1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 26 #include <asm/page.h> 27 #include <asm/ptrace.h> 28 #include <asm/cputime.h> 29 30 #include <linux/smp.h> 31 #include <linux/sem.h> 32 #include <linux/signal.h> 33 #include <linux/compiler.h> 34 #include <linux/completion.h> 35 #include <linux/pid.h> 36 #include <linux/percpu.h> 37 #include <linux/topology.h> 38 #include <linux/proportions.h> 39 #include <linux/seccomp.h> 40 #include <linux/rcupdate.h> 41 #include <linux/rculist.h> 42 #include <linux/rtmutex.h> 43 44 #include <linux/time.h> 45 #include <linux/param.h> 46 #include <linux/resource.h> 47 #include <linux/timer.h> 48 #include <linux/hrtimer.h> 49 #include <linux/task_io_accounting.h> 50 #include <linux/latencytop.h> 51 #include <linux/cred.h> 52 #include <linux/llist.h> 53 #include <linux/uidgid.h> 54 55 #include <asm/processor.h> 56 57 struct exec_domain; 58 struct futex_pi_state; 59 struct robust_list_head; 60 struct bio_list; 61 struct fs_struct; 62 struct perf_event_context; 63 struct blk_plug; 64 65 /* 66 * List of flags we want to share for kernel threads, 67 * if only because they are not used by them anyway. 68 */ 69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 70 71 /* 72 * These are the constant used to fake the fixed-point load-average 73 * counting. Some notes: 74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 75 * a load-average precision of 10 bits integer + 11 bits fractional 76 * - if you want to count load-averages more often, you need more 77 * precision, or rounding will get you. With 2-second counting freq, 78 * the EXP_n values would be 1981, 2034 and 2043 if still using only 79 * 11 bit fractions. 80 */ 81 extern unsigned long avenrun[]; /* Load averages */ 82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 83 84 #define FSHIFT 11 /* nr of bits of precision */ 85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 88 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 89 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 90 91 #define CALC_LOAD(load,exp,n) \ 92 load *= exp; \ 93 load += n*(FIXED_1-exp); \ 94 load >>= FSHIFT; 95 96 extern unsigned long total_forks; 97 extern int nr_threads; 98 DECLARE_PER_CPU(unsigned long, process_counts); 99 extern int nr_processes(void); 100 extern unsigned long nr_running(void); 101 extern unsigned long nr_uninterruptible(void); 102 extern unsigned long nr_iowait(void); 103 extern unsigned long nr_iowait_cpu(int cpu); 104 extern unsigned long this_cpu_load(void); 105 106 107 extern void calc_global_load(unsigned long ticks); 108 extern void update_cpu_load_nohz(void); 109 110 /* Notifier for when a task gets migrated to a new CPU */ 111 struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115 }; 116 extern void register_task_migration_notifier(struct notifier_block *n); 117 118 extern unsigned long get_parent_ip(unsigned long addr); 119 120 extern void dump_cpu_task(int cpu); 121 122 struct seq_file; 123 struct cfs_rq; 124 struct task_group; 125 #ifdef CONFIG_SCHED_DEBUG 126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127 extern void proc_sched_set_task(struct task_struct *p); 128 extern void 129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130 #else 131 static inline void 132 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 133 { 134 } 135 static inline void proc_sched_set_task(struct task_struct *p) 136 { 137 } 138 static inline void 139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 140 { 141 } 142 #endif 143 144 /* 145 * Task state bitmask. NOTE! These bits are also 146 * encoded in fs/proc/array.c: get_task_state(). 147 * 148 * We have two separate sets of flags: task->state 149 * is about runnability, while task->exit_state are 150 * about the task exiting. Confusing, but this way 151 * modifying one set can't modify the other one by 152 * mistake. 153 */ 154 #define TASK_RUNNING 0 155 #define TASK_INTERRUPTIBLE 1 156 #define TASK_UNINTERRUPTIBLE 2 157 #define __TASK_STOPPED 4 158 #define __TASK_TRACED 8 159 /* in tsk->exit_state */ 160 #define EXIT_ZOMBIE 16 161 #define EXIT_DEAD 32 162 /* in tsk->state again */ 163 #define TASK_DEAD 64 164 #define TASK_WAKEKILL 128 165 #define TASK_WAKING 256 166 #define TASK_STATE_MAX 512 167 168 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 169 170 extern char ___assert_task_state[1 - 2*!!( 171 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 172 173 /* Convenience macros for the sake of set_task_state */ 174 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 175 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 176 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 177 178 /* Convenience macros for the sake of wake_up */ 179 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 180 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 181 182 /* get_task_state() */ 183 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 184 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 185 __TASK_TRACED) 186 187 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 188 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 189 #define task_is_dead(task) ((task)->exit_state != 0) 190 #define task_is_stopped_or_traced(task) \ 191 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 192 #define task_contributes_to_load(task) \ 193 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 194 (task->flags & PF_FROZEN) == 0) 195 196 #define __set_task_state(tsk, state_value) \ 197 do { (tsk)->state = (state_value); } while (0) 198 #define set_task_state(tsk, state_value) \ 199 set_mb((tsk)->state, (state_value)) 200 201 /* 202 * set_current_state() includes a barrier so that the write of current->state 203 * is correctly serialised wrt the caller's subsequent test of whether to 204 * actually sleep: 205 * 206 * set_current_state(TASK_UNINTERRUPTIBLE); 207 * if (do_i_need_to_sleep()) 208 * schedule(); 209 * 210 * If the caller does not need such serialisation then use __set_current_state() 211 */ 212 #define __set_current_state(state_value) \ 213 do { current->state = (state_value); } while (0) 214 #define set_current_state(state_value) \ 215 set_mb(current->state, (state_value)) 216 217 /* Task command name length */ 218 #define TASK_COMM_LEN 16 219 220 #include <linux/spinlock.h> 221 222 /* 223 * This serializes "schedule()" and also protects 224 * the run-queue from deletions/modifications (but 225 * _adding_ to the beginning of the run-queue has 226 * a separate lock). 227 */ 228 extern rwlock_t tasklist_lock; 229 extern spinlock_t mmlist_lock; 230 231 struct task_struct; 232 233 #ifdef CONFIG_PROVE_RCU 234 extern int lockdep_tasklist_lock_is_held(void); 235 #endif /* #ifdef CONFIG_PROVE_RCU */ 236 237 extern void sched_init(void); 238 extern void sched_init_smp(void); 239 extern asmlinkage void schedule_tail(struct task_struct *prev); 240 extern void init_idle(struct task_struct *idle, int cpu); 241 extern void init_idle_bootup_task(struct task_struct *idle); 242 243 extern int runqueue_is_locked(int cpu); 244 245 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 246 extern void nohz_balance_enter_idle(int cpu); 247 extern void set_cpu_sd_state_idle(void); 248 extern int get_nohz_timer_target(void); 249 #else 250 static inline void nohz_balance_enter_idle(int cpu) { } 251 static inline void set_cpu_sd_state_idle(void) { } 252 #endif 253 254 /* 255 * Only dump TASK_* tasks. (0 for all tasks) 256 */ 257 extern void show_state_filter(unsigned long state_filter); 258 259 static inline void show_state(void) 260 { 261 show_state_filter(0); 262 } 263 264 extern void show_regs(struct pt_regs *); 265 266 /* 267 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 268 * task), SP is the stack pointer of the first frame that should be shown in the back 269 * trace (or NULL if the entire call-chain of the task should be shown). 270 */ 271 extern void show_stack(struct task_struct *task, unsigned long *sp); 272 273 void io_schedule(void); 274 long io_schedule_timeout(long timeout); 275 276 extern void cpu_init (void); 277 extern void trap_init(void); 278 extern void update_process_times(int user); 279 extern void scheduler_tick(void); 280 281 extern void sched_show_task(struct task_struct *p); 282 283 #ifdef CONFIG_LOCKUP_DETECTOR 284 extern void touch_softlockup_watchdog(void); 285 extern void touch_softlockup_watchdog_sync(void); 286 extern void touch_all_softlockup_watchdogs(void); 287 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 288 void __user *buffer, 289 size_t *lenp, loff_t *ppos); 290 extern unsigned int softlockup_panic; 291 void lockup_detector_init(void); 292 #else 293 static inline void touch_softlockup_watchdog(void) 294 { 295 } 296 static inline void touch_softlockup_watchdog_sync(void) 297 { 298 } 299 static inline void touch_all_softlockup_watchdogs(void) 300 { 301 } 302 static inline void lockup_detector_init(void) 303 { 304 } 305 #endif 306 307 #ifdef CONFIG_DETECT_HUNG_TASK 308 extern unsigned int sysctl_hung_task_panic; 309 extern unsigned long sysctl_hung_task_check_count; 310 extern unsigned long sysctl_hung_task_timeout_secs; 311 extern unsigned long sysctl_hung_task_warnings; 312 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 313 void __user *buffer, 314 size_t *lenp, loff_t *ppos); 315 #else 316 /* Avoid need for ifdefs elsewhere in the code */ 317 enum { sysctl_hung_task_timeout_secs = 0 }; 318 #endif 319 320 /* Attach to any functions which should be ignored in wchan output. */ 321 #define __sched __attribute__((__section__(".sched.text"))) 322 323 /* Linker adds these: start and end of __sched functions */ 324 extern char __sched_text_start[], __sched_text_end[]; 325 326 /* Is this address in the __sched functions? */ 327 extern int in_sched_functions(unsigned long addr); 328 329 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 330 extern signed long schedule_timeout(signed long timeout); 331 extern signed long schedule_timeout_interruptible(signed long timeout); 332 extern signed long schedule_timeout_killable(signed long timeout); 333 extern signed long schedule_timeout_uninterruptible(signed long timeout); 334 asmlinkage void schedule(void); 335 extern void schedule_preempt_disabled(void); 336 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 337 338 struct nsproxy; 339 struct user_namespace; 340 341 /* 342 * Default maximum number of active map areas, this limits the number of vmas 343 * per mm struct. Users can overwrite this number by sysctl but there is a 344 * problem. 345 * 346 * When a program's coredump is generated as ELF format, a section is created 347 * per a vma. In ELF, the number of sections is represented in unsigned short. 348 * This means the number of sections should be smaller than 65535 at coredump. 349 * Because the kernel adds some informative sections to a image of program at 350 * generating coredump, we need some margin. The number of extra sections is 351 * 1-3 now and depends on arch. We use "5" as safe margin, here. 352 */ 353 #define MAPCOUNT_ELF_CORE_MARGIN (5) 354 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 355 356 extern int sysctl_max_map_count; 357 358 #include <linux/aio.h> 359 360 #ifdef CONFIG_MMU 361 extern void arch_pick_mmap_layout(struct mm_struct *mm); 362 extern unsigned long 363 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 364 unsigned long, unsigned long); 365 extern unsigned long 366 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 367 unsigned long len, unsigned long pgoff, 368 unsigned long flags); 369 extern void arch_unmap_area(struct mm_struct *, unsigned long); 370 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 371 #else 372 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 373 #endif 374 375 376 extern void set_dumpable(struct mm_struct *mm, int value); 377 extern int get_dumpable(struct mm_struct *mm); 378 379 /* get/set_dumpable() values */ 380 #define SUID_DUMPABLE_DISABLED 0 381 #define SUID_DUMPABLE_ENABLED 1 382 #define SUID_DUMPABLE_SAFE 2 383 384 /* mm flags */ 385 /* dumpable bits */ 386 #define MMF_DUMPABLE 0 /* core dump is permitted */ 387 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 388 389 #define MMF_DUMPABLE_BITS 2 390 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 391 392 /* coredump filter bits */ 393 #define MMF_DUMP_ANON_PRIVATE 2 394 #define MMF_DUMP_ANON_SHARED 3 395 #define MMF_DUMP_MAPPED_PRIVATE 4 396 #define MMF_DUMP_MAPPED_SHARED 5 397 #define MMF_DUMP_ELF_HEADERS 6 398 #define MMF_DUMP_HUGETLB_PRIVATE 7 399 #define MMF_DUMP_HUGETLB_SHARED 8 400 401 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 402 #define MMF_DUMP_FILTER_BITS 7 403 #define MMF_DUMP_FILTER_MASK \ 404 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 405 #define MMF_DUMP_FILTER_DEFAULT \ 406 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 407 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 408 409 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 410 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 411 #else 412 # define MMF_DUMP_MASK_DEFAULT_ELF 0 413 #endif 414 /* leave room for more dump flags */ 415 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 416 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 417 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 418 419 #define MMF_HAS_UPROBES 19 /* has uprobes */ 420 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 421 422 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 423 424 struct sighand_struct { 425 atomic_t count; 426 struct k_sigaction action[_NSIG]; 427 spinlock_t siglock; 428 wait_queue_head_t signalfd_wqh; 429 }; 430 431 struct pacct_struct { 432 int ac_flag; 433 long ac_exitcode; 434 unsigned long ac_mem; 435 cputime_t ac_utime, ac_stime; 436 unsigned long ac_minflt, ac_majflt; 437 }; 438 439 struct cpu_itimer { 440 cputime_t expires; 441 cputime_t incr; 442 u32 error; 443 u32 incr_error; 444 }; 445 446 /** 447 * struct cputime - snaphsot of system and user cputime 448 * @utime: time spent in user mode 449 * @stime: time spent in system mode 450 * 451 * Gathers a generic snapshot of user and system time. 452 */ 453 struct cputime { 454 cputime_t utime; 455 cputime_t stime; 456 }; 457 458 /** 459 * struct task_cputime - collected CPU time counts 460 * @utime: time spent in user mode, in &cputime_t units 461 * @stime: time spent in kernel mode, in &cputime_t units 462 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 463 * 464 * This is an extension of struct cputime that includes the total runtime 465 * spent by the task from the scheduler point of view. 466 * 467 * As a result, this structure groups together three kinds of CPU time 468 * that are tracked for threads and thread groups. Most things considering 469 * CPU time want to group these counts together and treat all three 470 * of them in parallel. 471 */ 472 struct task_cputime { 473 cputime_t utime; 474 cputime_t stime; 475 unsigned long long sum_exec_runtime; 476 }; 477 /* Alternate field names when used to cache expirations. */ 478 #define prof_exp stime 479 #define virt_exp utime 480 #define sched_exp sum_exec_runtime 481 482 #define INIT_CPUTIME \ 483 (struct task_cputime) { \ 484 .utime = 0, \ 485 .stime = 0, \ 486 .sum_exec_runtime = 0, \ 487 } 488 489 /* 490 * Disable preemption until the scheduler is running. 491 * Reset by start_kernel()->sched_init()->init_idle(). 492 * 493 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 494 * before the scheduler is active -- see should_resched(). 495 */ 496 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 497 498 /** 499 * struct thread_group_cputimer - thread group interval timer counts 500 * @cputime: thread group interval timers. 501 * @running: non-zero when there are timers running and 502 * @cputime receives updates. 503 * @lock: lock for fields in this struct. 504 * 505 * This structure contains the version of task_cputime, above, that is 506 * used for thread group CPU timer calculations. 507 */ 508 struct thread_group_cputimer { 509 struct task_cputime cputime; 510 int running; 511 raw_spinlock_t lock; 512 }; 513 514 #include <linux/rwsem.h> 515 struct autogroup; 516 517 /* 518 * NOTE! "signal_struct" does not have its own 519 * locking, because a shared signal_struct always 520 * implies a shared sighand_struct, so locking 521 * sighand_struct is always a proper superset of 522 * the locking of signal_struct. 523 */ 524 struct signal_struct { 525 atomic_t sigcnt; 526 atomic_t live; 527 int nr_threads; 528 529 wait_queue_head_t wait_chldexit; /* for wait4() */ 530 531 /* current thread group signal load-balancing target: */ 532 struct task_struct *curr_target; 533 534 /* shared signal handling: */ 535 struct sigpending shared_pending; 536 537 /* thread group exit support */ 538 int group_exit_code; 539 /* overloaded: 540 * - notify group_exit_task when ->count is equal to notify_count 541 * - everyone except group_exit_task is stopped during signal delivery 542 * of fatal signals, group_exit_task processes the signal. 543 */ 544 int notify_count; 545 struct task_struct *group_exit_task; 546 547 /* thread group stop support, overloads group_exit_code too */ 548 int group_stop_count; 549 unsigned int flags; /* see SIGNAL_* flags below */ 550 551 /* 552 * PR_SET_CHILD_SUBREAPER marks a process, like a service 553 * manager, to re-parent orphan (double-forking) child processes 554 * to this process instead of 'init'. The service manager is 555 * able to receive SIGCHLD signals and is able to investigate 556 * the process until it calls wait(). All children of this 557 * process will inherit a flag if they should look for a 558 * child_subreaper process at exit. 559 */ 560 unsigned int is_child_subreaper:1; 561 unsigned int has_child_subreaper:1; 562 563 /* POSIX.1b Interval Timers */ 564 struct list_head posix_timers; 565 566 /* ITIMER_REAL timer for the process */ 567 struct hrtimer real_timer; 568 struct pid *leader_pid; 569 ktime_t it_real_incr; 570 571 /* 572 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 573 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 574 * values are defined to 0 and 1 respectively 575 */ 576 struct cpu_itimer it[2]; 577 578 /* 579 * Thread group totals for process CPU timers. 580 * See thread_group_cputimer(), et al, for details. 581 */ 582 struct thread_group_cputimer cputimer; 583 584 /* Earliest-expiration cache. */ 585 struct task_cputime cputime_expires; 586 587 struct list_head cpu_timers[3]; 588 589 struct pid *tty_old_pgrp; 590 591 /* boolean value for session group leader */ 592 int leader; 593 594 struct tty_struct *tty; /* NULL if no tty */ 595 596 #ifdef CONFIG_SCHED_AUTOGROUP 597 struct autogroup *autogroup; 598 #endif 599 /* 600 * Cumulative resource counters for dead threads in the group, 601 * and for reaped dead child processes forked by this group. 602 * Live threads maintain their own counters and add to these 603 * in __exit_signal, except for the group leader. 604 */ 605 cputime_t utime, stime, cutime, cstime; 606 cputime_t gtime; 607 cputime_t cgtime; 608 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 609 struct cputime prev_cputime; 610 #endif 611 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 612 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 613 unsigned long inblock, oublock, cinblock, coublock; 614 unsigned long maxrss, cmaxrss; 615 struct task_io_accounting ioac; 616 617 /* 618 * Cumulative ns of schedule CPU time fo dead threads in the 619 * group, not including a zombie group leader, (This only differs 620 * from jiffies_to_ns(utime + stime) if sched_clock uses something 621 * other than jiffies.) 622 */ 623 unsigned long long sum_sched_runtime; 624 625 /* 626 * We don't bother to synchronize most readers of this at all, 627 * because there is no reader checking a limit that actually needs 628 * to get both rlim_cur and rlim_max atomically, and either one 629 * alone is a single word that can safely be read normally. 630 * getrlimit/setrlimit use task_lock(current->group_leader) to 631 * protect this instead of the siglock, because they really 632 * have no need to disable irqs. 633 */ 634 struct rlimit rlim[RLIM_NLIMITS]; 635 636 #ifdef CONFIG_BSD_PROCESS_ACCT 637 struct pacct_struct pacct; /* per-process accounting information */ 638 #endif 639 #ifdef CONFIG_TASKSTATS 640 struct taskstats *stats; 641 #endif 642 #ifdef CONFIG_AUDIT 643 unsigned audit_tty; 644 struct tty_audit_buf *tty_audit_buf; 645 #endif 646 #ifdef CONFIG_CGROUPS 647 /* 648 * group_rwsem prevents new tasks from entering the threadgroup and 649 * member tasks from exiting,a more specifically, setting of 650 * PF_EXITING. fork and exit paths are protected with this rwsem 651 * using threadgroup_change_begin/end(). Users which require 652 * threadgroup to remain stable should use threadgroup_[un]lock() 653 * which also takes care of exec path. Currently, cgroup is the 654 * only user. 655 */ 656 struct rw_semaphore group_rwsem; 657 #endif 658 659 oom_flags_t oom_flags; 660 short oom_score_adj; /* OOM kill score adjustment */ 661 short oom_score_adj_min; /* OOM kill score adjustment min value. 662 * Only settable by CAP_SYS_RESOURCE. */ 663 664 struct mutex cred_guard_mutex; /* guard against foreign influences on 665 * credential calculations 666 * (notably. ptrace) */ 667 }; 668 669 /* 670 * Bits in flags field of signal_struct. 671 */ 672 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 673 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 674 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 675 /* 676 * Pending notifications to parent. 677 */ 678 #define SIGNAL_CLD_STOPPED 0x00000010 679 #define SIGNAL_CLD_CONTINUED 0x00000020 680 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 681 682 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 683 684 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 685 static inline int signal_group_exit(const struct signal_struct *sig) 686 { 687 return (sig->flags & SIGNAL_GROUP_EXIT) || 688 (sig->group_exit_task != NULL); 689 } 690 691 /* 692 * Some day this will be a full-fledged user tracking system.. 693 */ 694 struct user_struct { 695 atomic_t __count; /* reference count */ 696 atomic_t processes; /* How many processes does this user have? */ 697 atomic_t files; /* How many open files does this user have? */ 698 atomic_t sigpending; /* How many pending signals does this user have? */ 699 #ifdef CONFIG_INOTIFY_USER 700 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 701 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 702 #endif 703 #ifdef CONFIG_FANOTIFY 704 atomic_t fanotify_listeners; 705 #endif 706 #ifdef CONFIG_EPOLL 707 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 708 #endif 709 #ifdef CONFIG_POSIX_MQUEUE 710 /* protected by mq_lock */ 711 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 712 #endif 713 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 714 715 #ifdef CONFIG_KEYS 716 struct key *uid_keyring; /* UID specific keyring */ 717 struct key *session_keyring; /* UID's default session keyring */ 718 #endif 719 720 /* Hash table maintenance information */ 721 struct hlist_node uidhash_node; 722 kuid_t uid; 723 724 #ifdef CONFIG_PERF_EVENTS 725 atomic_long_t locked_vm; 726 #endif 727 }; 728 729 extern int uids_sysfs_init(void); 730 731 extern struct user_struct *find_user(kuid_t); 732 733 extern struct user_struct root_user; 734 #define INIT_USER (&root_user) 735 736 737 struct backing_dev_info; 738 struct reclaim_state; 739 740 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 741 struct sched_info { 742 /* cumulative counters */ 743 unsigned long pcount; /* # of times run on this cpu */ 744 unsigned long long run_delay; /* time spent waiting on a runqueue */ 745 746 /* timestamps */ 747 unsigned long long last_arrival,/* when we last ran on a cpu */ 748 last_queued; /* when we were last queued to run */ 749 }; 750 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 751 752 #ifdef CONFIG_TASK_DELAY_ACCT 753 struct task_delay_info { 754 spinlock_t lock; 755 unsigned int flags; /* Private per-task flags */ 756 757 /* For each stat XXX, add following, aligned appropriately 758 * 759 * struct timespec XXX_start, XXX_end; 760 * u64 XXX_delay; 761 * u32 XXX_count; 762 * 763 * Atomicity of updates to XXX_delay, XXX_count protected by 764 * single lock above (split into XXX_lock if contention is an issue). 765 */ 766 767 /* 768 * XXX_count is incremented on every XXX operation, the delay 769 * associated with the operation is added to XXX_delay. 770 * XXX_delay contains the accumulated delay time in nanoseconds. 771 */ 772 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 773 u64 blkio_delay; /* wait for sync block io completion */ 774 u64 swapin_delay; /* wait for swapin block io completion */ 775 u32 blkio_count; /* total count of the number of sync block */ 776 /* io operations performed */ 777 u32 swapin_count; /* total count of the number of swapin block */ 778 /* io operations performed */ 779 780 struct timespec freepages_start, freepages_end; 781 u64 freepages_delay; /* wait for memory reclaim */ 782 u32 freepages_count; /* total count of memory reclaim */ 783 }; 784 #endif /* CONFIG_TASK_DELAY_ACCT */ 785 786 static inline int sched_info_on(void) 787 { 788 #ifdef CONFIG_SCHEDSTATS 789 return 1; 790 #elif defined(CONFIG_TASK_DELAY_ACCT) 791 extern int delayacct_on; 792 return delayacct_on; 793 #else 794 return 0; 795 #endif 796 } 797 798 enum cpu_idle_type { 799 CPU_IDLE, 800 CPU_NOT_IDLE, 801 CPU_NEWLY_IDLE, 802 CPU_MAX_IDLE_TYPES 803 }; 804 805 /* 806 * Increase resolution of nice-level calculations for 64-bit architectures. 807 * The extra resolution improves shares distribution and load balancing of 808 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 809 * hierarchies, especially on larger systems. This is not a user-visible change 810 * and does not change the user-interface for setting shares/weights. 811 * 812 * We increase resolution only if we have enough bits to allow this increased 813 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 814 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 815 * increased costs. 816 */ 817 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 818 # define SCHED_LOAD_RESOLUTION 10 819 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 820 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 821 #else 822 # define SCHED_LOAD_RESOLUTION 0 823 # define scale_load(w) (w) 824 # define scale_load_down(w) (w) 825 #endif 826 827 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 828 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 829 830 /* 831 * Increase resolution of cpu_power calculations 832 */ 833 #define SCHED_POWER_SHIFT 10 834 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 835 836 /* 837 * sched-domains (multiprocessor balancing) declarations: 838 */ 839 #ifdef CONFIG_SMP 840 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 841 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 842 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 843 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 844 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 845 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 846 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 847 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 848 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 849 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 850 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 851 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 852 853 extern int __weak arch_sd_sibiling_asym_packing(void); 854 855 struct sched_group_power { 856 atomic_t ref; 857 /* 858 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 859 * single CPU. 860 */ 861 unsigned int power, power_orig; 862 unsigned long next_update; 863 /* 864 * Number of busy cpus in this group. 865 */ 866 atomic_t nr_busy_cpus; 867 868 unsigned long cpumask[0]; /* iteration mask */ 869 }; 870 871 struct sched_group { 872 struct sched_group *next; /* Must be a circular list */ 873 atomic_t ref; 874 875 unsigned int group_weight; 876 struct sched_group_power *sgp; 877 878 /* 879 * The CPUs this group covers. 880 * 881 * NOTE: this field is variable length. (Allocated dynamically 882 * by attaching extra space to the end of the structure, 883 * depending on how many CPUs the kernel has booted up with) 884 */ 885 unsigned long cpumask[0]; 886 }; 887 888 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 889 { 890 return to_cpumask(sg->cpumask); 891 } 892 893 /* 894 * cpumask masking which cpus in the group are allowed to iterate up the domain 895 * tree. 896 */ 897 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 898 { 899 return to_cpumask(sg->sgp->cpumask); 900 } 901 902 /** 903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 904 * @group: The group whose first cpu is to be returned. 905 */ 906 static inline unsigned int group_first_cpu(struct sched_group *group) 907 { 908 return cpumask_first(sched_group_cpus(group)); 909 } 910 911 struct sched_domain_attr { 912 int relax_domain_level; 913 }; 914 915 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 916 .relax_domain_level = -1, \ 917 } 918 919 extern int sched_domain_level_max; 920 921 struct sched_domain { 922 /* These fields must be setup */ 923 struct sched_domain *parent; /* top domain must be null terminated */ 924 struct sched_domain *child; /* bottom domain must be null terminated */ 925 struct sched_group *groups; /* the balancing groups of the domain */ 926 unsigned long min_interval; /* Minimum balance interval ms */ 927 unsigned long max_interval; /* Maximum balance interval ms */ 928 unsigned int busy_factor; /* less balancing by factor if busy */ 929 unsigned int imbalance_pct; /* No balance until over watermark */ 930 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 931 unsigned int busy_idx; 932 unsigned int idle_idx; 933 unsigned int newidle_idx; 934 unsigned int wake_idx; 935 unsigned int forkexec_idx; 936 unsigned int smt_gain; 937 int flags; /* See SD_* */ 938 int level; 939 940 /* Runtime fields. */ 941 unsigned long last_balance; /* init to jiffies. units in jiffies */ 942 unsigned int balance_interval; /* initialise to 1. units in ms. */ 943 unsigned int nr_balance_failed; /* initialise to 0 */ 944 945 u64 last_update; 946 947 #ifdef CONFIG_SCHEDSTATS 948 /* load_balance() stats */ 949 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 950 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 951 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 952 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 953 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 954 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 955 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 956 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 957 958 /* Active load balancing */ 959 unsigned int alb_count; 960 unsigned int alb_failed; 961 unsigned int alb_pushed; 962 963 /* SD_BALANCE_EXEC stats */ 964 unsigned int sbe_count; 965 unsigned int sbe_balanced; 966 unsigned int sbe_pushed; 967 968 /* SD_BALANCE_FORK stats */ 969 unsigned int sbf_count; 970 unsigned int sbf_balanced; 971 unsigned int sbf_pushed; 972 973 /* try_to_wake_up() stats */ 974 unsigned int ttwu_wake_remote; 975 unsigned int ttwu_move_affine; 976 unsigned int ttwu_move_balance; 977 #endif 978 #ifdef CONFIG_SCHED_DEBUG 979 char *name; 980 #endif 981 union { 982 void *private; /* used during construction */ 983 struct rcu_head rcu; /* used during destruction */ 984 }; 985 986 unsigned int span_weight; 987 /* 988 * Span of all CPUs in this domain. 989 * 990 * NOTE: this field is variable length. (Allocated dynamically 991 * by attaching extra space to the end of the structure, 992 * depending on how many CPUs the kernel has booted up with) 993 */ 994 unsigned long span[0]; 995 }; 996 997 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 998 { 999 return to_cpumask(sd->span); 1000 } 1001 1002 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1003 struct sched_domain_attr *dattr_new); 1004 1005 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1006 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1007 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1008 1009 /* Test a flag in parent sched domain */ 1010 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1011 { 1012 if (sd->parent && (sd->parent->flags & flag)) 1013 return 1; 1014 1015 return 0; 1016 } 1017 1018 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1019 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1020 1021 bool cpus_share_cache(int this_cpu, int that_cpu); 1022 1023 #else /* CONFIG_SMP */ 1024 1025 struct sched_domain_attr; 1026 1027 static inline void 1028 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1029 struct sched_domain_attr *dattr_new) 1030 { 1031 } 1032 1033 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1034 { 1035 return true; 1036 } 1037 1038 #endif /* !CONFIG_SMP */ 1039 1040 1041 struct io_context; /* See blkdev.h */ 1042 1043 1044 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1045 extern void prefetch_stack(struct task_struct *t); 1046 #else 1047 static inline void prefetch_stack(struct task_struct *t) { } 1048 #endif 1049 1050 struct audit_context; /* See audit.c */ 1051 struct mempolicy; 1052 struct pipe_inode_info; 1053 struct uts_namespace; 1054 1055 struct rq; 1056 struct sched_domain; 1057 1058 /* 1059 * wake flags 1060 */ 1061 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1062 #define WF_FORK 0x02 /* child wakeup after fork */ 1063 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1064 1065 #define ENQUEUE_WAKEUP 1 1066 #define ENQUEUE_HEAD 2 1067 #ifdef CONFIG_SMP 1068 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1069 #else 1070 #define ENQUEUE_WAKING 0 1071 #endif 1072 1073 #define DEQUEUE_SLEEP 1 1074 1075 struct sched_class { 1076 const struct sched_class *next; 1077 1078 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1079 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1080 void (*yield_task) (struct rq *rq); 1081 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1082 1083 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1084 1085 struct task_struct * (*pick_next_task) (struct rq *rq); 1086 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1087 1088 #ifdef CONFIG_SMP 1089 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1090 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1091 1092 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1093 void (*post_schedule) (struct rq *this_rq); 1094 void (*task_waking) (struct task_struct *task); 1095 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1096 1097 void (*set_cpus_allowed)(struct task_struct *p, 1098 const struct cpumask *newmask); 1099 1100 void (*rq_online)(struct rq *rq); 1101 void (*rq_offline)(struct rq *rq); 1102 #endif 1103 1104 void (*set_curr_task) (struct rq *rq); 1105 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1106 void (*task_fork) (struct task_struct *p); 1107 1108 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1109 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1110 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1111 int oldprio); 1112 1113 unsigned int (*get_rr_interval) (struct rq *rq, 1114 struct task_struct *task); 1115 1116 #ifdef CONFIG_FAIR_GROUP_SCHED 1117 void (*task_move_group) (struct task_struct *p, int on_rq); 1118 #endif 1119 }; 1120 1121 struct load_weight { 1122 unsigned long weight, inv_weight; 1123 }; 1124 1125 struct sched_avg { 1126 /* 1127 * These sums represent an infinite geometric series and so are bound 1128 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 1129 * choices of y < 1-2^(-32)*1024. 1130 */ 1131 u32 runnable_avg_sum, runnable_avg_period; 1132 u64 last_runnable_update; 1133 s64 decay_count; 1134 unsigned long load_avg_contrib; 1135 }; 1136 1137 #ifdef CONFIG_SCHEDSTATS 1138 struct sched_statistics { 1139 u64 wait_start; 1140 u64 wait_max; 1141 u64 wait_count; 1142 u64 wait_sum; 1143 u64 iowait_count; 1144 u64 iowait_sum; 1145 1146 u64 sleep_start; 1147 u64 sleep_max; 1148 s64 sum_sleep_runtime; 1149 1150 u64 block_start; 1151 u64 block_max; 1152 u64 exec_max; 1153 u64 slice_max; 1154 1155 u64 nr_migrations_cold; 1156 u64 nr_failed_migrations_affine; 1157 u64 nr_failed_migrations_running; 1158 u64 nr_failed_migrations_hot; 1159 u64 nr_forced_migrations; 1160 1161 u64 nr_wakeups; 1162 u64 nr_wakeups_sync; 1163 u64 nr_wakeups_migrate; 1164 u64 nr_wakeups_local; 1165 u64 nr_wakeups_remote; 1166 u64 nr_wakeups_affine; 1167 u64 nr_wakeups_affine_attempts; 1168 u64 nr_wakeups_passive; 1169 u64 nr_wakeups_idle; 1170 }; 1171 #endif 1172 1173 struct sched_entity { 1174 struct load_weight load; /* for load-balancing */ 1175 struct rb_node run_node; 1176 struct list_head group_node; 1177 unsigned int on_rq; 1178 1179 u64 exec_start; 1180 u64 sum_exec_runtime; 1181 u64 vruntime; 1182 u64 prev_sum_exec_runtime; 1183 1184 u64 nr_migrations; 1185 1186 #ifdef CONFIG_SCHEDSTATS 1187 struct sched_statistics statistics; 1188 #endif 1189 1190 #ifdef CONFIG_FAIR_GROUP_SCHED 1191 struct sched_entity *parent; 1192 /* rq on which this entity is (to be) queued: */ 1193 struct cfs_rq *cfs_rq; 1194 /* rq "owned" by this entity/group: */ 1195 struct cfs_rq *my_q; 1196 #endif 1197 /* 1198 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1199 * removed when useful for applications beyond shares distribution (e.g. 1200 * load-balance). 1201 */ 1202 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1203 /* Per-entity load-tracking */ 1204 struct sched_avg avg; 1205 #endif 1206 }; 1207 1208 struct sched_rt_entity { 1209 struct list_head run_list; 1210 unsigned long timeout; 1211 unsigned int time_slice; 1212 1213 struct sched_rt_entity *back; 1214 #ifdef CONFIG_RT_GROUP_SCHED 1215 struct sched_rt_entity *parent; 1216 /* rq on which this entity is (to be) queued: */ 1217 struct rt_rq *rt_rq; 1218 /* rq "owned" by this entity/group: */ 1219 struct rt_rq *my_q; 1220 #endif 1221 }; 1222 1223 /* 1224 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1225 * Timeslices get refilled after they expire. 1226 */ 1227 #define RR_TIMESLICE (100 * HZ / 1000) 1228 1229 struct rcu_node; 1230 1231 enum perf_event_task_context { 1232 perf_invalid_context = -1, 1233 perf_hw_context = 0, 1234 perf_sw_context, 1235 perf_nr_task_contexts, 1236 }; 1237 1238 struct task_struct { 1239 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1240 void *stack; 1241 atomic_t usage; 1242 unsigned int flags; /* per process flags, defined below */ 1243 unsigned int ptrace; 1244 1245 #ifdef CONFIG_SMP 1246 struct llist_node wake_entry; 1247 int on_cpu; 1248 #endif 1249 int on_rq; 1250 1251 int prio, static_prio, normal_prio; 1252 unsigned int rt_priority; 1253 const struct sched_class *sched_class; 1254 struct sched_entity se; 1255 struct sched_rt_entity rt; 1256 #ifdef CONFIG_CGROUP_SCHED 1257 struct task_group *sched_task_group; 1258 #endif 1259 1260 #ifdef CONFIG_PREEMPT_NOTIFIERS 1261 /* list of struct preempt_notifier: */ 1262 struct hlist_head preempt_notifiers; 1263 #endif 1264 1265 /* 1266 * fpu_counter contains the number of consecutive context switches 1267 * that the FPU is used. If this is over a threshold, the lazy fpu 1268 * saving becomes unlazy to save the trap. This is an unsigned char 1269 * so that after 256 times the counter wraps and the behavior turns 1270 * lazy again; this to deal with bursty apps that only use FPU for 1271 * a short time 1272 */ 1273 unsigned char fpu_counter; 1274 #ifdef CONFIG_BLK_DEV_IO_TRACE 1275 unsigned int btrace_seq; 1276 #endif 1277 1278 unsigned int policy; 1279 int nr_cpus_allowed; 1280 cpumask_t cpus_allowed; 1281 1282 #ifdef CONFIG_PREEMPT_RCU 1283 int rcu_read_lock_nesting; 1284 char rcu_read_unlock_special; 1285 struct list_head rcu_node_entry; 1286 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1287 #ifdef CONFIG_TREE_PREEMPT_RCU 1288 struct rcu_node *rcu_blocked_node; 1289 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1290 #ifdef CONFIG_RCU_BOOST 1291 struct rt_mutex *rcu_boost_mutex; 1292 #endif /* #ifdef CONFIG_RCU_BOOST */ 1293 1294 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1295 struct sched_info sched_info; 1296 #endif 1297 1298 struct list_head tasks; 1299 #ifdef CONFIG_SMP 1300 struct plist_node pushable_tasks; 1301 #endif 1302 1303 struct mm_struct *mm, *active_mm; 1304 #ifdef CONFIG_COMPAT_BRK 1305 unsigned brk_randomized:1; 1306 #endif 1307 #if defined(SPLIT_RSS_COUNTING) 1308 struct task_rss_stat rss_stat; 1309 #endif 1310 /* task state */ 1311 int exit_state; 1312 int exit_code, exit_signal; 1313 int pdeath_signal; /* The signal sent when the parent dies */ 1314 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1315 /* ??? */ 1316 unsigned int personality; 1317 unsigned did_exec:1; 1318 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1319 * execve */ 1320 unsigned in_iowait:1; 1321 1322 /* task may not gain privileges */ 1323 unsigned no_new_privs:1; 1324 1325 /* Revert to default priority/policy when forking */ 1326 unsigned sched_reset_on_fork:1; 1327 unsigned sched_contributes_to_load:1; 1328 1329 pid_t pid; 1330 pid_t tgid; 1331 1332 #ifdef CONFIG_CC_STACKPROTECTOR 1333 /* Canary value for the -fstack-protector gcc feature */ 1334 unsigned long stack_canary; 1335 #endif 1336 /* 1337 * pointers to (original) parent process, youngest child, younger sibling, 1338 * older sibling, respectively. (p->father can be replaced with 1339 * p->real_parent->pid) 1340 */ 1341 struct task_struct __rcu *real_parent; /* real parent process */ 1342 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1343 /* 1344 * children/sibling forms the list of my natural children 1345 */ 1346 struct list_head children; /* list of my children */ 1347 struct list_head sibling; /* linkage in my parent's children list */ 1348 struct task_struct *group_leader; /* threadgroup leader */ 1349 1350 /* 1351 * ptraced is the list of tasks this task is using ptrace on. 1352 * This includes both natural children and PTRACE_ATTACH targets. 1353 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1354 */ 1355 struct list_head ptraced; 1356 struct list_head ptrace_entry; 1357 1358 /* PID/PID hash table linkage. */ 1359 struct pid_link pids[PIDTYPE_MAX]; 1360 struct list_head thread_group; 1361 1362 struct completion *vfork_done; /* for vfork() */ 1363 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1364 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1365 1366 cputime_t utime, stime, utimescaled, stimescaled; 1367 cputime_t gtime; 1368 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1369 struct cputime prev_cputime; 1370 #endif 1371 unsigned long nvcsw, nivcsw; /* context switch counts */ 1372 struct timespec start_time; /* monotonic time */ 1373 struct timespec real_start_time; /* boot based time */ 1374 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1375 unsigned long min_flt, maj_flt; 1376 1377 struct task_cputime cputime_expires; 1378 struct list_head cpu_timers[3]; 1379 1380 /* process credentials */ 1381 const struct cred __rcu *real_cred; /* objective and real subjective task 1382 * credentials (COW) */ 1383 const struct cred __rcu *cred; /* effective (overridable) subjective task 1384 * credentials (COW) */ 1385 char comm[TASK_COMM_LEN]; /* executable name excluding path 1386 - access with [gs]et_task_comm (which lock 1387 it with task_lock()) 1388 - initialized normally by setup_new_exec */ 1389 /* file system info */ 1390 int link_count, total_link_count; 1391 #ifdef CONFIG_SYSVIPC 1392 /* ipc stuff */ 1393 struct sysv_sem sysvsem; 1394 #endif 1395 #ifdef CONFIG_DETECT_HUNG_TASK 1396 /* hung task detection */ 1397 unsigned long last_switch_count; 1398 #endif 1399 /* CPU-specific state of this task */ 1400 struct thread_struct thread; 1401 /* filesystem information */ 1402 struct fs_struct *fs; 1403 /* open file information */ 1404 struct files_struct *files; 1405 /* namespaces */ 1406 struct nsproxy *nsproxy; 1407 /* signal handlers */ 1408 struct signal_struct *signal; 1409 struct sighand_struct *sighand; 1410 1411 sigset_t blocked, real_blocked; 1412 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1413 struct sigpending pending; 1414 1415 unsigned long sas_ss_sp; 1416 size_t sas_ss_size; 1417 int (*notifier)(void *priv); 1418 void *notifier_data; 1419 sigset_t *notifier_mask; 1420 struct callback_head *task_works; 1421 1422 struct audit_context *audit_context; 1423 #ifdef CONFIG_AUDITSYSCALL 1424 kuid_t loginuid; 1425 unsigned int sessionid; 1426 #endif 1427 struct seccomp seccomp; 1428 1429 /* Thread group tracking */ 1430 u32 parent_exec_id; 1431 u32 self_exec_id; 1432 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1433 * mempolicy */ 1434 spinlock_t alloc_lock; 1435 1436 /* Protection of the PI data structures: */ 1437 raw_spinlock_t pi_lock; 1438 1439 #ifdef CONFIG_RT_MUTEXES 1440 /* PI waiters blocked on a rt_mutex held by this task */ 1441 struct plist_head pi_waiters; 1442 /* Deadlock detection and priority inheritance handling */ 1443 struct rt_mutex_waiter *pi_blocked_on; 1444 #endif 1445 1446 #ifdef CONFIG_DEBUG_MUTEXES 1447 /* mutex deadlock detection */ 1448 struct mutex_waiter *blocked_on; 1449 #endif 1450 #ifdef CONFIG_TRACE_IRQFLAGS 1451 unsigned int irq_events; 1452 unsigned long hardirq_enable_ip; 1453 unsigned long hardirq_disable_ip; 1454 unsigned int hardirq_enable_event; 1455 unsigned int hardirq_disable_event; 1456 int hardirqs_enabled; 1457 int hardirq_context; 1458 unsigned long softirq_disable_ip; 1459 unsigned long softirq_enable_ip; 1460 unsigned int softirq_disable_event; 1461 unsigned int softirq_enable_event; 1462 int softirqs_enabled; 1463 int softirq_context; 1464 #endif 1465 #ifdef CONFIG_LOCKDEP 1466 # define MAX_LOCK_DEPTH 48UL 1467 u64 curr_chain_key; 1468 int lockdep_depth; 1469 unsigned int lockdep_recursion; 1470 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1471 gfp_t lockdep_reclaim_gfp; 1472 #endif 1473 1474 /* journalling filesystem info */ 1475 void *journal_info; 1476 1477 /* stacked block device info */ 1478 struct bio_list *bio_list; 1479 1480 #ifdef CONFIG_BLOCK 1481 /* stack plugging */ 1482 struct blk_plug *plug; 1483 #endif 1484 1485 /* VM state */ 1486 struct reclaim_state *reclaim_state; 1487 1488 struct backing_dev_info *backing_dev_info; 1489 1490 struct io_context *io_context; 1491 1492 unsigned long ptrace_message; 1493 siginfo_t *last_siginfo; /* For ptrace use. */ 1494 struct task_io_accounting ioac; 1495 #if defined(CONFIG_TASK_XACCT) 1496 u64 acct_rss_mem1; /* accumulated rss usage */ 1497 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1498 cputime_t acct_timexpd; /* stime + utime since last update */ 1499 #endif 1500 #ifdef CONFIG_CPUSETS 1501 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1502 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1503 int cpuset_mem_spread_rotor; 1504 int cpuset_slab_spread_rotor; 1505 #endif 1506 #ifdef CONFIG_CGROUPS 1507 /* Control Group info protected by css_set_lock */ 1508 struct css_set __rcu *cgroups; 1509 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1510 struct list_head cg_list; 1511 #endif 1512 #ifdef CONFIG_FUTEX 1513 struct robust_list_head __user *robust_list; 1514 #ifdef CONFIG_COMPAT 1515 struct compat_robust_list_head __user *compat_robust_list; 1516 #endif 1517 struct list_head pi_state_list; 1518 struct futex_pi_state *pi_state_cache; 1519 #endif 1520 #ifdef CONFIG_PERF_EVENTS 1521 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1522 struct mutex perf_event_mutex; 1523 struct list_head perf_event_list; 1524 #endif 1525 #ifdef CONFIG_NUMA 1526 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1527 short il_next; 1528 short pref_node_fork; 1529 #endif 1530 #ifdef CONFIG_NUMA_BALANCING 1531 int numa_scan_seq; 1532 int numa_migrate_seq; 1533 unsigned int numa_scan_period; 1534 u64 node_stamp; /* migration stamp */ 1535 struct callback_head numa_work; 1536 #endif /* CONFIG_NUMA_BALANCING */ 1537 1538 struct rcu_head rcu; 1539 1540 /* 1541 * cache last used pipe for splice 1542 */ 1543 struct pipe_inode_info *splice_pipe; 1544 1545 struct page_frag task_frag; 1546 1547 #ifdef CONFIG_TASK_DELAY_ACCT 1548 struct task_delay_info *delays; 1549 #endif 1550 #ifdef CONFIG_FAULT_INJECTION 1551 int make_it_fail; 1552 #endif 1553 /* 1554 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1555 * balance_dirty_pages() for some dirty throttling pause 1556 */ 1557 int nr_dirtied; 1558 int nr_dirtied_pause; 1559 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1560 1561 #ifdef CONFIG_LATENCYTOP 1562 int latency_record_count; 1563 struct latency_record latency_record[LT_SAVECOUNT]; 1564 #endif 1565 /* 1566 * time slack values; these are used to round up poll() and 1567 * select() etc timeout values. These are in nanoseconds. 1568 */ 1569 unsigned long timer_slack_ns; 1570 unsigned long default_timer_slack_ns; 1571 1572 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1573 /* Index of current stored address in ret_stack */ 1574 int curr_ret_stack; 1575 /* Stack of return addresses for return function tracing */ 1576 struct ftrace_ret_stack *ret_stack; 1577 /* time stamp for last schedule */ 1578 unsigned long long ftrace_timestamp; 1579 /* 1580 * Number of functions that haven't been traced 1581 * because of depth overrun. 1582 */ 1583 atomic_t trace_overrun; 1584 /* Pause for the tracing */ 1585 atomic_t tracing_graph_pause; 1586 #endif 1587 #ifdef CONFIG_TRACING 1588 /* state flags for use by tracers */ 1589 unsigned long trace; 1590 /* bitmask and counter of trace recursion */ 1591 unsigned long trace_recursion; 1592 #endif /* CONFIG_TRACING */ 1593 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1594 struct memcg_batch_info { 1595 int do_batch; /* incremented when batch uncharge started */ 1596 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1597 unsigned long nr_pages; /* uncharged usage */ 1598 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1599 } memcg_batch; 1600 unsigned int memcg_kmem_skip_account; 1601 #endif 1602 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1603 atomic_t ptrace_bp_refcnt; 1604 #endif 1605 #ifdef CONFIG_UPROBES 1606 struct uprobe_task *utask; 1607 #endif 1608 }; 1609 1610 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1611 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1612 1613 #ifdef CONFIG_NUMA_BALANCING 1614 extern void task_numa_fault(int node, int pages, bool migrated); 1615 extern void set_numabalancing_state(bool enabled); 1616 #else 1617 static inline void task_numa_fault(int node, int pages, bool migrated) 1618 { 1619 } 1620 static inline void set_numabalancing_state(bool enabled) 1621 { 1622 } 1623 #endif 1624 1625 /* 1626 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1627 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1628 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1629 * values are inverted: lower p->prio value means higher priority. 1630 * 1631 * The MAX_USER_RT_PRIO value allows the actual maximum 1632 * RT priority to be separate from the value exported to 1633 * user-space. This allows kernel threads to set their 1634 * priority to a value higher than any user task. Note: 1635 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1636 */ 1637 1638 #define MAX_USER_RT_PRIO 100 1639 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1640 1641 #define MAX_PRIO (MAX_RT_PRIO + 40) 1642 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1643 1644 static inline int rt_prio(int prio) 1645 { 1646 if (unlikely(prio < MAX_RT_PRIO)) 1647 return 1; 1648 return 0; 1649 } 1650 1651 static inline int rt_task(struct task_struct *p) 1652 { 1653 return rt_prio(p->prio); 1654 } 1655 1656 static inline struct pid *task_pid(struct task_struct *task) 1657 { 1658 return task->pids[PIDTYPE_PID].pid; 1659 } 1660 1661 static inline struct pid *task_tgid(struct task_struct *task) 1662 { 1663 return task->group_leader->pids[PIDTYPE_PID].pid; 1664 } 1665 1666 /* 1667 * Without tasklist or rcu lock it is not safe to dereference 1668 * the result of task_pgrp/task_session even if task == current, 1669 * we can race with another thread doing sys_setsid/sys_setpgid. 1670 */ 1671 static inline struct pid *task_pgrp(struct task_struct *task) 1672 { 1673 return task->group_leader->pids[PIDTYPE_PGID].pid; 1674 } 1675 1676 static inline struct pid *task_session(struct task_struct *task) 1677 { 1678 return task->group_leader->pids[PIDTYPE_SID].pid; 1679 } 1680 1681 struct pid_namespace; 1682 1683 /* 1684 * the helpers to get the task's different pids as they are seen 1685 * from various namespaces 1686 * 1687 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1688 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1689 * current. 1690 * task_xid_nr_ns() : id seen from the ns specified; 1691 * 1692 * set_task_vxid() : assigns a virtual id to a task; 1693 * 1694 * see also pid_nr() etc in include/linux/pid.h 1695 */ 1696 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1697 struct pid_namespace *ns); 1698 1699 static inline pid_t task_pid_nr(struct task_struct *tsk) 1700 { 1701 return tsk->pid; 1702 } 1703 1704 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1705 struct pid_namespace *ns) 1706 { 1707 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1708 } 1709 1710 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1711 { 1712 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1713 } 1714 1715 1716 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1717 { 1718 return tsk->tgid; 1719 } 1720 1721 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1722 1723 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1724 { 1725 return pid_vnr(task_tgid(tsk)); 1726 } 1727 1728 1729 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1730 struct pid_namespace *ns) 1731 { 1732 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1733 } 1734 1735 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1736 { 1737 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1738 } 1739 1740 1741 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1742 struct pid_namespace *ns) 1743 { 1744 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1745 } 1746 1747 static inline pid_t task_session_vnr(struct task_struct *tsk) 1748 { 1749 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1750 } 1751 1752 /* obsolete, do not use */ 1753 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1754 { 1755 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1756 } 1757 1758 /** 1759 * pid_alive - check that a task structure is not stale 1760 * @p: Task structure to be checked. 1761 * 1762 * Test if a process is not yet dead (at most zombie state) 1763 * If pid_alive fails, then pointers within the task structure 1764 * can be stale and must not be dereferenced. 1765 */ 1766 static inline int pid_alive(struct task_struct *p) 1767 { 1768 return p->pids[PIDTYPE_PID].pid != NULL; 1769 } 1770 1771 /** 1772 * is_global_init - check if a task structure is init 1773 * @tsk: Task structure to be checked. 1774 * 1775 * Check if a task structure is the first user space task the kernel created. 1776 */ 1777 static inline int is_global_init(struct task_struct *tsk) 1778 { 1779 return tsk->pid == 1; 1780 } 1781 1782 extern struct pid *cad_pid; 1783 1784 extern void free_task(struct task_struct *tsk); 1785 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1786 1787 extern void __put_task_struct(struct task_struct *t); 1788 1789 static inline void put_task_struct(struct task_struct *t) 1790 { 1791 if (atomic_dec_and_test(&t->usage)) 1792 __put_task_struct(t); 1793 } 1794 1795 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1796 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1797 1798 /* 1799 * Per process flags 1800 */ 1801 #define PF_EXITING 0x00000004 /* getting shut down */ 1802 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1803 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1804 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1805 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1806 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1807 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1808 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1809 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1810 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1811 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1812 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1813 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1814 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1815 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1816 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1817 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1818 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1819 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1820 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1821 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1822 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1823 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1824 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1825 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1826 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1827 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1828 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1829 1830 /* 1831 * Only the _current_ task can read/write to tsk->flags, but other 1832 * tasks can access tsk->flags in readonly mode for example 1833 * with tsk_used_math (like during threaded core dumping). 1834 * There is however an exception to this rule during ptrace 1835 * or during fork: the ptracer task is allowed to write to the 1836 * child->flags of its traced child (same goes for fork, the parent 1837 * can write to the child->flags), because we're guaranteed the 1838 * child is not running and in turn not changing child->flags 1839 * at the same time the parent does it. 1840 */ 1841 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1842 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1843 #define clear_used_math() clear_stopped_child_used_math(current) 1844 #define set_used_math() set_stopped_child_used_math(current) 1845 #define conditional_stopped_child_used_math(condition, child) \ 1846 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1847 #define conditional_used_math(condition) \ 1848 conditional_stopped_child_used_math(condition, current) 1849 #define copy_to_stopped_child_used_math(child) \ 1850 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1851 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1852 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1853 #define used_math() tsk_used_math(current) 1854 1855 /* 1856 * task->jobctl flags 1857 */ 1858 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1859 1860 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1861 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1862 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1863 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1864 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1865 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1866 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1867 1868 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1869 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1870 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1871 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1872 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1873 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1874 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1875 1876 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1877 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1878 1879 extern bool task_set_jobctl_pending(struct task_struct *task, 1880 unsigned int mask); 1881 extern void task_clear_jobctl_trapping(struct task_struct *task); 1882 extern void task_clear_jobctl_pending(struct task_struct *task, 1883 unsigned int mask); 1884 1885 #ifdef CONFIG_PREEMPT_RCU 1886 1887 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1888 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1889 1890 static inline void rcu_copy_process(struct task_struct *p) 1891 { 1892 p->rcu_read_lock_nesting = 0; 1893 p->rcu_read_unlock_special = 0; 1894 #ifdef CONFIG_TREE_PREEMPT_RCU 1895 p->rcu_blocked_node = NULL; 1896 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1897 #ifdef CONFIG_RCU_BOOST 1898 p->rcu_boost_mutex = NULL; 1899 #endif /* #ifdef CONFIG_RCU_BOOST */ 1900 INIT_LIST_HEAD(&p->rcu_node_entry); 1901 } 1902 1903 #else 1904 1905 static inline void rcu_copy_process(struct task_struct *p) 1906 { 1907 } 1908 1909 #endif 1910 1911 static inline void tsk_restore_flags(struct task_struct *task, 1912 unsigned long orig_flags, unsigned long flags) 1913 { 1914 task->flags &= ~flags; 1915 task->flags |= orig_flags & flags; 1916 } 1917 1918 #ifdef CONFIG_SMP 1919 extern void do_set_cpus_allowed(struct task_struct *p, 1920 const struct cpumask *new_mask); 1921 1922 extern int set_cpus_allowed_ptr(struct task_struct *p, 1923 const struct cpumask *new_mask); 1924 #else 1925 static inline void do_set_cpus_allowed(struct task_struct *p, 1926 const struct cpumask *new_mask) 1927 { 1928 } 1929 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1930 const struct cpumask *new_mask) 1931 { 1932 if (!cpumask_test_cpu(0, new_mask)) 1933 return -EINVAL; 1934 return 0; 1935 } 1936 #endif 1937 1938 #ifdef CONFIG_NO_HZ 1939 void calc_load_enter_idle(void); 1940 void calc_load_exit_idle(void); 1941 #else 1942 static inline void calc_load_enter_idle(void) { } 1943 static inline void calc_load_exit_idle(void) { } 1944 #endif /* CONFIG_NO_HZ */ 1945 1946 #ifndef CONFIG_CPUMASK_OFFSTACK 1947 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1948 { 1949 return set_cpus_allowed_ptr(p, &new_mask); 1950 } 1951 #endif 1952 1953 /* 1954 * Do not use outside of architecture code which knows its limitations. 1955 * 1956 * sched_clock() has no promise of monotonicity or bounded drift between 1957 * CPUs, use (which you should not) requires disabling IRQs. 1958 * 1959 * Please use one of the three interfaces below. 1960 */ 1961 extern unsigned long long notrace sched_clock(void); 1962 /* 1963 * See the comment in kernel/sched/clock.c 1964 */ 1965 extern u64 cpu_clock(int cpu); 1966 extern u64 local_clock(void); 1967 extern u64 sched_clock_cpu(int cpu); 1968 1969 1970 extern void sched_clock_init(void); 1971 1972 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1973 static inline void sched_clock_tick(void) 1974 { 1975 } 1976 1977 static inline void sched_clock_idle_sleep_event(void) 1978 { 1979 } 1980 1981 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1982 { 1983 } 1984 #else 1985 /* 1986 * Architectures can set this to 1 if they have specified 1987 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1988 * but then during bootup it turns out that sched_clock() 1989 * is reliable after all: 1990 */ 1991 extern int sched_clock_stable; 1992 1993 extern void sched_clock_tick(void); 1994 extern void sched_clock_idle_sleep_event(void); 1995 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1996 #endif 1997 1998 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1999 /* 2000 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2001 * The reason for this explicit opt-in is not to have perf penalty with 2002 * slow sched_clocks. 2003 */ 2004 extern void enable_sched_clock_irqtime(void); 2005 extern void disable_sched_clock_irqtime(void); 2006 #else 2007 static inline void enable_sched_clock_irqtime(void) {} 2008 static inline void disable_sched_clock_irqtime(void) {} 2009 #endif 2010 2011 extern unsigned long long 2012 task_sched_runtime(struct task_struct *task); 2013 2014 /* sched_exec is called by processes performing an exec */ 2015 #ifdef CONFIG_SMP 2016 extern void sched_exec(void); 2017 #else 2018 #define sched_exec() {} 2019 #endif 2020 2021 extern void sched_clock_idle_sleep_event(void); 2022 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2023 2024 #ifdef CONFIG_HOTPLUG_CPU 2025 extern void idle_task_exit(void); 2026 #else 2027 static inline void idle_task_exit(void) {} 2028 #endif 2029 2030 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2031 extern void wake_up_idle_cpu(int cpu); 2032 #else 2033 static inline void wake_up_idle_cpu(int cpu) { } 2034 #endif 2035 2036 extern unsigned int sysctl_sched_latency; 2037 extern unsigned int sysctl_sched_min_granularity; 2038 extern unsigned int sysctl_sched_wakeup_granularity; 2039 extern unsigned int sysctl_sched_child_runs_first; 2040 2041 enum sched_tunable_scaling { 2042 SCHED_TUNABLESCALING_NONE, 2043 SCHED_TUNABLESCALING_LOG, 2044 SCHED_TUNABLESCALING_LINEAR, 2045 SCHED_TUNABLESCALING_END, 2046 }; 2047 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2048 2049 extern unsigned int sysctl_numa_balancing_scan_delay; 2050 extern unsigned int sysctl_numa_balancing_scan_period_min; 2051 extern unsigned int sysctl_numa_balancing_scan_period_max; 2052 extern unsigned int sysctl_numa_balancing_scan_period_reset; 2053 extern unsigned int sysctl_numa_balancing_scan_size; 2054 extern unsigned int sysctl_numa_balancing_settle_count; 2055 2056 #ifdef CONFIG_SCHED_DEBUG 2057 extern unsigned int sysctl_sched_migration_cost; 2058 extern unsigned int sysctl_sched_nr_migrate; 2059 extern unsigned int sysctl_sched_time_avg; 2060 extern unsigned int sysctl_timer_migration; 2061 extern unsigned int sysctl_sched_shares_window; 2062 2063 int sched_proc_update_handler(struct ctl_table *table, int write, 2064 void __user *buffer, size_t *length, 2065 loff_t *ppos); 2066 #endif 2067 #ifdef CONFIG_SCHED_DEBUG 2068 static inline unsigned int get_sysctl_timer_migration(void) 2069 { 2070 return sysctl_timer_migration; 2071 } 2072 #else 2073 static inline unsigned int get_sysctl_timer_migration(void) 2074 { 2075 return 1; 2076 } 2077 #endif 2078 extern unsigned int sysctl_sched_rt_period; 2079 extern int sysctl_sched_rt_runtime; 2080 2081 int sched_rt_handler(struct ctl_table *table, int write, 2082 void __user *buffer, size_t *lenp, 2083 loff_t *ppos); 2084 2085 #ifdef CONFIG_SCHED_AUTOGROUP 2086 extern unsigned int sysctl_sched_autogroup_enabled; 2087 2088 extern void sched_autogroup_create_attach(struct task_struct *p); 2089 extern void sched_autogroup_detach(struct task_struct *p); 2090 extern void sched_autogroup_fork(struct signal_struct *sig); 2091 extern void sched_autogroup_exit(struct signal_struct *sig); 2092 #ifdef CONFIG_PROC_FS 2093 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2094 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2095 #endif 2096 #else 2097 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2098 static inline void sched_autogroup_detach(struct task_struct *p) { } 2099 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2100 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2101 #endif 2102 2103 #ifdef CONFIG_CFS_BANDWIDTH 2104 extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2105 #endif 2106 2107 #ifdef CONFIG_RT_MUTEXES 2108 extern int rt_mutex_getprio(struct task_struct *p); 2109 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2110 extern void rt_mutex_adjust_pi(struct task_struct *p); 2111 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2112 { 2113 return tsk->pi_blocked_on != NULL; 2114 } 2115 #else 2116 static inline int rt_mutex_getprio(struct task_struct *p) 2117 { 2118 return p->normal_prio; 2119 } 2120 # define rt_mutex_adjust_pi(p) do { } while (0) 2121 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2122 { 2123 return false; 2124 } 2125 #endif 2126 2127 extern bool yield_to(struct task_struct *p, bool preempt); 2128 extern void set_user_nice(struct task_struct *p, long nice); 2129 extern int task_prio(const struct task_struct *p); 2130 extern int task_nice(const struct task_struct *p); 2131 extern int can_nice(const struct task_struct *p, const int nice); 2132 extern int task_curr(const struct task_struct *p); 2133 extern int idle_cpu(int cpu); 2134 extern int sched_setscheduler(struct task_struct *, int, 2135 const struct sched_param *); 2136 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2137 const struct sched_param *); 2138 extern struct task_struct *idle_task(int cpu); 2139 /** 2140 * is_idle_task - is the specified task an idle task? 2141 * @p: the task in question. 2142 */ 2143 static inline bool is_idle_task(const struct task_struct *p) 2144 { 2145 return p->pid == 0; 2146 } 2147 extern struct task_struct *curr_task(int cpu); 2148 extern void set_curr_task(int cpu, struct task_struct *p); 2149 2150 void yield(void); 2151 2152 /* 2153 * The default (Linux) execution domain. 2154 */ 2155 extern struct exec_domain default_exec_domain; 2156 2157 union thread_union { 2158 struct thread_info thread_info; 2159 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2160 }; 2161 2162 #ifndef __HAVE_ARCH_KSTACK_END 2163 static inline int kstack_end(void *addr) 2164 { 2165 /* Reliable end of stack detection: 2166 * Some APM bios versions misalign the stack 2167 */ 2168 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2169 } 2170 #endif 2171 2172 extern union thread_union init_thread_union; 2173 extern struct task_struct init_task; 2174 2175 extern struct mm_struct init_mm; 2176 2177 extern struct pid_namespace init_pid_ns; 2178 2179 /* 2180 * find a task by one of its numerical ids 2181 * 2182 * find_task_by_pid_ns(): 2183 * finds a task by its pid in the specified namespace 2184 * find_task_by_vpid(): 2185 * finds a task by its virtual pid 2186 * 2187 * see also find_vpid() etc in include/linux/pid.h 2188 */ 2189 2190 extern struct task_struct *find_task_by_vpid(pid_t nr); 2191 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2192 struct pid_namespace *ns); 2193 2194 extern void __set_special_pids(struct pid *pid); 2195 2196 /* per-UID process charging. */ 2197 extern struct user_struct * alloc_uid(kuid_t); 2198 static inline struct user_struct *get_uid(struct user_struct *u) 2199 { 2200 atomic_inc(&u->__count); 2201 return u; 2202 } 2203 extern void free_uid(struct user_struct *); 2204 2205 #include <asm/current.h> 2206 2207 extern void xtime_update(unsigned long ticks); 2208 2209 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2210 extern int wake_up_process(struct task_struct *tsk); 2211 extern void wake_up_new_task(struct task_struct *tsk); 2212 #ifdef CONFIG_SMP 2213 extern void kick_process(struct task_struct *tsk); 2214 #else 2215 static inline void kick_process(struct task_struct *tsk) { } 2216 #endif 2217 extern void sched_fork(struct task_struct *p); 2218 extern void sched_dead(struct task_struct *p); 2219 2220 extern void proc_caches_init(void); 2221 extern void flush_signals(struct task_struct *); 2222 extern void __flush_signals(struct task_struct *); 2223 extern void ignore_signals(struct task_struct *); 2224 extern void flush_signal_handlers(struct task_struct *, int force_default); 2225 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2226 2227 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2228 { 2229 unsigned long flags; 2230 int ret; 2231 2232 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2233 ret = dequeue_signal(tsk, mask, info); 2234 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2235 2236 return ret; 2237 } 2238 2239 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2240 sigset_t *mask); 2241 extern void unblock_all_signals(void); 2242 extern void release_task(struct task_struct * p); 2243 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2244 extern int force_sigsegv(int, struct task_struct *); 2245 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2246 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2247 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2248 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2249 const struct cred *, u32); 2250 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2251 extern int kill_pid(struct pid *pid, int sig, int priv); 2252 extern int kill_proc_info(int, struct siginfo *, pid_t); 2253 extern __must_check bool do_notify_parent(struct task_struct *, int); 2254 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2255 extern void force_sig(int, struct task_struct *); 2256 extern int send_sig(int, struct task_struct *, int); 2257 extern int zap_other_threads(struct task_struct *p); 2258 extern struct sigqueue *sigqueue_alloc(void); 2259 extern void sigqueue_free(struct sigqueue *); 2260 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2261 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2262 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2263 2264 static inline void restore_saved_sigmask(void) 2265 { 2266 if (test_and_clear_restore_sigmask()) 2267 __set_current_blocked(¤t->saved_sigmask); 2268 } 2269 2270 static inline sigset_t *sigmask_to_save(void) 2271 { 2272 sigset_t *res = ¤t->blocked; 2273 if (unlikely(test_restore_sigmask())) 2274 res = ¤t->saved_sigmask; 2275 return res; 2276 } 2277 2278 static inline int kill_cad_pid(int sig, int priv) 2279 { 2280 return kill_pid(cad_pid, sig, priv); 2281 } 2282 2283 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2284 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2285 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2286 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2287 2288 /* 2289 * True if we are on the alternate signal stack. 2290 */ 2291 static inline int on_sig_stack(unsigned long sp) 2292 { 2293 #ifdef CONFIG_STACK_GROWSUP 2294 return sp >= current->sas_ss_sp && 2295 sp - current->sas_ss_sp < current->sas_ss_size; 2296 #else 2297 return sp > current->sas_ss_sp && 2298 sp - current->sas_ss_sp <= current->sas_ss_size; 2299 #endif 2300 } 2301 2302 static inline int sas_ss_flags(unsigned long sp) 2303 { 2304 return (current->sas_ss_size == 0 ? SS_DISABLE 2305 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2306 } 2307 2308 /* 2309 * Routines for handling mm_structs 2310 */ 2311 extern struct mm_struct * mm_alloc(void); 2312 2313 /* mmdrop drops the mm and the page tables */ 2314 extern void __mmdrop(struct mm_struct *); 2315 static inline void mmdrop(struct mm_struct * mm) 2316 { 2317 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2318 __mmdrop(mm); 2319 } 2320 2321 /* mmput gets rid of the mappings and all user-space */ 2322 extern void mmput(struct mm_struct *); 2323 /* Grab a reference to a task's mm, if it is not already going away */ 2324 extern struct mm_struct *get_task_mm(struct task_struct *task); 2325 /* 2326 * Grab a reference to a task's mm, if it is not already going away 2327 * and ptrace_may_access with the mode parameter passed to it 2328 * succeeds. 2329 */ 2330 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2331 /* Remove the current tasks stale references to the old mm_struct */ 2332 extern void mm_release(struct task_struct *, struct mm_struct *); 2333 /* Allocate a new mm structure and copy contents from tsk->mm */ 2334 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2335 2336 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2337 struct task_struct *); 2338 extern void flush_thread(void); 2339 extern void exit_thread(void); 2340 2341 extern void exit_files(struct task_struct *); 2342 extern void __cleanup_sighand(struct sighand_struct *); 2343 2344 extern void exit_itimers(struct signal_struct *); 2345 extern void flush_itimer_signals(void); 2346 2347 extern void do_group_exit(int); 2348 2349 extern int allow_signal(int); 2350 extern int disallow_signal(int); 2351 2352 extern int do_execve(const char *, 2353 const char __user * const __user *, 2354 const char __user * const __user *); 2355 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2356 struct task_struct *fork_idle(int); 2357 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2358 2359 extern void set_task_comm(struct task_struct *tsk, char *from); 2360 extern char *get_task_comm(char *to, struct task_struct *tsk); 2361 2362 #ifdef CONFIG_SMP 2363 void scheduler_ipi(void); 2364 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2365 #else 2366 static inline void scheduler_ipi(void) { } 2367 static inline unsigned long wait_task_inactive(struct task_struct *p, 2368 long match_state) 2369 { 2370 return 1; 2371 } 2372 #endif 2373 2374 #define next_task(p) \ 2375 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2376 2377 #define for_each_process(p) \ 2378 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2379 2380 extern bool current_is_single_threaded(void); 2381 2382 /* 2383 * Careful: do_each_thread/while_each_thread is a double loop so 2384 * 'break' will not work as expected - use goto instead. 2385 */ 2386 #define do_each_thread(g, t) \ 2387 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2388 2389 #define while_each_thread(g, t) \ 2390 while ((t = next_thread(t)) != g) 2391 2392 static inline int get_nr_threads(struct task_struct *tsk) 2393 { 2394 return tsk->signal->nr_threads; 2395 } 2396 2397 static inline bool thread_group_leader(struct task_struct *p) 2398 { 2399 return p->exit_signal >= 0; 2400 } 2401 2402 /* Do to the insanities of de_thread it is possible for a process 2403 * to have the pid of the thread group leader without actually being 2404 * the thread group leader. For iteration through the pids in proc 2405 * all we care about is that we have a task with the appropriate 2406 * pid, we don't actually care if we have the right task. 2407 */ 2408 static inline int has_group_leader_pid(struct task_struct *p) 2409 { 2410 return p->pid == p->tgid; 2411 } 2412 2413 static inline 2414 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2415 { 2416 return p1->tgid == p2->tgid; 2417 } 2418 2419 static inline struct task_struct *next_thread(const struct task_struct *p) 2420 { 2421 return list_entry_rcu(p->thread_group.next, 2422 struct task_struct, thread_group); 2423 } 2424 2425 static inline int thread_group_empty(struct task_struct *p) 2426 { 2427 return list_empty(&p->thread_group); 2428 } 2429 2430 #define delay_group_leader(p) \ 2431 (thread_group_leader(p) && !thread_group_empty(p)) 2432 2433 /* 2434 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2435 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2436 * pins the final release of task.io_context. Also protects ->cpuset and 2437 * ->cgroup.subsys[]. And ->vfork_done. 2438 * 2439 * Nests both inside and outside of read_lock(&tasklist_lock). 2440 * It must not be nested with write_lock_irq(&tasklist_lock), 2441 * neither inside nor outside. 2442 */ 2443 static inline void task_lock(struct task_struct *p) 2444 { 2445 spin_lock(&p->alloc_lock); 2446 } 2447 2448 static inline void task_unlock(struct task_struct *p) 2449 { 2450 spin_unlock(&p->alloc_lock); 2451 } 2452 2453 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2454 unsigned long *flags); 2455 2456 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2457 unsigned long *flags) 2458 { 2459 struct sighand_struct *ret; 2460 2461 ret = __lock_task_sighand(tsk, flags); 2462 (void)__cond_lock(&tsk->sighand->siglock, ret); 2463 return ret; 2464 } 2465 2466 static inline void unlock_task_sighand(struct task_struct *tsk, 2467 unsigned long *flags) 2468 { 2469 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2470 } 2471 2472 #ifdef CONFIG_CGROUPS 2473 static inline void threadgroup_change_begin(struct task_struct *tsk) 2474 { 2475 down_read(&tsk->signal->group_rwsem); 2476 } 2477 static inline void threadgroup_change_end(struct task_struct *tsk) 2478 { 2479 up_read(&tsk->signal->group_rwsem); 2480 } 2481 2482 /** 2483 * threadgroup_lock - lock threadgroup 2484 * @tsk: member task of the threadgroup to lock 2485 * 2486 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2487 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2488 * perform exec. This is useful for cases where the threadgroup needs to 2489 * stay stable across blockable operations. 2490 * 2491 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2492 * synchronization. While held, no new task will be added to threadgroup 2493 * and no existing live task will have its PF_EXITING set. 2494 * 2495 * During exec, a task goes and puts its thread group through unusual 2496 * changes. After de-threading, exclusive access is assumed to resources 2497 * which are usually shared by tasks in the same group - e.g. sighand may 2498 * be replaced with a new one. Also, the exec'ing task takes over group 2499 * leader role including its pid. Exclude these changes while locked by 2500 * grabbing cred_guard_mutex which is used to synchronize exec path. 2501 */ 2502 static inline void threadgroup_lock(struct task_struct *tsk) 2503 { 2504 /* 2505 * exec uses exit for de-threading nesting group_rwsem inside 2506 * cred_guard_mutex. Grab cred_guard_mutex first. 2507 */ 2508 mutex_lock(&tsk->signal->cred_guard_mutex); 2509 down_write(&tsk->signal->group_rwsem); 2510 } 2511 2512 /** 2513 * threadgroup_unlock - unlock threadgroup 2514 * @tsk: member task of the threadgroup to unlock 2515 * 2516 * Reverse threadgroup_lock(). 2517 */ 2518 static inline void threadgroup_unlock(struct task_struct *tsk) 2519 { 2520 up_write(&tsk->signal->group_rwsem); 2521 mutex_unlock(&tsk->signal->cred_guard_mutex); 2522 } 2523 #else 2524 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2525 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2526 static inline void threadgroup_lock(struct task_struct *tsk) {} 2527 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2528 #endif 2529 2530 #ifndef __HAVE_THREAD_FUNCTIONS 2531 2532 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2533 #define task_stack_page(task) ((task)->stack) 2534 2535 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2536 { 2537 *task_thread_info(p) = *task_thread_info(org); 2538 task_thread_info(p)->task = p; 2539 } 2540 2541 static inline unsigned long *end_of_stack(struct task_struct *p) 2542 { 2543 return (unsigned long *)(task_thread_info(p) + 1); 2544 } 2545 2546 #endif 2547 2548 static inline int object_is_on_stack(void *obj) 2549 { 2550 void *stack = task_stack_page(current); 2551 2552 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2553 } 2554 2555 extern void thread_info_cache_init(void); 2556 2557 #ifdef CONFIG_DEBUG_STACK_USAGE 2558 static inline unsigned long stack_not_used(struct task_struct *p) 2559 { 2560 unsigned long *n = end_of_stack(p); 2561 2562 do { /* Skip over canary */ 2563 n++; 2564 } while (!*n); 2565 2566 return (unsigned long)n - (unsigned long)end_of_stack(p); 2567 } 2568 #endif 2569 2570 /* set thread flags in other task's structures 2571 * - see asm/thread_info.h for TIF_xxxx flags available 2572 */ 2573 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2574 { 2575 set_ti_thread_flag(task_thread_info(tsk), flag); 2576 } 2577 2578 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2579 { 2580 clear_ti_thread_flag(task_thread_info(tsk), flag); 2581 } 2582 2583 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2584 { 2585 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2586 } 2587 2588 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2589 { 2590 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2591 } 2592 2593 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2594 { 2595 return test_ti_thread_flag(task_thread_info(tsk), flag); 2596 } 2597 2598 static inline void set_tsk_need_resched(struct task_struct *tsk) 2599 { 2600 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2601 } 2602 2603 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2604 { 2605 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2606 } 2607 2608 static inline int test_tsk_need_resched(struct task_struct *tsk) 2609 { 2610 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2611 } 2612 2613 static inline int restart_syscall(void) 2614 { 2615 set_tsk_thread_flag(current, TIF_SIGPENDING); 2616 return -ERESTARTNOINTR; 2617 } 2618 2619 static inline int signal_pending(struct task_struct *p) 2620 { 2621 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2622 } 2623 2624 static inline int __fatal_signal_pending(struct task_struct *p) 2625 { 2626 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2627 } 2628 2629 static inline int fatal_signal_pending(struct task_struct *p) 2630 { 2631 return signal_pending(p) && __fatal_signal_pending(p); 2632 } 2633 2634 static inline int signal_pending_state(long state, struct task_struct *p) 2635 { 2636 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2637 return 0; 2638 if (!signal_pending(p)) 2639 return 0; 2640 2641 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2642 } 2643 2644 static inline int need_resched(void) 2645 { 2646 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2647 } 2648 2649 /* 2650 * cond_resched() and cond_resched_lock(): latency reduction via 2651 * explicit rescheduling in places that are safe. The return 2652 * value indicates whether a reschedule was done in fact. 2653 * cond_resched_lock() will drop the spinlock before scheduling, 2654 * cond_resched_softirq() will enable bhs before scheduling. 2655 */ 2656 extern int _cond_resched(void); 2657 2658 #define cond_resched() ({ \ 2659 __might_sleep(__FILE__, __LINE__, 0); \ 2660 _cond_resched(); \ 2661 }) 2662 2663 extern int __cond_resched_lock(spinlock_t *lock); 2664 2665 #ifdef CONFIG_PREEMPT_COUNT 2666 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2667 #else 2668 #define PREEMPT_LOCK_OFFSET 0 2669 #endif 2670 2671 #define cond_resched_lock(lock) ({ \ 2672 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2673 __cond_resched_lock(lock); \ 2674 }) 2675 2676 extern int __cond_resched_softirq(void); 2677 2678 #define cond_resched_softirq() ({ \ 2679 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2680 __cond_resched_softirq(); \ 2681 }) 2682 2683 /* 2684 * Does a critical section need to be broken due to another 2685 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2686 * but a general need for low latency) 2687 */ 2688 static inline int spin_needbreak(spinlock_t *lock) 2689 { 2690 #ifdef CONFIG_PREEMPT 2691 return spin_is_contended(lock); 2692 #else 2693 return 0; 2694 #endif 2695 } 2696 2697 /* 2698 * Thread group CPU time accounting. 2699 */ 2700 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2701 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2702 2703 static inline void thread_group_cputime_init(struct signal_struct *sig) 2704 { 2705 raw_spin_lock_init(&sig->cputimer.lock); 2706 } 2707 2708 /* 2709 * Reevaluate whether the task has signals pending delivery. 2710 * Wake the task if so. 2711 * This is required every time the blocked sigset_t changes. 2712 * callers must hold sighand->siglock. 2713 */ 2714 extern void recalc_sigpending_and_wake(struct task_struct *t); 2715 extern void recalc_sigpending(void); 2716 2717 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2718 2719 static inline void signal_wake_up(struct task_struct *t, bool resume) 2720 { 2721 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2722 } 2723 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2724 { 2725 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2726 } 2727 2728 /* 2729 * Wrappers for p->thread_info->cpu access. No-op on UP. 2730 */ 2731 #ifdef CONFIG_SMP 2732 2733 static inline unsigned int task_cpu(const struct task_struct *p) 2734 { 2735 return task_thread_info(p)->cpu; 2736 } 2737 2738 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2739 2740 #else 2741 2742 static inline unsigned int task_cpu(const struct task_struct *p) 2743 { 2744 return 0; 2745 } 2746 2747 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2748 { 2749 } 2750 2751 #endif /* CONFIG_SMP */ 2752 2753 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2754 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2755 2756 extern void normalize_rt_tasks(void); 2757 2758 #ifdef CONFIG_CGROUP_SCHED 2759 2760 extern struct task_group root_task_group; 2761 2762 extern struct task_group *sched_create_group(struct task_group *parent); 2763 extern void sched_destroy_group(struct task_group *tg); 2764 extern void sched_move_task(struct task_struct *tsk); 2765 #ifdef CONFIG_FAIR_GROUP_SCHED 2766 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2767 extern unsigned long sched_group_shares(struct task_group *tg); 2768 #endif 2769 #ifdef CONFIG_RT_GROUP_SCHED 2770 extern int sched_group_set_rt_runtime(struct task_group *tg, 2771 long rt_runtime_us); 2772 extern long sched_group_rt_runtime(struct task_group *tg); 2773 extern int sched_group_set_rt_period(struct task_group *tg, 2774 long rt_period_us); 2775 extern long sched_group_rt_period(struct task_group *tg); 2776 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2777 #endif 2778 #endif /* CONFIG_CGROUP_SCHED */ 2779 2780 extern int task_can_switch_user(struct user_struct *up, 2781 struct task_struct *tsk); 2782 2783 #ifdef CONFIG_TASK_XACCT 2784 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2785 { 2786 tsk->ioac.rchar += amt; 2787 } 2788 2789 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2790 { 2791 tsk->ioac.wchar += amt; 2792 } 2793 2794 static inline void inc_syscr(struct task_struct *tsk) 2795 { 2796 tsk->ioac.syscr++; 2797 } 2798 2799 static inline void inc_syscw(struct task_struct *tsk) 2800 { 2801 tsk->ioac.syscw++; 2802 } 2803 #else 2804 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2805 { 2806 } 2807 2808 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2809 { 2810 } 2811 2812 static inline void inc_syscr(struct task_struct *tsk) 2813 { 2814 } 2815 2816 static inline void inc_syscw(struct task_struct *tsk) 2817 { 2818 } 2819 #endif 2820 2821 #ifndef TASK_SIZE_OF 2822 #define TASK_SIZE_OF(tsk) TASK_SIZE 2823 #endif 2824 2825 #ifdef CONFIG_MM_OWNER 2826 extern void mm_update_next_owner(struct mm_struct *mm); 2827 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2828 #else 2829 static inline void mm_update_next_owner(struct mm_struct *mm) 2830 { 2831 } 2832 2833 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2834 { 2835 } 2836 #endif /* CONFIG_MM_OWNER */ 2837 2838 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2839 unsigned int limit) 2840 { 2841 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2842 } 2843 2844 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2845 unsigned int limit) 2846 { 2847 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2848 } 2849 2850 static inline unsigned long rlimit(unsigned int limit) 2851 { 2852 return task_rlimit(current, limit); 2853 } 2854 2855 static inline unsigned long rlimit_max(unsigned int limit) 2856 { 2857 return task_rlimit_max(current, limit); 2858 } 2859 2860 #endif 2861