	perf_invalid_context = -1,
641 	perf_hw_context = 0,
642 	perf_sw_context,
643 	perf_nr_task_contexts,
644 };
645 
646 struct wake_q_node {
647 	struct wake_q_node *next;
648 };
649 
650 struct kmap_ctrl {
651 #ifdef CONFIG_KMAP_LOCAL
652 	int				idx;
653 	pte_t				pteval[KM_MAX_IDX];
654 #endif
655 };
656 
657 struct task_struct {
658 #ifdef CONFIG_THREAD_INFO_IN_TASK
659 	/*
660 	 * For reasons of header soup (see current_thread_info()), this
661 	 * must be the first element of task_struct.
662 	 */
663 	struct thread_info		thread_info;
664 #endif
665 	/* -1 unrunnable, 0 runnable, >0 stopped: */
666 	volatile long			state;
667 
668 	/*
669 	 * This begins the randomizable portion of task_struct. Only
670 	 * scheduling-critical items should be added above here.
671 	 */
672 	randomized_struct_fields_start
673 
674 	void				*stack;
675 	refcount_t			usage;
676 	/* Per task flags (PF_*), defined further below: */
677 	unsigned int			flags;
678 	unsigned int			ptrace;
679 
680 #ifdef CONFIG_SMP
681 	int				on_cpu;
682 	struct __call_single_node	wake_entry;
683 #ifdef CONFIG_THREAD_INFO_IN_TASK
684 	/* Current CPU: */
685 	unsigned int			cpu;
686 #endif
687 	unsigned int			wakee_flips;
688 	unsigned long			wakee_flip_decay_ts;
689 	struct task_struct		*last_wakee;
690 
691 	/*
692 	 * recent_used_cpu is initially set as the last CPU used by a task
693 	 * that wakes affine another task. Waker/wakee relationships can
694 	 * push tasks around a CPU where each wakeup moves to the next one.
695 	 * Tracking a recently used CPU allows a quick search for a recently
696 	 * used CPU that may be idle.
697 	 */
698 	int				recent_used_cpu;
699 	int				wake_cpu;
700 #endif
701 	int				on_rq;
702 
703 	int				prio;
704 	int				static_prio;
705 	int				normal_prio;
706 	unsigned int			rt_priority;
707 
708 	const struct sched_class	*sched_class;
709 	struct sched_entity		se;
710 	struct sched_rt_entity		rt;
711 #ifdef CONFIG_CGROUP_SCHED
712 	struct task_group		*sched_task_group;
713 #endif
714 	struct sched_dl_entity		dl;
715 
716 #ifdef CONFIG_UCLAMP_TASK
717 	/*
718 	 * Clamp values requested for a scheduling entity.
719 	 * Must be updated with task_rq_lock() held.
720 	 */
721 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
722 	/*
723 	 * Effective clamp values used for a scheduling entity.
724 	 * Must be updated with task_rq_lock() held.
725 	 */
726 	struct uclamp_se		uclamp[UCLAMP_CNT];
727 #endif
728 
729 #ifdef CONFIG_PREEMPT_NOTIFIERS
730 	/* List of struct preempt_notifier: */
731 	struct hlist_head		preempt_notifiers;
732 #endif
733 
734 #ifdef CONFIG_BLK_DEV_IO_TRACE
735 	unsigned int			btrace_seq;
736 #endif
737 
738 	unsigned int			policy;
739 	int				nr_cpus_allowed;
740 	const cpumask_t			*cpus_ptr;
741 	cpumask_t			cpus_mask;
742 	void				*migration_pending;
743 #ifdef CONFIG_SMP
744 	unsigned short			migration_disabled;
745 #endif
746 	unsigned short			migration_flags;
747 
748 #ifdef CONFIG_PREEMPT_RCU
749 	int				rcu_read_lock_nesting;
750 	union rcu_special		rcu_read_unlock_special;
751 	struct list_head		rcu_node_entry;
752 	struct rcu_node			*rcu_blocked_node;
753 #endif /* #ifdef CONFIG_PREEMPT_RCU */
754 
755 #ifdef CONFIG_TASKS_RCU
756 	unsigned long			rcu_tasks_nvcsw;
757 	u8				rcu_tasks_holdout;
758 	u8				rcu_tasks_idx;
759 	int				rcu_tasks_idle_cpu;
760 	struct list_head		rcu_tasks_holdout_list;
761 #endif /* #ifdef CONFIG_TASKS_RCU */
762 
763 #ifdef CONFIG_TASKS_TRACE_RCU
764 	int				trc_reader_nesting;
765 	int				trc_ipi_to_cpu;
766 	union rcu_special		trc_reader_special;
767 	bool				trc_reader_checked;
768 	struct list_head		trc_holdout_list;
769 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
770 
771 	struct sched_info		sched_info;
772 
773 	struct list_head		tasks;
774 #ifdef CONFIG_SMP
775 	struct plist_node		pushable_tasks;
776 	struct rb_node			pushable_dl_tasks;
777 #endif
778 
779 	struct mm_struct		*mm;
780 	struct mm_struct		*active_mm;
781 
782 	/* Per-thread vma caching: */
783 	struct vmacache			vmacache;
784 
785 #ifdef SPLIT_RSS_COUNTING
786 	struct task_rss_stat		rss_stat;
787 #endif
788 	int				exit_state;
789 	int				exit_code;
790 	int				exit_signal;
791 	/* The signal sent when the parent dies: */
792 	int				pdeath_signal;
793 	/* JOBCTL_*, siglock protected: */
794 	unsigned long			jobctl;
795 
796 	/* Used for emulating ABI behavior of previous Linux versions: */
797 	unsigned int			personality;
798 
799 	/* Scheduler bits, serialized by scheduler locks: */
800 	unsigned			sched_reset_on_fork:1;
801 	unsigned			sched_contributes_to_load:1;
802 	unsigned			sched_migrated:1;
803 #ifdef CONFIG_PSI
804 	unsigned			sched_psi_wake_requeue:1;
805 #endif
806 
807 	/* Force alignment to the next boundary: */
808 	unsigned			:0;
809 
810 	/* Unserialized, strictly 'current' */
811 
812 	/*
813 	 * This field must not be in the scheduler word above due to wakelist
814 	 * queueing no longer being serialized by p->on_cpu. However:
815 	 *
816 	 * p->XXX = X;			ttwu()
817 	 * schedule()			  if (p->on_rq && ..) // false
818 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
819 	 *   deactivate_task()		      ttwu_queue_wakelist())
820 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
821 	 *
822 	 * guarantees all stores of 'current' are visible before
823 	 * ->sched_remote_wakeup gets used, so it can be in this word.
824 	 */
825 	unsigned			sched_remote_wakeup:1;
826 
827 	/* Bit to tell LSMs we're in execve(): */
828 	unsigned			in_execve:1;
829 	unsigned			in_iowait:1;
830 #ifndef TIF_RESTORE_SIGMASK
831 	unsigned			restore_sigmask:1;
832 #endif
833 #ifdef CONFIG_MEMCG
834 	unsigned			in_user_fault:1;
835 #endif
836 #ifdef CONFIG_COMPAT_BRK
837 	unsigned			brk_randomized:1;
838 #endif
839 #ifdef CONFIG_CGROUPS
840 	/* disallow userland-initiated cgroup migration */
841 	unsigned			no_cgroup_migration:1;
842 	/* task is frozen/stopped (used by the cgroup freezer) */
843 	unsigned			frozen:1;
844 #endif
845 #ifdef CONFIG_BLK_CGROUP
846 	unsigned			use_memdelay:1;
847 #endif
848 #ifdef CONFIG_PSI
849 	/* Stalled due to lack of memory */
850 	unsigned			in_memstall:1;
851 #endif
852 #ifdef CONFIG_PAGE_OWNER
853 	/* Used by page_owner=on to detect recursion in page tracking. */
854 	unsigned			in_page_owner:1;
855 #endif
856 
857 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
858 
859 	struct restart_block		restart_block;
860 
861 	pid_t				pid;
862 	pid_t				tgid;
863 
864 #ifdef CONFIG_STACKPROTECTOR
865 	/* Canary value for the -fstack-protector GCC feature: */
866 	unsigned long			stack_canary;
867 #endif
868 	/*
869 	 * Pointers to the (original) parent process, youngest child, younger sibling,
870 	 * older sibling, respectively.  (p->father can be replaced with
871 	 * p->real_parent->pid)
872 	 */
873 
874 	/* Real parent process: */
875 	struct task_struct __rcu	*real_parent;
876 
877 	/* Recipient of SIGCHLD, wait4() reports: */
878 	struct task_struct __rcu	*parent;
879 
880 	/*
881 	 * Children/sibling form the list of natural children:
882 	 */
883 	struct list_head		children;
884 	struct list_head		sibling;
885 	struct task_struct		*group_leader;
886 
887 	/*
888 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
889 	 *
890 	 * This includes both natural children and PTRACE_ATTACH targets.
891 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
892 	 */
893 	struct list_head		ptraced;
894 	struct list_head		ptrace_entry;
895 
896 	/* PID/PID hash table linkage. */
897 	struct pid			*thread_pid;
898 	struct hlist_node		pid_links[PIDTYPE_MAX];
899 	struct list_head		thread_group;
900 	struct list_head		thread_node;
901 
902 	struct completion		*vfork_done;
903 
904 	/* CLONE_CHILD_SETTID: */
905 	int __user			*set_child_tid;
906 
907 	/* CLONE_CHILD_CLEARTID: */
908 	int __user			*clear_child_tid;
909 
910 	/* PF_IO_WORKER */
911 	void				*pf_io_worker;
912 
913 	u64				utime;
914 	u64				stime;
915 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
916 	u64				utimescaled;
917 	u64				stimescaled;
918 #endif
919 	u64				gtime;
920 	struct prev_cputime		prev_cputime;
921 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
922 	struct vtime			vtime;
923 #endif
924 
925 #ifdef CONFIG_NO_HZ_FULL
926 	atomic_t			tick_dep_mask;
927 #endif
928 	/* Context switch counts: */
929 	unsigned long			nvcsw;
930 	unsigned long			nivcsw;
931 
932 	/* Monotonic time in nsecs: */
933 	u64				start_time;
934 
935 	/* Boot based time in nsecs: */
936 	u64				start_boottime;
937 
938 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
939 	unsigned long			min_flt;
940 	unsigned long			maj_flt;
941 
942 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
943 	struct posix_cputimers		posix_cputimers;
944 
945 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
946 	struct posix_cputimers_work	posix_cputimers_work;
947 #endif
948 
949 	/* Process credentials: */
950 
951 	/* Tracer's credentials at attach: */
952 	const struct cred __rcu		*ptracer_cred;
953 
954 	/* Objective and real subjective task credentials (COW): */
955 	const struct cred __rcu		*real_cred;
956 
957 	/* Effective (overridable) subjective task credentials (COW): */
958 	const struct cred __rcu		*cred;
959 
960 #ifdef CONFIG_KEYS
961 	/* Cached requested key. */
962 	struct key			*cached_requested_key;
963 #endif
964 
965 	/*
966 	 * executable name, excluding path.
967 	 *
968 	 * - normally initialized setup_new_exec()
969 	 * - access it with [gs]et_task_comm()
970 	 * - lock it with task_lock()
971 	 */
972 	char				comm[TASK_COMM_LEN];
973 
974 	struct nameidata		*nameidata;
975 
976 #ifdef CONFIG_SYSVIPC
977 	struct sysv_sem			sysvsem;
978 	struct sysv_shm			sysvshm;
979 #endif
980 #ifdef CONFIG_DETECT_HUNG_TASK
981 	unsigned long			last_switch_count;
982 	unsigned long			last_switch_time;
983 #endif
984 	/* Filesystem information: */
985 	struct fs_struct		*fs;
986 
987 	/* Open file information: */
988 	struct files_struct		*files;
989 
990 #ifdef CONFIG_IO_URING
991 	struct io_uring_task		*io_uring;
992 #endif
993 
994 	/* Namespaces: */
995 	struct nsproxy			*nsproxy;
996 
997 	/* Signal handlers: */
998 	struct signal_struct		*signal;
999 	struct sighand_struct __rcu		*sighand;
1000 	struct sigqueue			*sigqueue_cache;
1001 	sigset_t			blocked;
1002 	sigset_t			real_blocked;
1003 	/* Restored if set_restore_sigmask() was used: */
1004 	sigset_t			saved_sigmask;
1005 	struct sigpending		pending;
1006 	unsigned long			sas_ss_sp;
1007 	size_t				sas_ss_size;
1008 	unsigned int			sas_ss_flags;
1009 
1010 	struct callback_head		*task_works;
1011 
1012 #ifdef CONFIG_AUDIT
1013 #ifdef CONFIG_AUDITSYSCALL
1014 	struct audit_context		*audit_context;
1015 #endif
1016 	kuid_t				loginuid;
1017 	unsigned int			sessionid;
1018 #endif
1019 	struct seccomp			seccomp;
1020 	struct syscall_user_dispatch	syscall_dispatch;
1021 
1022 	/* Thread group tracking: */
1023 	u64				parent_exec_id;
1024 	u64				self_exec_id;
1025 
1026 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1027 	spinlock_t			alloc_lock;
1028 
1029 	/* Protection of the PI data structures: */
1030 	raw_spinlock_t			pi_lock;
1031 
1032 	struct wake_q_node		wake_q;
1033 
1034 #ifdef CONFIG_RT_MUTEXES
1035 	/* PI waiters blocked on a rt_mutex held by this task: */
1036 	struct rb_root_cached		pi_waiters;
1037 	/* Updated under owner's pi_lock and rq lock */
1038 	struct task_struct		*pi_top_task;
1039 	/* Deadlock detection and priority inheritance handling: */
1040 	struct rt_mutex_waiter		*pi_blocked_on;
1041 #endif
1042 
1043 #ifdef CONFIG_DEBUG_MUTEXES
1044 	/* Mutex deadlock detection: */
1045 	struct mutex_waiter		*blocked_on;
1046 #endif
1047 
1048 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1049 	int				non_block_count;
1050 #endif
1051 
1052 #ifdef CONFIG_TRACE_IRQFLAGS
1053 	struct irqtrace_events		irqtrace;
1054 	unsigned int			hardirq_threaded;
1055 	u64				hardirq_chain_key;
1056 	int				softirqs_enabled;
1057 	int				softirq_context;
1058 	int				irq_config;
1059 #endif
1060 #ifdef CONFIG_PREEMPT_RT
1061 	int				softirq_disable_cnt;
1062 #endif
1063 
1064 #ifdef CONFIG_LOCKDEP
1065 # define MAX_LOCK_DEPTH			48UL
1066 	u64				curr_chain_key;
1067 	int				lockdep_depth;
1068 	unsigned int			lockdep_recursion;
1069 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1070 #endif
1071 
1072 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1073 	unsigned int			in_ubsan;
1074 #endif
1075 
1076 	/* Journalling filesystem info: */
1077 	void				*journal_info;
1078 
1079 	/* Stacked block device info: */
1080 	struct bio_list			*bio_list;
1081 
1082 #ifdef CONFIG_BLOCK
1083 	/* Stack plugging: */
1084 	struct blk_plug			*plug;
1085 #endif
1086 
1087 	/* VM state: */
1088 	struct reclaim_state		*reclaim_state;
1089 
1090 	struct backing_dev_info		*backing_dev_info;
1091 
1092 	struct io_context		*io_context;
1093 
1094 #ifdef CONFIG_COMPACTION
1095 	struct capture_control		*capture_control;
1096 #endif
1097 	/* Ptrace state: */
1098 	unsigned long			ptrace_message;
1099 	kernel_siginfo_t		*last_siginfo;
1100 
1101 	struct task_io_accounting	ioac;
1102 #ifdef CONFIG_PSI
1103 	/* Pressure stall state */
1104 	unsigned int			psi_flags;
1105 #endif
1106 #ifdef CONFIG_TASK_XACCT
1107 	/* Accumulated RSS usage: */
1108 	u64				acct_rss_mem1;
1109 	/* Accumulated virtual memory usage: */
1110 	u64				acct_vm_mem1;
1111 	/* stime + utime since last update: */
1112 	u64				acct_timexpd;
1113 #endif
1114 #ifdef CONFIG_CPUSETS
1115 	/* Protected by ->alloc_lock: */
1116 	nodemask_t			mems_allowed;
1117 	/* Sequence number to catch updates: */
1118 	seqcount_spinlock_t		mems_allowed_seq;
1119 	int				cpuset_mem_spread_rotor;
1120 	int				cpuset_slab_spread_rotor;
1121 #endif
1122 #ifdef CONFIG_CGROUPS
1123 	/* Control Group info protected by css_set_lock: */
1124 	struct css_set __rcu		*cgroups;
1125 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1126 	struct list_head		cg_list;
1127 #endif
1128 #ifdef CONFIG_X86_CPU_RESCTRL
1129 	u32				closid;
1130 	u32				rmid;
1131 #endif
1132 #ifdef CONFIG_FUTEX
1133 	struct robust_list_head __user	*robust_list;
1134 #ifdef CONFIG_COMPAT
1135 	struct compat_robust_list_head __user *compat_robust_list;
1136 #endif
1137 	struct list_head		pi_state_list;
1138 	struct futex_pi_state		*pi_state_cache;
1139 	struct mutex			futex_exit_mutex;
1140 	unsigned int			futex_state;
1141 #endif
1142 #ifdef CONFIG_PERF_EVENTS
1143 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1144 	struct mutex			perf_event_mutex;
1145 	struct list_head		perf_event_list;
1146 #endif
1147 #ifdef CONFIG_DEBUG_PREEMPT
1148 	unsigned long			preempt_disable_ip;
1149 #endif
1150 #ifdef CONFIG_NUMA
1151 	/* Protected by alloc_lock: */
1152 	struct mempolicy		*mempolicy;
1153 	short				il_prev;
1154 	short				pref_node_fork;
1155 #endif
1156 #ifdef CONFIG_NUMA_BALANCING
1157 	int				numa_scan_seq;
1158 	unsigned int			numa_scan_period;
1159 	unsigned int			numa_scan_period_max;
1160 	int				numa_preferred_nid;
1161 	unsigned long			numa_migrate_retry;
1162 	/* Migration stamp: */
1163 	u64				node_stamp;
1164 	u64				last_task_numa_placement;
1165 	u64				last_sum_exec_runtime;
1166 	struct callback_head		numa_work;
1167 
1168 	/*
1169 	 * This pointer is only modified for current in syscall and
1170 	 * pagefault context (and for tasks being destroyed), so it can be read
1171 	 * from any of the following contexts:
1172 	 *  - RCU read-side critical section
1173 	 *  - current->numa_group from everywhere
1174 	 *  - task's runqueue locked, task not running
1175 	 */
1176 	struct numa_group __rcu		*numa_group;
1177 
1178 	/*
1179 	 * numa_faults is an array split into four regions:
1180 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1181 	 * in this precise order.
1182 	 *
1183 	 * faults_memory: Exponential decaying average of faults on a per-node
1184 	 * basis. Scheduling placement decisions are made based on these
1185 	 * counts. The values remain static for the duration of a PTE scan.
1186 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1187 	 * hinting fault was incurred.
1188 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1189 	 * during the current scan window. When the scan completes, the counts
1190 	 * in faults_memory and faults_cpu decay and these values are copied.
1191 	 */
1192 	unsigned long			*numa_faults;
1193 	unsigned long			total_numa_faults;
1194 
1195 	/*
1196 	 * numa_faults_locality tracks if faults recorded during the last
1197 	 * scan window were remote/local or failed to migrate. The task scan
1198 	 * period is adapted based on the locality of the faults with different
1199 	 * weights depending on whether they were shared or private faults
1200 	 */
1201 	unsigned long			numa_faults_locality[3];
1202 
1203 	unsigned long			numa_pages_migrated;
1204 #endif /* CONFIG_NUMA_BALANCING */
1205 
1206 #ifdef CONFIG_RSEQ
1207 	struct rseq __user *rseq;
1208 	u32 rseq_sig;
1209 	/*
1210 	 * RmW on rseq_event_mask must be performed atomically
1211 	 * with respect to preemption.
1212 	 */
1213 	unsigned long rseq_event_mask;
1214 #endif
1215 
1216 	struct tlbflush_unmap_batch	tlb_ubc;
1217 
1218 	union {
1219 		refcount_t		rcu_users;
1220 		struct rcu_head		rcu;
1221 	};
1222 
1223 	/* Cache last used pipe for splice(): */
1224 	struct pipe_inode_info		*splice_pipe;
1225 
1226 	struct page_frag		task_frag;
1227 
1228 #ifdef CONFIG_TASK_DELAY_ACCT
1229 	struct task_delay_info		*delays;
1230 #endif
1231 
1232 #ifdef CONFIG_FAULT_INJECTION
1233 	int				make_it_fail;
1234 	unsigned int			fail_nth;
1235 #endif
1236 	/*
1237 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1238 	 * balance_dirty_pages() for a dirty throttling pause:
1239 	 */
1240 	int				nr_dirtied;
1241 	int				nr_dirtied_pause;
1242 	/* Start of a write-and-pause period: */
1243 	unsigned long			dirty_paused_when;
1244 
1245 #ifdef CONFIG_LATENCYTOP
1246 	int				latency_record_count;
1247 	struct latency_record		latency_record[LT_SAVECOUNT];
1248 #endif
1249 	/*
1250 	 * Time slack values; these are used to round up poll() and
1251 	 * select() etc timeout values. These are in nanoseconds.
1252 	 */
1253 	u64				timer_slack_ns;
1254 	u64				default_timer_slack_ns;
1255 
1256 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1257 	unsigned int			kasan_depth;
1258 #endif
1259 
1260 #ifdef CONFIG_KCSAN
1261 	struct kcsan_ctx		kcsan_ctx;
1262 #ifdef CONFIG_TRACE_IRQFLAGS
1263 	struct irqtrace_events		kcsan_save_irqtrace;
1264 #endif
1265 #endif
1266 
1267 #if IS_ENABLED(CONFIG_KUNIT)
1268 	struct kunit			*kunit_test;
1269 #endif
1270 
1271 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1272 	/* Index of current stored address in ret_stack: */
1273 	int				curr_ret_stack;
1274 	int				curr_ret_depth;
1275 
1276 	/* Stack of return addresses for return function tracing: */
1277 	struct ftrace_ret_stack		*ret_stack;
1278 
1279 	/* Timestamp for last schedule: */
1280 	unsigned long long		ftrace_timestamp;
1281 
1282 	/*
1283 	 * Number of functions that haven't been traced
1284 	 * because of depth overrun:
1285 	 */
1286 	atomic_t			trace_overrun;
1287 
1288 	/* Pause tracing: */
1289 	atomic_t			tracing_graph_pause;
1290 #endif
1291 
1292 #ifdef CONFIG_TRACING
1293 	/* State flags for use by tracers: */
1294 	unsigned long			trace;
1295 
1296 	/* Bitmask and counter of trace recursion: */
1297 	unsigned long			trace_recursion;
1298 #endif /* CONFIG_TRACING */
1299 
1300 #ifdef CONFIG_KCOV
1301 	/* See kernel/kcov.c for more details. */
1302 
1303 	/* Coverage collection mode enabled for this task (0 if disabled): */
1304 	unsigned int			kcov_mode;
1305 
1306 	/* Size of the kcov_area: */
1307 	unsigned int			kcov_size;
1308 
1309 	/* Buffer for coverage collection: */
1310 	void				*kcov_area;
1311 
1312 	/* KCOV descriptor wired with this task or NULL: */
1313 	struct kcov			*kcov;
1314 
1315 	/* KCOV common handle for remote coverage collection: */
1316 	u64				kcov_handle;
1317 
1318 	/* KCOV sequence number: */
1319 	int				kcov_sequence;
1320 
1321 	/* Collect coverage from softirq context: */
1322 	unsigned int			kcov_softirq;
1323 #endif
1324 
1325 #ifdef CONFIG_MEMCG
1326 	struct mem_cgroup		*memcg_in_oom;
1327 	gfp_t				memcg_oom_gfp_mask;
1328 	int				memcg_oom_order;
1329 
1330 	/* Number of pages to reclaim on returning to userland: */
1331 	unsigned int			memcg_nr_pages_over_high;
1332 
1333 	/* Used by memcontrol for targeted memcg charge: */
1334 	struct mem_cgroup		*active_memcg;
1335 #endif
1336 
1337 #ifdef CONFIG_BLK_CGROUP
1338 	struct request_queue		*throttle_queue;
1339 #endif
1340 
1341 #ifdef CONFIG_UPROBES
1342 	struct uprobe_task		*utask;
1343 #endif
1344 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1345 	unsigned int			sequential_io;
1346 	unsigned int			sequential_io_avg;
1347 #endif
1348 	struct kmap_ctrl		kmap_ctrl;
1349 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1350 	unsigned long			task_state_change;
1351 #endif
1352 	int				pagefault_disabled;
1353 #ifdef CONFIG_MMU
1354 	struct task_struct		*oom_reaper_list;
1355 #endif
1356 #ifdef CONFIG_VMAP_STACK
1357 	struct vm_struct		*stack_vm_area;
1358 #endif
1359 #ifdef CONFIG_THREAD_INFO_IN_TASK
1360 	/* A live task holds one reference: */
1361 	refcount_t			stack_refcount;
1362 #endif
1363 #ifdef CONFIG_LIVEPATCH
1364 	int patch_state;
1365 #endif
1366 #ifdef CONFIG_SECURITY
1367 	/* Used by LSM modules for access restriction: */
1368 	void				*security;
1369 #endif
1370 #ifdef CONFIG_BPF_SYSCALL
1371 	/* Used by BPF task local storage */
1372 	struct bpf_local_storage __rcu	*bpf_storage;
1373 #endif
1374 
1375 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1376 	unsigned long			lowest_stack;
1377 	unsigned long			prev_lowest_stack;
1378 #endif
1379 
1380 #ifdef CONFIG_X86_MCE
1381 	void __user			*mce_vaddr;
1382 	__u64				mce_kflags;
1383 	u64				mce_addr;
1384 	__u64				mce_ripv : 1,
1385 					mce_whole_page : 1,
1386 					__mce_reserved : 62;
1387 	struct callback_head		mce_kill_me;
1388 #endif
1389 
1390 #ifdef CONFIG_KRETPROBES
1391 	struct llist_head               kretprobe_instances;
1392 #endif
1393 
1394 	/*
1395 	 * New fields for task_struct should be added above here, so that
1396 	 * they are included in the randomized portion of task_struct.
1397 	 */
1398 	randomized_struct_fields_end
1399 
1400 	/* CPU-specific state of this task: */
1401 	struct thread_struct		thread;
1402 
1403 	/*
1404 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1405 	 * structure.  It *MUST* be at the end of 'task_struct'.
1406 	 *
1407 	 * Do not put anything below here!
1408 	 */
1409 };
1410 
1411 static inline struct pid *task_pid(struct task_struct *task)
1412 {
1413 	return task->thread_pid;
1414 }
1415 
1416 /*
1417  * the helpers to get the task's different pids as they are seen
1418  * from various namespaces
1419  *
1420  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1421  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1422  *                     current.
1423  * task_xid_nr_ns()  : id seen from the ns specified;
1424  *
1425  * see also pid_nr() etc in include/linux/pid.h
1426  */
1427 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1428 
1429 static inline pid_t task_pid_nr(struct task_struct *tsk)
1430 {
1431 	return tsk->pid;
1432 }
1433 
1434 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1435 {
1436 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1437 }
1438 
1439 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1440 {
1441 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1442 }
1443 
1444 
1445 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1446 {
1447 	return tsk->tgid;
1448 }
1449 
1450 /**
1451  * pid_alive - check that a task structure is not stale
1452  * @p: Task structure to be checked.
1453  *
1454  * Test if a process is not yet dead (at most zombie state)
1455  * If pid_alive fails, then pointers within the task structure
1456  * can be stale and must not be dereferenced.
1457  *
1458  * Return: 1 if the process is alive. 0 otherwise.
1459  */
1460 static inline int pid_alive(const struct task_struct *p)
1461 {
1462 	return p->thread_pid != NULL;
1463 }
1464 
1465 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1466 {
1467 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1468 }
1469 
1470 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1471 {
1472 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1473 }
1474 
1475 
1476 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1477 {
1478 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1479 }
1480 
1481 static inline pid_t task_session_vnr(struct task_struct *tsk)
1482 {
1483 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1484 }
1485 
1486 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1487 {
1488 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1489 }
1490 
1491 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1492 {
1493 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1494 }
1495 
1496 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1497 {
1498 	pid_t pid = 0;
1499 
1500 	rcu_read_lock();
1501 	if (pid_alive(tsk))
1502 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1503 	rcu_read_unlock();
1504 
1505 	return pid;
1506 }
1507 
1508 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1509 {
1510 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1511 }
1512 
1513 /* Obsolete, do not use: */
1514 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1515 {
1516 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1517 }
1518 
1519 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1520 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1521 
1522 static inline unsigned int task_state_index(struct task_struct *tsk)
1523 {
1524 	unsigned int tsk_state = READ_ONCE(tsk->state);
1525 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1526 
1527 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1528 
1529 	if (tsk_state == TASK_IDLE)
1530 		state = TASK_REPORT_IDLE;
1531 
1532 	return fls(state);
1533 }
1534 
1535 static inline char task_index_to_char(unsigned int state)
1536 {
1537 	static const char state_char[] = "RSDTtXZPI";
1538 
1539 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1540 
1541 	return state_char[state];
1542 }
1543 
1544 static inline char task_state_to_char(struct task_struct *tsk)
1545 {
1546 	return task_index_to_char(task_state_index(tsk));
1547 }
1548 
1549 /**
1550  * is_global_init - check if a task structure is init. Since init
1551  * is free to have sub-threads we need to check tgid.
1552  * @tsk: Task structure to be checked.
1553  *
1554  * Check if a task structure is the first user space task the kernel created.
1555  *
1556  * Return: 1 if the task structure is init. 0 otherwise.
1557  */
1558 static inline int is_global_init(struct task_struct *tsk)
1559 {
1560 	return task_tgid_nr(tsk) == 1;
1561 }
1562 
1563 extern struct pid *cad_pid;
1564 
1565 /*
1566  * Per process flags
1567  */
1568 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1569 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1570 #define PF_EXITING		0x00000004	/* Getting shut down */
1571 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1572 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1573 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1574 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1575 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1576 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1577 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1578 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1579 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1580 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1581 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1582 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1583 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1584 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1585 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1586 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1587 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1588 						 * I am cleaning dirty pages from some other bdi. */
1589 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1590 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1591 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1592 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1593 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1594 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1595 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1596 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1597 
1598 /*
1599  * Only the _current_ task can read/write to tsk->flags, but other
1600  * tasks can access tsk->flags in readonly mode for example
1601  * with tsk_used_math (like during threaded core dumping).
1602  * There is however an exception to this rule during ptrace
1603  * or during fork: the ptracer task is allowed to write to the
1604  * child->flags of its traced child (same goes for fork, the parent
1605  * can write to the child->flags), because we're guaranteed the
1606  * child is not running and in turn not changing child->flags
1607  * at the same time the parent does it.
1608  */
1609 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1610 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1611 #define clear_used_math()			clear_stopped_child_used_math(current)
1612 #define set_used_math()				set_stopped_child_used_math(current)
1613 
1614 #define conditional_stopped_child_used_math(condition, child) \
1615 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1616 
1617 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1618 
1619 #define copy_to_stopped_child_used_math(child) \
1620 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1621 
1622 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1623 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1624 #define used_math()				tsk_used_math(current)
1625 
1626 static inline bool is_percpu_thread(void)
1627 {
1628 #ifdef CONFIG_SMP
1629 	return (current->flags & PF_NO_SETAFFINITY) &&
1630 		(current->nr_cpus_allowed  == 1);
1631 #else
1632 	return true;
1633 #endif
1634 }
1635 
1636 /* Per-process atomic flags. */
1637 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1638 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1639 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1640 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1641 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1642 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1643 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1644 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1645 
1646 #define TASK_PFA_TEST(name, func)					\
1647 	static inline bool task_##func(struct task_struct *p)		\
1648 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1649 
1650 #define TASK_PFA_SET(name, func)					\
1651 	static inline void task_set_##func(struct task_struct *p)	\
1652 	{ set_bit(PFA_##name, &p->atomic_flags); }
1653 
1654 #define TASK_PFA_CLEAR(name, func)					\
1655 	static inline void task_clear_##func(struct task_struct *p)	\
1656 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1657 
1658 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1659 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1660 
1661 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1662 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1663 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1664 
1665 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1666 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1667 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1668 
1669 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1670 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1671 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1672 
1673 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1674 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1675 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1676 
1677 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1678 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1679 
1680 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1681 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1682 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1683 
1684 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1685 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1686 
1687 static inline void
1688 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1689 {
1690 	current->flags &= ~flags;
1691 	current->flags |= orig_flags & flags;
1692 }
1693 
1694 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1695 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1696 #ifdef CONFIG_SMP
1697 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1698 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1699 #else
1700 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1701 {
1702 }
1703 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1704 {
1705 	if (!cpumask_test_cpu(0, new_mask))
1706 		return -EINVAL;
1707 	return 0;
1708 }
1709 #endif
1710 
1711 extern int yield_to(struct task_struct *p, bool preempt);
1712 extern void set_user_nice(struct task_struct *p, long nice);
1713 extern int task_prio(const struct task_struct *p);
1714 
1715 /**
1716  * task_nice - return the nice value of a given task.
1717  * @p: the task in question.
1718  *
1719  * Return: The nice value [ -20 ... 0 ... 19 ].
1720  */
1721 static inline int task_nice(const struct task_struct *p)
1722 {
1723 	return PRIO_TO_NICE((p)->static_prio);
1724 }
1725 
1726 extern int can_nice(const struct task_struct *p, const int nice);
1727 extern int task_curr(const struct task_struct *p);
1728 extern int idle_cpu(int cpu);
1729 extern int available_idle_cpu(int cpu);
1730 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1731 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1732 extern void sched_set_fifo(struct task_struct *p);
1733 extern void sched_set_fifo_low(struct task_struct *p);
1734 extern void sched_set_normal(struct task_struct *p, int nice);
1735 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1736 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1737 extern struct task_struct *idle_task(int cpu);
1738 
1739 /**
1740  * is_idle_task - is the specified task an idle task?
1741  * @p: the task in question.
1742  *
1743  * Return: 1 if @p is an idle task. 0 otherwise.
1744  */
1745 static __always_inline bool is_idle_task(const struct task_struct *p)
1746 {
1747 	return !!(p->flags & PF_IDLE);
1748 }
1749 
1750 extern struct task_struct *curr_task(int cpu);
1751 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1752 
1753 void yield(void);
1754 
1755 union thread_union {
1756 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1757 	struct task_struct task;
1758 #endif
1759 #ifndef CONFIG_THREAD_INFO_IN_TASK
1760 	struct thread_info thread_info;
1761 #endif
1762 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1763 };
1764 
1765 #ifndef CONFIG_THREAD_INFO_IN_TASK
1766 extern struct thread_info init_thread_info;
1767 #endif
1768 
1769 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1770 
1771 #ifdef CONFIG_THREAD_INFO_IN_TASK
1772 static inline struct thread_info *task_thread_info(struct task_struct *task)
1773 {
1774 	return &task->thread_info;
1775 }
1776 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1777 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1778 #endif
1779 
1780 /*
1781  * find a task by one of its numerical ids
1782  *
1783  * find_task_by_pid_ns():
1784  *      finds a task by its pid in the specified namespace
1785  * find_task_by_vpid():
1786  *      finds a task by its virtual pid
1787  *
1788  * see also find_vpid() etc in include/linux/pid.h
1789  */
1790 
1791 extern struct task_struct *find_task_by_vpid(pid_t nr);
1792 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1793 
1794 /*
1795  * find a task by its virtual pid and get the task struct
1796  */
1797 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1798 
1799 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1800 extern int wake_up_process(struct task_struct *tsk);
1801 extern void wake_up_new_task(struct task_struct *tsk);
1802 
1803 #ifdef CONFIG_SMP
1804 extern void kick_process(struct task_struct *tsk);
1805 #else
1806 static inline void kick_process(struct task_struct *tsk) { }
1807 #endif
1808 
1809 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1810 
1811 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1812 {
1813 	__set_task_comm(tsk, from, false);
1814 }
1815 
1816 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1817 #define get_task_comm(buf, tsk) ({			\
1818 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1819 	__get_task_comm(buf, sizeof(buf), tsk);		\
1820 })
1821 
1822 #ifdef CONFIG_SMP
1823 static __always_inline void scheduler_ipi(void)
1824 {
1825 	/*
1826 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1827 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1828 	 * this IPI.
1829 	 */
1830 	preempt_fold_need_resched();
1831 }
1832 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1833 #else
1834 static inline void scheduler_ipi(void) { }
1835 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1836 {
1837 	return 1;
1838 }
1839 #endif
1840 
1841 /*
1842  * Set thread flags in other task's structures.
1843  * See asm/thread_info.h for TIF_xxxx flags available:
1844  */
1845 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1846 {
1847 	set_ti_thread_flag(task_thread_info(tsk), flag);
1848 }
1849 
1850 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1851 {
1852 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1853 }
1854 
1855 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1856 					  bool value)
1857 {
1858 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1859 }
1860 
1861 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1862 {
1863 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1864 }
1865 
1866 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1867 {
1868 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1869 }
1870 
1871 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1872 {
1873 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1874 }
1875 
1876 static inline void set_tsk_need_resched(struct task_struct *tsk)
1877 {
1878 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1879 }
1880 
1881 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1882 {
1883 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1884 }
1885 
1886 static inline int test_tsk_need_resched(struct task_struct *tsk)
1887 {
1888 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1889 }
1890 
1891 /*
1892  * cond_resched() and cond_resched_lock(): latency reduction via
1893  * explicit rescheduling in places that are safe. The return
1894  * value indicates whether a reschedule was done in fact.
1895  * cond_resched_lock() will drop the spinlock before scheduling,
1896  */
1897 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1898 extern int __cond_resched(void);
1899 
1900 #ifdef CONFIG_PREEMPT_DYNAMIC
1901 
1902 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1903 
1904 static __always_inline int _cond_resched(void)
1905 {
1906 	return static_call_mod(cond_resched)();
1907 }
1908 
1909 #else
1910 
1911 static inline int _cond_resched(void)
1912 {
1913 	return __cond_resched();
1914 }
1915 
1916 #endif /* CONFIG_PREEMPT_DYNAMIC */
1917 
1918 #else
1919 
1920 static inline int _cond_resched(void) { return 0; }
1921 
1922 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1923 
1924 #define cond_resched() ({			\
1925 	___might_sleep(__FILE__, __LINE__, 0);	\
1926 	_cond_resched();			\
1927 })
1928 
1929 extern int __cond_resched_lock(spinlock_t *lock);
1930 extern int __cond_resched_rwlock_read(rwlock_t *lock);
1931 extern int __cond_resched_rwlock_write(rwlock_t *lock);
1932 
1933 #define cond_resched_lock(lock) ({				\
1934 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1935 	__cond_resched_lock(lock);				\
1936 })
1937 
1938 #define cond_resched_rwlock_read(lock) ({			\
1939 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1940 	__cond_resched_rwlock_read(lock);			\
1941 })
1942 
1943 #define cond_resched_rwlock_write(lock) ({			\
1944 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1945 	__cond_resched_rwlock_write(lock);			\
1946 })
1947 
1948 static inline void cond_resched_rcu(void)
1949 {
1950 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1951 	rcu_read_unlock();
1952 	cond_resched();
1953 	rcu_read_lock();
1954 #endif
1955 }
1956 
1957 /*
1958  * Does a critical section need to be broken due to another
1959  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1960  * but a general need for low latency)
1961  */
1962 static inline int spin_needbreak(spinlock_t *lock)
1963 {
1964 #ifdef CONFIG_PREEMPTION
1965 	return spin_is_contended(lock);
1966 #else
1967 	return 0;
1968 #endif
1969 }
1970 
1971 /*
1972  * Check if a rwlock is contended.
1973  * Returns non-zero if there is another task waiting on the rwlock.
1974  * Returns zero if the lock is not contended or the system / underlying
1975  * rwlock implementation does not support contention detection.
1976  * Technically does not depend on CONFIG_PREEMPTION, but a general need
1977  * for low latency.
1978  */
1979 static inline int rwlock_needbreak(rwlock_t *lock)
1980 {
1981 #ifdef CONFIG_PREEMPTION
1982 	return rwlock_is_contended(lock);
1983 #else
1984 	return 0;
1985 #endif
1986 }
1987 
1988 static __always_inline bool need_resched(void)
1989 {
1990 	return unlikely(tif_need_resched());
1991 }
1992 
1993 /*
1994  * Wrappers for p->thread_info->cpu access. No-op on UP.
1995  */
1996 #ifdef CONFIG_SMP
1997 
1998 static inline unsigned int task_cpu(const struct task_struct *p)
1999 {
2000 #ifdef CONFIG_THREAD_INFO_IN_TASK
2001 	return READ_ONCE(p->cpu);
2002 #else
2003 	return READ_ONCE(task_thread_info(p)->cpu);
2004 #endif
2005 }
2006 
2007 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2008 
2009 #else
2010 
2011 static inline unsigned int task_cpu(const struct task_struct *p)
2012 {
2013 	return 0;
2014 }
2015 
2016 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2017 {
2018 }
2019 
2020 #endif /* CONFIG_SMP */
2021 
2022 /*
2023  * In order to reduce various lock holder preemption latencies provide an
2024  * interface to see if a vCPU is currently running or not.
2025  *
2026  * This allows us to terminate optimistic spin loops and block, analogous to
2027  * the native optimistic spin heuristic of testing if the lock owner task is
2028  * running or not.
2029  */
2030 #ifndef vcpu_is_preempted
2031 static inline bool vcpu_is_preempted(int cpu)
2032 {
2033 	return false;
2034 }
2035 #endif
2036 
2037 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2038 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2039 
2040 #ifndef TASK_SIZE_OF
2041 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2042 #endif
2043 
2044 #ifdef CONFIG_SMP
2045 /* Returns effective CPU energy utilization, as seen by the scheduler */
2046 unsigned long sched_cpu_util(int cpu, unsigned long max);
2047 #endif /* CONFIG_SMP */
2048 
2049 #ifdef CONFIG_RSEQ
2050 
2051 /*
2052  * Map the event mask on the user-space ABI enum rseq_cs_flags
2053  * for direct mask checks.
2054  */
2055 enum rseq_event_mask_bits {
2056 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2057 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2058 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2059 };
2060 
2061 enum rseq_event_mask {
2062 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2063 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2064 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2065 };
2066 
2067 static inline void rseq_set_notify_resume(struct task_struct *t)
2068 {
2069 	if (t->rseq)
2070 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2071 }
2072 
2073 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2074 
2075 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2076 					     struct pt_regs *regs)
2077 {
2078 	if (current->rseq)
2079 		__rseq_handle_notify_resume(ksig, regs);
2080 }
2081 
2082 static inline void rseq_signal_deliver(struct ksignal *ksig,
2083 				       struct pt_regs *regs)
2084 {
2085 	preempt_disable();
2086 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2087 	preempt_enable();
2088 	rseq_handle_notify_resume(ksig, regs);
2089 }
2090 
2091 /* rseq_preempt() requires preemption to be disabled. */
2092 static inline void rseq_preempt(struct task_struct *t)
2093 {
2094 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2095 	rseq_set_notify_resume(t);
2096 }
2097 
2098 /* rseq_migrate() requires preemption to be disabled. */
2099 static inline void rseq_migrate(struct task_struct *t)
2100 {
2101 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2102 	rseq_set_notify_resume(t);
2103 }
2104 
2105 /*
2106  * If parent process has a registered restartable sequences area, the
2107  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2108  */
2109 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2110 {
2111 	if (clone_flags & CLONE_VM) {
2112 		t->rseq = NULL;
2113 		t->rseq_sig = 0;
2114 		t->rseq_event_mask = 0;
2115 	} else {
2116 		t->rseq = current->rseq;
2117 		t->rseq_sig = current->rseq_sig;
2118 		t->rseq_event_mask = current->rseq_event_mask;
2119 	}
2120 }
2121 
2122 static inline void rseq_execve(struct task_struct *t)
2123 {
2124 	t->rseq = NULL;
2125 	t->rseq_sig = 0;
2126 	t->rseq_event_mask = 0;
2127 }
2128 
2129 #else
2130 
2131 static inline void rseq_set_notify_resume(struct task_struct *t)
2132 {
2133 }
2134 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2135 					     struct pt_regs *regs)
2136 {
2137 }
2138 static inline void rseq_signal_deliver(struct ksignal *ksig,
2139 				       struct pt_regs *regs)
2140 {
2141 }
2142 static inline void rseq_preempt(struct task_struct *t)
2143 {
2144 }
2145 static inline void rseq_migrate(struct task_struct *t)
2146 {
2147 }
2148 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2149 {
2150 }
2151 static inline void rseq_execve(struct task_struct *t)
2152 {
2153 }
2154 
2155 #endif
2156 
2157 #ifdef CONFIG_DEBUG_RSEQ
2158 
2159 void rseq_syscall(struct pt_regs *regs);
2160 
2161 #else
2162 
2163 static inline void rseq_syscall(struct pt_regs *regs)
2164 {
2165 }
2166 
2167 #endif
2168 
2169 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2170 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2171 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2172 
2173 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2174 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2175 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2176 
2177 int sched_trace_rq_cpu(struct rq *rq);
2178 int sched_trace_rq_cpu_capacity(struct rq *rq);
2179 int sched_trace_rq_nr_running(struct rq *rq);
2180 
2181 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2182 
2183 #endif
2184