xref: /linux/include/linux/sched.h (revision d0096c2f9cfcb4ce385698491604610fcc1a53b3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/uidgid_types.h>
48 #include <linux/tracepoint-defs.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct perf_ctx_data;
69 struct pid_namespace;
70 struct pipe_inode_info;
71 struct rcu_node;
72 struct reclaim_state;
73 struct robust_list_head;
74 struct root_domain;
75 struct rq;
76 struct sched_attr;
77 struct sched_dl_entity;
78 struct seq_file;
79 struct sighand_struct;
80 struct signal_struct;
81 struct task_delay_info;
82 struct task_group;
83 struct task_struct;
84 struct user_event_mm;
85 
86 #include <linux/sched/ext.h>
87 
88 /*
89  * Task state bitmask. NOTE! These bits are also
90  * encoded in fs/proc/array.c: get_task_state().
91  *
92  * We have two separate sets of flags: task->__state
93  * is about runnability, while task->exit_state are
94  * about the task exiting. Confusing, but this way
95  * modifying one set can't modify the other one by
96  * mistake.
97  */
98 
99 /* Used in tsk->__state: */
100 #define TASK_RUNNING			0x00000000
101 #define TASK_INTERRUPTIBLE		0x00000001
102 #define TASK_UNINTERRUPTIBLE		0x00000002
103 #define __TASK_STOPPED			0x00000004
104 #define __TASK_TRACED			0x00000008
105 /* Used in tsk->exit_state: */
106 #define EXIT_DEAD			0x00000010
107 #define EXIT_ZOMBIE			0x00000020
108 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
109 /* Used in tsk->__state again: */
110 #define TASK_PARKED			0x00000040
111 #define TASK_DEAD			0x00000080
112 #define TASK_WAKEKILL			0x00000100
113 #define TASK_WAKING			0x00000200
114 #define TASK_NOLOAD			0x00000400
115 #define TASK_NEW			0x00000800
116 #define TASK_RTLOCK_WAIT		0x00001000
117 #define TASK_FREEZABLE			0x00002000
118 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
119 #define TASK_FROZEN			0x00008000
120 #define TASK_STATE_MAX			0x00010000
121 
122 #define TASK_ANY			(TASK_STATE_MAX-1)
123 
124 /*
125  * DO NOT ADD ANY NEW USERS !
126  */
127 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128 
129 /* Convenience macros for the sake of set_current_state: */
130 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
131 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
132 #define TASK_TRACED			__TASK_TRACED
133 
134 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135 
136 /* Convenience macros for the sake of wake_up(): */
137 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138 
139 /* get_task_state(): */
140 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
141 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
142 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
143 					 TASK_PARKED)
144 
145 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
146 
147 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
148 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
149 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
150 
151 /*
152  * Special states are those that do not use the normal wait-loop pattern. See
153  * the comment with set_special_state().
154  */
155 #define is_special_task_state(state)					\
156 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
157 		    TASK_DEAD | TASK_FROZEN))
158 
159 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
160 # define debug_normal_state_change(state_value)				\
161 	do {								\
162 		WARN_ON_ONCE(is_special_task_state(state_value));	\
163 		current->task_state_change = _THIS_IP_;			\
164 	} while (0)
165 
166 # define debug_special_state_change(state_value)			\
167 	do {								\
168 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
169 		current->task_state_change = _THIS_IP_;			\
170 	} while (0)
171 
172 # define debug_rtlock_wait_set_state()					\
173 	do {								 \
174 		current->saved_state_change = current->task_state_change;\
175 		current->task_state_change = _THIS_IP_;			 \
176 	} while (0)
177 
178 # define debug_rtlock_wait_restore_state()				\
179 	do {								 \
180 		current->task_state_change = current->saved_state_change;\
181 	} while (0)
182 
183 #else
184 # define debug_normal_state_change(cond)	do { } while (0)
185 # define debug_special_state_change(cond)	do { } while (0)
186 # define debug_rtlock_wait_set_state()		do { } while (0)
187 # define debug_rtlock_wait_restore_state()	do { } while (0)
188 #endif
189 
190 #define trace_set_current_state(state_value)                     \
191 	do {                                                     \
192 		if (tracepoint_enabled(sched_set_state_tp))      \
193 			__trace_set_current_state(state_value); \
194 	} while (0)
195 
196 /*
197  * set_current_state() includes a barrier so that the write of current->__state
198  * is correctly serialised wrt the caller's subsequent test of whether to
199  * actually sleep:
200  *
201  *   for (;;) {
202  *	set_current_state(TASK_UNINTERRUPTIBLE);
203  *	if (CONDITION)
204  *	   break;
205  *
206  *	schedule();
207  *   }
208  *   __set_current_state(TASK_RUNNING);
209  *
210  * If the caller does not need such serialisation (because, for instance, the
211  * CONDITION test and condition change and wakeup are under the same lock) then
212  * use __set_current_state().
213  *
214  * The above is typically ordered against the wakeup, which does:
215  *
216  *   CONDITION = 1;
217  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
218  *
219  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
220  * accessing p->__state.
221  *
222  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
223  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
224  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
225  *
226  * However, with slightly different timing the wakeup TASK_RUNNING store can
227  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
228  * a problem either because that will result in one extra go around the loop
229  * and our @cond test will save the day.
230  *
231  * Also see the comments of try_to_wake_up().
232  */
233 #define __set_current_state(state_value)				\
234 	do {								\
235 		debug_normal_state_change((state_value));		\
236 		trace_set_current_state(state_value);			\
237 		WRITE_ONCE(current->__state, (state_value));		\
238 	} while (0)
239 
240 #define set_current_state(state_value)					\
241 	do {								\
242 		debug_normal_state_change((state_value));		\
243 		trace_set_current_state(state_value);			\
244 		smp_store_mb(current->__state, (state_value));		\
245 	} while (0)
246 
247 /*
248  * set_special_state() should be used for those states when the blocking task
249  * can not use the regular condition based wait-loop. In that case we must
250  * serialize against wakeups such that any possible in-flight TASK_RUNNING
251  * stores will not collide with our state change.
252  */
253 #define set_special_state(state_value)					\
254 	do {								\
255 		unsigned long flags; /* may shadow */			\
256 									\
257 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
258 		debug_special_state_change((state_value));		\
259 		trace_set_current_state(state_value);			\
260 		WRITE_ONCE(current->__state, (state_value));		\
261 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
262 	} while (0)
263 
264 /*
265  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
266  *
267  * RT's spin/rwlock substitutions are state preserving. The state of the
268  * task when blocking on the lock is saved in task_struct::saved_state and
269  * restored after the lock has been acquired.  These operations are
270  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
271  * lock related wakeups while the task is blocked on the lock are
272  * redirected to operate on task_struct::saved_state to ensure that these
273  * are not dropped. On restore task_struct::saved_state is set to
274  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
275  *
276  * The lock operation looks like this:
277  *
278  *	current_save_and_set_rtlock_wait_state();
279  *	for (;;) {
280  *		if (try_lock())
281  *			break;
282  *		raw_spin_unlock_irq(&lock->wait_lock);
283  *		schedule_rtlock();
284  *		raw_spin_lock_irq(&lock->wait_lock);
285  *		set_current_state(TASK_RTLOCK_WAIT);
286  *	}
287  *	current_restore_rtlock_saved_state();
288  */
289 #define current_save_and_set_rtlock_wait_state()			\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		current->saved_state = current->__state;		\
294 		debug_rtlock_wait_set_state();				\
295 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
296 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
297 		raw_spin_unlock(&current->pi_lock);			\
298 	} while (0);
299 
300 #define current_restore_rtlock_saved_state()				\
301 	do {								\
302 		lockdep_assert_irqs_disabled();				\
303 		raw_spin_lock(&current->pi_lock);			\
304 		debug_rtlock_wait_restore_state();			\
305 		trace_set_current_state(current->saved_state);		\
306 		WRITE_ONCE(current->__state, current->saved_state);	\
307 		current->saved_state = TASK_RUNNING;			\
308 		raw_spin_unlock(&current->pi_lock);			\
309 	} while (0);
310 
311 #define get_current_state()	READ_ONCE(current->__state)
312 
313 /*
314  * Define the task command name length as enum, then it can be visible to
315  * BPF programs.
316  */
317 enum {
318 	TASK_COMM_LEN = 16,
319 };
320 
321 extern void sched_tick(void);
322 
323 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
324 
325 extern long schedule_timeout(long timeout);
326 extern long schedule_timeout_interruptible(long timeout);
327 extern long schedule_timeout_killable(long timeout);
328 extern long schedule_timeout_uninterruptible(long timeout);
329 extern long schedule_timeout_idle(long timeout);
330 asmlinkage void schedule(void);
331 extern void schedule_preempt_disabled(void);
332 asmlinkage void preempt_schedule_irq(void);
333 #ifdef CONFIG_PREEMPT_RT
334  extern void schedule_rtlock(void);
335 #endif
336 
337 extern int __must_check io_schedule_prepare(void);
338 extern void io_schedule_finish(int token);
339 extern long io_schedule_timeout(long timeout);
340 extern void io_schedule(void);
341 
342 /* wrapper functions to trace from this header file */
343 DECLARE_TRACEPOINT(sched_set_state_tp);
344 extern void __trace_set_current_state(int state_value);
345 DECLARE_TRACEPOINT(sched_set_need_resched_tp);
346 extern void __trace_set_need_resched(struct task_struct *curr, int tif);
347 
348 /**
349  * struct prev_cputime - snapshot of system and user cputime
350  * @utime: time spent in user mode
351  * @stime: time spent in system mode
352  * @lock: protects the above two fields
353  *
354  * Stores previous user/system time values such that we can guarantee
355  * monotonicity.
356  */
357 struct prev_cputime {
358 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
359 	u64				utime;
360 	u64				stime;
361 	raw_spinlock_t			lock;
362 #endif
363 };
364 
365 enum vtime_state {
366 	/* Task is sleeping or running in a CPU with VTIME inactive: */
367 	VTIME_INACTIVE = 0,
368 	/* Task is idle */
369 	VTIME_IDLE,
370 	/* Task runs in kernelspace in a CPU with VTIME active: */
371 	VTIME_SYS,
372 	/* Task runs in userspace in a CPU with VTIME active: */
373 	VTIME_USER,
374 	/* Task runs as guests in a CPU with VTIME active: */
375 	VTIME_GUEST,
376 };
377 
378 struct vtime {
379 	seqcount_t		seqcount;
380 	unsigned long long	starttime;
381 	enum vtime_state	state;
382 	unsigned int		cpu;
383 	u64			utime;
384 	u64			stime;
385 	u64			gtime;
386 };
387 
388 /*
389  * Utilization clamp constraints.
390  * @UCLAMP_MIN:	Minimum utilization
391  * @UCLAMP_MAX:	Maximum utilization
392  * @UCLAMP_CNT:	Utilization clamp constraints count
393  */
394 enum uclamp_id {
395 	UCLAMP_MIN = 0,
396 	UCLAMP_MAX,
397 	UCLAMP_CNT
398 };
399 
400 #ifdef CONFIG_SMP
401 extern struct root_domain def_root_domain;
402 extern struct mutex sched_domains_mutex;
403 extern void sched_domains_mutex_lock(void);
404 extern void sched_domains_mutex_unlock(void);
405 #else
406 static inline void sched_domains_mutex_lock(void) { }
407 static inline void sched_domains_mutex_unlock(void) { }
408 #endif
409 
410 struct sched_param {
411 	int sched_priority;
412 };
413 
414 struct sched_info {
415 #ifdef CONFIG_SCHED_INFO
416 	/* Cumulative counters: */
417 
418 	/* # of times we have run on this CPU: */
419 	unsigned long			pcount;
420 
421 	/* Time spent waiting on a runqueue: */
422 	unsigned long long		run_delay;
423 
424 	/* Max time spent waiting on a runqueue: */
425 	unsigned long long		max_run_delay;
426 
427 	/* Min time spent waiting on a runqueue: */
428 	unsigned long long		min_run_delay;
429 
430 	/* Timestamps: */
431 
432 	/* When did we last run on a CPU? */
433 	unsigned long long		last_arrival;
434 
435 	/* When were we last queued to run? */
436 	unsigned long long		last_queued;
437 
438 #endif /* CONFIG_SCHED_INFO */
439 };
440 
441 /*
442  * Integer metrics need fixed point arithmetic, e.g., sched/fair
443  * has a few: load, load_avg, util_avg, freq, and capacity.
444  *
445  * We define a basic fixed point arithmetic range, and then formalize
446  * all these metrics based on that basic range.
447  */
448 # define SCHED_FIXEDPOINT_SHIFT		10
449 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
450 
451 /* Increase resolution of cpu_capacity calculations */
452 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
453 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
454 
455 struct load_weight {
456 	unsigned long			weight;
457 	u32				inv_weight;
458 };
459 
460 /*
461  * The load/runnable/util_avg accumulates an infinite geometric series
462  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
463  *
464  * [load_avg definition]
465  *
466  *   load_avg = runnable% * scale_load_down(load)
467  *
468  * [runnable_avg definition]
469  *
470  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
471  *
472  * [util_avg definition]
473  *
474  *   util_avg = running% * SCHED_CAPACITY_SCALE
475  *
476  * where runnable% is the time ratio that a sched_entity is runnable and
477  * running% the time ratio that a sched_entity is running.
478  *
479  * For cfs_rq, they are the aggregated values of all runnable and blocked
480  * sched_entities.
481  *
482  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
483  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
484  * for computing those signals (see update_rq_clock_pelt())
485  *
486  * N.B., the above ratios (runnable% and running%) themselves are in the
487  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
488  * to as large a range as necessary. This is for example reflected by
489  * util_avg's SCHED_CAPACITY_SCALE.
490  *
491  * [Overflow issue]
492  *
493  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
494  * with the highest load (=88761), always runnable on a single cfs_rq,
495  * and should not overflow as the number already hits PID_MAX_LIMIT.
496  *
497  * For all other cases (including 32-bit kernels), struct load_weight's
498  * weight will overflow first before we do, because:
499  *
500  *    Max(load_avg) <= Max(load.weight)
501  *
502  * Then it is the load_weight's responsibility to consider overflow
503  * issues.
504  */
505 struct sched_avg {
506 	u64				last_update_time;
507 	u64				load_sum;
508 	u64				runnable_sum;
509 	u32				util_sum;
510 	u32				period_contrib;
511 	unsigned long			load_avg;
512 	unsigned long			runnable_avg;
513 	unsigned long			util_avg;
514 	unsigned int			util_est;
515 } ____cacheline_aligned;
516 
517 /*
518  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
519  * updates. When a task is dequeued, its util_est should not be updated if its
520  * util_avg has not been updated in the meantime.
521  * This information is mapped into the MSB bit of util_est at dequeue time.
522  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
523  * it is safe to use MSB.
524  */
525 #define UTIL_EST_WEIGHT_SHIFT		2
526 #define UTIL_AVG_UNCHANGED		0x80000000
527 
528 struct sched_statistics {
529 #ifdef CONFIG_SCHEDSTATS
530 	u64				wait_start;
531 	u64				wait_max;
532 	u64				wait_count;
533 	u64				wait_sum;
534 	u64				iowait_count;
535 	u64				iowait_sum;
536 
537 	u64				sleep_start;
538 	u64				sleep_max;
539 	s64				sum_sleep_runtime;
540 
541 	u64				block_start;
542 	u64				block_max;
543 	s64				sum_block_runtime;
544 
545 	s64				exec_max;
546 	u64				slice_max;
547 
548 	u64				nr_migrations_cold;
549 	u64				nr_failed_migrations_affine;
550 	u64				nr_failed_migrations_running;
551 	u64				nr_failed_migrations_hot;
552 	u64				nr_forced_migrations;
553 #ifdef CONFIG_NUMA_BALANCING
554 	u64				numa_task_migrated;
555 	u64				numa_task_swapped;
556 #endif
557 
558 	u64				nr_wakeups;
559 	u64				nr_wakeups_sync;
560 	u64				nr_wakeups_migrate;
561 	u64				nr_wakeups_local;
562 	u64				nr_wakeups_remote;
563 	u64				nr_wakeups_affine;
564 	u64				nr_wakeups_affine_attempts;
565 	u64				nr_wakeups_passive;
566 	u64				nr_wakeups_idle;
567 
568 #ifdef CONFIG_SCHED_CORE
569 	u64				core_forceidle_sum;
570 #endif
571 #endif /* CONFIG_SCHEDSTATS */
572 } ____cacheline_aligned;
573 
574 struct sched_entity {
575 	/* For load-balancing: */
576 	struct load_weight		load;
577 	struct rb_node			run_node;
578 	u64				deadline;
579 	u64				min_vruntime;
580 	u64				min_slice;
581 
582 	struct list_head		group_node;
583 	unsigned char			on_rq;
584 	unsigned char			sched_delayed;
585 	unsigned char			rel_deadline;
586 	unsigned char			custom_slice;
587 					/* hole */
588 
589 	u64				exec_start;
590 	u64				sum_exec_runtime;
591 	u64				prev_sum_exec_runtime;
592 	u64				vruntime;
593 	s64				vlag;
594 	u64				slice;
595 
596 	u64				nr_migrations;
597 
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 	int				depth;
600 	struct sched_entity		*parent;
601 	/* rq on which this entity is (to be) queued: */
602 	struct cfs_rq			*cfs_rq;
603 	/* rq "owned" by this entity/group: */
604 	struct cfs_rq			*my_q;
605 	/* cached value of my_q->h_nr_running */
606 	unsigned long			runnable_weight;
607 #endif
608 
609 #ifdef CONFIG_SMP
610 	/*
611 	 * Per entity load average tracking.
612 	 *
613 	 * Put into separate cache line so it does not
614 	 * collide with read-mostly values above.
615 	 */
616 	struct sched_avg		avg;
617 #endif
618 };
619 
620 struct sched_rt_entity {
621 	struct list_head		run_list;
622 	unsigned long			timeout;
623 	unsigned long			watchdog_stamp;
624 	unsigned int			time_slice;
625 	unsigned short			on_rq;
626 	unsigned short			on_list;
627 
628 	struct sched_rt_entity		*back;
629 #ifdef CONFIG_RT_GROUP_SCHED
630 	struct sched_rt_entity		*parent;
631 	/* rq on which this entity is (to be) queued: */
632 	struct rt_rq			*rt_rq;
633 	/* rq "owned" by this entity/group: */
634 	struct rt_rq			*my_q;
635 #endif
636 } __randomize_layout;
637 
638 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
639 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
640 
641 struct sched_dl_entity {
642 	struct rb_node			rb_node;
643 
644 	/*
645 	 * Original scheduling parameters. Copied here from sched_attr
646 	 * during sched_setattr(), they will remain the same until
647 	 * the next sched_setattr().
648 	 */
649 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
650 	u64				dl_deadline;	/* Relative deadline of each instance	*/
651 	u64				dl_period;	/* Separation of two instances (period) */
652 	u64				dl_bw;		/* dl_runtime / dl_period		*/
653 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
654 
655 	/*
656 	 * Actual scheduling parameters. Initialized with the values above,
657 	 * they are continuously updated during task execution. Note that
658 	 * the remaining runtime could be < 0 in case we are in overrun.
659 	 */
660 	s64				runtime;	/* Remaining runtime for this instance	*/
661 	u64				deadline;	/* Absolute deadline for this instance	*/
662 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
663 
664 	/*
665 	 * Some bool flags:
666 	 *
667 	 * @dl_throttled tells if we exhausted the runtime. If so, the
668 	 * task has to wait for a replenishment to be performed at the
669 	 * next firing of dl_timer.
670 	 *
671 	 * @dl_yielded tells if task gave up the CPU before consuming
672 	 * all its available runtime during the last job.
673 	 *
674 	 * @dl_non_contending tells if the task is inactive while still
675 	 * contributing to the active utilization. In other words, it
676 	 * indicates if the inactive timer has been armed and its handler
677 	 * has not been executed yet. This flag is useful to avoid race
678 	 * conditions between the inactive timer handler and the wakeup
679 	 * code.
680 	 *
681 	 * @dl_overrun tells if the task asked to be informed about runtime
682 	 * overruns.
683 	 *
684 	 * @dl_server tells if this is a server entity.
685 	 *
686 	 * @dl_defer tells if this is a deferred or regular server. For
687 	 * now only defer server exists.
688 	 *
689 	 * @dl_defer_armed tells if the deferrable server is waiting
690 	 * for the replenishment timer to activate it.
691 	 *
692 	 * @dl_server_active tells if the dlserver is active(started).
693 	 * dlserver is started on first cfs enqueue on an idle runqueue
694 	 * and is stopped when a dequeue results in 0 cfs tasks on the
695 	 * runqueue. In other words, dlserver is active only when cpu's
696 	 * runqueue has atleast one cfs task.
697 	 *
698 	 * @dl_defer_running tells if the deferrable server is actually
699 	 * running, skipping the defer phase.
700 	 */
701 	unsigned int			dl_throttled      : 1;
702 	unsigned int			dl_yielded        : 1;
703 	unsigned int			dl_non_contending : 1;
704 	unsigned int			dl_overrun	  : 1;
705 	unsigned int			dl_server         : 1;
706 	unsigned int			dl_server_active  : 1;
707 	unsigned int			dl_defer	  : 1;
708 	unsigned int			dl_defer_armed	  : 1;
709 	unsigned int			dl_defer_running  : 1;
710 
711 	/*
712 	 * Bandwidth enforcement timer. Each -deadline task has its
713 	 * own bandwidth to be enforced, thus we need one timer per task.
714 	 */
715 	struct hrtimer			dl_timer;
716 
717 	/*
718 	 * Inactive timer, responsible for decreasing the active utilization
719 	 * at the "0-lag time". When a -deadline task blocks, it contributes
720 	 * to GRUB's active utilization until the "0-lag time", hence a
721 	 * timer is needed to decrease the active utilization at the correct
722 	 * time.
723 	 */
724 	struct hrtimer			inactive_timer;
725 
726 	/*
727 	 * Bits for DL-server functionality. Also see the comment near
728 	 * dl_server_update().
729 	 *
730 	 * @rq the runqueue this server is for
731 	 *
732 	 * @server_has_tasks() returns true if @server_pick return a
733 	 * runnable task.
734 	 */
735 	struct rq			*rq;
736 	dl_server_has_tasks_f		server_has_tasks;
737 	dl_server_pick_f		server_pick_task;
738 
739 #ifdef CONFIG_RT_MUTEXES
740 	/*
741 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
742 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
743 	 * to (the original one/itself).
744 	 */
745 	struct sched_dl_entity *pi_se;
746 #endif
747 };
748 
749 #ifdef CONFIG_UCLAMP_TASK
750 /* Number of utilization clamp buckets (shorter alias) */
751 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
752 
753 /*
754  * Utilization clamp for a scheduling entity
755  * @value:		clamp value "assigned" to a se
756  * @bucket_id:		bucket index corresponding to the "assigned" value
757  * @active:		the se is currently refcounted in a rq's bucket
758  * @user_defined:	the requested clamp value comes from user-space
759  *
760  * The bucket_id is the index of the clamp bucket matching the clamp value
761  * which is pre-computed and stored to avoid expensive integer divisions from
762  * the fast path.
763  *
764  * The active bit is set whenever a task has got an "effective" value assigned,
765  * which can be different from the clamp value "requested" from user-space.
766  * This allows to know a task is refcounted in the rq's bucket corresponding
767  * to the "effective" bucket_id.
768  *
769  * The user_defined bit is set whenever a task has got a task-specific clamp
770  * value requested from userspace, i.e. the system defaults apply to this task
771  * just as a restriction. This allows to relax default clamps when a less
772  * restrictive task-specific value has been requested, thus allowing to
773  * implement a "nice" semantic. For example, a task running with a 20%
774  * default boost can still drop its own boosting to 0%.
775  */
776 struct uclamp_se {
777 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
778 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
779 	unsigned int active		: 1;
780 	unsigned int user_defined	: 1;
781 };
782 #endif /* CONFIG_UCLAMP_TASK */
783 
784 union rcu_special {
785 	struct {
786 		u8			blocked;
787 		u8			need_qs;
788 		u8			exp_hint; /* Hint for performance. */
789 		u8			need_mb; /* Readers need smp_mb(). */
790 	} b; /* Bits. */
791 	u32 s; /* Set of bits. */
792 };
793 
794 enum perf_event_task_context {
795 	perf_invalid_context = -1,
796 	perf_hw_context = 0,
797 	perf_sw_context,
798 	perf_nr_task_contexts,
799 };
800 
801 /*
802  * Number of contexts where an event can trigger:
803  *      task, softirq, hardirq, nmi.
804  */
805 #define PERF_NR_CONTEXTS	4
806 
807 struct wake_q_node {
808 	struct wake_q_node *next;
809 };
810 
811 struct kmap_ctrl {
812 #ifdef CONFIG_KMAP_LOCAL
813 	int				idx;
814 	pte_t				pteval[KM_MAX_IDX];
815 #endif
816 };
817 
818 struct task_struct {
819 #ifdef CONFIG_THREAD_INFO_IN_TASK
820 	/*
821 	 * For reasons of header soup (see current_thread_info()), this
822 	 * must be the first element of task_struct.
823 	 */
824 	struct thread_info		thread_info;
825 #endif
826 	unsigned int			__state;
827 
828 	/* saved state for "spinlock sleepers" */
829 	unsigned int			saved_state;
830 
831 	/*
832 	 * This begins the randomizable portion of task_struct. Only
833 	 * scheduling-critical items should be added above here.
834 	 */
835 	randomized_struct_fields_start
836 
837 	void				*stack;
838 	refcount_t			usage;
839 	/* Per task flags (PF_*), defined further below: */
840 	unsigned int			flags;
841 	unsigned int			ptrace;
842 
843 #ifdef CONFIG_MEM_ALLOC_PROFILING
844 	struct alloc_tag		*alloc_tag;
845 #endif
846 
847 #ifdef CONFIG_SMP
848 	int				on_cpu;
849 	struct __call_single_node	wake_entry;
850 	unsigned int			wakee_flips;
851 	unsigned long			wakee_flip_decay_ts;
852 	struct task_struct		*last_wakee;
853 
854 	/*
855 	 * recent_used_cpu is initially set as the last CPU used by a task
856 	 * that wakes affine another task. Waker/wakee relationships can
857 	 * push tasks around a CPU where each wakeup moves to the next one.
858 	 * Tracking a recently used CPU allows a quick search for a recently
859 	 * used CPU that may be idle.
860 	 */
861 	int				recent_used_cpu;
862 	int				wake_cpu;
863 #endif
864 	int				on_rq;
865 
866 	int				prio;
867 	int				static_prio;
868 	int				normal_prio;
869 	unsigned int			rt_priority;
870 
871 	struct sched_entity		se;
872 	struct sched_rt_entity		rt;
873 	struct sched_dl_entity		dl;
874 	struct sched_dl_entity		*dl_server;
875 #ifdef CONFIG_SCHED_CLASS_EXT
876 	struct sched_ext_entity		scx;
877 #endif
878 	const struct sched_class	*sched_class;
879 
880 #ifdef CONFIG_SCHED_CORE
881 	struct rb_node			core_node;
882 	unsigned long			core_cookie;
883 	unsigned int			core_occupation;
884 #endif
885 
886 #ifdef CONFIG_CGROUP_SCHED
887 	struct task_group		*sched_task_group;
888 #endif
889 
890 
891 #ifdef CONFIG_UCLAMP_TASK
892 	/*
893 	 * Clamp values requested for a scheduling entity.
894 	 * Must be updated with task_rq_lock() held.
895 	 */
896 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
897 	/*
898 	 * Effective clamp values used for a scheduling entity.
899 	 * Must be updated with task_rq_lock() held.
900 	 */
901 	struct uclamp_se		uclamp[UCLAMP_CNT];
902 #endif
903 
904 	struct sched_statistics         stats;
905 
906 #ifdef CONFIG_PREEMPT_NOTIFIERS
907 	/* List of struct preempt_notifier: */
908 	struct hlist_head		preempt_notifiers;
909 #endif
910 
911 #ifdef CONFIG_BLK_DEV_IO_TRACE
912 	unsigned int			btrace_seq;
913 #endif
914 
915 	unsigned int			policy;
916 	unsigned long			max_allowed_capacity;
917 	int				nr_cpus_allowed;
918 	const cpumask_t			*cpus_ptr;
919 	cpumask_t			*user_cpus_ptr;
920 	cpumask_t			cpus_mask;
921 	void				*migration_pending;
922 #ifdef CONFIG_SMP
923 	unsigned short			migration_disabled;
924 #endif
925 	unsigned short			migration_flags;
926 
927 #ifdef CONFIG_PREEMPT_RCU
928 	int				rcu_read_lock_nesting;
929 	union rcu_special		rcu_read_unlock_special;
930 	struct list_head		rcu_node_entry;
931 	struct rcu_node			*rcu_blocked_node;
932 #endif /* #ifdef CONFIG_PREEMPT_RCU */
933 
934 #ifdef CONFIG_TASKS_RCU
935 	unsigned long			rcu_tasks_nvcsw;
936 	u8				rcu_tasks_holdout;
937 	u8				rcu_tasks_idx;
938 	int				rcu_tasks_idle_cpu;
939 	struct list_head		rcu_tasks_holdout_list;
940 	int				rcu_tasks_exit_cpu;
941 	struct list_head		rcu_tasks_exit_list;
942 #endif /* #ifdef CONFIG_TASKS_RCU */
943 
944 #ifdef CONFIG_TASKS_TRACE_RCU
945 	int				trc_reader_nesting;
946 	int				trc_ipi_to_cpu;
947 	union rcu_special		trc_reader_special;
948 	struct list_head		trc_holdout_list;
949 	struct list_head		trc_blkd_node;
950 	int				trc_blkd_cpu;
951 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
952 
953 	struct sched_info		sched_info;
954 
955 	struct list_head		tasks;
956 #ifdef CONFIG_SMP
957 	struct plist_node		pushable_tasks;
958 	struct rb_node			pushable_dl_tasks;
959 #endif
960 
961 	struct mm_struct		*mm;
962 	struct mm_struct		*active_mm;
963 	struct address_space		*faults_disabled_mapping;
964 
965 	int				exit_state;
966 	int				exit_code;
967 	int				exit_signal;
968 	/* The signal sent when the parent dies: */
969 	int				pdeath_signal;
970 	/* JOBCTL_*, siglock protected: */
971 	unsigned long			jobctl;
972 
973 	/* Used for emulating ABI behavior of previous Linux versions: */
974 	unsigned int			personality;
975 
976 	/* Scheduler bits, serialized by scheduler locks: */
977 	unsigned			sched_reset_on_fork:1;
978 	unsigned			sched_contributes_to_load:1;
979 	unsigned			sched_migrated:1;
980 	unsigned			sched_task_hot:1;
981 
982 	/* Force alignment to the next boundary: */
983 	unsigned			:0;
984 
985 	/* Unserialized, strictly 'current' */
986 
987 	/*
988 	 * This field must not be in the scheduler word above due to wakelist
989 	 * queueing no longer being serialized by p->on_cpu. However:
990 	 *
991 	 * p->XXX = X;			ttwu()
992 	 * schedule()			  if (p->on_rq && ..) // false
993 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
994 	 *   deactivate_task()		      ttwu_queue_wakelist())
995 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
996 	 *
997 	 * guarantees all stores of 'current' are visible before
998 	 * ->sched_remote_wakeup gets used, so it can be in this word.
999 	 */
1000 	unsigned			sched_remote_wakeup:1;
1001 #ifdef CONFIG_RT_MUTEXES
1002 	unsigned			sched_rt_mutex:1;
1003 #endif
1004 
1005 	/* Bit to tell TOMOYO we're in execve(): */
1006 	unsigned			in_execve:1;
1007 	unsigned			in_iowait:1;
1008 #ifndef TIF_RESTORE_SIGMASK
1009 	unsigned			restore_sigmask:1;
1010 #endif
1011 #ifdef CONFIG_MEMCG_V1
1012 	unsigned			in_user_fault:1;
1013 #endif
1014 #ifdef CONFIG_LRU_GEN
1015 	/* whether the LRU algorithm may apply to this access */
1016 	unsigned			in_lru_fault:1;
1017 #endif
1018 #ifdef CONFIG_COMPAT_BRK
1019 	unsigned			brk_randomized:1;
1020 #endif
1021 #ifdef CONFIG_CGROUPS
1022 	/* disallow userland-initiated cgroup migration */
1023 	unsigned			no_cgroup_migration:1;
1024 	/* task is frozen/stopped (used by the cgroup freezer) */
1025 	unsigned			frozen:1;
1026 #endif
1027 #ifdef CONFIG_BLK_CGROUP
1028 	unsigned			use_memdelay:1;
1029 #endif
1030 #ifdef CONFIG_PSI
1031 	/* Stalled due to lack of memory */
1032 	unsigned			in_memstall:1;
1033 #endif
1034 #ifdef CONFIG_PAGE_OWNER
1035 	/* Used by page_owner=on to detect recursion in page tracking. */
1036 	unsigned			in_page_owner:1;
1037 #endif
1038 #ifdef CONFIG_EVENTFD
1039 	/* Recursion prevention for eventfd_signal() */
1040 	unsigned			in_eventfd:1;
1041 #endif
1042 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1043 	unsigned			pasid_activated:1;
1044 #endif
1045 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1046 	unsigned			reported_split_lock:1;
1047 #endif
1048 #ifdef CONFIG_TASK_DELAY_ACCT
1049 	/* delay due to memory thrashing */
1050 	unsigned                        in_thrashing:1;
1051 #endif
1052 	unsigned			in_nf_duplicate:1;
1053 #ifdef CONFIG_PREEMPT_RT
1054 	struct netdev_xmit		net_xmit;
1055 #endif
1056 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1057 
1058 	struct restart_block		restart_block;
1059 
1060 	pid_t				pid;
1061 	pid_t				tgid;
1062 
1063 #ifdef CONFIG_STACKPROTECTOR
1064 	/* Canary value for the -fstack-protector GCC feature: */
1065 	unsigned long			stack_canary;
1066 #endif
1067 	/*
1068 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1069 	 * older sibling, respectively.  (p->father can be replaced with
1070 	 * p->real_parent->pid)
1071 	 */
1072 
1073 	/* Real parent process: */
1074 	struct task_struct __rcu	*real_parent;
1075 
1076 	/* Recipient of SIGCHLD, wait4() reports: */
1077 	struct task_struct __rcu	*parent;
1078 
1079 	/*
1080 	 * Children/sibling form the list of natural children:
1081 	 */
1082 	struct list_head		children;
1083 	struct list_head		sibling;
1084 	struct task_struct		*group_leader;
1085 
1086 	/*
1087 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1088 	 *
1089 	 * This includes both natural children and PTRACE_ATTACH targets.
1090 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1091 	 */
1092 	struct list_head		ptraced;
1093 	struct list_head		ptrace_entry;
1094 
1095 	/* PID/PID hash table linkage. */
1096 	struct pid			*thread_pid;
1097 	struct hlist_node		pid_links[PIDTYPE_MAX];
1098 	struct list_head		thread_node;
1099 
1100 	struct completion		*vfork_done;
1101 
1102 	/* CLONE_CHILD_SETTID: */
1103 	int __user			*set_child_tid;
1104 
1105 	/* CLONE_CHILD_CLEARTID: */
1106 	int __user			*clear_child_tid;
1107 
1108 	/* PF_KTHREAD | PF_IO_WORKER */
1109 	void				*worker_private;
1110 
1111 	u64				utime;
1112 	u64				stime;
1113 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1114 	u64				utimescaled;
1115 	u64				stimescaled;
1116 #endif
1117 	u64				gtime;
1118 	struct prev_cputime		prev_cputime;
1119 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1120 	struct vtime			vtime;
1121 #endif
1122 
1123 #ifdef CONFIG_NO_HZ_FULL
1124 	atomic_t			tick_dep_mask;
1125 #endif
1126 	/* Context switch counts: */
1127 	unsigned long			nvcsw;
1128 	unsigned long			nivcsw;
1129 
1130 	/* Monotonic time in nsecs: */
1131 	u64				start_time;
1132 
1133 	/* Boot based time in nsecs: */
1134 	u64				start_boottime;
1135 
1136 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1137 	unsigned long			min_flt;
1138 	unsigned long			maj_flt;
1139 
1140 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1141 	struct posix_cputimers		posix_cputimers;
1142 
1143 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1144 	struct posix_cputimers_work	posix_cputimers_work;
1145 #endif
1146 
1147 	/* Process credentials: */
1148 
1149 	/* Tracer's credentials at attach: */
1150 	const struct cred __rcu		*ptracer_cred;
1151 
1152 	/* Objective and real subjective task credentials (COW): */
1153 	const struct cred __rcu		*real_cred;
1154 
1155 	/* Effective (overridable) subjective task credentials (COW): */
1156 	const struct cred __rcu		*cred;
1157 
1158 #ifdef CONFIG_KEYS
1159 	/* Cached requested key. */
1160 	struct key			*cached_requested_key;
1161 #endif
1162 
1163 	/*
1164 	 * executable name, excluding path.
1165 	 *
1166 	 * - normally initialized begin_new_exec()
1167 	 * - set it with set_task_comm()
1168 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1169 	 *     zero-padded
1170 	 *   - task_lock() to ensure the operation is atomic and the name is
1171 	 *     fully updated.
1172 	 */
1173 	char				comm[TASK_COMM_LEN];
1174 
1175 	struct nameidata		*nameidata;
1176 
1177 #ifdef CONFIG_SYSVIPC
1178 	struct sysv_sem			sysvsem;
1179 	struct sysv_shm			sysvshm;
1180 #endif
1181 #ifdef CONFIG_DETECT_HUNG_TASK
1182 	unsigned long			last_switch_count;
1183 	unsigned long			last_switch_time;
1184 #endif
1185 	/* Filesystem information: */
1186 	struct fs_struct		*fs;
1187 
1188 	/* Open file information: */
1189 	struct files_struct		*files;
1190 
1191 #ifdef CONFIG_IO_URING
1192 	struct io_uring_task		*io_uring;
1193 #endif
1194 
1195 	/* Namespaces: */
1196 	struct nsproxy			*nsproxy;
1197 
1198 	/* Signal handlers: */
1199 	struct signal_struct		*signal;
1200 	struct sighand_struct __rcu		*sighand;
1201 	sigset_t			blocked;
1202 	sigset_t			real_blocked;
1203 	/* Restored if set_restore_sigmask() was used: */
1204 	sigset_t			saved_sigmask;
1205 	struct sigpending		pending;
1206 	unsigned long			sas_ss_sp;
1207 	size_t				sas_ss_size;
1208 	unsigned int			sas_ss_flags;
1209 
1210 	struct callback_head		*task_works;
1211 
1212 #ifdef CONFIG_AUDIT
1213 #ifdef CONFIG_AUDITSYSCALL
1214 	struct audit_context		*audit_context;
1215 #endif
1216 	kuid_t				loginuid;
1217 	unsigned int			sessionid;
1218 #endif
1219 	struct seccomp			seccomp;
1220 	struct syscall_user_dispatch	syscall_dispatch;
1221 
1222 	/* Thread group tracking: */
1223 	u64				parent_exec_id;
1224 	u64				self_exec_id;
1225 
1226 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1227 	spinlock_t			alloc_lock;
1228 
1229 	/* Protection of the PI data structures: */
1230 	raw_spinlock_t			pi_lock;
1231 
1232 	struct wake_q_node		wake_q;
1233 
1234 #ifdef CONFIG_RT_MUTEXES
1235 	/* PI waiters blocked on a rt_mutex held by this task: */
1236 	struct rb_root_cached		pi_waiters;
1237 	/* Updated under owner's pi_lock and rq lock */
1238 	struct task_struct		*pi_top_task;
1239 	/* Deadlock detection and priority inheritance handling: */
1240 	struct rt_mutex_waiter		*pi_blocked_on;
1241 #endif
1242 
1243 #ifdef CONFIG_DEBUG_MUTEXES
1244 	/* Mutex deadlock detection: */
1245 	struct mutex_waiter		*blocked_on;
1246 #endif
1247 
1248 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1249 	/*
1250 	 * Encoded lock address causing task block (lower 2 bits = type from
1251 	 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1252 	 */
1253 	unsigned long			blocker;
1254 #endif
1255 
1256 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1257 	int				non_block_count;
1258 #endif
1259 
1260 #ifdef CONFIG_TRACE_IRQFLAGS
1261 	struct irqtrace_events		irqtrace;
1262 	unsigned int			hardirq_threaded;
1263 	u64				hardirq_chain_key;
1264 	int				softirqs_enabled;
1265 	int				softirq_context;
1266 	int				irq_config;
1267 #endif
1268 #ifdef CONFIG_PREEMPT_RT
1269 	int				softirq_disable_cnt;
1270 #endif
1271 
1272 #ifdef CONFIG_LOCKDEP
1273 # define MAX_LOCK_DEPTH			48UL
1274 	u64				curr_chain_key;
1275 	int				lockdep_depth;
1276 	unsigned int			lockdep_recursion;
1277 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1278 #endif
1279 
1280 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1281 	unsigned int			in_ubsan;
1282 #endif
1283 
1284 	/* Journalling filesystem info: */
1285 	void				*journal_info;
1286 
1287 	/* Stacked block device info: */
1288 	struct bio_list			*bio_list;
1289 
1290 	/* Stack plugging: */
1291 	struct blk_plug			*plug;
1292 
1293 	/* VM state: */
1294 	struct reclaim_state		*reclaim_state;
1295 
1296 	struct io_context		*io_context;
1297 
1298 #ifdef CONFIG_COMPACTION
1299 	struct capture_control		*capture_control;
1300 #endif
1301 	/* Ptrace state: */
1302 	unsigned long			ptrace_message;
1303 	kernel_siginfo_t		*last_siginfo;
1304 
1305 	struct task_io_accounting	ioac;
1306 #ifdef CONFIG_PSI
1307 	/* Pressure stall state */
1308 	unsigned int			psi_flags;
1309 #endif
1310 #ifdef CONFIG_TASK_XACCT
1311 	/* Accumulated RSS usage: */
1312 	u64				acct_rss_mem1;
1313 	/* Accumulated virtual memory usage: */
1314 	u64				acct_vm_mem1;
1315 	/* stime + utime since last update: */
1316 	u64				acct_timexpd;
1317 #endif
1318 #ifdef CONFIG_CPUSETS
1319 	/* Protected by ->alloc_lock: */
1320 	nodemask_t			mems_allowed;
1321 	/* Sequence number to catch updates: */
1322 	seqcount_spinlock_t		mems_allowed_seq;
1323 	int				cpuset_mem_spread_rotor;
1324 #endif
1325 #ifdef CONFIG_CGROUPS
1326 	/* Control Group info protected by css_set_lock: */
1327 	struct css_set __rcu		*cgroups;
1328 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1329 	struct list_head		cg_list;
1330 #endif
1331 #ifdef CONFIG_X86_CPU_RESCTRL
1332 	u32				closid;
1333 	u32				rmid;
1334 #endif
1335 #ifdef CONFIG_FUTEX
1336 	struct robust_list_head __user	*robust_list;
1337 #ifdef CONFIG_COMPAT
1338 	struct compat_robust_list_head __user *compat_robust_list;
1339 #endif
1340 	struct list_head		pi_state_list;
1341 	struct futex_pi_state		*pi_state_cache;
1342 	struct mutex			futex_exit_mutex;
1343 	unsigned int			futex_state;
1344 #endif
1345 #ifdef CONFIG_PERF_EVENTS
1346 	u8				perf_recursion[PERF_NR_CONTEXTS];
1347 	struct perf_event_context	*perf_event_ctxp;
1348 	struct mutex			perf_event_mutex;
1349 	struct list_head		perf_event_list;
1350 	struct perf_ctx_data __rcu	*perf_ctx_data;
1351 #endif
1352 #ifdef CONFIG_DEBUG_PREEMPT
1353 	unsigned long			preempt_disable_ip;
1354 #endif
1355 #ifdef CONFIG_NUMA
1356 	/* Protected by alloc_lock: */
1357 	struct mempolicy		*mempolicy;
1358 	short				il_prev;
1359 	u8				il_weight;
1360 	short				pref_node_fork;
1361 #endif
1362 #ifdef CONFIG_NUMA_BALANCING
1363 	int				numa_scan_seq;
1364 	unsigned int			numa_scan_period;
1365 	unsigned int			numa_scan_period_max;
1366 	int				numa_preferred_nid;
1367 	unsigned long			numa_migrate_retry;
1368 	/* Migration stamp: */
1369 	u64				node_stamp;
1370 	u64				last_task_numa_placement;
1371 	u64				last_sum_exec_runtime;
1372 	struct callback_head		numa_work;
1373 
1374 	/*
1375 	 * This pointer is only modified for current in syscall and
1376 	 * pagefault context (and for tasks being destroyed), so it can be read
1377 	 * from any of the following contexts:
1378 	 *  - RCU read-side critical section
1379 	 *  - current->numa_group from everywhere
1380 	 *  - task's runqueue locked, task not running
1381 	 */
1382 	struct numa_group __rcu		*numa_group;
1383 
1384 	/*
1385 	 * numa_faults is an array split into four regions:
1386 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1387 	 * in this precise order.
1388 	 *
1389 	 * faults_memory: Exponential decaying average of faults on a per-node
1390 	 * basis. Scheduling placement decisions are made based on these
1391 	 * counts. The values remain static for the duration of a PTE scan.
1392 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1393 	 * hinting fault was incurred.
1394 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1395 	 * during the current scan window. When the scan completes, the counts
1396 	 * in faults_memory and faults_cpu decay and these values are copied.
1397 	 */
1398 	unsigned long			*numa_faults;
1399 	unsigned long			total_numa_faults;
1400 
1401 	/*
1402 	 * numa_faults_locality tracks if faults recorded during the last
1403 	 * scan window were remote/local or failed to migrate. The task scan
1404 	 * period is adapted based on the locality of the faults with different
1405 	 * weights depending on whether they were shared or private faults
1406 	 */
1407 	unsigned long			numa_faults_locality[3];
1408 
1409 	unsigned long			numa_pages_migrated;
1410 #endif /* CONFIG_NUMA_BALANCING */
1411 
1412 #ifdef CONFIG_RSEQ
1413 	struct rseq __user *rseq;
1414 	u32 rseq_len;
1415 	u32 rseq_sig;
1416 	/*
1417 	 * RmW on rseq_event_mask must be performed atomically
1418 	 * with respect to preemption.
1419 	 */
1420 	unsigned long rseq_event_mask;
1421 # ifdef CONFIG_DEBUG_RSEQ
1422 	/*
1423 	 * This is a place holder to save a copy of the rseq fields for
1424 	 * validation of read-only fields. The struct rseq has a
1425 	 * variable-length array at the end, so it cannot be used
1426 	 * directly. Reserve a size large enough for the known fields.
1427 	 */
1428 	char				rseq_fields[sizeof(struct rseq)];
1429 # endif
1430 #endif
1431 
1432 #ifdef CONFIG_SCHED_MM_CID
1433 	int				mm_cid;		/* Current cid in mm */
1434 	int				last_mm_cid;	/* Most recent cid in mm */
1435 	int				migrate_from_cpu;
1436 	int				mm_cid_active;	/* Whether cid bitmap is active */
1437 	struct callback_head		cid_work;
1438 #endif
1439 
1440 	struct tlbflush_unmap_batch	tlb_ubc;
1441 
1442 	/* Cache last used pipe for splice(): */
1443 	struct pipe_inode_info		*splice_pipe;
1444 
1445 	struct page_frag		task_frag;
1446 
1447 #ifdef CONFIG_TASK_DELAY_ACCT
1448 	struct task_delay_info		*delays;
1449 #endif
1450 
1451 #ifdef CONFIG_FAULT_INJECTION
1452 	int				make_it_fail;
1453 	unsigned int			fail_nth;
1454 #endif
1455 	/*
1456 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1457 	 * balance_dirty_pages() for a dirty throttling pause:
1458 	 */
1459 	int				nr_dirtied;
1460 	int				nr_dirtied_pause;
1461 	/* Start of a write-and-pause period: */
1462 	unsigned long			dirty_paused_when;
1463 
1464 #ifdef CONFIG_LATENCYTOP
1465 	int				latency_record_count;
1466 	struct latency_record		latency_record[LT_SAVECOUNT];
1467 #endif
1468 	/*
1469 	 * Time slack values; these are used to round up poll() and
1470 	 * select() etc timeout values. These are in nanoseconds.
1471 	 */
1472 	u64				timer_slack_ns;
1473 	u64				default_timer_slack_ns;
1474 
1475 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1476 	unsigned int			kasan_depth;
1477 #endif
1478 
1479 #ifdef CONFIG_KCSAN
1480 	struct kcsan_ctx		kcsan_ctx;
1481 #ifdef CONFIG_TRACE_IRQFLAGS
1482 	struct irqtrace_events		kcsan_save_irqtrace;
1483 #endif
1484 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1485 	int				kcsan_stack_depth;
1486 #endif
1487 #endif
1488 
1489 #ifdef CONFIG_KMSAN
1490 	struct kmsan_ctx		kmsan_ctx;
1491 #endif
1492 
1493 #if IS_ENABLED(CONFIG_KUNIT)
1494 	struct kunit			*kunit_test;
1495 #endif
1496 
1497 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1498 	/* Index of current stored address in ret_stack: */
1499 	int				curr_ret_stack;
1500 	int				curr_ret_depth;
1501 
1502 	/* Stack of return addresses for return function tracing: */
1503 	unsigned long			*ret_stack;
1504 
1505 	/* Timestamp for last schedule: */
1506 	unsigned long long		ftrace_timestamp;
1507 	unsigned long long		ftrace_sleeptime;
1508 
1509 	/*
1510 	 * Number of functions that haven't been traced
1511 	 * because of depth overrun:
1512 	 */
1513 	atomic_t			trace_overrun;
1514 
1515 	/* Pause tracing: */
1516 	atomic_t			tracing_graph_pause;
1517 #endif
1518 
1519 #ifdef CONFIG_TRACING
1520 	/* Bitmask and counter of trace recursion: */
1521 	unsigned long			trace_recursion;
1522 #endif /* CONFIG_TRACING */
1523 
1524 #ifdef CONFIG_KCOV
1525 	/* See kernel/kcov.c for more details. */
1526 
1527 	/* Coverage collection mode enabled for this task (0 if disabled): */
1528 	unsigned int			kcov_mode;
1529 
1530 	/* Size of the kcov_area: */
1531 	unsigned int			kcov_size;
1532 
1533 	/* Buffer for coverage collection: */
1534 	void				*kcov_area;
1535 
1536 	/* KCOV descriptor wired with this task or NULL: */
1537 	struct kcov			*kcov;
1538 
1539 	/* KCOV common handle for remote coverage collection: */
1540 	u64				kcov_handle;
1541 
1542 	/* KCOV sequence number: */
1543 	int				kcov_sequence;
1544 
1545 	/* Collect coverage from softirq context: */
1546 	unsigned int			kcov_softirq;
1547 #endif
1548 
1549 #ifdef CONFIG_MEMCG_V1
1550 	struct mem_cgroup		*memcg_in_oom;
1551 #endif
1552 
1553 #ifdef CONFIG_MEMCG
1554 	/* Number of pages to reclaim on returning to userland: */
1555 	unsigned int			memcg_nr_pages_over_high;
1556 
1557 	/* Used by memcontrol for targeted memcg charge: */
1558 	struct mem_cgroup		*active_memcg;
1559 
1560 	/* Cache for current->cgroups->memcg->objcg lookups: */
1561 	struct obj_cgroup		*objcg;
1562 #endif
1563 
1564 #ifdef CONFIG_BLK_CGROUP
1565 	struct gendisk			*throttle_disk;
1566 #endif
1567 
1568 #ifdef CONFIG_UPROBES
1569 	struct uprobe_task		*utask;
1570 #endif
1571 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1572 	unsigned int			sequential_io;
1573 	unsigned int			sequential_io_avg;
1574 #endif
1575 	struct kmap_ctrl		kmap_ctrl;
1576 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1577 	unsigned long			task_state_change;
1578 # ifdef CONFIG_PREEMPT_RT
1579 	unsigned long			saved_state_change;
1580 # endif
1581 #endif
1582 	struct rcu_head			rcu;
1583 	refcount_t			rcu_users;
1584 	int				pagefault_disabled;
1585 #ifdef CONFIG_MMU
1586 	struct task_struct		*oom_reaper_list;
1587 	struct timer_list		oom_reaper_timer;
1588 #endif
1589 #ifdef CONFIG_VMAP_STACK
1590 	struct vm_struct		*stack_vm_area;
1591 #endif
1592 #ifdef CONFIG_THREAD_INFO_IN_TASK
1593 	/* A live task holds one reference: */
1594 	refcount_t			stack_refcount;
1595 #endif
1596 #ifdef CONFIG_LIVEPATCH
1597 	int patch_state;
1598 #endif
1599 #ifdef CONFIG_SECURITY
1600 	/* Used by LSM modules for access restriction: */
1601 	void				*security;
1602 #endif
1603 #ifdef CONFIG_BPF_SYSCALL
1604 	/* Used by BPF task local storage */
1605 	struct bpf_local_storage __rcu	*bpf_storage;
1606 	/* Used for BPF run context */
1607 	struct bpf_run_ctx		*bpf_ctx;
1608 #endif
1609 	/* Used by BPF for per-TASK xdp storage */
1610 	struct bpf_net_context		*bpf_net_context;
1611 
1612 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1613 	unsigned long			lowest_stack;
1614 	unsigned long			prev_lowest_stack;
1615 #endif
1616 
1617 #ifdef CONFIG_X86_MCE
1618 	void __user			*mce_vaddr;
1619 	__u64				mce_kflags;
1620 	u64				mce_addr;
1621 	__u64				mce_ripv : 1,
1622 					mce_whole_page : 1,
1623 					__mce_reserved : 62;
1624 	struct callback_head		mce_kill_me;
1625 	int				mce_count;
1626 #endif
1627 
1628 #ifdef CONFIG_KRETPROBES
1629 	struct llist_head               kretprobe_instances;
1630 #endif
1631 #ifdef CONFIG_RETHOOK
1632 	struct llist_head               rethooks;
1633 #endif
1634 
1635 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1636 	/*
1637 	 * If L1D flush is supported on mm context switch
1638 	 * then we use this callback head to queue kill work
1639 	 * to kill tasks that are not running on SMT disabled
1640 	 * cores
1641 	 */
1642 	struct callback_head		l1d_flush_kill;
1643 #endif
1644 
1645 #ifdef CONFIG_RV
1646 	/*
1647 	 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1648 	 * If memory becomes a concern, we can think about a dynamic method.
1649 	 */
1650 	union rv_task_monitor		rv[CONFIG_RV_PER_TASK_MONITORS];
1651 #endif
1652 
1653 #ifdef CONFIG_USER_EVENTS
1654 	struct user_event_mm		*user_event_mm;
1655 #endif
1656 
1657 	/* CPU-specific state of this task: */
1658 	struct thread_struct		thread;
1659 
1660 	/*
1661 	 * New fields for task_struct should be added above here, so that
1662 	 * they are included in the randomized portion of task_struct.
1663 	 */
1664 	randomized_struct_fields_end
1665 } __attribute__ ((aligned (64)));
1666 
1667 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1668 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1669 
1670 static inline unsigned int __task_state_index(unsigned int tsk_state,
1671 					      unsigned int tsk_exit_state)
1672 {
1673 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1674 
1675 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1676 
1677 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1678 		state = TASK_REPORT_IDLE;
1679 
1680 	/*
1681 	 * We're lying here, but rather than expose a completely new task state
1682 	 * to userspace, we can make this appear as if the task has gone through
1683 	 * a regular rt_mutex_lock() call.
1684 	 * Report frozen tasks as uninterruptible.
1685 	 */
1686 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1687 		state = TASK_UNINTERRUPTIBLE;
1688 
1689 	return fls(state);
1690 }
1691 
1692 static inline unsigned int task_state_index(struct task_struct *tsk)
1693 {
1694 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1695 }
1696 
1697 static inline char task_index_to_char(unsigned int state)
1698 {
1699 	static const char state_char[] = "RSDTtXZPI";
1700 
1701 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1702 
1703 	return state_char[state];
1704 }
1705 
1706 static inline char task_state_to_char(struct task_struct *tsk)
1707 {
1708 	return task_index_to_char(task_state_index(tsk));
1709 }
1710 
1711 extern struct pid *cad_pid;
1712 
1713 /*
1714  * Per process flags
1715  */
1716 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1717 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1718 #define PF_EXITING		0x00000004	/* Getting shut down */
1719 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1720 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1721 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1722 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1723 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1724 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1725 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1726 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1727 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1728 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1729 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1730 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1731 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1732 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1733 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1734 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1735 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1736 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1737 						 * I am cleaning dirty pages from some other bdi. */
1738 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1739 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1740 #define PF__HOLE__00800000	0x00800000
1741 #define PF__HOLE__01000000	0x01000000
1742 #define PF__HOLE__02000000	0x02000000
1743 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1744 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1745 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1746 						 * See memalloc_pin_save() */
1747 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1748 #define PF__HOLE__40000000	0x40000000
1749 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1750 
1751 /*
1752  * Only the _current_ task can read/write to tsk->flags, but other
1753  * tasks can access tsk->flags in readonly mode for example
1754  * with tsk_used_math (like during threaded core dumping).
1755  * There is however an exception to this rule during ptrace
1756  * or during fork: the ptracer task is allowed to write to the
1757  * child->flags of its traced child (same goes for fork, the parent
1758  * can write to the child->flags), because we're guaranteed the
1759  * child is not running and in turn not changing child->flags
1760  * at the same time the parent does it.
1761  */
1762 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1763 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1764 #define clear_used_math()			clear_stopped_child_used_math(current)
1765 #define set_used_math()				set_stopped_child_used_math(current)
1766 
1767 #define conditional_stopped_child_used_math(condition, child) \
1768 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1769 
1770 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1771 
1772 #define copy_to_stopped_child_used_math(child) \
1773 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1774 
1775 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1776 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1777 #define used_math()				tsk_used_math(current)
1778 
1779 static __always_inline bool is_percpu_thread(void)
1780 {
1781 #ifdef CONFIG_SMP
1782 	return (current->flags & PF_NO_SETAFFINITY) &&
1783 		(current->nr_cpus_allowed  == 1);
1784 #else
1785 	return true;
1786 #endif
1787 }
1788 
1789 /* Per-process atomic flags. */
1790 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1791 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1792 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1793 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1794 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1795 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1796 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1797 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1798 
1799 #define TASK_PFA_TEST(name, func)					\
1800 	static inline bool task_##func(struct task_struct *p)		\
1801 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1802 
1803 #define TASK_PFA_SET(name, func)					\
1804 	static inline void task_set_##func(struct task_struct *p)	\
1805 	{ set_bit(PFA_##name, &p->atomic_flags); }
1806 
1807 #define TASK_PFA_CLEAR(name, func)					\
1808 	static inline void task_clear_##func(struct task_struct *p)	\
1809 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1810 
1811 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1812 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1813 
1814 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1815 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1816 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1817 
1818 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1819 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1820 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1821 
1822 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1823 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1824 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1825 
1826 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1827 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829 
1830 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1831 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832 
1833 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1834 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1835 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1836 
1837 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1838 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839 
1840 static inline void
1841 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1842 {
1843 	current->flags &= ~flags;
1844 	current->flags |= orig_flags & flags;
1845 }
1846 
1847 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1848 extern int task_can_attach(struct task_struct *p);
1849 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1850 extern void dl_bw_free(int cpu, u64 dl_bw);
1851 #ifdef CONFIG_SMP
1852 
1853 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1854 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1855 
1856 /**
1857  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1858  * @p: the task
1859  * @new_mask: CPU affinity mask
1860  *
1861  * Return: zero if successful, or a negative error code
1862  */
1863 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1864 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1865 extern void release_user_cpus_ptr(struct task_struct *p);
1866 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1867 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1868 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1869 #else
1870 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1871 {
1872 }
1873 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1874 {
1875 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1876 	if ((*cpumask_bits(new_mask) & 1) == 0)
1877 		return -EINVAL;
1878 	return 0;
1879 }
1880 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1881 {
1882 	if (src->user_cpus_ptr)
1883 		return -EINVAL;
1884 	return 0;
1885 }
1886 static inline void release_user_cpus_ptr(struct task_struct *p)
1887 {
1888 	WARN_ON(p->user_cpus_ptr);
1889 }
1890 
1891 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1892 {
1893 	return 0;
1894 }
1895 #endif
1896 
1897 extern int yield_to(struct task_struct *p, bool preempt);
1898 extern void set_user_nice(struct task_struct *p, long nice);
1899 extern int task_prio(const struct task_struct *p);
1900 
1901 /**
1902  * task_nice - return the nice value of a given task.
1903  * @p: the task in question.
1904  *
1905  * Return: The nice value [ -20 ... 0 ... 19 ].
1906  */
1907 static inline int task_nice(const struct task_struct *p)
1908 {
1909 	return PRIO_TO_NICE((p)->static_prio);
1910 }
1911 
1912 extern int can_nice(const struct task_struct *p, const int nice);
1913 extern int task_curr(const struct task_struct *p);
1914 extern int idle_cpu(int cpu);
1915 extern int available_idle_cpu(int cpu);
1916 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1917 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1918 extern void sched_set_fifo(struct task_struct *p);
1919 extern void sched_set_fifo_low(struct task_struct *p);
1920 extern void sched_set_normal(struct task_struct *p, int nice);
1921 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1922 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1923 extern struct task_struct *idle_task(int cpu);
1924 
1925 /**
1926  * is_idle_task - is the specified task an idle task?
1927  * @p: the task in question.
1928  *
1929  * Return: 1 if @p is an idle task. 0 otherwise.
1930  */
1931 static __always_inline bool is_idle_task(const struct task_struct *p)
1932 {
1933 	return !!(p->flags & PF_IDLE);
1934 }
1935 
1936 extern struct task_struct *curr_task(int cpu);
1937 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1938 
1939 void yield(void);
1940 
1941 union thread_union {
1942 	struct task_struct task;
1943 #ifndef CONFIG_THREAD_INFO_IN_TASK
1944 	struct thread_info thread_info;
1945 #endif
1946 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1947 };
1948 
1949 #ifndef CONFIG_THREAD_INFO_IN_TASK
1950 extern struct thread_info init_thread_info;
1951 #endif
1952 
1953 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1954 
1955 #ifdef CONFIG_THREAD_INFO_IN_TASK
1956 # define task_thread_info(task)	(&(task)->thread_info)
1957 #else
1958 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1959 #endif
1960 
1961 /*
1962  * find a task by one of its numerical ids
1963  *
1964  * find_task_by_pid_ns():
1965  *      finds a task by its pid in the specified namespace
1966  * find_task_by_vpid():
1967  *      finds a task by its virtual pid
1968  *
1969  * see also find_vpid() etc in include/linux/pid.h
1970  */
1971 
1972 extern struct task_struct *find_task_by_vpid(pid_t nr);
1973 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1974 
1975 /*
1976  * find a task by its virtual pid and get the task struct
1977  */
1978 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1979 
1980 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1981 extern int wake_up_process(struct task_struct *tsk);
1982 extern void wake_up_new_task(struct task_struct *tsk);
1983 
1984 #ifdef CONFIG_SMP
1985 extern void kick_process(struct task_struct *tsk);
1986 #else
1987 static inline void kick_process(struct task_struct *tsk) { }
1988 #endif
1989 
1990 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1991 #define set_task_comm(tsk, from) ({			\
1992 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1993 	__set_task_comm(tsk, from, false);		\
1994 })
1995 
1996 /*
1997  * - Why not use task_lock()?
1998  *   User space can randomly change their names anyway, so locking for readers
1999  *   doesn't make sense. For writers, locking is probably necessary, as a race
2000  *   condition could lead to long-term mixed results.
2001  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
2002  *   always NUL-terminated and zero-padded. Therefore the race condition between
2003  *   reader and writer is not an issue.
2004  *
2005  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
2006  *   Since the callers don't perform any return value checks, this safeguard is
2007  *   necessary.
2008  */
2009 #define get_task_comm(buf, tsk) ({			\
2010 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
2011 	strscpy_pad(buf, (tsk)->comm);			\
2012 	buf;						\
2013 })
2014 
2015 #ifdef CONFIG_SMP
2016 static __always_inline void scheduler_ipi(void)
2017 {
2018 	/*
2019 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2020 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2021 	 * this IPI.
2022 	 */
2023 	preempt_fold_need_resched();
2024 }
2025 #else
2026 static inline void scheduler_ipi(void) { }
2027 #endif
2028 
2029 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2030 
2031 /*
2032  * Set thread flags in other task's structures.
2033  * See asm/thread_info.h for TIF_xxxx flags available:
2034  */
2035 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 	set_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039 
2040 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044 
2045 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2046 					  bool value)
2047 {
2048 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2049 }
2050 
2051 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2052 {
2053 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2054 }
2055 
2056 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2057 {
2058 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2059 }
2060 
2061 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2062 {
2063 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2064 }
2065 
2066 static inline void set_tsk_need_resched(struct task_struct *tsk)
2067 {
2068 	if (tracepoint_enabled(sched_set_need_resched_tp) &&
2069 	    !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2070 		__trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2071 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2072 }
2073 
2074 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2075 {
2076 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2077 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2078 }
2079 
2080 static inline int test_tsk_need_resched(struct task_struct *tsk)
2081 {
2082 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2083 }
2084 
2085 /*
2086  * cond_resched() and cond_resched_lock(): latency reduction via
2087  * explicit rescheduling in places that are safe. The return
2088  * value indicates whether a reschedule was done in fact.
2089  * cond_resched_lock() will drop the spinlock before scheduling,
2090  */
2091 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2092 extern int __cond_resched(void);
2093 
2094 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2095 
2096 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2097 
2098 static __always_inline int _cond_resched(void)
2099 {
2100 	return static_call_mod(cond_resched)();
2101 }
2102 
2103 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2104 
2105 extern int dynamic_cond_resched(void);
2106 
2107 static __always_inline int _cond_resched(void)
2108 {
2109 	return dynamic_cond_resched();
2110 }
2111 
2112 #else /* !CONFIG_PREEMPTION */
2113 
2114 static inline int _cond_resched(void)
2115 {
2116 	return __cond_resched();
2117 }
2118 
2119 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2120 
2121 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2122 
2123 static inline int _cond_resched(void)
2124 {
2125 	return 0;
2126 }
2127 
2128 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2129 
2130 #define cond_resched() ({			\
2131 	__might_resched(__FILE__, __LINE__, 0);	\
2132 	_cond_resched();			\
2133 })
2134 
2135 extern int __cond_resched_lock(spinlock_t *lock);
2136 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2137 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2138 
2139 #define MIGHT_RESCHED_RCU_SHIFT		8
2140 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2141 
2142 #ifndef CONFIG_PREEMPT_RT
2143 /*
2144  * Non RT kernels have an elevated preempt count due to the held lock,
2145  * but are not allowed to be inside a RCU read side critical section
2146  */
2147 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2148 #else
2149 /*
2150  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2151  * cond_resched*lock() has to take that into account because it checks for
2152  * preempt_count() and rcu_preempt_depth().
2153  */
2154 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2155 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2156 #endif
2157 
2158 #define cond_resched_lock(lock) ({						\
2159 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2160 	__cond_resched_lock(lock);						\
2161 })
2162 
2163 #define cond_resched_rwlock_read(lock) ({					\
2164 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2165 	__cond_resched_rwlock_read(lock);					\
2166 })
2167 
2168 #define cond_resched_rwlock_write(lock) ({					\
2169 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2170 	__cond_resched_rwlock_write(lock);					\
2171 })
2172 
2173 static __always_inline bool need_resched(void)
2174 {
2175 	return unlikely(tif_need_resched());
2176 }
2177 
2178 /*
2179  * Wrappers for p->thread_info->cpu access. No-op on UP.
2180  */
2181 #ifdef CONFIG_SMP
2182 
2183 static inline unsigned int task_cpu(const struct task_struct *p)
2184 {
2185 	return READ_ONCE(task_thread_info(p)->cpu);
2186 }
2187 
2188 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2189 
2190 #else
2191 
2192 static inline unsigned int task_cpu(const struct task_struct *p)
2193 {
2194 	return 0;
2195 }
2196 
2197 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2198 {
2199 }
2200 
2201 #endif /* CONFIG_SMP */
2202 
2203 static inline bool task_is_runnable(struct task_struct *p)
2204 {
2205 	return p->on_rq && !p->se.sched_delayed;
2206 }
2207 
2208 extern bool sched_task_on_rq(struct task_struct *p);
2209 extern unsigned long get_wchan(struct task_struct *p);
2210 extern struct task_struct *cpu_curr_snapshot(int cpu);
2211 
2212 #include <linux/spinlock.h>
2213 
2214 /*
2215  * In order to reduce various lock holder preemption latencies provide an
2216  * interface to see if a vCPU is currently running or not.
2217  *
2218  * This allows us to terminate optimistic spin loops and block, analogous to
2219  * the native optimistic spin heuristic of testing if the lock owner task is
2220  * running or not.
2221  */
2222 #ifndef vcpu_is_preempted
2223 static inline bool vcpu_is_preempted(int cpu)
2224 {
2225 	return false;
2226 }
2227 #endif
2228 
2229 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2230 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2231 
2232 #ifndef TASK_SIZE_OF
2233 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2234 #endif
2235 
2236 #ifdef CONFIG_SMP
2237 static inline bool owner_on_cpu(struct task_struct *owner)
2238 {
2239 	/*
2240 	 * As lock holder preemption issue, we both skip spinning if
2241 	 * task is not on cpu or its cpu is preempted
2242 	 */
2243 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2244 }
2245 
2246 /* Returns effective CPU energy utilization, as seen by the scheduler */
2247 unsigned long sched_cpu_util(int cpu);
2248 #endif /* CONFIG_SMP */
2249 
2250 #ifdef CONFIG_SCHED_CORE
2251 extern void sched_core_free(struct task_struct *tsk);
2252 extern void sched_core_fork(struct task_struct *p);
2253 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2254 				unsigned long uaddr);
2255 extern int sched_core_idle_cpu(int cpu);
2256 #else
2257 static inline void sched_core_free(struct task_struct *tsk) { }
2258 static inline void sched_core_fork(struct task_struct *p) { }
2259 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2260 #endif
2261 
2262 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2263 
2264 #ifdef CONFIG_MEM_ALLOC_PROFILING
2265 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2266 {
2267 	swap(current->alloc_tag, tag);
2268 	return tag;
2269 }
2270 
2271 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2272 {
2273 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2274 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2275 #endif
2276 	current->alloc_tag = old;
2277 }
2278 #else
2279 #define alloc_tag_save(_tag)			NULL
2280 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2281 #endif
2282 
2283 #endif
2284