1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/mutex.h> 18 #include <linux/plist.h> 19 #include <linux/hrtimer.h> 20 #include <linux/irqflags.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/syscall_user_dispatch.h> 31 #include <linux/mm_types_task.h> 32 #include <linux/task_io_accounting.h> 33 #include <linux/posix-timers.h> 34 #include <linux/rseq.h> 35 #include <linux/seqlock.h> 36 #include <linux/kcsan.h> 37 #include <asm/kmap_size.h> 38 39 /* task_struct member predeclarations (sorted alphabetically): */ 40 struct audit_context; 41 struct backing_dev_info; 42 struct bio_list; 43 struct blk_plug; 44 struct bpf_local_storage; 45 struct bpf_run_ctx; 46 struct capture_control; 47 struct cfs_rq; 48 struct fs_struct; 49 struct futex_pi_state; 50 struct io_context; 51 struct io_uring_task; 52 struct mempolicy; 53 struct nameidata; 54 struct nsproxy; 55 struct perf_event_context; 56 struct pid_namespace; 57 struct pipe_inode_info; 58 struct rcu_node; 59 struct reclaim_state; 60 struct robust_list_head; 61 struct root_domain; 62 struct rq; 63 struct sched_attr; 64 struct sched_param; 65 struct seq_file; 66 struct sighand_struct; 67 struct signal_struct; 68 struct task_delay_info; 69 struct task_group; 70 71 /* 72 * Task state bitmask. NOTE! These bits are also 73 * encoded in fs/proc/array.c: get_task_state(). 74 * 75 * We have two separate sets of flags: task->state 76 * is about runnability, while task->exit_state are 77 * about the task exiting. Confusing, but this way 78 * modifying one set can't modify the other one by 79 * mistake. 80 */ 81 82 /* Used in tsk->state: */ 83 #define TASK_RUNNING 0x0000 84 #define TASK_INTERRUPTIBLE 0x0001 85 #define TASK_UNINTERRUPTIBLE 0x0002 86 #define __TASK_STOPPED 0x0004 87 #define __TASK_TRACED 0x0008 88 /* Used in tsk->exit_state: */ 89 #define EXIT_DEAD 0x0010 90 #define EXIT_ZOMBIE 0x0020 91 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 92 /* Used in tsk->state again: */ 93 #define TASK_PARKED 0x0040 94 #define TASK_DEAD 0x0080 95 #define TASK_WAKEKILL 0x0100 96 #define TASK_WAKING 0x0200 97 #define TASK_NOLOAD 0x0400 98 #define TASK_NEW 0x0800 99 /* RT specific auxilliary flag to mark RT lock waiters */ 100 #define TASK_RTLOCK_WAIT 0x1000 101 #define TASK_STATE_MAX 0x2000 102 103 /* Convenience macros for the sake of set_current_state: */ 104 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 105 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 106 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 107 108 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 109 110 /* Convenience macros for the sake of wake_up(): */ 111 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 112 113 /* get_task_state(): */ 114 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 117 TASK_PARKED) 118 119 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) 120 121 #define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0) 122 123 #define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0) 124 125 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0) 126 127 /* 128 * Special states are those that do not use the normal wait-loop pattern. See 129 * the comment with set_special_state(). 130 */ 131 #define is_special_task_state(state) \ 132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 133 134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 135 # define debug_normal_state_change(state_value) \ 136 do { \ 137 WARN_ON_ONCE(is_special_task_state(state_value)); \ 138 current->task_state_change = _THIS_IP_; \ 139 } while (0) 140 141 # define debug_special_state_change(state_value) \ 142 do { \ 143 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 144 current->task_state_change = _THIS_IP_; \ 145 } while (0) 146 147 # define debug_rtlock_wait_set_state() \ 148 do { \ 149 current->saved_state_change = current->task_state_change;\ 150 current->task_state_change = _THIS_IP_; \ 151 } while (0) 152 153 # define debug_rtlock_wait_restore_state() \ 154 do { \ 155 current->task_state_change = current->saved_state_change;\ 156 } while (0) 157 158 #else 159 # define debug_normal_state_change(cond) do { } while (0) 160 # define debug_special_state_change(cond) do { } while (0) 161 # define debug_rtlock_wait_set_state() do { } while (0) 162 # define debug_rtlock_wait_restore_state() do { } while (0) 163 #endif 164 165 /* 166 * set_current_state() includes a barrier so that the write of current->state 167 * is correctly serialised wrt the caller's subsequent test of whether to 168 * actually sleep: 169 * 170 * for (;;) { 171 * set_current_state(TASK_UNINTERRUPTIBLE); 172 * if (CONDITION) 173 * break; 174 * 175 * schedule(); 176 * } 177 * __set_current_state(TASK_RUNNING); 178 * 179 * If the caller does not need such serialisation (because, for instance, the 180 * CONDITION test and condition change and wakeup are under the same lock) then 181 * use __set_current_state(). 182 * 183 * The above is typically ordered against the wakeup, which does: 184 * 185 * CONDITION = 1; 186 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 187 * 188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 189 * accessing p->state. 190 * 191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 194 * 195 * However, with slightly different timing the wakeup TASK_RUNNING store can 196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 197 * a problem either because that will result in one extra go around the loop 198 * and our @cond test will save the day. 199 * 200 * Also see the comments of try_to_wake_up(). 201 */ 202 #define __set_current_state(state_value) \ 203 do { \ 204 debug_normal_state_change((state_value)); \ 205 WRITE_ONCE(current->__state, (state_value)); \ 206 } while (0) 207 208 #define set_current_state(state_value) \ 209 do { \ 210 debug_normal_state_change((state_value)); \ 211 smp_store_mb(current->__state, (state_value)); \ 212 } while (0) 213 214 /* 215 * set_special_state() should be used for those states when the blocking task 216 * can not use the regular condition based wait-loop. In that case we must 217 * serialize against wakeups such that any possible in-flight TASK_RUNNING 218 * stores will not collide with our state change. 219 */ 220 #define set_special_state(state_value) \ 221 do { \ 222 unsigned long flags; /* may shadow */ \ 223 \ 224 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 225 debug_special_state_change((state_value)); \ 226 WRITE_ONCE(current->__state, (state_value)); \ 227 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 228 } while (0) 229 230 /* 231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks 232 * 233 * RT's spin/rwlock substitutions are state preserving. The state of the 234 * task when blocking on the lock is saved in task_struct::saved_state and 235 * restored after the lock has been acquired. These operations are 236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT 237 * lock related wakeups while the task is blocked on the lock are 238 * redirected to operate on task_struct::saved_state to ensure that these 239 * are not dropped. On restore task_struct::saved_state is set to 240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. 241 * 242 * The lock operation looks like this: 243 * 244 * current_save_and_set_rtlock_wait_state(); 245 * for (;;) { 246 * if (try_lock()) 247 * break; 248 * raw_spin_unlock_irq(&lock->wait_lock); 249 * schedule_rtlock(); 250 * raw_spin_lock_irq(&lock->wait_lock); 251 * set_current_state(TASK_RTLOCK_WAIT); 252 * } 253 * current_restore_rtlock_saved_state(); 254 */ 255 #define current_save_and_set_rtlock_wait_state() \ 256 do { \ 257 lockdep_assert_irqs_disabled(); \ 258 raw_spin_lock(¤t->pi_lock); \ 259 current->saved_state = current->__state; \ 260 debug_rtlock_wait_set_state(); \ 261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ 262 raw_spin_unlock(¤t->pi_lock); \ 263 } while (0); 264 265 #define current_restore_rtlock_saved_state() \ 266 do { \ 267 lockdep_assert_irqs_disabled(); \ 268 raw_spin_lock(¤t->pi_lock); \ 269 debug_rtlock_wait_restore_state(); \ 270 WRITE_ONCE(current->__state, current->saved_state); \ 271 current->saved_state = TASK_RUNNING; \ 272 raw_spin_unlock(¤t->pi_lock); \ 273 } while (0); 274 275 #define get_current_state() READ_ONCE(current->__state) 276 277 /* 278 * Define the task command name length as enum, then it can be visible to 279 * BPF programs. 280 */ 281 enum { 282 TASK_COMM_LEN = 16, 283 }; 284 285 extern void scheduler_tick(void); 286 287 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 288 289 extern long schedule_timeout(long timeout); 290 extern long schedule_timeout_interruptible(long timeout); 291 extern long schedule_timeout_killable(long timeout); 292 extern long schedule_timeout_uninterruptible(long timeout); 293 extern long schedule_timeout_idle(long timeout); 294 asmlinkage void schedule(void); 295 extern void schedule_preempt_disabled(void); 296 asmlinkage void preempt_schedule_irq(void); 297 #ifdef CONFIG_PREEMPT_RT 298 extern void schedule_rtlock(void); 299 #endif 300 301 extern int __must_check io_schedule_prepare(void); 302 extern void io_schedule_finish(int token); 303 extern long io_schedule_timeout(long timeout); 304 extern void io_schedule(void); 305 306 /** 307 * struct prev_cputime - snapshot of system and user cputime 308 * @utime: time spent in user mode 309 * @stime: time spent in system mode 310 * @lock: protects the above two fields 311 * 312 * Stores previous user/system time values such that we can guarantee 313 * monotonicity. 314 */ 315 struct prev_cputime { 316 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 317 u64 utime; 318 u64 stime; 319 raw_spinlock_t lock; 320 #endif 321 }; 322 323 enum vtime_state { 324 /* Task is sleeping or running in a CPU with VTIME inactive: */ 325 VTIME_INACTIVE = 0, 326 /* Task is idle */ 327 VTIME_IDLE, 328 /* Task runs in kernelspace in a CPU with VTIME active: */ 329 VTIME_SYS, 330 /* Task runs in userspace in a CPU with VTIME active: */ 331 VTIME_USER, 332 /* Task runs as guests in a CPU with VTIME active: */ 333 VTIME_GUEST, 334 }; 335 336 struct vtime { 337 seqcount_t seqcount; 338 unsigned long long starttime; 339 enum vtime_state state; 340 unsigned int cpu; 341 u64 utime; 342 u64 stime; 343 u64 gtime; 344 }; 345 346 /* 347 * Utilization clamp constraints. 348 * @UCLAMP_MIN: Minimum utilization 349 * @UCLAMP_MAX: Maximum utilization 350 * @UCLAMP_CNT: Utilization clamp constraints count 351 */ 352 enum uclamp_id { 353 UCLAMP_MIN = 0, 354 UCLAMP_MAX, 355 UCLAMP_CNT 356 }; 357 358 #ifdef CONFIG_SMP 359 extern struct root_domain def_root_domain; 360 extern struct mutex sched_domains_mutex; 361 #endif 362 363 struct sched_info { 364 #ifdef CONFIG_SCHED_INFO 365 /* Cumulative counters: */ 366 367 /* # of times we have run on this CPU: */ 368 unsigned long pcount; 369 370 /* Time spent waiting on a runqueue: */ 371 unsigned long long run_delay; 372 373 /* Timestamps: */ 374 375 /* When did we last run on a CPU? */ 376 unsigned long long last_arrival; 377 378 /* When were we last queued to run? */ 379 unsigned long long last_queued; 380 381 #endif /* CONFIG_SCHED_INFO */ 382 }; 383 384 /* 385 * Integer metrics need fixed point arithmetic, e.g., sched/fair 386 * has a few: load, load_avg, util_avg, freq, and capacity. 387 * 388 * We define a basic fixed point arithmetic range, and then formalize 389 * all these metrics based on that basic range. 390 */ 391 # define SCHED_FIXEDPOINT_SHIFT 10 392 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 393 394 /* Increase resolution of cpu_capacity calculations */ 395 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 396 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 397 398 struct load_weight { 399 unsigned long weight; 400 u32 inv_weight; 401 }; 402 403 /** 404 * struct util_est - Estimation utilization of FAIR tasks 405 * @enqueued: instantaneous estimated utilization of a task/cpu 406 * @ewma: the Exponential Weighted Moving Average (EWMA) 407 * utilization of a task 408 * 409 * Support data structure to track an Exponential Weighted Moving Average 410 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 411 * average each time a task completes an activation. Sample's weight is chosen 412 * so that the EWMA will be relatively insensitive to transient changes to the 413 * task's workload. 414 * 415 * The enqueued attribute has a slightly different meaning for tasks and cpus: 416 * - task: the task's util_avg at last task dequeue time 417 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 418 * Thus, the util_est.enqueued of a task represents the contribution on the 419 * estimated utilization of the CPU where that task is currently enqueued. 420 * 421 * Only for tasks we track a moving average of the past instantaneous 422 * estimated utilization. This allows to absorb sporadic drops in utilization 423 * of an otherwise almost periodic task. 424 * 425 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg 426 * updates. When a task is dequeued, its util_est should not be updated if its 427 * util_avg has not been updated in the meantime. 428 * This information is mapped into the MSB bit of util_est.enqueued at dequeue 429 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg 430 * for a task) it is safe to use MSB. 431 */ 432 struct util_est { 433 unsigned int enqueued; 434 unsigned int ewma; 435 #define UTIL_EST_WEIGHT_SHIFT 2 436 #define UTIL_AVG_UNCHANGED 0x80000000 437 } __attribute__((__aligned__(sizeof(u64)))); 438 439 /* 440 * The load/runnable/util_avg accumulates an infinite geometric series 441 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 442 * 443 * [load_avg definition] 444 * 445 * load_avg = runnable% * scale_load_down(load) 446 * 447 * [runnable_avg definition] 448 * 449 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 450 * 451 * [util_avg definition] 452 * 453 * util_avg = running% * SCHED_CAPACITY_SCALE 454 * 455 * where runnable% is the time ratio that a sched_entity is runnable and 456 * running% the time ratio that a sched_entity is running. 457 * 458 * For cfs_rq, they are the aggregated values of all runnable and blocked 459 * sched_entities. 460 * 461 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 462 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 463 * for computing those signals (see update_rq_clock_pelt()) 464 * 465 * N.B., the above ratios (runnable% and running%) themselves are in the 466 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 467 * to as large a range as necessary. This is for example reflected by 468 * util_avg's SCHED_CAPACITY_SCALE. 469 * 470 * [Overflow issue] 471 * 472 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 473 * with the highest load (=88761), always runnable on a single cfs_rq, 474 * and should not overflow as the number already hits PID_MAX_LIMIT. 475 * 476 * For all other cases (including 32-bit kernels), struct load_weight's 477 * weight will overflow first before we do, because: 478 * 479 * Max(load_avg) <= Max(load.weight) 480 * 481 * Then it is the load_weight's responsibility to consider overflow 482 * issues. 483 */ 484 struct sched_avg { 485 u64 last_update_time; 486 u64 load_sum; 487 u64 runnable_sum; 488 u32 util_sum; 489 u32 period_contrib; 490 unsigned long load_avg; 491 unsigned long runnable_avg; 492 unsigned long util_avg; 493 struct util_est util_est; 494 } ____cacheline_aligned; 495 496 struct sched_statistics { 497 #ifdef CONFIG_SCHEDSTATS 498 u64 wait_start; 499 u64 wait_max; 500 u64 wait_count; 501 u64 wait_sum; 502 u64 iowait_count; 503 u64 iowait_sum; 504 505 u64 sleep_start; 506 u64 sleep_max; 507 s64 sum_sleep_runtime; 508 509 u64 block_start; 510 u64 block_max; 511 s64 sum_block_runtime; 512 513 u64 exec_max; 514 u64 slice_max; 515 516 u64 nr_migrations_cold; 517 u64 nr_failed_migrations_affine; 518 u64 nr_failed_migrations_running; 519 u64 nr_failed_migrations_hot; 520 u64 nr_forced_migrations; 521 522 u64 nr_wakeups; 523 u64 nr_wakeups_sync; 524 u64 nr_wakeups_migrate; 525 u64 nr_wakeups_local; 526 u64 nr_wakeups_remote; 527 u64 nr_wakeups_affine; 528 u64 nr_wakeups_affine_attempts; 529 u64 nr_wakeups_passive; 530 u64 nr_wakeups_idle; 531 532 #ifdef CONFIG_SCHED_CORE 533 u64 core_forceidle_sum; 534 #endif 535 #endif /* CONFIG_SCHEDSTATS */ 536 } ____cacheline_aligned; 537 538 struct sched_entity { 539 /* For load-balancing: */ 540 struct load_weight load; 541 struct rb_node run_node; 542 struct list_head group_node; 543 unsigned int on_rq; 544 545 u64 exec_start; 546 u64 sum_exec_runtime; 547 u64 vruntime; 548 u64 prev_sum_exec_runtime; 549 550 u64 nr_migrations; 551 552 #ifdef CONFIG_FAIR_GROUP_SCHED 553 int depth; 554 struct sched_entity *parent; 555 /* rq on which this entity is (to be) queued: */ 556 struct cfs_rq *cfs_rq; 557 /* rq "owned" by this entity/group: */ 558 struct cfs_rq *my_q; 559 /* cached value of my_q->h_nr_running */ 560 unsigned long runnable_weight; 561 #endif 562 563 #ifdef CONFIG_SMP 564 /* 565 * Per entity load average tracking. 566 * 567 * Put into separate cache line so it does not 568 * collide with read-mostly values above. 569 */ 570 struct sched_avg avg; 571 #endif 572 }; 573 574 struct sched_rt_entity { 575 struct list_head run_list; 576 unsigned long timeout; 577 unsigned long watchdog_stamp; 578 unsigned int time_slice; 579 unsigned short on_rq; 580 unsigned short on_list; 581 582 struct sched_rt_entity *back; 583 #ifdef CONFIG_RT_GROUP_SCHED 584 struct sched_rt_entity *parent; 585 /* rq on which this entity is (to be) queued: */ 586 struct rt_rq *rt_rq; 587 /* rq "owned" by this entity/group: */ 588 struct rt_rq *my_q; 589 #endif 590 } __randomize_layout; 591 592 struct sched_dl_entity { 593 struct rb_node rb_node; 594 595 /* 596 * Original scheduling parameters. Copied here from sched_attr 597 * during sched_setattr(), they will remain the same until 598 * the next sched_setattr(). 599 */ 600 u64 dl_runtime; /* Maximum runtime for each instance */ 601 u64 dl_deadline; /* Relative deadline of each instance */ 602 u64 dl_period; /* Separation of two instances (period) */ 603 u64 dl_bw; /* dl_runtime / dl_period */ 604 u64 dl_density; /* dl_runtime / dl_deadline */ 605 606 /* 607 * Actual scheduling parameters. Initialized with the values above, 608 * they are continuously updated during task execution. Note that 609 * the remaining runtime could be < 0 in case we are in overrun. 610 */ 611 s64 runtime; /* Remaining runtime for this instance */ 612 u64 deadline; /* Absolute deadline for this instance */ 613 unsigned int flags; /* Specifying the scheduler behaviour */ 614 615 /* 616 * Some bool flags: 617 * 618 * @dl_throttled tells if we exhausted the runtime. If so, the 619 * task has to wait for a replenishment to be performed at the 620 * next firing of dl_timer. 621 * 622 * @dl_yielded tells if task gave up the CPU before consuming 623 * all its available runtime during the last job. 624 * 625 * @dl_non_contending tells if the task is inactive while still 626 * contributing to the active utilization. In other words, it 627 * indicates if the inactive timer has been armed and its handler 628 * has not been executed yet. This flag is useful to avoid race 629 * conditions between the inactive timer handler and the wakeup 630 * code. 631 * 632 * @dl_overrun tells if the task asked to be informed about runtime 633 * overruns. 634 */ 635 unsigned int dl_throttled : 1; 636 unsigned int dl_yielded : 1; 637 unsigned int dl_non_contending : 1; 638 unsigned int dl_overrun : 1; 639 640 /* 641 * Bandwidth enforcement timer. Each -deadline task has its 642 * own bandwidth to be enforced, thus we need one timer per task. 643 */ 644 struct hrtimer dl_timer; 645 646 /* 647 * Inactive timer, responsible for decreasing the active utilization 648 * at the "0-lag time". When a -deadline task blocks, it contributes 649 * to GRUB's active utilization until the "0-lag time", hence a 650 * timer is needed to decrease the active utilization at the correct 651 * time. 652 */ 653 struct hrtimer inactive_timer; 654 655 #ifdef CONFIG_RT_MUTEXES 656 /* 657 * Priority Inheritance. When a DEADLINE scheduling entity is boosted 658 * pi_se points to the donor, otherwise points to the dl_se it belongs 659 * to (the original one/itself). 660 */ 661 struct sched_dl_entity *pi_se; 662 #endif 663 }; 664 665 #ifdef CONFIG_UCLAMP_TASK 666 /* Number of utilization clamp buckets (shorter alias) */ 667 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 668 669 /* 670 * Utilization clamp for a scheduling entity 671 * @value: clamp value "assigned" to a se 672 * @bucket_id: bucket index corresponding to the "assigned" value 673 * @active: the se is currently refcounted in a rq's bucket 674 * @user_defined: the requested clamp value comes from user-space 675 * 676 * The bucket_id is the index of the clamp bucket matching the clamp value 677 * which is pre-computed and stored to avoid expensive integer divisions from 678 * the fast path. 679 * 680 * The active bit is set whenever a task has got an "effective" value assigned, 681 * which can be different from the clamp value "requested" from user-space. 682 * This allows to know a task is refcounted in the rq's bucket corresponding 683 * to the "effective" bucket_id. 684 * 685 * The user_defined bit is set whenever a task has got a task-specific clamp 686 * value requested from userspace, i.e. the system defaults apply to this task 687 * just as a restriction. This allows to relax default clamps when a less 688 * restrictive task-specific value has been requested, thus allowing to 689 * implement a "nice" semantic. For example, a task running with a 20% 690 * default boost can still drop its own boosting to 0%. 691 */ 692 struct uclamp_se { 693 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 694 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 695 unsigned int active : 1; 696 unsigned int user_defined : 1; 697 }; 698 #endif /* CONFIG_UCLAMP_TASK */ 699 700 union rcu_special { 701 struct { 702 u8 blocked; 703 u8 need_qs; 704 u8 exp_hint; /* Hint for performance. */ 705 u8 need_mb; /* Readers need smp_mb(). */ 706 } b; /* Bits. */ 707 u32 s; /* Set of bits. */ 708 }; 709 710 enum perf_event_task_context { 711 perf_invalid_context = -1, 712 perf_hw_context = 0, 713 perf_sw_context, 714 perf_nr_task_contexts, 715 }; 716 717 struct wake_q_node { 718 struct wake_q_node *next; 719 }; 720 721 struct kmap_ctrl { 722 #ifdef CONFIG_KMAP_LOCAL 723 int idx; 724 pte_t pteval[KM_MAX_IDX]; 725 #endif 726 }; 727 728 struct task_struct { 729 #ifdef CONFIG_THREAD_INFO_IN_TASK 730 /* 731 * For reasons of header soup (see current_thread_info()), this 732 * must be the first element of task_struct. 733 */ 734 struct thread_info thread_info; 735 #endif 736 unsigned int __state; 737 738 #ifdef CONFIG_PREEMPT_RT 739 /* saved state for "spinlock sleepers" */ 740 unsigned int saved_state; 741 #endif 742 743 /* 744 * This begins the randomizable portion of task_struct. Only 745 * scheduling-critical items should be added above here. 746 */ 747 randomized_struct_fields_start 748 749 void *stack; 750 refcount_t usage; 751 /* Per task flags (PF_*), defined further below: */ 752 unsigned int flags; 753 unsigned int ptrace; 754 755 #ifdef CONFIG_SMP 756 int on_cpu; 757 struct __call_single_node wake_entry; 758 unsigned int wakee_flips; 759 unsigned long wakee_flip_decay_ts; 760 struct task_struct *last_wakee; 761 762 /* 763 * recent_used_cpu is initially set as the last CPU used by a task 764 * that wakes affine another task. Waker/wakee relationships can 765 * push tasks around a CPU where each wakeup moves to the next one. 766 * Tracking a recently used CPU allows a quick search for a recently 767 * used CPU that may be idle. 768 */ 769 int recent_used_cpu; 770 int wake_cpu; 771 #endif 772 int on_rq; 773 774 int prio; 775 int static_prio; 776 int normal_prio; 777 unsigned int rt_priority; 778 779 struct sched_entity se; 780 struct sched_rt_entity rt; 781 struct sched_dl_entity dl; 782 const struct sched_class *sched_class; 783 784 #ifdef CONFIG_SCHED_CORE 785 struct rb_node core_node; 786 unsigned long core_cookie; 787 unsigned int core_occupation; 788 #endif 789 790 #ifdef CONFIG_CGROUP_SCHED 791 struct task_group *sched_task_group; 792 #endif 793 794 #ifdef CONFIG_UCLAMP_TASK 795 /* 796 * Clamp values requested for a scheduling entity. 797 * Must be updated with task_rq_lock() held. 798 */ 799 struct uclamp_se uclamp_req[UCLAMP_CNT]; 800 /* 801 * Effective clamp values used for a scheduling entity. 802 * Must be updated with task_rq_lock() held. 803 */ 804 struct uclamp_se uclamp[UCLAMP_CNT]; 805 #endif 806 807 struct sched_statistics stats; 808 809 #ifdef CONFIG_PREEMPT_NOTIFIERS 810 /* List of struct preempt_notifier: */ 811 struct hlist_head preempt_notifiers; 812 #endif 813 814 #ifdef CONFIG_BLK_DEV_IO_TRACE 815 unsigned int btrace_seq; 816 #endif 817 818 unsigned int policy; 819 int nr_cpus_allowed; 820 const cpumask_t *cpus_ptr; 821 cpumask_t *user_cpus_ptr; 822 cpumask_t cpus_mask; 823 void *migration_pending; 824 #ifdef CONFIG_SMP 825 unsigned short migration_disabled; 826 #endif 827 unsigned short migration_flags; 828 829 #ifdef CONFIG_PREEMPT_RCU 830 int rcu_read_lock_nesting; 831 union rcu_special rcu_read_unlock_special; 832 struct list_head rcu_node_entry; 833 struct rcu_node *rcu_blocked_node; 834 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 835 836 #ifdef CONFIG_TASKS_RCU 837 unsigned long rcu_tasks_nvcsw; 838 u8 rcu_tasks_holdout; 839 u8 rcu_tasks_idx; 840 int rcu_tasks_idle_cpu; 841 struct list_head rcu_tasks_holdout_list; 842 #endif /* #ifdef CONFIG_TASKS_RCU */ 843 844 #ifdef CONFIG_TASKS_TRACE_RCU 845 int trc_reader_nesting; 846 int trc_ipi_to_cpu; 847 union rcu_special trc_reader_special; 848 bool trc_reader_checked; 849 struct list_head trc_holdout_list; 850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 851 852 struct sched_info sched_info; 853 854 struct list_head tasks; 855 #ifdef CONFIG_SMP 856 struct plist_node pushable_tasks; 857 struct rb_node pushable_dl_tasks; 858 #endif 859 860 struct mm_struct *mm; 861 struct mm_struct *active_mm; 862 863 /* Per-thread vma caching: */ 864 struct vmacache vmacache; 865 866 #ifdef SPLIT_RSS_COUNTING 867 struct task_rss_stat rss_stat; 868 #endif 869 int exit_state; 870 int exit_code; 871 int exit_signal; 872 /* The signal sent when the parent dies: */ 873 int pdeath_signal; 874 /* JOBCTL_*, siglock protected: */ 875 unsigned long jobctl; 876 877 /* Used for emulating ABI behavior of previous Linux versions: */ 878 unsigned int personality; 879 880 /* Scheduler bits, serialized by scheduler locks: */ 881 unsigned sched_reset_on_fork:1; 882 unsigned sched_contributes_to_load:1; 883 unsigned sched_migrated:1; 884 #ifdef CONFIG_PSI 885 unsigned sched_psi_wake_requeue:1; 886 #endif 887 888 /* Force alignment to the next boundary: */ 889 unsigned :0; 890 891 /* Unserialized, strictly 'current' */ 892 893 /* 894 * This field must not be in the scheduler word above due to wakelist 895 * queueing no longer being serialized by p->on_cpu. However: 896 * 897 * p->XXX = X; ttwu() 898 * schedule() if (p->on_rq && ..) // false 899 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true 900 * deactivate_task() ttwu_queue_wakelist()) 901 * p->on_rq = 0; p->sched_remote_wakeup = Y; 902 * 903 * guarantees all stores of 'current' are visible before 904 * ->sched_remote_wakeup gets used, so it can be in this word. 905 */ 906 unsigned sched_remote_wakeup:1; 907 908 /* Bit to tell LSMs we're in execve(): */ 909 unsigned in_execve:1; 910 unsigned in_iowait:1; 911 #ifndef TIF_RESTORE_SIGMASK 912 unsigned restore_sigmask:1; 913 #endif 914 #ifdef CONFIG_MEMCG 915 unsigned in_user_fault:1; 916 #endif 917 #ifdef CONFIG_COMPAT_BRK 918 unsigned brk_randomized:1; 919 #endif 920 #ifdef CONFIG_CGROUPS 921 /* disallow userland-initiated cgroup migration */ 922 unsigned no_cgroup_migration:1; 923 /* task is frozen/stopped (used by the cgroup freezer) */ 924 unsigned frozen:1; 925 #endif 926 #ifdef CONFIG_BLK_CGROUP 927 unsigned use_memdelay:1; 928 #endif 929 #ifdef CONFIG_PSI 930 /* Stalled due to lack of memory */ 931 unsigned in_memstall:1; 932 #endif 933 #ifdef CONFIG_PAGE_OWNER 934 /* Used by page_owner=on to detect recursion in page tracking. */ 935 unsigned in_page_owner:1; 936 #endif 937 #ifdef CONFIG_EVENTFD 938 /* Recursion prevention for eventfd_signal() */ 939 unsigned in_eventfd_signal:1; 940 #endif 941 #ifdef CONFIG_IOMMU_SVA 942 unsigned pasid_activated:1; 943 #endif 944 945 unsigned long atomic_flags; /* Flags requiring atomic access. */ 946 947 struct restart_block restart_block; 948 949 pid_t pid; 950 pid_t tgid; 951 952 #ifdef CONFIG_STACKPROTECTOR 953 /* Canary value for the -fstack-protector GCC feature: */ 954 unsigned long stack_canary; 955 #endif 956 /* 957 * Pointers to the (original) parent process, youngest child, younger sibling, 958 * older sibling, respectively. (p->father can be replaced with 959 * p->real_parent->pid) 960 */ 961 962 /* Real parent process: */ 963 struct task_struct __rcu *real_parent; 964 965 /* Recipient of SIGCHLD, wait4() reports: */ 966 struct task_struct __rcu *parent; 967 968 /* 969 * Children/sibling form the list of natural children: 970 */ 971 struct list_head children; 972 struct list_head sibling; 973 struct task_struct *group_leader; 974 975 /* 976 * 'ptraced' is the list of tasks this task is using ptrace() on. 977 * 978 * This includes both natural children and PTRACE_ATTACH targets. 979 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 980 */ 981 struct list_head ptraced; 982 struct list_head ptrace_entry; 983 984 /* PID/PID hash table linkage. */ 985 struct pid *thread_pid; 986 struct hlist_node pid_links[PIDTYPE_MAX]; 987 struct list_head thread_group; 988 struct list_head thread_node; 989 990 struct completion *vfork_done; 991 992 /* CLONE_CHILD_SETTID: */ 993 int __user *set_child_tid; 994 995 /* CLONE_CHILD_CLEARTID: */ 996 int __user *clear_child_tid; 997 998 /* PF_KTHREAD | PF_IO_WORKER */ 999 void *worker_private; 1000 1001 u64 utime; 1002 u64 stime; 1003 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1004 u64 utimescaled; 1005 u64 stimescaled; 1006 #endif 1007 u64 gtime; 1008 struct prev_cputime prev_cputime; 1009 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1010 struct vtime vtime; 1011 #endif 1012 1013 #ifdef CONFIG_NO_HZ_FULL 1014 atomic_t tick_dep_mask; 1015 #endif 1016 /* Context switch counts: */ 1017 unsigned long nvcsw; 1018 unsigned long nivcsw; 1019 1020 /* Monotonic time in nsecs: */ 1021 u64 start_time; 1022 1023 /* Boot based time in nsecs: */ 1024 u64 start_boottime; 1025 1026 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 1027 unsigned long min_flt; 1028 unsigned long maj_flt; 1029 1030 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 1031 struct posix_cputimers posix_cputimers; 1032 1033 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1034 struct posix_cputimers_work posix_cputimers_work; 1035 #endif 1036 1037 /* Process credentials: */ 1038 1039 /* Tracer's credentials at attach: */ 1040 const struct cred __rcu *ptracer_cred; 1041 1042 /* Objective and real subjective task credentials (COW): */ 1043 const struct cred __rcu *real_cred; 1044 1045 /* Effective (overridable) subjective task credentials (COW): */ 1046 const struct cred __rcu *cred; 1047 1048 #ifdef CONFIG_KEYS 1049 /* Cached requested key. */ 1050 struct key *cached_requested_key; 1051 #endif 1052 1053 /* 1054 * executable name, excluding path. 1055 * 1056 * - normally initialized setup_new_exec() 1057 * - access it with [gs]et_task_comm() 1058 * - lock it with task_lock() 1059 */ 1060 char comm[TASK_COMM_LEN]; 1061 1062 struct nameidata *nameidata; 1063 1064 #ifdef CONFIG_SYSVIPC 1065 struct sysv_sem sysvsem; 1066 struct sysv_shm sysvshm; 1067 #endif 1068 #ifdef CONFIG_DETECT_HUNG_TASK 1069 unsigned long last_switch_count; 1070 unsigned long last_switch_time; 1071 #endif 1072 /* Filesystem information: */ 1073 struct fs_struct *fs; 1074 1075 /* Open file information: */ 1076 struct files_struct *files; 1077 1078 #ifdef CONFIG_IO_URING 1079 struct io_uring_task *io_uring; 1080 #endif 1081 1082 /* Namespaces: */ 1083 struct nsproxy *nsproxy; 1084 1085 /* Signal handlers: */ 1086 struct signal_struct *signal; 1087 struct sighand_struct __rcu *sighand; 1088 sigset_t blocked; 1089 sigset_t real_blocked; 1090 /* Restored if set_restore_sigmask() was used: */ 1091 sigset_t saved_sigmask; 1092 struct sigpending pending; 1093 unsigned long sas_ss_sp; 1094 size_t sas_ss_size; 1095 unsigned int sas_ss_flags; 1096 1097 struct callback_head *task_works; 1098 1099 #ifdef CONFIG_AUDIT 1100 #ifdef CONFIG_AUDITSYSCALL 1101 struct audit_context *audit_context; 1102 #endif 1103 kuid_t loginuid; 1104 unsigned int sessionid; 1105 #endif 1106 struct seccomp seccomp; 1107 struct syscall_user_dispatch syscall_dispatch; 1108 1109 /* Thread group tracking: */ 1110 u64 parent_exec_id; 1111 u64 self_exec_id; 1112 1113 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 1114 spinlock_t alloc_lock; 1115 1116 /* Protection of the PI data structures: */ 1117 raw_spinlock_t pi_lock; 1118 1119 struct wake_q_node wake_q; 1120 1121 #ifdef CONFIG_RT_MUTEXES 1122 /* PI waiters blocked on a rt_mutex held by this task: */ 1123 struct rb_root_cached pi_waiters; 1124 /* Updated under owner's pi_lock and rq lock */ 1125 struct task_struct *pi_top_task; 1126 /* Deadlock detection and priority inheritance handling: */ 1127 struct rt_mutex_waiter *pi_blocked_on; 1128 #endif 1129 1130 #ifdef CONFIG_DEBUG_MUTEXES 1131 /* Mutex deadlock detection: */ 1132 struct mutex_waiter *blocked_on; 1133 #endif 1134 1135 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1136 int non_block_count; 1137 #endif 1138 1139 #ifdef CONFIG_TRACE_IRQFLAGS 1140 struct irqtrace_events irqtrace; 1141 unsigned int hardirq_threaded; 1142 u64 hardirq_chain_key; 1143 int softirqs_enabled; 1144 int softirq_context; 1145 int irq_config; 1146 #endif 1147 #ifdef CONFIG_PREEMPT_RT 1148 int softirq_disable_cnt; 1149 #endif 1150 1151 #ifdef CONFIG_LOCKDEP 1152 # define MAX_LOCK_DEPTH 48UL 1153 u64 curr_chain_key; 1154 int lockdep_depth; 1155 unsigned int lockdep_recursion; 1156 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1157 #endif 1158 1159 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1160 unsigned int in_ubsan; 1161 #endif 1162 1163 /* Journalling filesystem info: */ 1164 void *journal_info; 1165 1166 /* Stacked block device info: */ 1167 struct bio_list *bio_list; 1168 1169 /* Stack plugging: */ 1170 struct blk_plug *plug; 1171 1172 /* VM state: */ 1173 struct reclaim_state *reclaim_state; 1174 1175 struct backing_dev_info *backing_dev_info; 1176 1177 struct io_context *io_context; 1178 1179 #ifdef CONFIG_COMPACTION 1180 struct capture_control *capture_control; 1181 #endif 1182 /* Ptrace state: */ 1183 unsigned long ptrace_message; 1184 kernel_siginfo_t *last_siginfo; 1185 1186 struct task_io_accounting ioac; 1187 #ifdef CONFIG_PSI 1188 /* Pressure stall state */ 1189 unsigned int psi_flags; 1190 #endif 1191 #ifdef CONFIG_TASK_XACCT 1192 /* Accumulated RSS usage: */ 1193 u64 acct_rss_mem1; 1194 /* Accumulated virtual memory usage: */ 1195 u64 acct_vm_mem1; 1196 /* stime + utime since last update: */ 1197 u64 acct_timexpd; 1198 #endif 1199 #ifdef CONFIG_CPUSETS 1200 /* Protected by ->alloc_lock: */ 1201 nodemask_t mems_allowed; 1202 /* Sequence number to catch updates: */ 1203 seqcount_spinlock_t mems_allowed_seq; 1204 int cpuset_mem_spread_rotor; 1205 int cpuset_slab_spread_rotor; 1206 #endif 1207 #ifdef CONFIG_CGROUPS 1208 /* Control Group info protected by css_set_lock: */ 1209 struct css_set __rcu *cgroups; 1210 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1211 struct list_head cg_list; 1212 #endif 1213 #ifdef CONFIG_X86_CPU_RESCTRL 1214 u32 closid; 1215 u32 rmid; 1216 #endif 1217 #ifdef CONFIG_FUTEX 1218 struct robust_list_head __user *robust_list; 1219 #ifdef CONFIG_COMPAT 1220 struct compat_robust_list_head __user *compat_robust_list; 1221 #endif 1222 struct list_head pi_state_list; 1223 struct futex_pi_state *pi_state_cache; 1224 struct mutex futex_exit_mutex; 1225 unsigned int futex_state; 1226 #endif 1227 #ifdef CONFIG_PERF_EVENTS 1228 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1229 struct mutex perf_event_mutex; 1230 struct list_head perf_event_list; 1231 #endif 1232 #ifdef CONFIG_DEBUG_PREEMPT 1233 unsigned long preempt_disable_ip; 1234 #endif 1235 #ifdef CONFIG_NUMA 1236 /* Protected by alloc_lock: */ 1237 struct mempolicy *mempolicy; 1238 short il_prev; 1239 short pref_node_fork; 1240 #endif 1241 #ifdef CONFIG_NUMA_BALANCING 1242 int numa_scan_seq; 1243 unsigned int numa_scan_period; 1244 unsigned int numa_scan_period_max; 1245 int numa_preferred_nid; 1246 unsigned long numa_migrate_retry; 1247 /* Migration stamp: */ 1248 u64 node_stamp; 1249 u64 last_task_numa_placement; 1250 u64 last_sum_exec_runtime; 1251 struct callback_head numa_work; 1252 1253 /* 1254 * This pointer is only modified for current in syscall and 1255 * pagefault context (and for tasks being destroyed), so it can be read 1256 * from any of the following contexts: 1257 * - RCU read-side critical section 1258 * - current->numa_group from everywhere 1259 * - task's runqueue locked, task not running 1260 */ 1261 struct numa_group __rcu *numa_group; 1262 1263 /* 1264 * numa_faults is an array split into four regions: 1265 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1266 * in this precise order. 1267 * 1268 * faults_memory: Exponential decaying average of faults on a per-node 1269 * basis. Scheduling placement decisions are made based on these 1270 * counts. The values remain static for the duration of a PTE scan. 1271 * faults_cpu: Track the nodes the process was running on when a NUMA 1272 * hinting fault was incurred. 1273 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1274 * during the current scan window. When the scan completes, the counts 1275 * in faults_memory and faults_cpu decay and these values are copied. 1276 */ 1277 unsigned long *numa_faults; 1278 unsigned long total_numa_faults; 1279 1280 /* 1281 * numa_faults_locality tracks if faults recorded during the last 1282 * scan window were remote/local or failed to migrate. The task scan 1283 * period is adapted based on the locality of the faults with different 1284 * weights depending on whether they were shared or private faults 1285 */ 1286 unsigned long numa_faults_locality[3]; 1287 1288 unsigned long numa_pages_migrated; 1289 #endif /* CONFIG_NUMA_BALANCING */ 1290 1291 #ifdef CONFIG_RSEQ 1292 struct rseq __user *rseq; 1293 u32 rseq_sig; 1294 /* 1295 * RmW on rseq_event_mask must be performed atomically 1296 * with respect to preemption. 1297 */ 1298 unsigned long rseq_event_mask; 1299 #endif 1300 1301 struct tlbflush_unmap_batch tlb_ubc; 1302 1303 union { 1304 refcount_t rcu_users; 1305 struct rcu_head rcu; 1306 }; 1307 1308 /* Cache last used pipe for splice(): */ 1309 struct pipe_inode_info *splice_pipe; 1310 1311 struct page_frag task_frag; 1312 1313 #ifdef CONFIG_TASK_DELAY_ACCT 1314 struct task_delay_info *delays; 1315 #endif 1316 1317 #ifdef CONFIG_FAULT_INJECTION 1318 int make_it_fail; 1319 unsigned int fail_nth; 1320 #endif 1321 /* 1322 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1323 * balance_dirty_pages() for a dirty throttling pause: 1324 */ 1325 int nr_dirtied; 1326 int nr_dirtied_pause; 1327 /* Start of a write-and-pause period: */ 1328 unsigned long dirty_paused_when; 1329 1330 #ifdef CONFIG_LATENCYTOP 1331 int latency_record_count; 1332 struct latency_record latency_record[LT_SAVECOUNT]; 1333 #endif 1334 /* 1335 * Time slack values; these are used to round up poll() and 1336 * select() etc timeout values. These are in nanoseconds. 1337 */ 1338 u64 timer_slack_ns; 1339 u64 default_timer_slack_ns; 1340 1341 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 1342 unsigned int kasan_depth; 1343 #endif 1344 1345 #ifdef CONFIG_KCSAN 1346 struct kcsan_ctx kcsan_ctx; 1347 #ifdef CONFIG_TRACE_IRQFLAGS 1348 struct irqtrace_events kcsan_save_irqtrace; 1349 #endif 1350 #ifdef CONFIG_KCSAN_WEAK_MEMORY 1351 int kcsan_stack_depth; 1352 #endif 1353 #endif 1354 1355 #if IS_ENABLED(CONFIG_KUNIT) 1356 struct kunit *kunit_test; 1357 #endif 1358 1359 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1360 /* Index of current stored address in ret_stack: */ 1361 int curr_ret_stack; 1362 int curr_ret_depth; 1363 1364 /* Stack of return addresses for return function tracing: */ 1365 struct ftrace_ret_stack *ret_stack; 1366 1367 /* Timestamp for last schedule: */ 1368 unsigned long long ftrace_timestamp; 1369 1370 /* 1371 * Number of functions that haven't been traced 1372 * because of depth overrun: 1373 */ 1374 atomic_t trace_overrun; 1375 1376 /* Pause tracing: */ 1377 atomic_t tracing_graph_pause; 1378 #endif 1379 1380 #ifdef CONFIG_TRACING 1381 /* State flags for use by tracers: */ 1382 unsigned long trace; 1383 1384 /* Bitmask and counter of trace recursion: */ 1385 unsigned long trace_recursion; 1386 #endif /* CONFIG_TRACING */ 1387 1388 #ifdef CONFIG_KCOV 1389 /* See kernel/kcov.c for more details. */ 1390 1391 /* Coverage collection mode enabled for this task (0 if disabled): */ 1392 unsigned int kcov_mode; 1393 1394 /* Size of the kcov_area: */ 1395 unsigned int kcov_size; 1396 1397 /* Buffer for coverage collection: */ 1398 void *kcov_area; 1399 1400 /* KCOV descriptor wired with this task or NULL: */ 1401 struct kcov *kcov; 1402 1403 /* KCOV common handle for remote coverage collection: */ 1404 u64 kcov_handle; 1405 1406 /* KCOV sequence number: */ 1407 int kcov_sequence; 1408 1409 /* Collect coverage from softirq context: */ 1410 unsigned int kcov_softirq; 1411 #endif 1412 1413 #ifdef CONFIG_MEMCG 1414 struct mem_cgroup *memcg_in_oom; 1415 gfp_t memcg_oom_gfp_mask; 1416 int memcg_oom_order; 1417 1418 /* Number of pages to reclaim on returning to userland: */ 1419 unsigned int memcg_nr_pages_over_high; 1420 1421 /* Used by memcontrol for targeted memcg charge: */ 1422 struct mem_cgroup *active_memcg; 1423 #endif 1424 1425 #ifdef CONFIG_BLK_CGROUP 1426 struct request_queue *throttle_queue; 1427 #endif 1428 1429 #ifdef CONFIG_UPROBES 1430 struct uprobe_task *utask; 1431 #endif 1432 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1433 unsigned int sequential_io; 1434 unsigned int sequential_io_avg; 1435 #endif 1436 struct kmap_ctrl kmap_ctrl; 1437 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1438 unsigned long task_state_change; 1439 # ifdef CONFIG_PREEMPT_RT 1440 unsigned long saved_state_change; 1441 # endif 1442 #endif 1443 int pagefault_disabled; 1444 #ifdef CONFIG_MMU 1445 struct task_struct *oom_reaper_list; 1446 #endif 1447 #ifdef CONFIG_VMAP_STACK 1448 struct vm_struct *stack_vm_area; 1449 #endif 1450 #ifdef CONFIG_THREAD_INFO_IN_TASK 1451 /* A live task holds one reference: */ 1452 refcount_t stack_refcount; 1453 #endif 1454 #ifdef CONFIG_LIVEPATCH 1455 int patch_state; 1456 #endif 1457 #ifdef CONFIG_SECURITY 1458 /* Used by LSM modules for access restriction: */ 1459 void *security; 1460 #endif 1461 #ifdef CONFIG_BPF_SYSCALL 1462 /* Used by BPF task local storage */ 1463 struct bpf_local_storage __rcu *bpf_storage; 1464 /* Used for BPF run context */ 1465 struct bpf_run_ctx *bpf_ctx; 1466 #endif 1467 1468 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1469 unsigned long lowest_stack; 1470 unsigned long prev_lowest_stack; 1471 #endif 1472 1473 #ifdef CONFIG_X86_MCE 1474 void __user *mce_vaddr; 1475 __u64 mce_kflags; 1476 u64 mce_addr; 1477 __u64 mce_ripv : 1, 1478 mce_whole_page : 1, 1479 __mce_reserved : 62; 1480 struct callback_head mce_kill_me; 1481 int mce_count; 1482 #endif 1483 1484 #ifdef CONFIG_KRETPROBES 1485 struct llist_head kretprobe_instances; 1486 #endif 1487 #ifdef CONFIG_RETHOOK 1488 struct llist_head rethooks; 1489 #endif 1490 1491 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH 1492 /* 1493 * If L1D flush is supported on mm context switch 1494 * then we use this callback head to queue kill work 1495 * to kill tasks that are not running on SMT disabled 1496 * cores 1497 */ 1498 struct callback_head l1d_flush_kill; 1499 #endif 1500 1501 /* 1502 * New fields for task_struct should be added above here, so that 1503 * they are included in the randomized portion of task_struct. 1504 */ 1505 randomized_struct_fields_end 1506 1507 /* CPU-specific state of this task: */ 1508 struct thread_struct thread; 1509 1510 /* 1511 * WARNING: on x86, 'thread_struct' contains a variable-sized 1512 * structure. It *MUST* be at the end of 'task_struct'. 1513 * 1514 * Do not put anything below here! 1515 */ 1516 }; 1517 1518 static inline struct pid *task_pid(struct task_struct *task) 1519 { 1520 return task->thread_pid; 1521 } 1522 1523 /* 1524 * the helpers to get the task's different pids as they are seen 1525 * from various namespaces 1526 * 1527 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1528 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1529 * current. 1530 * task_xid_nr_ns() : id seen from the ns specified; 1531 * 1532 * see also pid_nr() etc in include/linux/pid.h 1533 */ 1534 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1535 1536 static inline pid_t task_pid_nr(struct task_struct *tsk) 1537 { 1538 return tsk->pid; 1539 } 1540 1541 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1542 { 1543 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1544 } 1545 1546 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1547 { 1548 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1549 } 1550 1551 1552 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1553 { 1554 return tsk->tgid; 1555 } 1556 1557 /** 1558 * pid_alive - check that a task structure is not stale 1559 * @p: Task structure to be checked. 1560 * 1561 * Test if a process is not yet dead (at most zombie state) 1562 * If pid_alive fails, then pointers within the task structure 1563 * can be stale and must not be dereferenced. 1564 * 1565 * Return: 1 if the process is alive. 0 otherwise. 1566 */ 1567 static inline int pid_alive(const struct task_struct *p) 1568 { 1569 return p->thread_pid != NULL; 1570 } 1571 1572 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1573 { 1574 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1575 } 1576 1577 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1578 { 1579 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1580 } 1581 1582 1583 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1584 { 1585 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1586 } 1587 1588 static inline pid_t task_session_vnr(struct task_struct *tsk) 1589 { 1590 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1591 } 1592 1593 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1594 { 1595 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1596 } 1597 1598 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1599 { 1600 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1601 } 1602 1603 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1604 { 1605 pid_t pid = 0; 1606 1607 rcu_read_lock(); 1608 if (pid_alive(tsk)) 1609 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1610 rcu_read_unlock(); 1611 1612 return pid; 1613 } 1614 1615 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1616 { 1617 return task_ppid_nr_ns(tsk, &init_pid_ns); 1618 } 1619 1620 /* Obsolete, do not use: */ 1621 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1622 { 1623 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1624 } 1625 1626 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1627 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1628 1629 static inline unsigned int __task_state_index(unsigned int tsk_state, 1630 unsigned int tsk_exit_state) 1631 { 1632 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; 1633 1634 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1635 1636 if (tsk_state == TASK_IDLE) 1637 state = TASK_REPORT_IDLE; 1638 1639 /* 1640 * We're lying here, but rather than expose a completely new task state 1641 * to userspace, we can make this appear as if the task has gone through 1642 * a regular rt_mutex_lock() call. 1643 */ 1644 if (tsk_state == TASK_RTLOCK_WAIT) 1645 state = TASK_UNINTERRUPTIBLE; 1646 1647 return fls(state); 1648 } 1649 1650 static inline unsigned int task_state_index(struct task_struct *tsk) 1651 { 1652 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state); 1653 } 1654 1655 static inline char task_index_to_char(unsigned int state) 1656 { 1657 static const char state_char[] = "RSDTtXZPI"; 1658 1659 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1660 1661 return state_char[state]; 1662 } 1663 1664 static inline char task_state_to_char(struct task_struct *tsk) 1665 { 1666 return task_index_to_char(task_state_index(tsk)); 1667 } 1668 1669 /** 1670 * is_global_init - check if a task structure is init. Since init 1671 * is free to have sub-threads we need to check tgid. 1672 * @tsk: Task structure to be checked. 1673 * 1674 * Check if a task structure is the first user space task the kernel created. 1675 * 1676 * Return: 1 if the task structure is init. 0 otherwise. 1677 */ 1678 static inline int is_global_init(struct task_struct *tsk) 1679 { 1680 return task_tgid_nr(tsk) == 1; 1681 } 1682 1683 extern struct pid *cad_pid; 1684 1685 /* 1686 * Per process flags 1687 */ 1688 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1689 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1690 #define PF_EXITING 0x00000004 /* Getting shut down */ 1691 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ 1692 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1693 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1694 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1695 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1696 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1697 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1698 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1699 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1700 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1701 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1702 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1703 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1704 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1705 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1706 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1707 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1708 * I am cleaning dirty pages from some other bdi. */ 1709 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1710 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1711 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1712 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1713 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ 1714 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1715 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1716 1717 /* 1718 * Only the _current_ task can read/write to tsk->flags, but other 1719 * tasks can access tsk->flags in readonly mode for example 1720 * with tsk_used_math (like during threaded core dumping). 1721 * There is however an exception to this rule during ptrace 1722 * or during fork: the ptracer task is allowed to write to the 1723 * child->flags of its traced child (same goes for fork, the parent 1724 * can write to the child->flags), because we're guaranteed the 1725 * child is not running and in turn not changing child->flags 1726 * at the same time the parent does it. 1727 */ 1728 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1729 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1730 #define clear_used_math() clear_stopped_child_used_math(current) 1731 #define set_used_math() set_stopped_child_used_math(current) 1732 1733 #define conditional_stopped_child_used_math(condition, child) \ 1734 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1735 1736 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1737 1738 #define copy_to_stopped_child_used_math(child) \ 1739 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1740 1741 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1742 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1743 #define used_math() tsk_used_math(current) 1744 1745 static __always_inline bool is_percpu_thread(void) 1746 { 1747 #ifdef CONFIG_SMP 1748 return (current->flags & PF_NO_SETAFFINITY) && 1749 (current->nr_cpus_allowed == 1); 1750 #else 1751 return true; 1752 #endif 1753 } 1754 1755 /* Per-process atomic flags. */ 1756 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1757 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1758 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1759 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1760 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1761 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1762 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1763 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1764 1765 #define TASK_PFA_TEST(name, func) \ 1766 static inline bool task_##func(struct task_struct *p) \ 1767 { return test_bit(PFA_##name, &p->atomic_flags); } 1768 1769 #define TASK_PFA_SET(name, func) \ 1770 static inline void task_set_##func(struct task_struct *p) \ 1771 { set_bit(PFA_##name, &p->atomic_flags); } 1772 1773 #define TASK_PFA_CLEAR(name, func) \ 1774 static inline void task_clear_##func(struct task_struct *p) \ 1775 { clear_bit(PFA_##name, &p->atomic_flags); } 1776 1777 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1778 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1779 1780 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1781 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1782 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1783 1784 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1785 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1786 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1787 1788 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1789 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1790 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1791 1792 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1793 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1794 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1795 1796 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1797 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1798 1799 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1800 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1801 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1802 1803 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1804 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1805 1806 static inline void 1807 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1808 { 1809 current->flags &= ~flags; 1810 current->flags |= orig_flags & flags; 1811 } 1812 1813 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1814 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1815 #ifdef CONFIG_SMP 1816 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1817 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1818 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); 1819 extern void release_user_cpus_ptr(struct task_struct *p); 1820 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); 1821 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); 1822 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); 1823 #else 1824 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1825 { 1826 } 1827 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1828 { 1829 if (!cpumask_test_cpu(0, new_mask)) 1830 return -EINVAL; 1831 return 0; 1832 } 1833 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) 1834 { 1835 if (src->user_cpus_ptr) 1836 return -EINVAL; 1837 return 0; 1838 } 1839 static inline void release_user_cpus_ptr(struct task_struct *p) 1840 { 1841 WARN_ON(p->user_cpus_ptr); 1842 } 1843 1844 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1845 { 1846 return 0; 1847 } 1848 #endif 1849 1850 extern int yield_to(struct task_struct *p, bool preempt); 1851 extern void set_user_nice(struct task_struct *p, long nice); 1852 extern int task_prio(const struct task_struct *p); 1853 1854 /** 1855 * task_nice - return the nice value of a given task. 1856 * @p: the task in question. 1857 * 1858 * Return: The nice value [ -20 ... 0 ... 19 ]. 1859 */ 1860 static inline int task_nice(const struct task_struct *p) 1861 { 1862 return PRIO_TO_NICE((p)->static_prio); 1863 } 1864 1865 extern int can_nice(const struct task_struct *p, const int nice); 1866 extern int task_curr(const struct task_struct *p); 1867 extern int idle_cpu(int cpu); 1868 extern int available_idle_cpu(int cpu); 1869 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1870 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1871 extern void sched_set_fifo(struct task_struct *p); 1872 extern void sched_set_fifo_low(struct task_struct *p); 1873 extern void sched_set_normal(struct task_struct *p, int nice); 1874 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1875 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1876 extern struct task_struct *idle_task(int cpu); 1877 1878 /** 1879 * is_idle_task - is the specified task an idle task? 1880 * @p: the task in question. 1881 * 1882 * Return: 1 if @p is an idle task. 0 otherwise. 1883 */ 1884 static __always_inline bool is_idle_task(const struct task_struct *p) 1885 { 1886 return !!(p->flags & PF_IDLE); 1887 } 1888 1889 extern struct task_struct *curr_task(int cpu); 1890 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1891 1892 void yield(void); 1893 1894 union thread_union { 1895 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1896 struct task_struct task; 1897 #endif 1898 #ifndef CONFIG_THREAD_INFO_IN_TASK 1899 struct thread_info thread_info; 1900 #endif 1901 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1902 }; 1903 1904 #ifndef CONFIG_THREAD_INFO_IN_TASK 1905 extern struct thread_info init_thread_info; 1906 #endif 1907 1908 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1909 1910 #ifdef CONFIG_THREAD_INFO_IN_TASK 1911 # define task_thread_info(task) (&(task)->thread_info) 1912 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1913 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1914 #endif 1915 1916 /* 1917 * find a task by one of its numerical ids 1918 * 1919 * find_task_by_pid_ns(): 1920 * finds a task by its pid in the specified namespace 1921 * find_task_by_vpid(): 1922 * finds a task by its virtual pid 1923 * 1924 * see also find_vpid() etc in include/linux/pid.h 1925 */ 1926 1927 extern struct task_struct *find_task_by_vpid(pid_t nr); 1928 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1929 1930 /* 1931 * find a task by its virtual pid and get the task struct 1932 */ 1933 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1934 1935 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1936 extern int wake_up_process(struct task_struct *tsk); 1937 extern void wake_up_new_task(struct task_struct *tsk); 1938 1939 #ifdef CONFIG_SMP 1940 extern void kick_process(struct task_struct *tsk); 1941 #else 1942 static inline void kick_process(struct task_struct *tsk) { } 1943 #endif 1944 1945 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1946 1947 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1948 { 1949 __set_task_comm(tsk, from, false); 1950 } 1951 1952 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1953 #define get_task_comm(buf, tsk) ({ \ 1954 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1955 __get_task_comm(buf, sizeof(buf), tsk); \ 1956 }) 1957 1958 #ifdef CONFIG_SMP 1959 static __always_inline void scheduler_ipi(void) 1960 { 1961 /* 1962 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1963 * TIF_NEED_RESCHED remotely (for the first time) will also send 1964 * this IPI. 1965 */ 1966 preempt_fold_need_resched(); 1967 } 1968 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); 1969 #else 1970 static inline void scheduler_ipi(void) { } 1971 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 1972 { 1973 return 1; 1974 } 1975 #endif 1976 1977 /* 1978 * Set thread flags in other task's structures. 1979 * See asm/thread_info.h for TIF_xxxx flags available: 1980 */ 1981 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1982 { 1983 set_ti_thread_flag(task_thread_info(tsk), flag); 1984 } 1985 1986 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1987 { 1988 clear_ti_thread_flag(task_thread_info(tsk), flag); 1989 } 1990 1991 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1992 bool value) 1993 { 1994 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1995 } 1996 1997 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1998 { 1999 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2000 } 2001 2002 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2003 { 2004 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2005 } 2006 2007 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2008 { 2009 return test_ti_thread_flag(task_thread_info(tsk), flag); 2010 } 2011 2012 static inline void set_tsk_need_resched(struct task_struct *tsk) 2013 { 2014 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2015 } 2016 2017 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2018 { 2019 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2020 } 2021 2022 static inline int test_tsk_need_resched(struct task_struct *tsk) 2023 { 2024 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2025 } 2026 2027 /* 2028 * cond_resched() and cond_resched_lock(): latency reduction via 2029 * explicit rescheduling in places that are safe. The return 2030 * value indicates whether a reschedule was done in fact. 2031 * cond_resched_lock() will drop the spinlock before scheduling, 2032 */ 2033 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 2034 extern int __cond_resched(void); 2035 2036 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 2037 2038 DECLARE_STATIC_CALL(cond_resched, __cond_resched); 2039 2040 static __always_inline int _cond_resched(void) 2041 { 2042 return static_call_mod(cond_resched)(); 2043 } 2044 2045 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 2046 extern int dynamic_cond_resched(void); 2047 2048 static __always_inline int _cond_resched(void) 2049 { 2050 return dynamic_cond_resched(); 2051 } 2052 2053 #else 2054 2055 static inline int _cond_resched(void) 2056 { 2057 return __cond_resched(); 2058 } 2059 2060 #endif /* CONFIG_PREEMPT_DYNAMIC */ 2061 2062 #else 2063 2064 static inline int _cond_resched(void) { return 0; } 2065 2066 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */ 2067 2068 #define cond_resched() ({ \ 2069 __might_resched(__FILE__, __LINE__, 0); \ 2070 _cond_resched(); \ 2071 }) 2072 2073 extern int __cond_resched_lock(spinlock_t *lock); 2074 extern int __cond_resched_rwlock_read(rwlock_t *lock); 2075 extern int __cond_resched_rwlock_write(rwlock_t *lock); 2076 2077 #define MIGHT_RESCHED_RCU_SHIFT 8 2078 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) 2079 2080 #ifndef CONFIG_PREEMPT_RT 2081 /* 2082 * Non RT kernels have an elevated preempt count due to the held lock, 2083 * but are not allowed to be inside a RCU read side critical section 2084 */ 2085 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET 2086 #else 2087 /* 2088 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in 2089 * cond_resched*lock() has to take that into account because it checks for 2090 * preempt_count() and rcu_preempt_depth(). 2091 */ 2092 # define PREEMPT_LOCK_RESCHED_OFFSETS \ 2093 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) 2094 #endif 2095 2096 #define cond_resched_lock(lock) ({ \ 2097 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2098 __cond_resched_lock(lock); \ 2099 }) 2100 2101 #define cond_resched_rwlock_read(lock) ({ \ 2102 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2103 __cond_resched_rwlock_read(lock); \ 2104 }) 2105 2106 #define cond_resched_rwlock_write(lock) ({ \ 2107 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2108 __cond_resched_rwlock_write(lock); \ 2109 }) 2110 2111 static inline void cond_resched_rcu(void) 2112 { 2113 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2114 rcu_read_unlock(); 2115 cond_resched(); 2116 rcu_read_lock(); 2117 #endif 2118 } 2119 2120 /* 2121 * Does a critical section need to be broken due to another 2122 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 2123 * but a general need for low latency) 2124 */ 2125 static inline int spin_needbreak(spinlock_t *lock) 2126 { 2127 #ifdef CONFIG_PREEMPTION 2128 return spin_is_contended(lock); 2129 #else 2130 return 0; 2131 #endif 2132 } 2133 2134 /* 2135 * Check if a rwlock is contended. 2136 * Returns non-zero if there is another task waiting on the rwlock. 2137 * Returns zero if the lock is not contended or the system / underlying 2138 * rwlock implementation does not support contention detection. 2139 * Technically does not depend on CONFIG_PREEMPTION, but a general need 2140 * for low latency. 2141 */ 2142 static inline int rwlock_needbreak(rwlock_t *lock) 2143 { 2144 #ifdef CONFIG_PREEMPTION 2145 return rwlock_is_contended(lock); 2146 #else 2147 return 0; 2148 #endif 2149 } 2150 2151 static __always_inline bool need_resched(void) 2152 { 2153 return unlikely(tif_need_resched()); 2154 } 2155 2156 /* 2157 * Wrappers for p->thread_info->cpu access. No-op on UP. 2158 */ 2159 #ifdef CONFIG_SMP 2160 2161 static inline unsigned int task_cpu(const struct task_struct *p) 2162 { 2163 return READ_ONCE(task_thread_info(p)->cpu); 2164 } 2165 2166 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2167 2168 #else 2169 2170 static inline unsigned int task_cpu(const struct task_struct *p) 2171 { 2172 return 0; 2173 } 2174 2175 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2176 { 2177 } 2178 2179 #endif /* CONFIG_SMP */ 2180 2181 extern bool sched_task_on_rq(struct task_struct *p); 2182 extern unsigned long get_wchan(struct task_struct *p); 2183 2184 /* 2185 * In order to reduce various lock holder preemption latencies provide an 2186 * interface to see if a vCPU is currently running or not. 2187 * 2188 * This allows us to terminate optimistic spin loops and block, analogous to 2189 * the native optimistic spin heuristic of testing if the lock owner task is 2190 * running or not. 2191 */ 2192 #ifndef vcpu_is_preempted 2193 static inline bool vcpu_is_preempted(int cpu) 2194 { 2195 return false; 2196 } 2197 #endif 2198 2199 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2200 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2201 2202 #ifndef TASK_SIZE_OF 2203 #define TASK_SIZE_OF(tsk) TASK_SIZE 2204 #endif 2205 2206 #ifdef CONFIG_SMP 2207 static inline bool owner_on_cpu(struct task_struct *owner) 2208 { 2209 /* 2210 * As lock holder preemption issue, we both skip spinning if 2211 * task is not on cpu or its cpu is preempted 2212 */ 2213 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); 2214 } 2215 2216 /* Returns effective CPU energy utilization, as seen by the scheduler */ 2217 unsigned long sched_cpu_util(int cpu, unsigned long max); 2218 #endif /* CONFIG_SMP */ 2219 2220 #ifdef CONFIG_RSEQ 2221 2222 /* 2223 * Map the event mask on the user-space ABI enum rseq_cs_flags 2224 * for direct mask checks. 2225 */ 2226 enum rseq_event_mask_bits { 2227 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 2228 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 2229 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 2230 }; 2231 2232 enum rseq_event_mask { 2233 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 2234 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 2235 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 2236 }; 2237 2238 static inline void rseq_set_notify_resume(struct task_struct *t) 2239 { 2240 if (t->rseq) 2241 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 2242 } 2243 2244 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 2245 2246 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2247 struct pt_regs *regs) 2248 { 2249 if (current->rseq) 2250 __rseq_handle_notify_resume(ksig, regs); 2251 } 2252 2253 static inline void rseq_signal_deliver(struct ksignal *ksig, 2254 struct pt_regs *regs) 2255 { 2256 preempt_disable(); 2257 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 2258 preempt_enable(); 2259 rseq_handle_notify_resume(ksig, regs); 2260 } 2261 2262 /* rseq_preempt() requires preemption to be disabled. */ 2263 static inline void rseq_preempt(struct task_struct *t) 2264 { 2265 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 2266 rseq_set_notify_resume(t); 2267 } 2268 2269 /* rseq_migrate() requires preemption to be disabled. */ 2270 static inline void rseq_migrate(struct task_struct *t) 2271 { 2272 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 2273 rseq_set_notify_resume(t); 2274 } 2275 2276 /* 2277 * If parent process has a registered restartable sequences area, the 2278 * child inherits. Unregister rseq for a clone with CLONE_VM set. 2279 */ 2280 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2281 { 2282 if (clone_flags & CLONE_VM) { 2283 t->rseq = NULL; 2284 t->rseq_sig = 0; 2285 t->rseq_event_mask = 0; 2286 } else { 2287 t->rseq = current->rseq; 2288 t->rseq_sig = current->rseq_sig; 2289 t->rseq_event_mask = current->rseq_event_mask; 2290 } 2291 } 2292 2293 static inline void rseq_execve(struct task_struct *t) 2294 { 2295 t->rseq = NULL; 2296 t->rseq_sig = 0; 2297 t->rseq_event_mask = 0; 2298 } 2299 2300 #else 2301 2302 static inline void rseq_set_notify_resume(struct task_struct *t) 2303 { 2304 } 2305 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2306 struct pt_regs *regs) 2307 { 2308 } 2309 static inline void rseq_signal_deliver(struct ksignal *ksig, 2310 struct pt_regs *regs) 2311 { 2312 } 2313 static inline void rseq_preempt(struct task_struct *t) 2314 { 2315 } 2316 static inline void rseq_migrate(struct task_struct *t) 2317 { 2318 } 2319 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2320 { 2321 } 2322 static inline void rseq_execve(struct task_struct *t) 2323 { 2324 } 2325 2326 #endif 2327 2328 #ifdef CONFIG_DEBUG_RSEQ 2329 2330 void rseq_syscall(struct pt_regs *regs); 2331 2332 #else 2333 2334 static inline void rseq_syscall(struct pt_regs *regs) 2335 { 2336 } 2337 2338 #endif 2339 2340 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2341 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2342 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2343 2344 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2345 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2346 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2347 2348 int sched_trace_rq_cpu(struct rq *rq); 2349 int sched_trace_rq_cpu_capacity(struct rq *rq); 2350 int sched_trace_rq_nr_running(struct rq *rq); 2351 2352 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2353 2354 #ifdef CONFIG_SCHED_CORE 2355 extern void sched_core_free(struct task_struct *tsk); 2356 extern void sched_core_fork(struct task_struct *p); 2357 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, 2358 unsigned long uaddr); 2359 #else 2360 static inline void sched_core_free(struct task_struct *tsk) { } 2361 static inline void sched_core_fork(struct task_struct *p) { } 2362 #endif 2363 2364 #endif 2365