1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(void); 181 #else 182 static inline void update_cpu_load_nohz(void) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 377 extern void sched_show_task(struct task_struct *p); 378 379 #ifdef CONFIG_LOCKUP_DETECTOR 380 extern void touch_softlockup_watchdog(void); 381 extern void touch_softlockup_watchdog_sync(void); 382 extern void touch_all_softlockup_watchdogs(void); 383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 384 void __user *buffer, 385 size_t *lenp, loff_t *ppos); 386 extern unsigned int softlockup_panic; 387 void lockup_detector_init(void); 388 #else 389 static inline void touch_softlockup_watchdog(void) 390 { 391 } 392 static inline void touch_softlockup_watchdog_sync(void) 393 { 394 } 395 static inline void touch_all_softlockup_watchdogs(void) 396 { 397 } 398 static inline void lockup_detector_init(void) 399 { 400 } 401 #endif 402 403 #ifdef CONFIG_DETECT_HUNG_TASK 404 void reset_hung_task_detector(void); 405 #else 406 static inline void reset_hung_task_detector(void) 407 { 408 } 409 #endif 410 411 /* Attach to any functions which should be ignored in wchan output. */ 412 #define __sched __attribute__((__section__(".sched.text"))) 413 414 /* Linker adds these: start and end of __sched functions */ 415 extern char __sched_text_start[], __sched_text_end[]; 416 417 /* Is this address in the __sched functions? */ 418 extern int in_sched_functions(unsigned long addr); 419 420 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 421 extern signed long schedule_timeout(signed long timeout); 422 extern signed long schedule_timeout_interruptible(signed long timeout); 423 extern signed long schedule_timeout_killable(signed long timeout); 424 extern signed long schedule_timeout_uninterruptible(signed long timeout); 425 asmlinkage void schedule(void); 426 extern void schedule_preempt_disabled(void); 427 428 extern long io_schedule_timeout(long timeout); 429 430 static inline void io_schedule(void) 431 { 432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 433 } 434 435 struct nsproxy; 436 struct user_namespace; 437 438 #ifdef CONFIG_MMU 439 extern void arch_pick_mmap_layout(struct mm_struct *mm); 440 extern unsigned long 441 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 442 unsigned long, unsigned long); 443 extern unsigned long 444 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 445 unsigned long len, unsigned long pgoff, 446 unsigned long flags); 447 #else 448 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 449 #endif 450 451 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 452 #define SUID_DUMP_USER 1 /* Dump as user of process */ 453 #define SUID_DUMP_ROOT 2 /* Dump as root */ 454 455 /* mm flags */ 456 457 /* for SUID_DUMP_* above */ 458 #define MMF_DUMPABLE_BITS 2 459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 460 461 extern void set_dumpable(struct mm_struct *mm, int value); 462 /* 463 * This returns the actual value of the suid_dumpable flag. For things 464 * that are using this for checking for privilege transitions, it must 465 * test against SUID_DUMP_USER rather than treating it as a boolean 466 * value. 467 */ 468 static inline int __get_dumpable(unsigned long mm_flags) 469 { 470 return mm_flags & MMF_DUMPABLE_MASK; 471 } 472 473 static inline int get_dumpable(struct mm_struct *mm) 474 { 475 return __get_dumpable(mm->flags); 476 } 477 478 /* coredump filter bits */ 479 #define MMF_DUMP_ANON_PRIVATE 2 480 #define MMF_DUMP_ANON_SHARED 3 481 #define MMF_DUMP_MAPPED_PRIVATE 4 482 #define MMF_DUMP_MAPPED_SHARED 5 483 #define MMF_DUMP_ELF_HEADERS 6 484 #define MMF_DUMP_HUGETLB_PRIVATE 7 485 #define MMF_DUMP_HUGETLB_SHARED 8 486 487 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 488 #define MMF_DUMP_FILTER_BITS 7 489 #define MMF_DUMP_FILTER_MASK \ 490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 491 #define MMF_DUMP_FILTER_DEFAULT \ 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 494 495 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 496 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 497 #else 498 # define MMF_DUMP_MASK_DEFAULT_ELF 0 499 #endif 500 /* leave room for more dump flags */ 501 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 502 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 503 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 504 505 #define MMF_HAS_UPROBES 19 /* has uprobes */ 506 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 507 508 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 509 510 struct sighand_struct { 511 atomic_t count; 512 struct k_sigaction action[_NSIG]; 513 spinlock_t siglock; 514 wait_queue_head_t signalfd_wqh; 515 }; 516 517 struct pacct_struct { 518 int ac_flag; 519 long ac_exitcode; 520 unsigned long ac_mem; 521 cputime_t ac_utime, ac_stime; 522 unsigned long ac_minflt, ac_majflt; 523 }; 524 525 struct cpu_itimer { 526 cputime_t expires; 527 cputime_t incr; 528 u32 error; 529 u32 incr_error; 530 }; 531 532 /** 533 * struct prev_cputime - snaphsot of system and user cputime 534 * @utime: time spent in user mode 535 * @stime: time spent in system mode 536 * @lock: protects the above two fields 537 * 538 * Stores previous user/system time values such that we can guarantee 539 * monotonicity. 540 */ 541 struct prev_cputime { 542 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 543 cputime_t utime; 544 cputime_t stime; 545 raw_spinlock_t lock; 546 #endif 547 }; 548 549 static inline void prev_cputime_init(struct prev_cputime *prev) 550 { 551 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 552 prev->utime = prev->stime = 0; 553 raw_spin_lock_init(&prev->lock); 554 #endif 555 } 556 557 /** 558 * struct task_cputime - collected CPU time counts 559 * @utime: time spent in user mode, in &cputime_t units 560 * @stime: time spent in kernel mode, in &cputime_t units 561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 562 * 563 * This structure groups together three kinds of CPU time that are tracked for 564 * threads and thread groups. Most things considering CPU time want to group 565 * these counts together and treat all three of them in parallel. 566 */ 567 struct task_cputime { 568 cputime_t utime; 569 cputime_t stime; 570 unsigned long long sum_exec_runtime; 571 }; 572 573 /* Alternate field names when used to cache expirations. */ 574 #define virt_exp utime 575 #define prof_exp stime 576 #define sched_exp sum_exec_runtime 577 578 #define INIT_CPUTIME \ 579 (struct task_cputime) { \ 580 .utime = 0, \ 581 .stime = 0, \ 582 .sum_exec_runtime = 0, \ 583 } 584 585 /* 586 * This is the atomic variant of task_cputime, which can be used for 587 * storing and updating task_cputime statistics without locking. 588 */ 589 struct task_cputime_atomic { 590 atomic64_t utime; 591 atomic64_t stime; 592 atomic64_t sum_exec_runtime; 593 }; 594 595 #define INIT_CPUTIME_ATOMIC \ 596 (struct task_cputime_atomic) { \ 597 .utime = ATOMIC64_INIT(0), \ 598 .stime = ATOMIC64_INIT(0), \ 599 .sum_exec_runtime = ATOMIC64_INIT(0), \ 600 } 601 602 #ifdef CONFIG_PREEMPT_COUNT 603 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 604 #else 605 #define PREEMPT_DISABLED PREEMPT_ENABLED 606 #endif 607 608 /* 609 * Disable preemption until the scheduler is running. 610 * Reset by start_kernel()->sched_init()->init_idle(). 611 * 612 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 613 * before the scheduler is active -- see should_resched(). 614 */ 615 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 616 617 /** 618 * struct thread_group_cputimer - thread group interval timer counts 619 * @cputime_atomic: atomic thread group interval timers. 620 * @running: non-zero when there are timers running and 621 * @cputime receives updates. 622 * 623 * This structure contains the version of task_cputime, above, that is 624 * used for thread group CPU timer calculations. 625 */ 626 struct thread_group_cputimer { 627 struct task_cputime_atomic cputime_atomic; 628 int running; 629 }; 630 631 #include <linux/rwsem.h> 632 struct autogroup; 633 634 /* 635 * NOTE! "signal_struct" does not have its own 636 * locking, because a shared signal_struct always 637 * implies a shared sighand_struct, so locking 638 * sighand_struct is always a proper superset of 639 * the locking of signal_struct. 640 */ 641 struct signal_struct { 642 atomic_t sigcnt; 643 atomic_t live; 644 int nr_threads; 645 struct list_head thread_head; 646 647 wait_queue_head_t wait_chldexit; /* for wait4() */ 648 649 /* current thread group signal load-balancing target: */ 650 struct task_struct *curr_target; 651 652 /* shared signal handling: */ 653 struct sigpending shared_pending; 654 655 /* thread group exit support */ 656 int group_exit_code; 657 /* overloaded: 658 * - notify group_exit_task when ->count is equal to notify_count 659 * - everyone except group_exit_task is stopped during signal delivery 660 * of fatal signals, group_exit_task processes the signal. 661 */ 662 int notify_count; 663 struct task_struct *group_exit_task; 664 665 /* thread group stop support, overloads group_exit_code too */ 666 int group_stop_count; 667 unsigned int flags; /* see SIGNAL_* flags below */ 668 669 /* 670 * PR_SET_CHILD_SUBREAPER marks a process, like a service 671 * manager, to re-parent orphan (double-forking) child processes 672 * to this process instead of 'init'. The service manager is 673 * able to receive SIGCHLD signals and is able to investigate 674 * the process until it calls wait(). All children of this 675 * process will inherit a flag if they should look for a 676 * child_subreaper process at exit. 677 */ 678 unsigned int is_child_subreaper:1; 679 unsigned int has_child_subreaper:1; 680 681 /* POSIX.1b Interval Timers */ 682 int posix_timer_id; 683 struct list_head posix_timers; 684 685 /* ITIMER_REAL timer for the process */ 686 struct hrtimer real_timer; 687 struct pid *leader_pid; 688 ktime_t it_real_incr; 689 690 /* 691 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 692 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 693 * values are defined to 0 and 1 respectively 694 */ 695 struct cpu_itimer it[2]; 696 697 /* 698 * Thread group totals for process CPU timers. 699 * See thread_group_cputimer(), et al, for details. 700 */ 701 struct thread_group_cputimer cputimer; 702 703 /* Earliest-expiration cache. */ 704 struct task_cputime cputime_expires; 705 706 struct list_head cpu_timers[3]; 707 708 struct pid *tty_old_pgrp; 709 710 /* boolean value for session group leader */ 711 int leader; 712 713 struct tty_struct *tty; /* NULL if no tty */ 714 715 #ifdef CONFIG_SCHED_AUTOGROUP 716 struct autogroup *autogroup; 717 #endif 718 /* 719 * Cumulative resource counters for dead threads in the group, 720 * and for reaped dead child processes forked by this group. 721 * Live threads maintain their own counters and add to these 722 * in __exit_signal, except for the group leader. 723 */ 724 seqlock_t stats_lock; 725 cputime_t utime, stime, cutime, cstime; 726 cputime_t gtime; 727 cputime_t cgtime; 728 struct prev_cputime prev_cputime; 729 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 730 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 731 unsigned long inblock, oublock, cinblock, coublock; 732 unsigned long maxrss, cmaxrss; 733 struct task_io_accounting ioac; 734 735 /* 736 * Cumulative ns of schedule CPU time fo dead threads in the 737 * group, not including a zombie group leader, (This only differs 738 * from jiffies_to_ns(utime + stime) if sched_clock uses something 739 * other than jiffies.) 740 */ 741 unsigned long long sum_sched_runtime; 742 743 /* 744 * We don't bother to synchronize most readers of this at all, 745 * because there is no reader checking a limit that actually needs 746 * to get both rlim_cur and rlim_max atomically, and either one 747 * alone is a single word that can safely be read normally. 748 * getrlimit/setrlimit use task_lock(current->group_leader) to 749 * protect this instead of the siglock, because they really 750 * have no need to disable irqs. 751 */ 752 struct rlimit rlim[RLIM_NLIMITS]; 753 754 #ifdef CONFIG_BSD_PROCESS_ACCT 755 struct pacct_struct pacct; /* per-process accounting information */ 756 #endif 757 #ifdef CONFIG_TASKSTATS 758 struct taskstats *stats; 759 #endif 760 #ifdef CONFIG_AUDIT 761 unsigned audit_tty; 762 unsigned audit_tty_log_passwd; 763 struct tty_audit_buf *tty_audit_buf; 764 #endif 765 766 oom_flags_t oom_flags; 767 short oom_score_adj; /* OOM kill score adjustment */ 768 short oom_score_adj_min; /* OOM kill score adjustment min value. 769 * Only settable by CAP_SYS_RESOURCE. */ 770 771 struct mutex cred_guard_mutex; /* guard against foreign influences on 772 * credential calculations 773 * (notably. ptrace) */ 774 }; 775 776 /* 777 * Bits in flags field of signal_struct. 778 */ 779 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 780 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 781 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 782 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 783 /* 784 * Pending notifications to parent. 785 */ 786 #define SIGNAL_CLD_STOPPED 0x00000010 787 #define SIGNAL_CLD_CONTINUED 0x00000020 788 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 789 790 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 791 792 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 793 static inline int signal_group_exit(const struct signal_struct *sig) 794 { 795 return (sig->flags & SIGNAL_GROUP_EXIT) || 796 (sig->group_exit_task != NULL); 797 } 798 799 /* 800 * Some day this will be a full-fledged user tracking system.. 801 */ 802 struct user_struct { 803 atomic_t __count; /* reference count */ 804 atomic_t processes; /* How many processes does this user have? */ 805 atomic_t sigpending; /* How many pending signals does this user have? */ 806 #ifdef CONFIG_INOTIFY_USER 807 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 808 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 809 #endif 810 #ifdef CONFIG_FANOTIFY 811 atomic_t fanotify_listeners; 812 #endif 813 #ifdef CONFIG_EPOLL 814 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 815 #endif 816 #ifdef CONFIG_POSIX_MQUEUE 817 /* protected by mq_lock */ 818 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 819 #endif 820 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 821 822 #ifdef CONFIG_KEYS 823 struct key *uid_keyring; /* UID specific keyring */ 824 struct key *session_keyring; /* UID's default session keyring */ 825 #endif 826 827 /* Hash table maintenance information */ 828 struct hlist_node uidhash_node; 829 kuid_t uid; 830 831 #ifdef CONFIG_PERF_EVENTS 832 atomic_long_t locked_vm; 833 #endif 834 }; 835 836 extern int uids_sysfs_init(void); 837 838 extern struct user_struct *find_user(kuid_t); 839 840 extern struct user_struct root_user; 841 #define INIT_USER (&root_user) 842 843 844 struct backing_dev_info; 845 struct reclaim_state; 846 847 #ifdef CONFIG_SCHED_INFO 848 struct sched_info { 849 /* cumulative counters */ 850 unsigned long pcount; /* # of times run on this cpu */ 851 unsigned long long run_delay; /* time spent waiting on a runqueue */ 852 853 /* timestamps */ 854 unsigned long long last_arrival,/* when we last ran on a cpu */ 855 last_queued; /* when we were last queued to run */ 856 }; 857 #endif /* CONFIG_SCHED_INFO */ 858 859 #ifdef CONFIG_TASK_DELAY_ACCT 860 struct task_delay_info { 861 spinlock_t lock; 862 unsigned int flags; /* Private per-task flags */ 863 864 /* For each stat XXX, add following, aligned appropriately 865 * 866 * struct timespec XXX_start, XXX_end; 867 * u64 XXX_delay; 868 * u32 XXX_count; 869 * 870 * Atomicity of updates to XXX_delay, XXX_count protected by 871 * single lock above (split into XXX_lock if contention is an issue). 872 */ 873 874 /* 875 * XXX_count is incremented on every XXX operation, the delay 876 * associated with the operation is added to XXX_delay. 877 * XXX_delay contains the accumulated delay time in nanoseconds. 878 */ 879 u64 blkio_start; /* Shared by blkio, swapin */ 880 u64 blkio_delay; /* wait for sync block io completion */ 881 u64 swapin_delay; /* wait for swapin block io completion */ 882 u32 blkio_count; /* total count of the number of sync block */ 883 /* io operations performed */ 884 u32 swapin_count; /* total count of the number of swapin block */ 885 /* io operations performed */ 886 887 u64 freepages_start; 888 u64 freepages_delay; /* wait for memory reclaim */ 889 u32 freepages_count; /* total count of memory reclaim */ 890 }; 891 #endif /* CONFIG_TASK_DELAY_ACCT */ 892 893 static inline int sched_info_on(void) 894 { 895 #ifdef CONFIG_SCHEDSTATS 896 return 1; 897 #elif defined(CONFIG_TASK_DELAY_ACCT) 898 extern int delayacct_on; 899 return delayacct_on; 900 #else 901 return 0; 902 #endif 903 } 904 905 enum cpu_idle_type { 906 CPU_IDLE, 907 CPU_NOT_IDLE, 908 CPU_NEWLY_IDLE, 909 CPU_MAX_IDLE_TYPES 910 }; 911 912 /* 913 * Increase resolution of cpu_capacity calculations 914 */ 915 #define SCHED_CAPACITY_SHIFT 10 916 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 917 918 /* 919 * Wake-queues are lists of tasks with a pending wakeup, whose 920 * callers have already marked the task as woken internally, 921 * and can thus carry on. A common use case is being able to 922 * do the wakeups once the corresponding user lock as been 923 * released. 924 * 925 * We hold reference to each task in the list across the wakeup, 926 * thus guaranteeing that the memory is still valid by the time 927 * the actual wakeups are performed in wake_up_q(). 928 * 929 * One per task suffices, because there's never a need for a task to be 930 * in two wake queues simultaneously; it is forbidden to abandon a task 931 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 932 * already in a wake queue, the wakeup will happen soon and the second 933 * waker can just skip it. 934 * 935 * The WAKE_Q macro declares and initializes the list head. 936 * wake_up_q() does NOT reinitialize the list; it's expected to be 937 * called near the end of a function, where the fact that the queue is 938 * not used again will be easy to see by inspection. 939 * 940 * Note that this can cause spurious wakeups. schedule() callers 941 * must ensure the call is done inside a loop, confirming that the 942 * wakeup condition has in fact occurred. 943 */ 944 struct wake_q_node { 945 struct wake_q_node *next; 946 }; 947 948 struct wake_q_head { 949 struct wake_q_node *first; 950 struct wake_q_node **lastp; 951 }; 952 953 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 954 955 #define WAKE_Q(name) \ 956 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 957 958 extern void wake_q_add(struct wake_q_head *head, 959 struct task_struct *task); 960 extern void wake_up_q(struct wake_q_head *head); 961 962 /* 963 * sched-domains (multiprocessor balancing) declarations: 964 */ 965 #ifdef CONFIG_SMP 966 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 967 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 968 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 969 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 970 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 971 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 972 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 973 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 974 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 975 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 976 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 977 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 978 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 979 #define SD_NUMA 0x4000 /* cross-node balancing */ 980 981 #ifdef CONFIG_SCHED_SMT 982 static inline int cpu_smt_flags(void) 983 { 984 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 985 } 986 #endif 987 988 #ifdef CONFIG_SCHED_MC 989 static inline int cpu_core_flags(void) 990 { 991 return SD_SHARE_PKG_RESOURCES; 992 } 993 #endif 994 995 #ifdef CONFIG_NUMA 996 static inline int cpu_numa_flags(void) 997 { 998 return SD_NUMA; 999 } 1000 #endif 1001 1002 struct sched_domain_attr { 1003 int relax_domain_level; 1004 }; 1005 1006 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1007 .relax_domain_level = -1, \ 1008 } 1009 1010 extern int sched_domain_level_max; 1011 1012 struct sched_group; 1013 1014 struct sched_domain { 1015 /* These fields must be setup */ 1016 struct sched_domain *parent; /* top domain must be null terminated */ 1017 struct sched_domain *child; /* bottom domain must be null terminated */ 1018 struct sched_group *groups; /* the balancing groups of the domain */ 1019 unsigned long min_interval; /* Minimum balance interval ms */ 1020 unsigned long max_interval; /* Maximum balance interval ms */ 1021 unsigned int busy_factor; /* less balancing by factor if busy */ 1022 unsigned int imbalance_pct; /* No balance until over watermark */ 1023 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1024 unsigned int busy_idx; 1025 unsigned int idle_idx; 1026 unsigned int newidle_idx; 1027 unsigned int wake_idx; 1028 unsigned int forkexec_idx; 1029 unsigned int smt_gain; 1030 1031 int nohz_idle; /* NOHZ IDLE status */ 1032 int flags; /* See SD_* */ 1033 int level; 1034 1035 /* Runtime fields. */ 1036 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1037 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1038 unsigned int nr_balance_failed; /* initialise to 0 */ 1039 1040 /* idle_balance() stats */ 1041 u64 max_newidle_lb_cost; 1042 unsigned long next_decay_max_lb_cost; 1043 1044 #ifdef CONFIG_SCHEDSTATS 1045 /* load_balance() stats */ 1046 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1047 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1048 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1049 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1050 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1051 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1052 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1053 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1054 1055 /* Active load balancing */ 1056 unsigned int alb_count; 1057 unsigned int alb_failed; 1058 unsigned int alb_pushed; 1059 1060 /* SD_BALANCE_EXEC stats */ 1061 unsigned int sbe_count; 1062 unsigned int sbe_balanced; 1063 unsigned int sbe_pushed; 1064 1065 /* SD_BALANCE_FORK stats */ 1066 unsigned int sbf_count; 1067 unsigned int sbf_balanced; 1068 unsigned int sbf_pushed; 1069 1070 /* try_to_wake_up() stats */ 1071 unsigned int ttwu_wake_remote; 1072 unsigned int ttwu_move_affine; 1073 unsigned int ttwu_move_balance; 1074 #endif 1075 #ifdef CONFIG_SCHED_DEBUG 1076 char *name; 1077 #endif 1078 union { 1079 void *private; /* used during construction */ 1080 struct rcu_head rcu; /* used during destruction */ 1081 }; 1082 1083 unsigned int span_weight; 1084 /* 1085 * Span of all CPUs in this domain. 1086 * 1087 * NOTE: this field is variable length. (Allocated dynamically 1088 * by attaching extra space to the end of the structure, 1089 * depending on how many CPUs the kernel has booted up with) 1090 */ 1091 unsigned long span[0]; 1092 }; 1093 1094 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1095 { 1096 return to_cpumask(sd->span); 1097 } 1098 1099 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1100 struct sched_domain_attr *dattr_new); 1101 1102 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1103 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1104 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1105 1106 bool cpus_share_cache(int this_cpu, int that_cpu); 1107 1108 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1109 typedef int (*sched_domain_flags_f)(void); 1110 1111 #define SDTL_OVERLAP 0x01 1112 1113 struct sd_data { 1114 struct sched_domain **__percpu sd; 1115 struct sched_group **__percpu sg; 1116 struct sched_group_capacity **__percpu sgc; 1117 }; 1118 1119 struct sched_domain_topology_level { 1120 sched_domain_mask_f mask; 1121 sched_domain_flags_f sd_flags; 1122 int flags; 1123 int numa_level; 1124 struct sd_data data; 1125 #ifdef CONFIG_SCHED_DEBUG 1126 char *name; 1127 #endif 1128 }; 1129 1130 extern struct sched_domain_topology_level *sched_domain_topology; 1131 1132 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1133 extern void wake_up_if_idle(int cpu); 1134 1135 #ifdef CONFIG_SCHED_DEBUG 1136 # define SD_INIT_NAME(type) .name = #type 1137 #else 1138 # define SD_INIT_NAME(type) 1139 #endif 1140 1141 #else /* CONFIG_SMP */ 1142 1143 struct sched_domain_attr; 1144 1145 static inline void 1146 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1147 struct sched_domain_attr *dattr_new) 1148 { 1149 } 1150 1151 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1152 { 1153 return true; 1154 } 1155 1156 #endif /* !CONFIG_SMP */ 1157 1158 1159 struct io_context; /* See blkdev.h */ 1160 1161 1162 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1163 extern void prefetch_stack(struct task_struct *t); 1164 #else 1165 static inline void prefetch_stack(struct task_struct *t) { } 1166 #endif 1167 1168 struct audit_context; /* See audit.c */ 1169 struct mempolicy; 1170 struct pipe_inode_info; 1171 struct uts_namespace; 1172 1173 struct load_weight { 1174 unsigned long weight; 1175 u32 inv_weight; 1176 }; 1177 1178 /* 1179 * The load_avg/util_avg accumulates an infinite geometric series. 1180 * 1) load_avg factors the amount of time that a sched_entity is 1181 * runnable on a rq into its weight. For cfs_rq, it is the aggregated 1182 * such weights of all runnable and blocked sched_entities. 1183 * 2) util_avg factors frequency scaling into the amount of time 1184 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1185 * For cfs_rq, it is the aggregated such times of all runnable and 1186 * blocked sched_entities. 1187 * The 64 bit load_sum can: 1188 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1189 * the highest weight (=88761) always runnable, we should not overflow 1190 * 2) for entity, support any load.weight always runnable 1191 */ 1192 struct sched_avg { 1193 u64 last_update_time, load_sum; 1194 u32 util_sum, period_contrib; 1195 unsigned long load_avg, util_avg; 1196 }; 1197 1198 #ifdef CONFIG_SCHEDSTATS 1199 struct sched_statistics { 1200 u64 wait_start; 1201 u64 wait_max; 1202 u64 wait_count; 1203 u64 wait_sum; 1204 u64 iowait_count; 1205 u64 iowait_sum; 1206 1207 u64 sleep_start; 1208 u64 sleep_max; 1209 s64 sum_sleep_runtime; 1210 1211 u64 block_start; 1212 u64 block_max; 1213 u64 exec_max; 1214 u64 slice_max; 1215 1216 u64 nr_migrations_cold; 1217 u64 nr_failed_migrations_affine; 1218 u64 nr_failed_migrations_running; 1219 u64 nr_failed_migrations_hot; 1220 u64 nr_forced_migrations; 1221 1222 u64 nr_wakeups; 1223 u64 nr_wakeups_sync; 1224 u64 nr_wakeups_migrate; 1225 u64 nr_wakeups_local; 1226 u64 nr_wakeups_remote; 1227 u64 nr_wakeups_affine; 1228 u64 nr_wakeups_affine_attempts; 1229 u64 nr_wakeups_passive; 1230 u64 nr_wakeups_idle; 1231 }; 1232 #endif 1233 1234 struct sched_entity { 1235 struct load_weight load; /* for load-balancing */ 1236 struct rb_node run_node; 1237 struct list_head group_node; 1238 unsigned int on_rq; 1239 1240 u64 exec_start; 1241 u64 sum_exec_runtime; 1242 u64 vruntime; 1243 u64 prev_sum_exec_runtime; 1244 1245 u64 nr_migrations; 1246 1247 #ifdef CONFIG_SCHEDSTATS 1248 struct sched_statistics statistics; 1249 #endif 1250 1251 #ifdef CONFIG_FAIR_GROUP_SCHED 1252 int depth; 1253 struct sched_entity *parent; 1254 /* rq on which this entity is (to be) queued: */ 1255 struct cfs_rq *cfs_rq; 1256 /* rq "owned" by this entity/group: */ 1257 struct cfs_rq *my_q; 1258 #endif 1259 1260 #ifdef CONFIG_SMP 1261 /* Per entity load average tracking */ 1262 struct sched_avg avg; 1263 #endif 1264 }; 1265 1266 struct sched_rt_entity { 1267 struct list_head run_list; 1268 unsigned long timeout; 1269 unsigned long watchdog_stamp; 1270 unsigned int time_slice; 1271 1272 struct sched_rt_entity *back; 1273 #ifdef CONFIG_RT_GROUP_SCHED 1274 struct sched_rt_entity *parent; 1275 /* rq on which this entity is (to be) queued: */ 1276 struct rt_rq *rt_rq; 1277 /* rq "owned" by this entity/group: */ 1278 struct rt_rq *my_q; 1279 #endif 1280 }; 1281 1282 struct sched_dl_entity { 1283 struct rb_node rb_node; 1284 1285 /* 1286 * Original scheduling parameters. Copied here from sched_attr 1287 * during sched_setattr(), they will remain the same until 1288 * the next sched_setattr(). 1289 */ 1290 u64 dl_runtime; /* maximum runtime for each instance */ 1291 u64 dl_deadline; /* relative deadline of each instance */ 1292 u64 dl_period; /* separation of two instances (period) */ 1293 u64 dl_bw; /* dl_runtime / dl_deadline */ 1294 1295 /* 1296 * Actual scheduling parameters. Initialized with the values above, 1297 * they are continously updated during task execution. Note that 1298 * the remaining runtime could be < 0 in case we are in overrun. 1299 */ 1300 s64 runtime; /* remaining runtime for this instance */ 1301 u64 deadline; /* absolute deadline for this instance */ 1302 unsigned int flags; /* specifying the scheduler behaviour */ 1303 1304 /* 1305 * Some bool flags: 1306 * 1307 * @dl_throttled tells if we exhausted the runtime. If so, the 1308 * task has to wait for a replenishment to be performed at the 1309 * next firing of dl_timer. 1310 * 1311 * @dl_new tells if a new instance arrived. If so we must 1312 * start executing it with full runtime and reset its absolute 1313 * deadline; 1314 * 1315 * @dl_boosted tells if we are boosted due to DI. If so we are 1316 * outside bandwidth enforcement mechanism (but only until we 1317 * exit the critical section); 1318 * 1319 * @dl_yielded tells if task gave up the cpu before consuming 1320 * all its available runtime during the last job. 1321 */ 1322 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1323 1324 /* 1325 * Bandwidth enforcement timer. Each -deadline task has its 1326 * own bandwidth to be enforced, thus we need one timer per task. 1327 */ 1328 struct hrtimer dl_timer; 1329 }; 1330 1331 union rcu_special { 1332 struct { 1333 bool blocked; 1334 bool need_qs; 1335 } b; 1336 short s; 1337 }; 1338 struct rcu_node; 1339 1340 enum perf_event_task_context { 1341 perf_invalid_context = -1, 1342 perf_hw_context = 0, 1343 perf_sw_context, 1344 perf_nr_task_contexts, 1345 }; 1346 1347 struct task_struct { 1348 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1349 void *stack; 1350 atomic_t usage; 1351 unsigned int flags; /* per process flags, defined below */ 1352 unsigned int ptrace; 1353 1354 #ifdef CONFIG_SMP 1355 struct llist_node wake_entry; 1356 int on_cpu; 1357 unsigned int wakee_flips; 1358 unsigned long wakee_flip_decay_ts; 1359 struct task_struct *last_wakee; 1360 1361 int wake_cpu; 1362 #endif 1363 int on_rq; 1364 1365 int prio, static_prio, normal_prio; 1366 unsigned int rt_priority; 1367 const struct sched_class *sched_class; 1368 struct sched_entity se; 1369 struct sched_rt_entity rt; 1370 #ifdef CONFIG_CGROUP_SCHED 1371 struct task_group *sched_task_group; 1372 #endif 1373 struct sched_dl_entity dl; 1374 1375 #ifdef CONFIG_PREEMPT_NOTIFIERS 1376 /* list of struct preempt_notifier: */ 1377 struct hlist_head preempt_notifiers; 1378 #endif 1379 1380 #ifdef CONFIG_BLK_DEV_IO_TRACE 1381 unsigned int btrace_seq; 1382 #endif 1383 1384 unsigned int policy; 1385 int nr_cpus_allowed; 1386 cpumask_t cpus_allowed; 1387 1388 #ifdef CONFIG_PREEMPT_RCU 1389 int rcu_read_lock_nesting; 1390 union rcu_special rcu_read_unlock_special; 1391 struct list_head rcu_node_entry; 1392 struct rcu_node *rcu_blocked_node; 1393 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1394 #ifdef CONFIG_TASKS_RCU 1395 unsigned long rcu_tasks_nvcsw; 1396 bool rcu_tasks_holdout; 1397 struct list_head rcu_tasks_holdout_list; 1398 int rcu_tasks_idle_cpu; 1399 #endif /* #ifdef CONFIG_TASKS_RCU */ 1400 1401 #ifdef CONFIG_SCHED_INFO 1402 struct sched_info sched_info; 1403 #endif 1404 1405 struct list_head tasks; 1406 #ifdef CONFIG_SMP 1407 struct plist_node pushable_tasks; 1408 struct rb_node pushable_dl_tasks; 1409 #endif 1410 1411 struct mm_struct *mm, *active_mm; 1412 /* per-thread vma caching */ 1413 u32 vmacache_seqnum; 1414 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1415 #if defined(SPLIT_RSS_COUNTING) 1416 struct task_rss_stat rss_stat; 1417 #endif 1418 /* task state */ 1419 int exit_state; 1420 int exit_code, exit_signal; 1421 int pdeath_signal; /* The signal sent when the parent dies */ 1422 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1423 1424 /* Used for emulating ABI behavior of previous Linux versions */ 1425 unsigned int personality; 1426 1427 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1428 * execve */ 1429 unsigned in_iowait:1; 1430 1431 /* Revert to default priority/policy when forking */ 1432 unsigned sched_reset_on_fork:1; 1433 unsigned sched_contributes_to_load:1; 1434 unsigned sched_migrated:1; 1435 1436 #ifdef CONFIG_MEMCG_KMEM 1437 unsigned memcg_kmem_skip_account:1; 1438 #endif 1439 #ifdef CONFIG_COMPAT_BRK 1440 unsigned brk_randomized:1; 1441 #endif 1442 1443 unsigned long atomic_flags; /* Flags needing atomic access. */ 1444 1445 struct restart_block restart_block; 1446 1447 pid_t pid; 1448 pid_t tgid; 1449 1450 #ifdef CONFIG_CC_STACKPROTECTOR 1451 /* Canary value for the -fstack-protector gcc feature */ 1452 unsigned long stack_canary; 1453 #endif 1454 /* 1455 * pointers to (original) parent process, youngest child, younger sibling, 1456 * older sibling, respectively. (p->father can be replaced with 1457 * p->real_parent->pid) 1458 */ 1459 struct task_struct __rcu *real_parent; /* real parent process */ 1460 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1461 /* 1462 * children/sibling forms the list of my natural children 1463 */ 1464 struct list_head children; /* list of my children */ 1465 struct list_head sibling; /* linkage in my parent's children list */ 1466 struct task_struct *group_leader; /* threadgroup leader */ 1467 1468 /* 1469 * ptraced is the list of tasks this task is using ptrace on. 1470 * This includes both natural children and PTRACE_ATTACH targets. 1471 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1472 */ 1473 struct list_head ptraced; 1474 struct list_head ptrace_entry; 1475 1476 /* PID/PID hash table linkage. */ 1477 struct pid_link pids[PIDTYPE_MAX]; 1478 struct list_head thread_group; 1479 struct list_head thread_node; 1480 1481 struct completion *vfork_done; /* for vfork() */ 1482 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1483 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1484 1485 cputime_t utime, stime, utimescaled, stimescaled; 1486 cputime_t gtime; 1487 struct prev_cputime prev_cputime; 1488 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1489 seqlock_t vtime_seqlock; 1490 unsigned long long vtime_snap; 1491 enum { 1492 VTIME_SLEEPING = 0, 1493 VTIME_USER, 1494 VTIME_SYS, 1495 } vtime_snap_whence; 1496 #endif 1497 unsigned long nvcsw, nivcsw; /* context switch counts */ 1498 u64 start_time; /* monotonic time in nsec */ 1499 u64 real_start_time; /* boot based time in nsec */ 1500 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1501 unsigned long min_flt, maj_flt; 1502 1503 struct task_cputime cputime_expires; 1504 struct list_head cpu_timers[3]; 1505 1506 /* process credentials */ 1507 const struct cred __rcu *real_cred; /* objective and real subjective task 1508 * credentials (COW) */ 1509 const struct cred __rcu *cred; /* effective (overridable) subjective task 1510 * credentials (COW) */ 1511 char comm[TASK_COMM_LEN]; /* executable name excluding path 1512 - access with [gs]et_task_comm (which lock 1513 it with task_lock()) 1514 - initialized normally by setup_new_exec */ 1515 /* file system info */ 1516 struct nameidata *nameidata; 1517 #ifdef CONFIG_SYSVIPC 1518 /* ipc stuff */ 1519 struct sysv_sem sysvsem; 1520 struct sysv_shm sysvshm; 1521 #endif 1522 #ifdef CONFIG_DETECT_HUNG_TASK 1523 /* hung task detection */ 1524 unsigned long last_switch_count; 1525 #endif 1526 /* filesystem information */ 1527 struct fs_struct *fs; 1528 /* open file information */ 1529 struct files_struct *files; 1530 /* namespaces */ 1531 struct nsproxy *nsproxy; 1532 /* signal handlers */ 1533 struct signal_struct *signal; 1534 struct sighand_struct *sighand; 1535 1536 sigset_t blocked, real_blocked; 1537 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1538 struct sigpending pending; 1539 1540 unsigned long sas_ss_sp; 1541 size_t sas_ss_size; 1542 int (*notifier)(void *priv); 1543 void *notifier_data; 1544 sigset_t *notifier_mask; 1545 struct callback_head *task_works; 1546 1547 struct audit_context *audit_context; 1548 #ifdef CONFIG_AUDITSYSCALL 1549 kuid_t loginuid; 1550 unsigned int sessionid; 1551 #endif 1552 struct seccomp seccomp; 1553 1554 /* Thread group tracking */ 1555 u32 parent_exec_id; 1556 u32 self_exec_id; 1557 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1558 * mempolicy */ 1559 spinlock_t alloc_lock; 1560 1561 /* Protection of the PI data structures: */ 1562 raw_spinlock_t pi_lock; 1563 1564 struct wake_q_node wake_q; 1565 1566 #ifdef CONFIG_RT_MUTEXES 1567 /* PI waiters blocked on a rt_mutex held by this task */ 1568 struct rb_root pi_waiters; 1569 struct rb_node *pi_waiters_leftmost; 1570 /* Deadlock detection and priority inheritance handling */ 1571 struct rt_mutex_waiter *pi_blocked_on; 1572 #endif 1573 1574 #ifdef CONFIG_DEBUG_MUTEXES 1575 /* mutex deadlock detection */ 1576 struct mutex_waiter *blocked_on; 1577 #endif 1578 #ifdef CONFIG_TRACE_IRQFLAGS 1579 unsigned int irq_events; 1580 unsigned long hardirq_enable_ip; 1581 unsigned long hardirq_disable_ip; 1582 unsigned int hardirq_enable_event; 1583 unsigned int hardirq_disable_event; 1584 int hardirqs_enabled; 1585 int hardirq_context; 1586 unsigned long softirq_disable_ip; 1587 unsigned long softirq_enable_ip; 1588 unsigned int softirq_disable_event; 1589 unsigned int softirq_enable_event; 1590 int softirqs_enabled; 1591 int softirq_context; 1592 #endif 1593 #ifdef CONFIG_LOCKDEP 1594 # define MAX_LOCK_DEPTH 48UL 1595 u64 curr_chain_key; 1596 int lockdep_depth; 1597 unsigned int lockdep_recursion; 1598 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1599 gfp_t lockdep_reclaim_gfp; 1600 #endif 1601 1602 /* journalling filesystem info */ 1603 void *journal_info; 1604 1605 /* stacked block device info */ 1606 struct bio_list *bio_list; 1607 1608 #ifdef CONFIG_BLOCK 1609 /* stack plugging */ 1610 struct blk_plug *plug; 1611 #endif 1612 1613 /* VM state */ 1614 struct reclaim_state *reclaim_state; 1615 1616 struct backing_dev_info *backing_dev_info; 1617 1618 struct io_context *io_context; 1619 1620 unsigned long ptrace_message; 1621 siginfo_t *last_siginfo; /* For ptrace use. */ 1622 struct task_io_accounting ioac; 1623 #if defined(CONFIG_TASK_XACCT) 1624 u64 acct_rss_mem1; /* accumulated rss usage */ 1625 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1626 cputime_t acct_timexpd; /* stime + utime since last update */ 1627 #endif 1628 #ifdef CONFIG_CPUSETS 1629 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1630 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1631 int cpuset_mem_spread_rotor; 1632 int cpuset_slab_spread_rotor; 1633 #endif 1634 #ifdef CONFIG_CGROUPS 1635 /* Control Group info protected by css_set_lock */ 1636 struct css_set __rcu *cgroups; 1637 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1638 struct list_head cg_list; 1639 #endif 1640 #ifdef CONFIG_FUTEX 1641 struct robust_list_head __user *robust_list; 1642 #ifdef CONFIG_COMPAT 1643 struct compat_robust_list_head __user *compat_robust_list; 1644 #endif 1645 struct list_head pi_state_list; 1646 struct futex_pi_state *pi_state_cache; 1647 #endif 1648 #ifdef CONFIG_PERF_EVENTS 1649 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1650 struct mutex perf_event_mutex; 1651 struct list_head perf_event_list; 1652 #endif 1653 #ifdef CONFIG_DEBUG_PREEMPT 1654 unsigned long preempt_disable_ip; 1655 #endif 1656 #ifdef CONFIG_NUMA 1657 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1658 short il_next; 1659 short pref_node_fork; 1660 #endif 1661 #ifdef CONFIG_NUMA_BALANCING 1662 int numa_scan_seq; 1663 unsigned int numa_scan_period; 1664 unsigned int numa_scan_period_max; 1665 int numa_preferred_nid; 1666 unsigned long numa_migrate_retry; 1667 u64 node_stamp; /* migration stamp */ 1668 u64 last_task_numa_placement; 1669 u64 last_sum_exec_runtime; 1670 struct callback_head numa_work; 1671 1672 struct list_head numa_entry; 1673 struct numa_group *numa_group; 1674 1675 /* 1676 * numa_faults is an array split into four regions: 1677 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1678 * in this precise order. 1679 * 1680 * faults_memory: Exponential decaying average of faults on a per-node 1681 * basis. Scheduling placement decisions are made based on these 1682 * counts. The values remain static for the duration of a PTE scan. 1683 * faults_cpu: Track the nodes the process was running on when a NUMA 1684 * hinting fault was incurred. 1685 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1686 * during the current scan window. When the scan completes, the counts 1687 * in faults_memory and faults_cpu decay and these values are copied. 1688 */ 1689 unsigned long *numa_faults; 1690 unsigned long total_numa_faults; 1691 1692 /* 1693 * numa_faults_locality tracks if faults recorded during the last 1694 * scan window were remote/local or failed to migrate. The task scan 1695 * period is adapted based on the locality of the faults with different 1696 * weights depending on whether they were shared or private faults 1697 */ 1698 unsigned long numa_faults_locality[3]; 1699 1700 unsigned long numa_pages_migrated; 1701 #endif /* CONFIG_NUMA_BALANCING */ 1702 1703 struct rcu_head rcu; 1704 1705 /* 1706 * cache last used pipe for splice 1707 */ 1708 struct pipe_inode_info *splice_pipe; 1709 1710 struct page_frag task_frag; 1711 1712 #ifdef CONFIG_TASK_DELAY_ACCT 1713 struct task_delay_info *delays; 1714 #endif 1715 #ifdef CONFIG_FAULT_INJECTION 1716 int make_it_fail; 1717 #endif 1718 /* 1719 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1720 * balance_dirty_pages() for some dirty throttling pause 1721 */ 1722 int nr_dirtied; 1723 int nr_dirtied_pause; 1724 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1725 1726 #ifdef CONFIG_LATENCYTOP 1727 int latency_record_count; 1728 struct latency_record latency_record[LT_SAVECOUNT]; 1729 #endif 1730 /* 1731 * time slack values; these are used to round up poll() and 1732 * select() etc timeout values. These are in nanoseconds. 1733 */ 1734 unsigned long timer_slack_ns; 1735 unsigned long default_timer_slack_ns; 1736 1737 #ifdef CONFIG_KASAN 1738 unsigned int kasan_depth; 1739 #endif 1740 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1741 /* Index of current stored address in ret_stack */ 1742 int curr_ret_stack; 1743 /* Stack of return addresses for return function tracing */ 1744 struct ftrace_ret_stack *ret_stack; 1745 /* time stamp for last schedule */ 1746 unsigned long long ftrace_timestamp; 1747 /* 1748 * Number of functions that haven't been traced 1749 * because of depth overrun. 1750 */ 1751 atomic_t trace_overrun; 1752 /* Pause for the tracing */ 1753 atomic_t tracing_graph_pause; 1754 #endif 1755 #ifdef CONFIG_TRACING 1756 /* state flags for use by tracers */ 1757 unsigned long trace; 1758 /* bitmask and counter of trace recursion */ 1759 unsigned long trace_recursion; 1760 #endif /* CONFIG_TRACING */ 1761 #ifdef CONFIG_MEMCG 1762 struct memcg_oom_info { 1763 struct mem_cgroup *memcg; 1764 gfp_t gfp_mask; 1765 int order; 1766 unsigned int may_oom:1; 1767 } memcg_oom; 1768 #endif 1769 #ifdef CONFIG_UPROBES 1770 struct uprobe_task *utask; 1771 #endif 1772 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1773 unsigned int sequential_io; 1774 unsigned int sequential_io_avg; 1775 #endif 1776 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1777 unsigned long task_state_change; 1778 #endif 1779 int pagefault_disabled; 1780 /* CPU-specific state of this task */ 1781 struct thread_struct thread; 1782 /* 1783 * WARNING: on x86, 'thread_struct' contains a variable-sized 1784 * structure. It *MUST* be at the end of 'task_struct'. 1785 * 1786 * Do not put anything below here! 1787 */ 1788 }; 1789 1790 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1791 extern int arch_task_struct_size __read_mostly; 1792 #else 1793 # define arch_task_struct_size (sizeof(struct task_struct)) 1794 #endif 1795 1796 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1797 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1798 1799 #define TNF_MIGRATED 0x01 1800 #define TNF_NO_GROUP 0x02 1801 #define TNF_SHARED 0x04 1802 #define TNF_FAULT_LOCAL 0x08 1803 #define TNF_MIGRATE_FAIL 0x10 1804 1805 #ifdef CONFIG_NUMA_BALANCING 1806 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1807 extern pid_t task_numa_group_id(struct task_struct *p); 1808 extern void set_numabalancing_state(bool enabled); 1809 extern void task_numa_free(struct task_struct *p); 1810 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1811 int src_nid, int dst_cpu); 1812 #else 1813 static inline void task_numa_fault(int last_node, int node, int pages, 1814 int flags) 1815 { 1816 } 1817 static inline pid_t task_numa_group_id(struct task_struct *p) 1818 { 1819 return 0; 1820 } 1821 static inline void set_numabalancing_state(bool enabled) 1822 { 1823 } 1824 static inline void task_numa_free(struct task_struct *p) 1825 { 1826 } 1827 static inline bool should_numa_migrate_memory(struct task_struct *p, 1828 struct page *page, int src_nid, int dst_cpu) 1829 { 1830 return true; 1831 } 1832 #endif 1833 1834 static inline struct pid *task_pid(struct task_struct *task) 1835 { 1836 return task->pids[PIDTYPE_PID].pid; 1837 } 1838 1839 static inline struct pid *task_tgid(struct task_struct *task) 1840 { 1841 return task->group_leader->pids[PIDTYPE_PID].pid; 1842 } 1843 1844 /* 1845 * Without tasklist or rcu lock it is not safe to dereference 1846 * the result of task_pgrp/task_session even if task == current, 1847 * we can race with another thread doing sys_setsid/sys_setpgid. 1848 */ 1849 static inline struct pid *task_pgrp(struct task_struct *task) 1850 { 1851 return task->group_leader->pids[PIDTYPE_PGID].pid; 1852 } 1853 1854 static inline struct pid *task_session(struct task_struct *task) 1855 { 1856 return task->group_leader->pids[PIDTYPE_SID].pid; 1857 } 1858 1859 struct pid_namespace; 1860 1861 /* 1862 * the helpers to get the task's different pids as they are seen 1863 * from various namespaces 1864 * 1865 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1866 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1867 * current. 1868 * task_xid_nr_ns() : id seen from the ns specified; 1869 * 1870 * set_task_vxid() : assigns a virtual id to a task; 1871 * 1872 * see also pid_nr() etc in include/linux/pid.h 1873 */ 1874 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1875 struct pid_namespace *ns); 1876 1877 static inline pid_t task_pid_nr(struct task_struct *tsk) 1878 { 1879 return tsk->pid; 1880 } 1881 1882 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1883 struct pid_namespace *ns) 1884 { 1885 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1886 } 1887 1888 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1889 { 1890 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1891 } 1892 1893 1894 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1895 { 1896 return tsk->tgid; 1897 } 1898 1899 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1900 1901 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1902 { 1903 return pid_vnr(task_tgid(tsk)); 1904 } 1905 1906 1907 static inline int pid_alive(const struct task_struct *p); 1908 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1909 { 1910 pid_t pid = 0; 1911 1912 rcu_read_lock(); 1913 if (pid_alive(tsk)) 1914 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1915 rcu_read_unlock(); 1916 1917 return pid; 1918 } 1919 1920 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1921 { 1922 return task_ppid_nr_ns(tsk, &init_pid_ns); 1923 } 1924 1925 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1926 struct pid_namespace *ns) 1927 { 1928 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1929 } 1930 1931 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1932 { 1933 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1934 } 1935 1936 1937 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1938 struct pid_namespace *ns) 1939 { 1940 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1941 } 1942 1943 static inline pid_t task_session_vnr(struct task_struct *tsk) 1944 { 1945 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1946 } 1947 1948 /* obsolete, do not use */ 1949 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1950 { 1951 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1952 } 1953 1954 /** 1955 * pid_alive - check that a task structure is not stale 1956 * @p: Task structure to be checked. 1957 * 1958 * Test if a process is not yet dead (at most zombie state) 1959 * If pid_alive fails, then pointers within the task structure 1960 * can be stale and must not be dereferenced. 1961 * 1962 * Return: 1 if the process is alive. 0 otherwise. 1963 */ 1964 static inline int pid_alive(const struct task_struct *p) 1965 { 1966 return p->pids[PIDTYPE_PID].pid != NULL; 1967 } 1968 1969 /** 1970 * is_global_init - check if a task structure is init 1971 * @tsk: Task structure to be checked. 1972 * 1973 * Check if a task structure is the first user space task the kernel created. 1974 * 1975 * Return: 1 if the task structure is init. 0 otherwise. 1976 */ 1977 static inline int is_global_init(struct task_struct *tsk) 1978 { 1979 return tsk->pid == 1; 1980 } 1981 1982 extern struct pid *cad_pid; 1983 1984 extern void free_task(struct task_struct *tsk); 1985 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1986 1987 extern void __put_task_struct(struct task_struct *t); 1988 1989 static inline void put_task_struct(struct task_struct *t) 1990 { 1991 if (atomic_dec_and_test(&t->usage)) 1992 __put_task_struct(t); 1993 } 1994 1995 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1996 extern void task_cputime(struct task_struct *t, 1997 cputime_t *utime, cputime_t *stime); 1998 extern void task_cputime_scaled(struct task_struct *t, 1999 cputime_t *utimescaled, cputime_t *stimescaled); 2000 extern cputime_t task_gtime(struct task_struct *t); 2001 #else 2002 static inline void task_cputime(struct task_struct *t, 2003 cputime_t *utime, cputime_t *stime) 2004 { 2005 if (utime) 2006 *utime = t->utime; 2007 if (stime) 2008 *stime = t->stime; 2009 } 2010 2011 static inline void task_cputime_scaled(struct task_struct *t, 2012 cputime_t *utimescaled, 2013 cputime_t *stimescaled) 2014 { 2015 if (utimescaled) 2016 *utimescaled = t->utimescaled; 2017 if (stimescaled) 2018 *stimescaled = t->stimescaled; 2019 } 2020 2021 static inline cputime_t task_gtime(struct task_struct *t) 2022 { 2023 return t->gtime; 2024 } 2025 #endif 2026 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2027 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2028 2029 /* 2030 * Per process flags 2031 */ 2032 #define PF_EXITING 0x00000004 /* getting shut down */ 2033 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2034 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2035 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2036 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2037 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2038 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2039 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2040 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2041 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2042 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2043 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2044 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2045 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2046 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2047 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2048 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2049 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2050 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2051 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2052 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2053 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2054 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2055 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2056 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2057 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2058 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2059 2060 /* 2061 * Only the _current_ task can read/write to tsk->flags, but other 2062 * tasks can access tsk->flags in readonly mode for example 2063 * with tsk_used_math (like during threaded core dumping). 2064 * There is however an exception to this rule during ptrace 2065 * or during fork: the ptracer task is allowed to write to the 2066 * child->flags of its traced child (same goes for fork, the parent 2067 * can write to the child->flags), because we're guaranteed the 2068 * child is not running and in turn not changing child->flags 2069 * at the same time the parent does it. 2070 */ 2071 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2072 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2073 #define clear_used_math() clear_stopped_child_used_math(current) 2074 #define set_used_math() set_stopped_child_used_math(current) 2075 #define conditional_stopped_child_used_math(condition, child) \ 2076 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2077 #define conditional_used_math(condition) \ 2078 conditional_stopped_child_used_math(condition, current) 2079 #define copy_to_stopped_child_used_math(child) \ 2080 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2081 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2082 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2083 #define used_math() tsk_used_math(current) 2084 2085 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2086 * __GFP_FS is also cleared as it implies __GFP_IO. 2087 */ 2088 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2089 { 2090 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2091 flags &= ~(__GFP_IO | __GFP_FS); 2092 return flags; 2093 } 2094 2095 static inline unsigned int memalloc_noio_save(void) 2096 { 2097 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2098 current->flags |= PF_MEMALLOC_NOIO; 2099 return flags; 2100 } 2101 2102 static inline void memalloc_noio_restore(unsigned int flags) 2103 { 2104 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2105 } 2106 2107 /* Per-process atomic flags. */ 2108 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2109 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2110 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2111 2112 2113 #define TASK_PFA_TEST(name, func) \ 2114 static inline bool task_##func(struct task_struct *p) \ 2115 { return test_bit(PFA_##name, &p->atomic_flags); } 2116 #define TASK_PFA_SET(name, func) \ 2117 static inline void task_set_##func(struct task_struct *p) \ 2118 { set_bit(PFA_##name, &p->atomic_flags); } 2119 #define TASK_PFA_CLEAR(name, func) \ 2120 static inline void task_clear_##func(struct task_struct *p) \ 2121 { clear_bit(PFA_##name, &p->atomic_flags); } 2122 2123 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2124 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2125 2126 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2127 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2128 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2129 2130 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2131 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2132 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2133 2134 /* 2135 * task->jobctl flags 2136 */ 2137 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2138 2139 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2140 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2141 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2142 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2143 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2144 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2145 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2146 2147 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2148 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2149 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2150 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2151 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2152 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2153 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2154 2155 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2156 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2157 2158 extern bool task_set_jobctl_pending(struct task_struct *task, 2159 unsigned long mask); 2160 extern void task_clear_jobctl_trapping(struct task_struct *task); 2161 extern void task_clear_jobctl_pending(struct task_struct *task, 2162 unsigned long mask); 2163 2164 static inline void rcu_copy_process(struct task_struct *p) 2165 { 2166 #ifdef CONFIG_PREEMPT_RCU 2167 p->rcu_read_lock_nesting = 0; 2168 p->rcu_read_unlock_special.s = 0; 2169 p->rcu_blocked_node = NULL; 2170 INIT_LIST_HEAD(&p->rcu_node_entry); 2171 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2172 #ifdef CONFIG_TASKS_RCU 2173 p->rcu_tasks_holdout = false; 2174 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2175 p->rcu_tasks_idle_cpu = -1; 2176 #endif /* #ifdef CONFIG_TASKS_RCU */ 2177 } 2178 2179 static inline void tsk_restore_flags(struct task_struct *task, 2180 unsigned long orig_flags, unsigned long flags) 2181 { 2182 task->flags &= ~flags; 2183 task->flags |= orig_flags & flags; 2184 } 2185 2186 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2187 const struct cpumask *trial); 2188 extern int task_can_attach(struct task_struct *p, 2189 const struct cpumask *cs_cpus_allowed); 2190 #ifdef CONFIG_SMP 2191 extern void do_set_cpus_allowed(struct task_struct *p, 2192 const struct cpumask *new_mask); 2193 2194 extern int set_cpus_allowed_ptr(struct task_struct *p, 2195 const struct cpumask *new_mask); 2196 #else 2197 static inline void do_set_cpus_allowed(struct task_struct *p, 2198 const struct cpumask *new_mask) 2199 { 2200 } 2201 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2202 const struct cpumask *new_mask) 2203 { 2204 if (!cpumask_test_cpu(0, new_mask)) 2205 return -EINVAL; 2206 return 0; 2207 } 2208 #endif 2209 2210 #ifdef CONFIG_NO_HZ_COMMON 2211 void calc_load_enter_idle(void); 2212 void calc_load_exit_idle(void); 2213 #else 2214 static inline void calc_load_enter_idle(void) { } 2215 static inline void calc_load_exit_idle(void) { } 2216 #endif /* CONFIG_NO_HZ_COMMON */ 2217 2218 /* 2219 * Do not use outside of architecture code which knows its limitations. 2220 * 2221 * sched_clock() has no promise of monotonicity or bounded drift between 2222 * CPUs, use (which you should not) requires disabling IRQs. 2223 * 2224 * Please use one of the three interfaces below. 2225 */ 2226 extern unsigned long long notrace sched_clock(void); 2227 /* 2228 * See the comment in kernel/sched/clock.c 2229 */ 2230 extern u64 cpu_clock(int cpu); 2231 extern u64 local_clock(void); 2232 extern u64 running_clock(void); 2233 extern u64 sched_clock_cpu(int cpu); 2234 2235 2236 extern void sched_clock_init(void); 2237 2238 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2239 static inline void sched_clock_tick(void) 2240 { 2241 } 2242 2243 static inline void sched_clock_idle_sleep_event(void) 2244 { 2245 } 2246 2247 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2248 { 2249 } 2250 #else 2251 /* 2252 * Architectures can set this to 1 if they have specified 2253 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2254 * but then during bootup it turns out that sched_clock() 2255 * is reliable after all: 2256 */ 2257 extern int sched_clock_stable(void); 2258 extern void set_sched_clock_stable(void); 2259 extern void clear_sched_clock_stable(void); 2260 2261 extern void sched_clock_tick(void); 2262 extern void sched_clock_idle_sleep_event(void); 2263 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2264 #endif 2265 2266 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2267 /* 2268 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2269 * The reason for this explicit opt-in is not to have perf penalty with 2270 * slow sched_clocks. 2271 */ 2272 extern void enable_sched_clock_irqtime(void); 2273 extern void disable_sched_clock_irqtime(void); 2274 #else 2275 static inline void enable_sched_clock_irqtime(void) {} 2276 static inline void disable_sched_clock_irqtime(void) {} 2277 #endif 2278 2279 extern unsigned long long 2280 task_sched_runtime(struct task_struct *task); 2281 2282 /* sched_exec is called by processes performing an exec */ 2283 #ifdef CONFIG_SMP 2284 extern void sched_exec(void); 2285 #else 2286 #define sched_exec() {} 2287 #endif 2288 2289 extern void sched_clock_idle_sleep_event(void); 2290 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2291 2292 #ifdef CONFIG_HOTPLUG_CPU 2293 extern void idle_task_exit(void); 2294 #else 2295 static inline void idle_task_exit(void) {} 2296 #endif 2297 2298 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2299 extern void wake_up_nohz_cpu(int cpu); 2300 #else 2301 static inline void wake_up_nohz_cpu(int cpu) { } 2302 #endif 2303 2304 #ifdef CONFIG_NO_HZ_FULL 2305 extern bool sched_can_stop_tick(void); 2306 extern u64 scheduler_tick_max_deferment(void); 2307 #else 2308 static inline bool sched_can_stop_tick(void) { return false; } 2309 #endif 2310 2311 #ifdef CONFIG_SCHED_AUTOGROUP 2312 extern void sched_autogroup_create_attach(struct task_struct *p); 2313 extern void sched_autogroup_detach(struct task_struct *p); 2314 extern void sched_autogroup_fork(struct signal_struct *sig); 2315 extern void sched_autogroup_exit(struct signal_struct *sig); 2316 #ifdef CONFIG_PROC_FS 2317 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2318 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2319 #endif 2320 #else 2321 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2322 static inline void sched_autogroup_detach(struct task_struct *p) { } 2323 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2324 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2325 #endif 2326 2327 extern int yield_to(struct task_struct *p, bool preempt); 2328 extern void set_user_nice(struct task_struct *p, long nice); 2329 extern int task_prio(const struct task_struct *p); 2330 /** 2331 * task_nice - return the nice value of a given task. 2332 * @p: the task in question. 2333 * 2334 * Return: The nice value [ -20 ... 0 ... 19 ]. 2335 */ 2336 static inline int task_nice(const struct task_struct *p) 2337 { 2338 return PRIO_TO_NICE((p)->static_prio); 2339 } 2340 extern int can_nice(const struct task_struct *p, const int nice); 2341 extern int task_curr(const struct task_struct *p); 2342 extern int idle_cpu(int cpu); 2343 extern int sched_setscheduler(struct task_struct *, int, 2344 const struct sched_param *); 2345 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2346 const struct sched_param *); 2347 extern int sched_setattr(struct task_struct *, 2348 const struct sched_attr *); 2349 extern struct task_struct *idle_task(int cpu); 2350 /** 2351 * is_idle_task - is the specified task an idle task? 2352 * @p: the task in question. 2353 * 2354 * Return: 1 if @p is an idle task. 0 otherwise. 2355 */ 2356 static inline bool is_idle_task(const struct task_struct *p) 2357 { 2358 return p->pid == 0; 2359 } 2360 extern struct task_struct *curr_task(int cpu); 2361 extern void set_curr_task(int cpu, struct task_struct *p); 2362 2363 void yield(void); 2364 2365 union thread_union { 2366 struct thread_info thread_info; 2367 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2368 }; 2369 2370 #ifndef __HAVE_ARCH_KSTACK_END 2371 static inline int kstack_end(void *addr) 2372 { 2373 /* Reliable end of stack detection: 2374 * Some APM bios versions misalign the stack 2375 */ 2376 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2377 } 2378 #endif 2379 2380 extern union thread_union init_thread_union; 2381 extern struct task_struct init_task; 2382 2383 extern struct mm_struct init_mm; 2384 2385 extern struct pid_namespace init_pid_ns; 2386 2387 /* 2388 * find a task by one of its numerical ids 2389 * 2390 * find_task_by_pid_ns(): 2391 * finds a task by its pid in the specified namespace 2392 * find_task_by_vpid(): 2393 * finds a task by its virtual pid 2394 * 2395 * see also find_vpid() etc in include/linux/pid.h 2396 */ 2397 2398 extern struct task_struct *find_task_by_vpid(pid_t nr); 2399 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2400 struct pid_namespace *ns); 2401 2402 /* per-UID process charging. */ 2403 extern struct user_struct * alloc_uid(kuid_t); 2404 static inline struct user_struct *get_uid(struct user_struct *u) 2405 { 2406 atomic_inc(&u->__count); 2407 return u; 2408 } 2409 extern void free_uid(struct user_struct *); 2410 2411 #include <asm/current.h> 2412 2413 extern void xtime_update(unsigned long ticks); 2414 2415 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2416 extern int wake_up_process(struct task_struct *tsk); 2417 extern void wake_up_new_task(struct task_struct *tsk); 2418 #ifdef CONFIG_SMP 2419 extern void kick_process(struct task_struct *tsk); 2420 #else 2421 static inline void kick_process(struct task_struct *tsk) { } 2422 #endif 2423 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2424 extern void sched_dead(struct task_struct *p); 2425 2426 extern void proc_caches_init(void); 2427 extern void flush_signals(struct task_struct *); 2428 extern void ignore_signals(struct task_struct *); 2429 extern void flush_signal_handlers(struct task_struct *, int force_default); 2430 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2431 2432 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2433 { 2434 unsigned long flags; 2435 int ret; 2436 2437 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2438 ret = dequeue_signal(tsk, mask, info); 2439 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2440 2441 return ret; 2442 } 2443 2444 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2445 sigset_t *mask); 2446 extern void unblock_all_signals(void); 2447 extern void release_task(struct task_struct * p); 2448 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2449 extern int force_sigsegv(int, struct task_struct *); 2450 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2451 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2452 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2453 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2454 const struct cred *, u32); 2455 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2456 extern int kill_pid(struct pid *pid, int sig, int priv); 2457 extern int kill_proc_info(int, struct siginfo *, pid_t); 2458 extern __must_check bool do_notify_parent(struct task_struct *, int); 2459 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2460 extern void force_sig(int, struct task_struct *); 2461 extern int send_sig(int, struct task_struct *, int); 2462 extern int zap_other_threads(struct task_struct *p); 2463 extern struct sigqueue *sigqueue_alloc(void); 2464 extern void sigqueue_free(struct sigqueue *); 2465 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2466 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2467 2468 static inline void restore_saved_sigmask(void) 2469 { 2470 if (test_and_clear_restore_sigmask()) 2471 __set_current_blocked(¤t->saved_sigmask); 2472 } 2473 2474 static inline sigset_t *sigmask_to_save(void) 2475 { 2476 sigset_t *res = ¤t->blocked; 2477 if (unlikely(test_restore_sigmask())) 2478 res = ¤t->saved_sigmask; 2479 return res; 2480 } 2481 2482 static inline int kill_cad_pid(int sig, int priv) 2483 { 2484 return kill_pid(cad_pid, sig, priv); 2485 } 2486 2487 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2488 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2489 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2490 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2491 2492 /* 2493 * True if we are on the alternate signal stack. 2494 */ 2495 static inline int on_sig_stack(unsigned long sp) 2496 { 2497 #ifdef CONFIG_STACK_GROWSUP 2498 return sp >= current->sas_ss_sp && 2499 sp - current->sas_ss_sp < current->sas_ss_size; 2500 #else 2501 return sp > current->sas_ss_sp && 2502 sp - current->sas_ss_sp <= current->sas_ss_size; 2503 #endif 2504 } 2505 2506 static inline int sas_ss_flags(unsigned long sp) 2507 { 2508 if (!current->sas_ss_size) 2509 return SS_DISABLE; 2510 2511 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2512 } 2513 2514 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2515 { 2516 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2517 #ifdef CONFIG_STACK_GROWSUP 2518 return current->sas_ss_sp; 2519 #else 2520 return current->sas_ss_sp + current->sas_ss_size; 2521 #endif 2522 return sp; 2523 } 2524 2525 /* 2526 * Routines for handling mm_structs 2527 */ 2528 extern struct mm_struct * mm_alloc(void); 2529 2530 /* mmdrop drops the mm and the page tables */ 2531 extern void __mmdrop(struct mm_struct *); 2532 static inline void mmdrop(struct mm_struct * mm) 2533 { 2534 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2535 __mmdrop(mm); 2536 } 2537 2538 /* mmput gets rid of the mappings and all user-space */ 2539 extern void mmput(struct mm_struct *); 2540 /* Grab a reference to a task's mm, if it is not already going away */ 2541 extern struct mm_struct *get_task_mm(struct task_struct *task); 2542 /* 2543 * Grab a reference to a task's mm, if it is not already going away 2544 * and ptrace_may_access with the mode parameter passed to it 2545 * succeeds. 2546 */ 2547 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2548 /* Remove the current tasks stale references to the old mm_struct */ 2549 extern void mm_release(struct task_struct *, struct mm_struct *); 2550 2551 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2552 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2553 struct task_struct *, unsigned long); 2554 #else 2555 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2556 struct task_struct *); 2557 2558 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2559 * via pt_regs, so ignore the tls argument passed via C. */ 2560 static inline int copy_thread_tls( 2561 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2562 struct task_struct *p, unsigned long tls) 2563 { 2564 return copy_thread(clone_flags, sp, arg, p); 2565 } 2566 #endif 2567 extern void flush_thread(void); 2568 extern void exit_thread(void); 2569 2570 extern void exit_files(struct task_struct *); 2571 extern void __cleanup_sighand(struct sighand_struct *); 2572 2573 extern void exit_itimers(struct signal_struct *); 2574 extern void flush_itimer_signals(void); 2575 2576 extern void do_group_exit(int); 2577 2578 extern int do_execve(struct filename *, 2579 const char __user * const __user *, 2580 const char __user * const __user *); 2581 extern int do_execveat(int, struct filename *, 2582 const char __user * const __user *, 2583 const char __user * const __user *, 2584 int); 2585 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2586 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2587 struct task_struct *fork_idle(int); 2588 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2589 2590 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2591 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2592 { 2593 __set_task_comm(tsk, from, false); 2594 } 2595 extern char *get_task_comm(char *to, struct task_struct *tsk); 2596 2597 #ifdef CONFIG_SMP 2598 void scheduler_ipi(void); 2599 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2600 #else 2601 static inline void scheduler_ipi(void) { } 2602 static inline unsigned long wait_task_inactive(struct task_struct *p, 2603 long match_state) 2604 { 2605 return 1; 2606 } 2607 #endif 2608 2609 #define tasklist_empty() \ 2610 list_empty(&init_task.tasks) 2611 2612 #define next_task(p) \ 2613 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2614 2615 #define for_each_process(p) \ 2616 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2617 2618 extern bool current_is_single_threaded(void); 2619 2620 /* 2621 * Careful: do_each_thread/while_each_thread is a double loop so 2622 * 'break' will not work as expected - use goto instead. 2623 */ 2624 #define do_each_thread(g, t) \ 2625 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2626 2627 #define while_each_thread(g, t) \ 2628 while ((t = next_thread(t)) != g) 2629 2630 #define __for_each_thread(signal, t) \ 2631 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2632 2633 #define for_each_thread(p, t) \ 2634 __for_each_thread((p)->signal, t) 2635 2636 /* Careful: this is a double loop, 'break' won't work as expected. */ 2637 #define for_each_process_thread(p, t) \ 2638 for_each_process(p) for_each_thread(p, t) 2639 2640 static inline int get_nr_threads(struct task_struct *tsk) 2641 { 2642 return tsk->signal->nr_threads; 2643 } 2644 2645 static inline bool thread_group_leader(struct task_struct *p) 2646 { 2647 return p->exit_signal >= 0; 2648 } 2649 2650 /* Do to the insanities of de_thread it is possible for a process 2651 * to have the pid of the thread group leader without actually being 2652 * the thread group leader. For iteration through the pids in proc 2653 * all we care about is that we have a task with the appropriate 2654 * pid, we don't actually care if we have the right task. 2655 */ 2656 static inline bool has_group_leader_pid(struct task_struct *p) 2657 { 2658 return task_pid(p) == p->signal->leader_pid; 2659 } 2660 2661 static inline 2662 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2663 { 2664 return p1->signal == p2->signal; 2665 } 2666 2667 static inline struct task_struct *next_thread(const struct task_struct *p) 2668 { 2669 return list_entry_rcu(p->thread_group.next, 2670 struct task_struct, thread_group); 2671 } 2672 2673 static inline int thread_group_empty(struct task_struct *p) 2674 { 2675 return list_empty(&p->thread_group); 2676 } 2677 2678 #define delay_group_leader(p) \ 2679 (thread_group_leader(p) && !thread_group_empty(p)) 2680 2681 /* 2682 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2683 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2684 * pins the final release of task.io_context. Also protects ->cpuset and 2685 * ->cgroup.subsys[]. And ->vfork_done. 2686 * 2687 * Nests both inside and outside of read_lock(&tasklist_lock). 2688 * It must not be nested with write_lock_irq(&tasklist_lock), 2689 * neither inside nor outside. 2690 */ 2691 static inline void task_lock(struct task_struct *p) 2692 { 2693 spin_lock(&p->alloc_lock); 2694 } 2695 2696 static inline void task_unlock(struct task_struct *p) 2697 { 2698 spin_unlock(&p->alloc_lock); 2699 } 2700 2701 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2702 unsigned long *flags); 2703 2704 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2705 unsigned long *flags) 2706 { 2707 struct sighand_struct *ret; 2708 2709 ret = __lock_task_sighand(tsk, flags); 2710 (void)__cond_lock(&tsk->sighand->siglock, ret); 2711 return ret; 2712 } 2713 2714 static inline void unlock_task_sighand(struct task_struct *tsk, 2715 unsigned long *flags) 2716 { 2717 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2718 } 2719 2720 /** 2721 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2722 * @tsk: task causing the changes 2723 * 2724 * All operations which modify a threadgroup - a new thread joining the 2725 * group, death of a member thread (the assertion of PF_EXITING) and 2726 * exec(2) dethreading the process and replacing the leader - are wrapped 2727 * by threadgroup_change_{begin|end}(). This is to provide a place which 2728 * subsystems needing threadgroup stability can hook into for 2729 * synchronization. 2730 */ 2731 static inline void threadgroup_change_begin(struct task_struct *tsk) 2732 { 2733 might_sleep(); 2734 cgroup_threadgroup_change_begin(tsk); 2735 } 2736 2737 /** 2738 * threadgroup_change_end - mark the end of changes to a threadgroup 2739 * @tsk: task causing the changes 2740 * 2741 * See threadgroup_change_begin(). 2742 */ 2743 static inline void threadgroup_change_end(struct task_struct *tsk) 2744 { 2745 cgroup_threadgroup_change_end(tsk); 2746 } 2747 2748 #ifndef __HAVE_THREAD_FUNCTIONS 2749 2750 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2751 #define task_stack_page(task) ((task)->stack) 2752 2753 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2754 { 2755 *task_thread_info(p) = *task_thread_info(org); 2756 task_thread_info(p)->task = p; 2757 } 2758 2759 /* 2760 * Return the address of the last usable long on the stack. 2761 * 2762 * When the stack grows down, this is just above the thread 2763 * info struct. Going any lower will corrupt the threadinfo. 2764 * 2765 * When the stack grows up, this is the highest address. 2766 * Beyond that position, we corrupt data on the next page. 2767 */ 2768 static inline unsigned long *end_of_stack(struct task_struct *p) 2769 { 2770 #ifdef CONFIG_STACK_GROWSUP 2771 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2772 #else 2773 return (unsigned long *)(task_thread_info(p) + 1); 2774 #endif 2775 } 2776 2777 #endif 2778 #define task_stack_end_corrupted(task) \ 2779 (*(end_of_stack(task)) != STACK_END_MAGIC) 2780 2781 static inline int object_is_on_stack(void *obj) 2782 { 2783 void *stack = task_stack_page(current); 2784 2785 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2786 } 2787 2788 extern void thread_info_cache_init(void); 2789 2790 #ifdef CONFIG_DEBUG_STACK_USAGE 2791 static inline unsigned long stack_not_used(struct task_struct *p) 2792 { 2793 unsigned long *n = end_of_stack(p); 2794 2795 do { /* Skip over canary */ 2796 n++; 2797 } while (!*n); 2798 2799 return (unsigned long)n - (unsigned long)end_of_stack(p); 2800 } 2801 #endif 2802 extern void set_task_stack_end_magic(struct task_struct *tsk); 2803 2804 /* set thread flags in other task's structures 2805 * - see asm/thread_info.h for TIF_xxxx flags available 2806 */ 2807 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2808 { 2809 set_ti_thread_flag(task_thread_info(tsk), flag); 2810 } 2811 2812 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2813 { 2814 clear_ti_thread_flag(task_thread_info(tsk), flag); 2815 } 2816 2817 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2818 { 2819 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2820 } 2821 2822 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2823 { 2824 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2825 } 2826 2827 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2828 { 2829 return test_ti_thread_flag(task_thread_info(tsk), flag); 2830 } 2831 2832 static inline void set_tsk_need_resched(struct task_struct *tsk) 2833 { 2834 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2835 } 2836 2837 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2838 { 2839 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2840 } 2841 2842 static inline int test_tsk_need_resched(struct task_struct *tsk) 2843 { 2844 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2845 } 2846 2847 static inline int restart_syscall(void) 2848 { 2849 set_tsk_thread_flag(current, TIF_SIGPENDING); 2850 return -ERESTARTNOINTR; 2851 } 2852 2853 static inline int signal_pending(struct task_struct *p) 2854 { 2855 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2856 } 2857 2858 static inline int __fatal_signal_pending(struct task_struct *p) 2859 { 2860 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2861 } 2862 2863 static inline int fatal_signal_pending(struct task_struct *p) 2864 { 2865 return signal_pending(p) && __fatal_signal_pending(p); 2866 } 2867 2868 static inline int signal_pending_state(long state, struct task_struct *p) 2869 { 2870 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2871 return 0; 2872 if (!signal_pending(p)) 2873 return 0; 2874 2875 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2876 } 2877 2878 /* 2879 * cond_resched() and cond_resched_lock(): latency reduction via 2880 * explicit rescheduling in places that are safe. The return 2881 * value indicates whether a reschedule was done in fact. 2882 * cond_resched_lock() will drop the spinlock before scheduling, 2883 * cond_resched_softirq() will enable bhs before scheduling. 2884 */ 2885 extern int _cond_resched(void); 2886 2887 #define cond_resched() ({ \ 2888 ___might_sleep(__FILE__, __LINE__, 0); \ 2889 _cond_resched(); \ 2890 }) 2891 2892 extern int __cond_resched_lock(spinlock_t *lock); 2893 2894 #define cond_resched_lock(lock) ({ \ 2895 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2896 __cond_resched_lock(lock); \ 2897 }) 2898 2899 extern int __cond_resched_softirq(void); 2900 2901 #define cond_resched_softirq() ({ \ 2902 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2903 __cond_resched_softirq(); \ 2904 }) 2905 2906 static inline void cond_resched_rcu(void) 2907 { 2908 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2909 rcu_read_unlock(); 2910 cond_resched(); 2911 rcu_read_lock(); 2912 #endif 2913 } 2914 2915 /* 2916 * Does a critical section need to be broken due to another 2917 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2918 * but a general need for low latency) 2919 */ 2920 static inline int spin_needbreak(spinlock_t *lock) 2921 { 2922 #ifdef CONFIG_PREEMPT 2923 return spin_is_contended(lock); 2924 #else 2925 return 0; 2926 #endif 2927 } 2928 2929 /* 2930 * Idle thread specific functions to determine the need_resched 2931 * polling state. 2932 */ 2933 #ifdef TIF_POLLING_NRFLAG 2934 static inline int tsk_is_polling(struct task_struct *p) 2935 { 2936 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2937 } 2938 2939 static inline void __current_set_polling(void) 2940 { 2941 set_thread_flag(TIF_POLLING_NRFLAG); 2942 } 2943 2944 static inline bool __must_check current_set_polling_and_test(void) 2945 { 2946 __current_set_polling(); 2947 2948 /* 2949 * Polling state must be visible before we test NEED_RESCHED, 2950 * paired by resched_curr() 2951 */ 2952 smp_mb__after_atomic(); 2953 2954 return unlikely(tif_need_resched()); 2955 } 2956 2957 static inline void __current_clr_polling(void) 2958 { 2959 clear_thread_flag(TIF_POLLING_NRFLAG); 2960 } 2961 2962 static inline bool __must_check current_clr_polling_and_test(void) 2963 { 2964 __current_clr_polling(); 2965 2966 /* 2967 * Polling state must be visible before we test NEED_RESCHED, 2968 * paired by resched_curr() 2969 */ 2970 smp_mb__after_atomic(); 2971 2972 return unlikely(tif_need_resched()); 2973 } 2974 2975 #else 2976 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2977 static inline void __current_set_polling(void) { } 2978 static inline void __current_clr_polling(void) { } 2979 2980 static inline bool __must_check current_set_polling_and_test(void) 2981 { 2982 return unlikely(tif_need_resched()); 2983 } 2984 static inline bool __must_check current_clr_polling_and_test(void) 2985 { 2986 return unlikely(tif_need_resched()); 2987 } 2988 #endif 2989 2990 static inline void current_clr_polling(void) 2991 { 2992 __current_clr_polling(); 2993 2994 /* 2995 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2996 * Once the bit is cleared, we'll get IPIs with every new 2997 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2998 * fold. 2999 */ 3000 smp_mb(); /* paired with resched_curr() */ 3001 3002 preempt_fold_need_resched(); 3003 } 3004 3005 static __always_inline bool need_resched(void) 3006 { 3007 return unlikely(tif_need_resched()); 3008 } 3009 3010 /* 3011 * Thread group CPU time accounting. 3012 */ 3013 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3014 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3015 3016 /* 3017 * Reevaluate whether the task has signals pending delivery. 3018 * Wake the task if so. 3019 * This is required every time the blocked sigset_t changes. 3020 * callers must hold sighand->siglock. 3021 */ 3022 extern void recalc_sigpending_and_wake(struct task_struct *t); 3023 extern void recalc_sigpending(void); 3024 3025 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3026 3027 static inline void signal_wake_up(struct task_struct *t, bool resume) 3028 { 3029 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3030 } 3031 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3032 { 3033 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3034 } 3035 3036 /* 3037 * Wrappers for p->thread_info->cpu access. No-op on UP. 3038 */ 3039 #ifdef CONFIG_SMP 3040 3041 static inline unsigned int task_cpu(const struct task_struct *p) 3042 { 3043 return task_thread_info(p)->cpu; 3044 } 3045 3046 static inline int task_node(const struct task_struct *p) 3047 { 3048 return cpu_to_node(task_cpu(p)); 3049 } 3050 3051 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3052 3053 #else 3054 3055 static inline unsigned int task_cpu(const struct task_struct *p) 3056 { 3057 return 0; 3058 } 3059 3060 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3061 { 3062 } 3063 3064 #endif /* CONFIG_SMP */ 3065 3066 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3067 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3068 3069 #ifdef CONFIG_CGROUP_SCHED 3070 extern struct task_group root_task_group; 3071 #endif /* CONFIG_CGROUP_SCHED */ 3072 3073 extern int task_can_switch_user(struct user_struct *up, 3074 struct task_struct *tsk); 3075 3076 #ifdef CONFIG_TASK_XACCT 3077 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3078 { 3079 tsk->ioac.rchar += amt; 3080 } 3081 3082 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3083 { 3084 tsk->ioac.wchar += amt; 3085 } 3086 3087 static inline void inc_syscr(struct task_struct *tsk) 3088 { 3089 tsk->ioac.syscr++; 3090 } 3091 3092 static inline void inc_syscw(struct task_struct *tsk) 3093 { 3094 tsk->ioac.syscw++; 3095 } 3096 #else 3097 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3098 { 3099 } 3100 3101 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3102 { 3103 } 3104 3105 static inline void inc_syscr(struct task_struct *tsk) 3106 { 3107 } 3108 3109 static inline void inc_syscw(struct task_struct *tsk) 3110 { 3111 } 3112 #endif 3113 3114 #ifndef TASK_SIZE_OF 3115 #define TASK_SIZE_OF(tsk) TASK_SIZE 3116 #endif 3117 3118 #ifdef CONFIG_MEMCG 3119 extern void mm_update_next_owner(struct mm_struct *mm); 3120 #else 3121 static inline void mm_update_next_owner(struct mm_struct *mm) 3122 { 3123 } 3124 #endif /* CONFIG_MEMCG */ 3125 3126 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3127 unsigned int limit) 3128 { 3129 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3130 } 3131 3132 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3133 unsigned int limit) 3134 { 3135 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3136 } 3137 3138 static inline unsigned long rlimit(unsigned int limit) 3139 { 3140 return task_rlimit(current, limit); 3141 } 3142 3143 static inline unsigned long rlimit_max(unsigned int limit) 3144 { 3145 return task_rlimit_max(current, limit); 3146 } 3147 3148 #endif 3149