1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(void); 181 #else 182 static inline void update_cpu_load_nohz(void) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 377 extern void sched_show_task(struct task_struct *p); 378 379 #ifdef CONFIG_LOCKUP_DETECTOR 380 extern void touch_softlockup_watchdog(void); 381 extern void touch_softlockup_watchdog_sync(void); 382 extern void touch_all_softlockup_watchdogs(void); 383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 384 void __user *buffer, 385 size_t *lenp, loff_t *ppos); 386 extern unsigned int softlockup_panic; 387 extern unsigned int hardlockup_panic; 388 void lockup_detector_init(void); 389 #else 390 static inline void touch_softlockup_watchdog(void) 391 { 392 } 393 static inline void touch_softlockup_watchdog_sync(void) 394 { 395 } 396 static inline void touch_all_softlockup_watchdogs(void) 397 { 398 } 399 static inline void lockup_detector_init(void) 400 { 401 } 402 #endif 403 404 #ifdef CONFIG_DETECT_HUNG_TASK 405 void reset_hung_task_detector(void); 406 #else 407 static inline void reset_hung_task_detector(void) 408 { 409 } 410 #endif 411 412 /* Attach to any functions which should be ignored in wchan output. */ 413 #define __sched __attribute__((__section__(".sched.text"))) 414 415 /* Linker adds these: start and end of __sched functions */ 416 extern char __sched_text_start[], __sched_text_end[]; 417 418 /* Is this address in the __sched functions? */ 419 extern int in_sched_functions(unsigned long addr); 420 421 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 422 extern signed long schedule_timeout(signed long timeout); 423 extern signed long schedule_timeout_interruptible(signed long timeout); 424 extern signed long schedule_timeout_killable(signed long timeout); 425 extern signed long schedule_timeout_uninterruptible(signed long timeout); 426 asmlinkage void schedule(void); 427 extern void schedule_preempt_disabled(void); 428 429 extern long io_schedule_timeout(long timeout); 430 431 static inline void io_schedule(void) 432 { 433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 434 } 435 436 struct nsproxy; 437 struct user_namespace; 438 439 #ifdef CONFIG_MMU 440 extern void arch_pick_mmap_layout(struct mm_struct *mm); 441 extern unsigned long 442 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 443 unsigned long, unsigned long); 444 extern unsigned long 445 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 446 unsigned long len, unsigned long pgoff, 447 unsigned long flags); 448 #else 449 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 450 #endif 451 452 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 453 #define SUID_DUMP_USER 1 /* Dump as user of process */ 454 #define SUID_DUMP_ROOT 2 /* Dump as root */ 455 456 /* mm flags */ 457 458 /* for SUID_DUMP_* above */ 459 #define MMF_DUMPABLE_BITS 2 460 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 461 462 extern void set_dumpable(struct mm_struct *mm, int value); 463 /* 464 * This returns the actual value of the suid_dumpable flag. For things 465 * that are using this for checking for privilege transitions, it must 466 * test against SUID_DUMP_USER rather than treating it as a boolean 467 * value. 468 */ 469 static inline int __get_dumpable(unsigned long mm_flags) 470 { 471 return mm_flags & MMF_DUMPABLE_MASK; 472 } 473 474 static inline int get_dumpable(struct mm_struct *mm) 475 { 476 return __get_dumpable(mm->flags); 477 } 478 479 /* coredump filter bits */ 480 #define MMF_DUMP_ANON_PRIVATE 2 481 #define MMF_DUMP_ANON_SHARED 3 482 #define MMF_DUMP_MAPPED_PRIVATE 4 483 #define MMF_DUMP_MAPPED_SHARED 5 484 #define MMF_DUMP_ELF_HEADERS 6 485 #define MMF_DUMP_HUGETLB_PRIVATE 7 486 #define MMF_DUMP_HUGETLB_SHARED 8 487 #define MMF_DUMP_DAX_PRIVATE 9 488 #define MMF_DUMP_DAX_SHARED 10 489 490 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 491 #define MMF_DUMP_FILTER_BITS 9 492 #define MMF_DUMP_FILTER_MASK \ 493 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 494 #define MMF_DUMP_FILTER_DEFAULT \ 495 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 496 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 497 498 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 499 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 500 #else 501 # define MMF_DUMP_MASK_DEFAULT_ELF 0 502 #endif 503 /* leave room for more dump flags */ 504 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 505 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 506 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 507 508 #define MMF_HAS_UPROBES 19 /* has uprobes */ 509 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 510 511 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 512 513 struct sighand_struct { 514 atomic_t count; 515 struct k_sigaction action[_NSIG]; 516 spinlock_t siglock; 517 wait_queue_head_t signalfd_wqh; 518 }; 519 520 struct pacct_struct { 521 int ac_flag; 522 long ac_exitcode; 523 unsigned long ac_mem; 524 cputime_t ac_utime, ac_stime; 525 unsigned long ac_minflt, ac_majflt; 526 }; 527 528 struct cpu_itimer { 529 cputime_t expires; 530 cputime_t incr; 531 u32 error; 532 u32 incr_error; 533 }; 534 535 /** 536 * struct prev_cputime - snaphsot of system and user cputime 537 * @utime: time spent in user mode 538 * @stime: time spent in system mode 539 * @lock: protects the above two fields 540 * 541 * Stores previous user/system time values such that we can guarantee 542 * monotonicity. 543 */ 544 struct prev_cputime { 545 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 546 cputime_t utime; 547 cputime_t stime; 548 raw_spinlock_t lock; 549 #endif 550 }; 551 552 static inline void prev_cputime_init(struct prev_cputime *prev) 553 { 554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 555 prev->utime = prev->stime = 0; 556 raw_spin_lock_init(&prev->lock); 557 #endif 558 } 559 560 /** 561 * struct task_cputime - collected CPU time counts 562 * @utime: time spent in user mode, in &cputime_t units 563 * @stime: time spent in kernel mode, in &cputime_t units 564 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 565 * 566 * This structure groups together three kinds of CPU time that are tracked for 567 * threads and thread groups. Most things considering CPU time want to group 568 * these counts together and treat all three of them in parallel. 569 */ 570 struct task_cputime { 571 cputime_t utime; 572 cputime_t stime; 573 unsigned long long sum_exec_runtime; 574 }; 575 576 /* Alternate field names when used to cache expirations. */ 577 #define virt_exp utime 578 #define prof_exp stime 579 #define sched_exp sum_exec_runtime 580 581 #define INIT_CPUTIME \ 582 (struct task_cputime) { \ 583 .utime = 0, \ 584 .stime = 0, \ 585 .sum_exec_runtime = 0, \ 586 } 587 588 /* 589 * This is the atomic variant of task_cputime, which can be used for 590 * storing and updating task_cputime statistics without locking. 591 */ 592 struct task_cputime_atomic { 593 atomic64_t utime; 594 atomic64_t stime; 595 atomic64_t sum_exec_runtime; 596 }; 597 598 #define INIT_CPUTIME_ATOMIC \ 599 (struct task_cputime_atomic) { \ 600 .utime = ATOMIC64_INIT(0), \ 601 .stime = ATOMIC64_INIT(0), \ 602 .sum_exec_runtime = ATOMIC64_INIT(0), \ 603 } 604 605 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 606 607 /* 608 * Disable preemption until the scheduler is running -- use an unconditional 609 * value so that it also works on !PREEMPT_COUNT kernels. 610 * 611 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 612 */ 613 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 614 615 /* 616 * Initial preempt_count value; reflects the preempt_count schedule invariant 617 * which states that during context switches: 618 * 619 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 620 * 621 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 622 * Note: See finish_task_switch(). 623 */ 624 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 625 626 /** 627 * struct thread_group_cputimer - thread group interval timer counts 628 * @cputime_atomic: atomic thread group interval timers. 629 * @running: true when there are timers running and 630 * @cputime_atomic receives updates. 631 * @checking_timer: true when a thread in the group is in the 632 * process of checking for thread group timers. 633 * 634 * This structure contains the version of task_cputime, above, that is 635 * used for thread group CPU timer calculations. 636 */ 637 struct thread_group_cputimer { 638 struct task_cputime_atomic cputime_atomic; 639 bool running; 640 bool checking_timer; 641 }; 642 643 #include <linux/rwsem.h> 644 struct autogroup; 645 646 /* 647 * NOTE! "signal_struct" does not have its own 648 * locking, because a shared signal_struct always 649 * implies a shared sighand_struct, so locking 650 * sighand_struct is always a proper superset of 651 * the locking of signal_struct. 652 */ 653 struct signal_struct { 654 atomic_t sigcnt; 655 atomic_t live; 656 int nr_threads; 657 struct list_head thread_head; 658 659 wait_queue_head_t wait_chldexit; /* for wait4() */ 660 661 /* current thread group signal load-balancing target: */ 662 struct task_struct *curr_target; 663 664 /* shared signal handling: */ 665 struct sigpending shared_pending; 666 667 /* thread group exit support */ 668 int group_exit_code; 669 /* overloaded: 670 * - notify group_exit_task when ->count is equal to notify_count 671 * - everyone except group_exit_task is stopped during signal delivery 672 * of fatal signals, group_exit_task processes the signal. 673 */ 674 int notify_count; 675 struct task_struct *group_exit_task; 676 677 /* thread group stop support, overloads group_exit_code too */ 678 int group_stop_count; 679 unsigned int flags; /* see SIGNAL_* flags below */ 680 681 /* 682 * PR_SET_CHILD_SUBREAPER marks a process, like a service 683 * manager, to re-parent orphan (double-forking) child processes 684 * to this process instead of 'init'. The service manager is 685 * able to receive SIGCHLD signals and is able to investigate 686 * the process until it calls wait(). All children of this 687 * process will inherit a flag if they should look for a 688 * child_subreaper process at exit. 689 */ 690 unsigned int is_child_subreaper:1; 691 unsigned int has_child_subreaper:1; 692 693 /* POSIX.1b Interval Timers */ 694 int posix_timer_id; 695 struct list_head posix_timers; 696 697 /* ITIMER_REAL timer for the process */ 698 struct hrtimer real_timer; 699 struct pid *leader_pid; 700 ktime_t it_real_incr; 701 702 /* 703 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 704 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 705 * values are defined to 0 and 1 respectively 706 */ 707 struct cpu_itimer it[2]; 708 709 /* 710 * Thread group totals for process CPU timers. 711 * See thread_group_cputimer(), et al, for details. 712 */ 713 struct thread_group_cputimer cputimer; 714 715 /* Earliest-expiration cache. */ 716 struct task_cputime cputime_expires; 717 718 struct list_head cpu_timers[3]; 719 720 struct pid *tty_old_pgrp; 721 722 /* boolean value for session group leader */ 723 int leader; 724 725 struct tty_struct *tty; /* NULL if no tty */ 726 727 #ifdef CONFIG_SCHED_AUTOGROUP 728 struct autogroup *autogroup; 729 #endif 730 /* 731 * Cumulative resource counters for dead threads in the group, 732 * and for reaped dead child processes forked by this group. 733 * Live threads maintain their own counters and add to these 734 * in __exit_signal, except for the group leader. 735 */ 736 seqlock_t stats_lock; 737 cputime_t utime, stime, cutime, cstime; 738 cputime_t gtime; 739 cputime_t cgtime; 740 struct prev_cputime prev_cputime; 741 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 742 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 743 unsigned long inblock, oublock, cinblock, coublock; 744 unsigned long maxrss, cmaxrss; 745 struct task_io_accounting ioac; 746 747 /* 748 * Cumulative ns of schedule CPU time fo dead threads in the 749 * group, not including a zombie group leader, (This only differs 750 * from jiffies_to_ns(utime + stime) if sched_clock uses something 751 * other than jiffies.) 752 */ 753 unsigned long long sum_sched_runtime; 754 755 /* 756 * We don't bother to synchronize most readers of this at all, 757 * because there is no reader checking a limit that actually needs 758 * to get both rlim_cur and rlim_max atomically, and either one 759 * alone is a single word that can safely be read normally. 760 * getrlimit/setrlimit use task_lock(current->group_leader) to 761 * protect this instead of the siglock, because they really 762 * have no need to disable irqs. 763 */ 764 struct rlimit rlim[RLIM_NLIMITS]; 765 766 #ifdef CONFIG_BSD_PROCESS_ACCT 767 struct pacct_struct pacct; /* per-process accounting information */ 768 #endif 769 #ifdef CONFIG_TASKSTATS 770 struct taskstats *stats; 771 #endif 772 #ifdef CONFIG_AUDIT 773 unsigned audit_tty; 774 unsigned audit_tty_log_passwd; 775 struct tty_audit_buf *tty_audit_buf; 776 #endif 777 778 oom_flags_t oom_flags; 779 short oom_score_adj; /* OOM kill score adjustment */ 780 short oom_score_adj_min; /* OOM kill score adjustment min value. 781 * Only settable by CAP_SYS_RESOURCE. */ 782 783 struct mutex cred_guard_mutex; /* guard against foreign influences on 784 * credential calculations 785 * (notably. ptrace) */ 786 }; 787 788 /* 789 * Bits in flags field of signal_struct. 790 */ 791 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 792 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 793 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 794 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 795 /* 796 * Pending notifications to parent. 797 */ 798 #define SIGNAL_CLD_STOPPED 0x00000010 799 #define SIGNAL_CLD_CONTINUED 0x00000020 800 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 801 802 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 803 804 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 805 static inline int signal_group_exit(const struct signal_struct *sig) 806 { 807 return (sig->flags & SIGNAL_GROUP_EXIT) || 808 (sig->group_exit_task != NULL); 809 } 810 811 /* 812 * Some day this will be a full-fledged user tracking system.. 813 */ 814 struct user_struct { 815 atomic_t __count; /* reference count */ 816 atomic_t processes; /* How many processes does this user have? */ 817 atomic_t sigpending; /* How many pending signals does this user have? */ 818 #ifdef CONFIG_INOTIFY_USER 819 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 820 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 821 #endif 822 #ifdef CONFIG_FANOTIFY 823 atomic_t fanotify_listeners; 824 #endif 825 #ifdef CONFIG_EPOLL 826 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 827 #endif 828 #ifdef CONFIG_POSIX_MQUEUE 829 /* protected by mq_lock */ 830 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 831 #endif 832 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 833 834 #ifdef CONFIG_KEYS 835 struct key *uid_keyring; /* UID specific keyring */ 836 struct key *session_keyring; /* UID's default session keyring */ 837 #endif 838 839 /* Hash table maintenance information */ 840 struct hlist_node uidhash_node; 841 kuid_t uid; 842 843 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 844 atomic_long_t locked_vm; 845 #endif 846 }; 847 848 extern int uids_sysfs_init(void); 849 850 extern struct user_struct *find_user(kuid_t); 851 852 extern struct user_struct root_user; 853 #define INIT_USER (&root_user) 854 855 856 struct backing_dev_info; 857 struct reclaim_state; 858 859 #ifdef CONFIG_SCHED_INFO 860 struct sched_info { 861 /* cumulative counters */ 862 unsigned long pcount; /* # of times run on this cpu */ 863 unsigned long long run_delay; /* time spent waiting on a runqueue */ 864 865 /* timestamps */ 866 unsigned long long last_arrival,/* when we last ran on a cpu */ 867 last_queued; /* when we were last queued to run */ 868 }; 869 #endif /* CONFIG_SCHED_INFO */ 870 871 #ifdef CONFIG_TASK_DELAY_ACCT 872 struct task_delay_info { 873 spinlock_t lock; 874 unsigned int flags; /* Private per-task flags */ 875 876 /* For each stat XXX, add following, aligned appropriately 877 * 878 * struct timespec XXX_start, XXX_end; 879 * u64 XXX_delay; 880 * u32 XXX_count; 881 * 882 * Atomicity of updates to XXX_delay, XXX_count protected by 883 * single lock above (split into XXX_lock if contention is an issue). 884 */ 885 886 /* 887 * XXX_count is incremented on every XXX operation, the delay 888 * associated with the operation is added to XXX_delay. 889 * XXX_delay contains the accumulated delay time in nanoseconds. 890 */ 891 u64 blkio_start; /* Shared by blkio, swapin */ 892 u64 blkio_delay; /* wait for sync block io completion */ 893 u64 swapin_delay; /* wait for swapin block io completion */ 894 u32 blkio_count; /* total count of the number of sync block */ 895 /* io operations performed */ 896 u32 swapin_count; /* total count of the number of swapin block */ 897 /* io operations performed */ 898 899 u64 freepages_start; 900 u64 freepages_delay; /* wait for memory reclaim */ 901 u32 freepages_count; /* total count of memory reclaim */ 902 }; 903 #endif /* CONFIG_TASK_DELAY_ACCT */ 904 905 static inline int sched_info_on(void) 906 { 907 #ifdef CONFIG_SCHEDSTATS 908 return 1; 909 #elif defined(CONFIG_TASK_DELAY_ACCT) 910 extern int delayacct_on; 911 return delayacct_on; 912 #else 913 return 0; 914 #endif 915 } 916 917 enum cpu_idle_type { 918 CPU_IDLE, 919 CPU_NOT_IDLE, 920 CPU_NEWLY_IDLE, 921 CPU_MAX_IDLE_TYPES 922 }; 923 924 /* 925 * Increase resolution of cpu_capacity calculations 926 */ 927 #define SCHED_CAPACITY_SHIFT 10 928 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 929 930 /* 931 * Wake-queues are lists of tasks with a pending wakeup, whose 932 * callers have already marked the task as woken internally, 933 * and can thus carry on. A common use case is being able to 934 * do the wakeups once the corresponding user lock as been 935 * released. 936 * 937 * We hold reference to each task in the list across the wakeup, 938 * thus guaranteeing that the memory is still valid by the time 939 * the actual wakeups are performed in wake_up_q(). 940 * 941 * One per task suffices, because there's never a need for a task to be 942 * in two wake queues simultaneously; it is forbidden to abandon a task 943 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 944 * already in a wake queue, the wakeup will happen soon and the second 945 * waker can just skip it. 946 * 947 * The WAKE_Q macro declares and initializes the list head. 948 * wake_up_q() does NOT reinitialize the list; it's expected to be 949 * called near the end of a function, where the fact that the queue is 950 * not used again will be easy to see by inspection. 951 * 952 * Note that this can cause spurious wakeups. schedule() callers 953 * must ensure the call is done inside a loop, confirming that the 954 * wakeup condition has in fact occurred. 955 */ 956 struct wake_q_node { 957 struct wake_q_node *next; 958 }; 959 960 struct wake_q_head { 961 struct wake_q_node *first; 962 struct wake_q_node **lastp; 963 }; 964 965 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 966 967 #define WAKE_Q(name) \ 968 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 969 970 extern void wake_q_add(struct wake_q_head *head, 971 struct task_struct *task); 972 extern void wake_up_q(struct wake_q_head *head); 973 974 /* 975 * sched-domains (multiprocessor balancing) declarations: 976 */ 977 #ifdef CONFIG_SMP 978 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 979 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 980 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 981 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 982 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 983 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 984 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 985 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 986 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 987 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 988 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 989 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 990 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 991 #define SD_NUMA 0x4000 /* cross-node balancing */ 992 993 #ifdef CONFIG_SCHED_SMT 994 static inline int cpu_smt_flags(void) 995 { 996 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 997 } 998 #endif 999 1000 #ifdef CONFIG_SCHED_MC 1001 static inline int cpu_core_flags(void) 1002 { 1003 return SD_SHARE_PKG_RESOURCES; 1004 } 1005 #endif 1006 1007 #ifdef CONFIG_NUMA 1008 static inline int cpu_numa_flags(void) 1009 { 1010 return SD_NUMA; 1011 } 1012 #endif 1013 1014 struct sched_domain_attr { 1015 int relax_domain_level; 1016 }; 1017 1018 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1019 .relax_domain_level = -1, \ 1020 } 1021 1022 extern int sched_domain_level_max; 1023 1024 struct sched_group; 1025 1026 struct sched_domain { 1027 /* These fields must be setup */ 1028 struct sched_domain *parent; /* top domain must be null terminated */ 1029 struct sched_domain *child; /* bottom domain must be null terminated */ 1030 struct sched_group *groups; /* the balancing groups of the domain */ 1031 unsigned long min_interval; /* Minimum balance interval ms */ 1032 unsigned long max_interval; /* Maximum balance interval ms */ 1033 unsigned int busy_factor; /* less balancing by factor if busy */ 1034 unsigned int imbalance_pct; /* No balance until over watermark */ 1035 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1036 unsigned int busy_idx; 1037 unsigned int idle_idx; 1038 unsigned int newidle_idx; 1039 unsigned int wake_idx; 1040 unsigned int forkexec_idx; 1041 unsigned int smt_gain; 1042 1043 int nohz_idle; /* NOHZ IDLE status */ 1044 int flags; /* See SD_* */ 1045 int level; 1046 1047 /* Runtime fields. */ 1048 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1049 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1050 unsigned int nr_balance_failed; /* initialise to 0 */ 1051 1052 /* idle_balance() stats */ 1053 u64 max_newidle_lb_cost; 1054 unsigned long next_decay_max_lb_cost; 1055 1056 #ifdef CONFIG_SCHEDSTATS 1057 /* load_balance() stats */ 1058 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1059 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1060 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1061 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1062 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1063 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1064 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1065 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1066 1067 /* Active load balancing */ 1068 unsigned int alb_count; 1069 unsigned int alb_failed; 1070 unsigned int alb_pushed; 1071 1072 /* SD_BALANCE_EXEC stats */ 1073 unsigned int sbe_count; 1074 unsigned int sbe_balanced; 1075 unsigned int sbe_pushed; 1076 1077 /* SD_BALANCE_FORK stats */ 1078 unsigned int sbf_count; 1079 unsigned int sbf_balanced; 1080 unsigned int sbf_pushed; 1081 1082 /* try_to_wake_up() stats */ 1083 unsigned int ttwu_wake_remote; 1084 unsigned int ttwu_move_affine; 1085 unsigned int ttwu_move_balance; 1086 #endif 1087 #ifdef CONFIG_SCHED_DEBUG 1088 char *name; 1089 #endif 1090 union { 1091 void *private; /* used during construction */ 1092 struct rcu_head rcu; /* used during destruction */ 1093 }; 1094 1095 unsigned int span_weight; 1096 /* 1097 * Span of all CPUs in this domain. 1098 * 1099 * NOTE: this field is variable length. (Allocated dynamically 1100 * by attaching extra space to the end of the structure, 1101 * depending on how many CPUs the kernel has booted up with) 1102 */ 1103 unsigned long span[0]; 1104 }; 1105 1106 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1107 { 1108 return to_cpumask(sd->span); 1109 } 1110 1111 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1112 struct sched_domain_attr *dattr_new); 1113 1114 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1115 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1116 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1117 1118 bool cpus_share_cache(int this_cpu, int that_cpu); 1119 1120 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1121 typedef int (*sched_domain_flags_f)(void); 1122 1123 #define SDTL_OVERLAP 0x01 1124 1125 struct sd_data { 1126 struct sched_domain **__percpu sd; 1127 struct sched_group **__percpu sg; 1128 struct sched_group_capacity **__percpu sgc; 1129 }; 1130 1131 struct sched_domain_topology_level { 1132 sched_domain_mask_f mask; 1133 sched_domain_flags_f sd_flags; 1134 int flags; 1135 int numa_level; 1136 struct sd_data data; 1137 #ifdef CONFIG_SCHED_DEBUG 1138 char *name; 1139 #endif 1140 }; 1141 1142 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1143 extern void wake_up_if_idle(int cpu); 1144 1145 #ifdef CONFIG_SCHED_DEBUG 1146 # define SD_INIT_NAME(type) .name = #type 1147 #else 1148 # define SD_INIT_NAME(type) 1149 #endif 1150 1151 #else /* CONFIG_SMP */ 1152 1153 struct sched_domain_attr; 1154 1155 static inline void 1156 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1157 struct sched_domain_attr *dattr_new) 1158 { 1159 } 1160 1161 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1162 { 1163 return true; 1164 } 1165 1166 #endif /* !CONFIG_SMP */ 1167 1168 1169 struct io_context; /* See blkdev.h */ 1170 1171 1172 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1173 extern void prefetch_stack(struct task_struct *t); 1174 #else 1175 static inline void prefetch_stack(struct task_struct *t) { } 1176 #endif 1177 1178 struct audit_context; /* See audit.c */ 1179 struct mempolicy; 1180 struct pipe_inode_info; 1181 struct uts_namespace; 1182 1183 struct load_weight { 1184 unsigned long weight; 1185 u32 inv_weight; 1186 }; 1187 1188 /* 1189 * The load_avg/util_avg accumulates an infinite geometric series. 1190 * 1) load_avg factors frequency scaling into the amount of time that a 1191 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the 1192 * aggregated such weights of all runnable and blocked sched_entities. 1193 * 2) util_avg factors frequency and cpu scaling into the amount of time 1194 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1195 * For cfs_rq, it is the aggregated such times of all runnable and 1196 * blocked sched_entities. 1197 * The 64 bit load_sum can: 1198 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1199 * the highest weight (=88761) always runnable, we should not overflow 1200 * 2) for entity, support any load.weight always runnable 1201 */ 1202 struct sched_avg { 1203 u64 last_update_time, load_sum; 1204 u32 util_sum, period_contrib; 1205 unsigned long load_avg, util_avg; 1206 }; 1207 1208 #ifdef CONFIG_SCHEDSTATS 1209 struct sched_statistics { 1210 u64 wait_start; 1211 u64 wait_max; 1212 u64 wait_count; 1213 u64 wait_sum; 1214 u64 iowait_count; 1215 u64 iowait_sum; 1216 1217 u64 sleep_start; 1218 u64 sleep_max; 1219 s64 sum_sleep_runtime; 1220 1221 u64 block_start; 1222 u64 block_max; 1223 u64 exec_max; 1224 u64 slice_max; 1225 1226 u64 nr_migrations_cold; 1227 u64 nr_failed_migrations_affine; 1228 u64 nr_failed_migrations_running; 1229 u64 nr_failed_migrations_hot; 1230 u64 nr_forced_migrations; 1231 1232 u64 nr_wakeups; 1233 u64 nr_wakeups_sync; 1234 u64 nr_wakeups_migrate; 1235 u64 nr_wakeups_local; 1236 u64 nr_wakeups_remote; 1237 u64 nr_wakeups_affine; 1238 u64 nr_wakeups_affine_attempts; 1239 u64 nr_wakeups_passive; 1240 u64 nr_wakeups_idle; 1241 }; 1242 #endif 1243 1244 struct sched_entity { 1245 struct load_weight load; /* for load-balancing */ 1246 struct rb_node run_node; 1247 struct list_head group_node; 1248 unsigned int on_rq; 1249 1250 u64 exec_start; 1251 u64 sum_exec_runtime; 1252 u64 vruntime; 1253 u64 prev_sum_exec_runtime; 1254 1255 u64 nr_migrations; 1256 1257 #ifdef CONFIG_SCHEDSTATS 1258 struct sched_statistics statistics; 1259 #endif 1260 1261 #ifdef CONFIG_FAIR_GROUP_SCHED 1262 int depth; 1263 struct sched_entity *parent; 1264 /* rq on which this entity is (to be) queued: */ 1265 struct cfs_rq *cfs_rq; 1266 /* rq "owned" by this entity/group: */ 1267 struct cfs_rq *my_q; 1268 #endif 1269 1270 #ifdef CONFIG_SMP 1271 /* Per entity load average tracking */ 1272 struct sched_avg avg; 1273 #endif 1274 }; 1275 1276 struct sched_rt_entity { 1277 struct list_head run_list; 1278 unsigned long timeout; 1279 unsigned long watchdog_stamp; 1280 unsigned int time_slice; 1281 1282 struct sched_rt_entity *back; 1283 #ifdef CONFIG_RT_GROUP_SCHED 1284 struct sched_rt_entity *parent; 1285 /* rq on which this entity is (to be) queued: */ 1286 struct rt_rq *rt_rq; 1287 /* rq "owned" by this entity/group: */ 1288 struct rt_rq *my_q; 1289 #endif 1290 }; 1291 1292 struct sched_dl_entity { 1293 struct rb_node rb_node; 1294 1295 /* 1296 * Original scheduling parameters. Copied here from sched_attr 1297 * during sched_setattr(), they will remain the same until 1298 * the next sched_setattr(). 1299 */ 1300 u64 dl_runtime; /* maximum runtime for each instance */ 1301 u64 dl_deadline; /* relative deadline of each instance */ 1302 u64 dl_period; /* separation of two instances (period) */ 1303 u64 dl_bw; /* dl_runtime / dl_deadline */ 1304 1305 /* 1306 * Actual scheduling parameters. Initialized with the values above, 1307 * they are continously updated during task execution. Note that 1308 * the remaining runtime could be < 0 in case we are in overrun. 1309 */ 1310 s64 runtime; /* remaining runtime for this instance */ 1311 u64 deadline; /* absolute deadline for this instance */ 1312 unsigned int flags; /* specifying the scheduler behaviour */ 1313 1314 /* 1315 * Some bool flags: 1316 * 1317 * @dl_throttled tells if we exhausted the runtime. If so, the 1318 * task has to wait for a replenishment to be performed at the 1319 * next firing of dl_timer. 1320 * 1321 * @dl_new tells if a new instance arrived. If so we must 1322 * start executing it with full runtime and reset its absolute 1323 * deadline; 1324 * 1325 * @dl_boosted tells if we are boosted due to DI. If so we are 1326 * outside bandwidth enforcement mechanism (but only until we 1327 * exit the critical section); 1328 * 1329 * @dl_yielded tells if task gave up the cpu before consuming 1330 * all its available runtime during the last job. 1331 */ 1332 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1333 1334 /* 1335 * Bandwidth enforcement timer. Each -deadline task has its 1336 * own bandwidth to be enforced, thus we need one timer per task. 1337 */ 1338 struct hrtimer dl_timer; 1339 }; 1340 1341 union rcu_special { 1342 struct { 1343 u8 blocked; 1344 u8 need_qs; 1345 u8 exp_need_qs; 1346 u8 pad; /* Otherwise the compiler can store garbage here. */ 1347 } b; /* Bits. */ 1348 u32 s; /* Set of bits. */ 1349 }; 1350 struct rcu_node; 1351 1352 enum perf_event_task_context { 1353 perf_invalid_context = -1, 1354 perf_hw_context = 0, 1355 perf_sw_context, 1356 perf_nr_task_contexts, 1357 }; 1358 1359 /* Track pages that require TLB flushes */ 1360 struct tlbflush_unmap_batch { 1361 /* 1362 * Each bit set is a CPU that potentially has a TLB entry for one of 1363 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1364 */ 1365 struct cpumask cpumask; 1366 1367 /* True if any bit in cpumask is set */ 1368 bool flush_required; 1369 1370 /* 1371 * If true then the PTE was dirty when unmapped. The entry must be 1372 * flushed before IO is initiated or a stale TLB entry potentially 1373 * allows an update without redirtying the page. 1374 */ 1375 bool writable; 1376 }; 1377 1378 struct task_struct { 1379 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1380 void *stack; 1381 atomic_t usage; 1382 unsigned int flags; /* per process flags, defined below */ 1383 unsigned int ptrace; 1384 1385 #ifdef CONFIG_SMP 1386 struct llist_node wake_entry; 1387 int on_cpu; 1388 unsigned int wakee_flips; 1389 unsigned long wakee_flip_decay_ts; 1390 struct task_struct *last_wakee; 1391 1392 int wake_cpu; 1393 #endif 1394 int on_rq; 1395 1396 int prio, static_prio, normal_prio; 1397 unsigned int rt_priority; 1398 const struct sched_class *sched_class; 1399 struct sched_entity se; 1400 struct sched_rt_entity rt; 1401 #ifdef CONFIG_CGROUP_SCHED 1402 struct task_group *sched_task_group; 1403 #endif 1404 struct sched_dl_entity dl; 1405 1406 #ifdef CONFIG_PREEMPT_NOTIFIERS 1407 /* list of struct preempt_notifier: */ 1408 struct hlist_head preempt_notifiers; 1409 #endif 1410 1411 #ifdef CONFIG_BLK_DEV_IO_TRACE 1412 unsigned int btrace_seq; 1413 #endif 1414 1415 unsigned int policy; 1416 int nr_cpus_allowed; 1417 cpumask_t cpus_allowed; 1418 1419 #ifdef CONFIG_PREEMPT_RCU 1420 int rcu_read_lock_nesting; 1421 union rcu_special rcu_read_unlock_special; 1422 struct list_head rcu_node_entry; 1423 struct rcu_node *rcu_blocked_node; 1424 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1425 #ifdef CONFIG_TASKS_RCU 1426 unsigned long rcu_tasks_nvcsw; 1427 bool rcu_tasks_holdout; 1428 struct list_head rcu_tasks_holdout_list; 1429 int rcu_tasks_idle_cpu; 1430 #endif /* #ifdef CONFIG_TASKS_RCU */ 1431 1432 #ifdef CONFIG_SCHED_INFO 1433 struct sched_info sched_info; 1434 #endif 1435 1436 struct list_head tasks; 1437 #ifdef CONFIG_SMP 1438 struct plist_node pushable_tasks; 1439 struct rb_node pushable_dl_tasks; 1440 #endif 1441 1442 struct mm_struct *mm, *active_mm; 1443 /* per-thread vma caching */ 1444 u32 vmacache_seqnum; 1445 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1446 #if defined(SPLIT_RSS_COUNTING) 1447 struct task_rss_stat rss_stat; 1448 #endif 1449 /* task state */ 1450 int exit_state; 1451 int exit_code, exit_signal; 1452 int pdeath_signal; /* The signal sent when the parent dies */ 1453 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1454 1455 /* Used for emulating ABI behavior of previous Linux versions */ 1456 unsigned int personality; 1457 1458 /* scheduler bits, serialized by scheduler locks */ 1459 unsigned sched_reset_on_fork:1; 1460 unsigned sched_contributes_to_load:1; 1461 unsigned sched_migrated:1; 1462 unsigned :0; /* force alignment to the next boundary */ 1463 1464 /* unserialized, strictly 'current' */ 1465 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1466 unsigned in_iowait:1; 1467 #ifdef CONFIG_MEMCG 1468 unsigned memcg_may_oom:1; 1469 #endif 1470 #ifdef CONFIG_MEMCG_KMEM 1471 unsigned memcg_kmem_skip_account:1; 1472 #endif 1473 #ifdef CONFIG_COMPAT_BRK 1474 unsigned brk_randomized:1; 1475 #endif 1476 1477 unsigned long atomic_flags; /* Flags needing atomic access. */ 1478 1479 struct restart_block restart_block; 1480 1481 pid_t pid; 1482 pid_t tgid; 1483 1484 #ifdef CONFIG_CC_STACKPROTECTOR 1485 /* Canary value for the -fstack-protector gcc feature */ 1486 unsigned long stack_canary; 1487 #endif 1488 /* 1489 * pointers to (original) parent process, youngest child, younger sibling, 1490 * older sibling, respectively. (p->father can be replaced with 1491 * p->real_parent->pid) 1492 */ 1493 struct task_struct __rcu *real_parent; /* real parent process */ 1494 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1495 /* 1496 * children/sibling forms the list of my natural children 1497 */ 1498 struct list_head children; /* list of my children */ 1499 struct list_head sibling; /* linkage in my parent's children list */ 1500 struct task_struct *group_leader; /* threadgroup leader */ 1501 1502 /* 1503 * ptraced is the list of tasks this task is using ptrace on. 1504 * This includes both natural children and PTRACE_ATTACH targets. 1505 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1506 */ 1507 struct list_head ptraced; 1508 struct list_head ptrace_entry; 1509 1510 /* PID/PID hash table linkage. */ 1511 struct pid_link pids[PIDTYPE_MAX]; 1512 struct list_head thread_group; 1513 struct list_head thread_node; 1514 1515 struct completion *vfork_done; /* for vfork() */ 1516 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1517 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1518 1519 cputime_t utime, stime, utimescaled, stimescaled; 1520 cputime_t gtime; 1521 struct prev_cputime prev_cputime; 1522 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1523 seqlock_t vtime_seqlock; 1524 unsigned long long vtime_snap; 1525 enum { 1526 VTIME_SLEEPING = 0, 1527 VTIME_USER, 1528 VTIME_SYS, 1529 } vtime_snap_whence; 1530 #endif 1531 unsigned long nvcsw, nivcsw; /* context switch counts */ 1532 u64 start_time; /* monotonic time in nsec */ 1533 u64 real_start_time; /* boot based time in nsec */ 1534 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1535 unsigned long min_flt, maj_flt; 1536 1537 struct task_cputime cputime_expires; 1538 struct list_head cpu_timers[3]; 1539 1540 /* process credentials */ 1541 const struct cred __rcu *real_cred; /* objective and real subjective task 1542 * credentials (COW) */ 1543 const struct cred __rcu *cred; /* effective (overridable) subjective task 1544 * credentials (COW) */ 1545 char comm[TASK_COMM_LEN]; /* executable name excluding path 1546 - access with [gs]et_task_comm (which lock 1547 it with task_lock()) 1548 - initialized normally by setup_new_exec */ 1549 /* file system info */ 1550 struct nameidata *nameidata; 1551 #ifdef CONFIG_SYSVIPC 1552 /* ipc stuff */ 1553 struct sysv_sem sysvsem; 1554 struct sysv_shm sysvshm; 1555 #endif 1556 #ifdef CONFIG_DETECT_HUNG_TASK 1557 /* hung task detection */ 1558 unsigned long last_switch_count; 1559 #endif 1560 /* filesystem information */ 1561 struct fs_struct *fs; 1562 /* open file information */ 1563 struct files_struct *files; 1564 /* namespaces */ 1565 struct nsproxy *nsproxy; 1566 /* signal handlers */ 1567 struct signal_struct *signal; 1568 struct sighand_struct *sighand; 1569 1570 sigset_t blocked, real_blocked; 1571 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1572 struct sigpending pending; 1573 1574 unsigned long sas_ss_sp; 1575 size_t sas_ss_size; 1576 1577 struct callback_head *task_works; 1578 1579 struct audit_context *audit_context; 1580 #ifdef CONFIG_AUDITSYSCALL 1581 kuid_t loginuid; 1582 unsigned int sessionid; 1583 #endif 1584 struct seccomp seccomp; 1585 1586 /* Thread group tracking */ 1587 u32 parent_exec_id; 1588 u32 self_exec_id; 1589 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1590 * mempolicy */ 1591 spinlock_t alloc_lock; 1592 1593 /* Protection of the PI data structures: */ 1594 raw_spinlock_t pi_lock; 1595 1596 struct wake_q_node wake_q; 1597 1598 #ifdef CONFIG_RT_MUTEXES 1599 /* PI waiters blocked on a rt_mutex held by this task */ 1600 struct rb_root pi_waiters; 1601 struct rb_node *pi_waiters_leftmost; 1602 /* Deadlock detection and priority inheritance handling */ 1603 struct rt_mutex_waiter *pi_blocked_on; 1604 #endif 1605 1606 #ifdef CONFIG_DEBUG_MUTEXES 1607 /* mutex deadlock detection */ 1608 struct mutex_waiter *blocked_on; 1609 #endif 1610 #ifdef CONFIG_TRACE_IRQFLAGS 1611 unsigned int irq_events; 1612 unsigned long hardirq_enable_ip; 1613 unsigned long hardirq_disable_ip; 1614 unsigned int hardirq_enable_event; 1615 unsigned int hardirq_disable_event; 1616 int hardirqs_enabled; 1617 int hardirq_context; 1618 unsigned long softirq_disable_ip; 1619 unsigned long softirq_enable_ip; 1620 unsigned int softirq_disable_event; 1621 unsigned int softirq_enable_event; 1622 int softirqs_enabled; 1623 int softirq_context; 1624 #endif 1625 #ifdef CONFIG_LOCKDEP 1626 # define MAX_LOCK_DEPTH 48UL 1627 u64 curr_chain_key; 1628 int lockdep_depth; 1629 unsigned int lockdep_recursion; 1630 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1631 gfp_t lockdep_reclaim_gfp; 1632 #endif 1633 1634 /* journalling filesystem info */ 1635 void *journal_info; 1636 1637 /* stacked block device info */ 1638 struct bio_list *bio_list; 1639 1640 #ifdef CONFIG_BLOCK 1641 /* stack plugging */ 1642 struct blk_plug *plug; 1643 #endif 1644 1645 /* VM state */ 1646 struct reclaim_state *reclaim_state; 1647 1648 struct backing_dev_info *backing_dev_info; 1649 1650 struct io_context *io_context; 1651 1652 unsigned long ptrace_message; 1653 siginfo_t *last_siginfo; /* For ptrace use. */ 1654 struct task_io_accounting ioac; 1655 #if defined(CONFIG_TASK_XACCT) 1656 u64 acct_rss_mem1; /* accumulated rss usage */ 1657 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1658 cputime_t acct_timexpd; /* stime + utime since last update */ 1659 #endif 1660 #ifdef CONFIG_CPUSETS 1661 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1662 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1663 int cpuset_mem_spread_rotor; 1664 int cpuset_slab_spread_rotor; 1665 #endif 1666 #ifdef CONFIG_CGROUPS 1667 /* Control Group info protected by css_set_lock */ 1668 struct css_set __rcu *cgroups; 1669 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1670 struct list_head cg_list; 1671 #endif 1672 #ifdef CONFIG_FUTEX 1673 struct robust_list_head __user *robust_list; 1674 #ifdef CONFIG_COMPAT 1675 struct compat_robust_list_head __user *compat_robust_list; 1676 #endif 1677 struct list_head pi_state_list; 1678 struct futex_pi_state *pi_state_cache; 1679 #endif 1680 #ifdef CONFIG_PERF_EVENTS 1681 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1682 struct mutex perf_event_mutex; 1683 struct list_head perf_event_list; 1684 #endif 1685 #ifdef CONFIG_DEBUG_PREEMPT 1686 unsigned long preempt_disable_ip; 1687 #endif 1688 #ifdef CONFIG_NUMA 1689 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1690 short il_next; 1691 short pref_node_fork; 1692 #endif 1693 #ifdef CONFIG_NUMA_BALANCING 1694 int numa_scan_seq; 1695 unsigned int numa_scan_period; 1696 unsigned int numa_scan_period_max; 1697 int numa_preferred_nid; 1698 unsigned long numa_migrate_retry; 1699 u64 node_stamp; /* migration stamp */ 1700 u64 last_task_numa_placement; 1701 u64 last_sum_exec_runtime; 1702 struct callback_head numa_work; 1703 1704 struct list_head numa_entry; 1705 struct numa_group *numa_group; 1706 1707 /* 1708 * numa_faults is an array split into four regions: 1709 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1710 * in this precise order. 1711 * 1712 * faults_memory: Exponential decaying average of faults on a per-node 1713 * basis. Scheduling placement decisions are made based on these 1714 * counts. The values remain static for the duration of a PTE scan. 1715 * faults_cpu: Track the nodes the process was running on when a NUMA 1716 * hinting fault was incurred. 1717 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1718 * during the current scan window. When the scan completes, the counts 1719 * in faults_memory and faults_cpu decay and these values are copied. 1720 */ 1721 unsigned long *numa_faults; 1722 unsigned long total_numa_faults; 1723 1724 /* 1725 * numa_faults_locality tracks if faults recorded during the last 1726 * scan window were remote/local or failed to migrate. The task scan 1727 * period is adapted based on the locality of the faults with different 1728 * weights depending on whether they were shared or private faults 1729 */ 1730 unsigned long numa_faults_locality[3]; 1731 1732 unsigned long numa_pages_migrated; 1733 #endif /* CONFIG_NUMA_BALANCING */ 1734 1735 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1736 struct tlbflush_unmap_batch tlb_ubc; 1737 #endif 1738 1739 struct rcu_head rcu; 1740 1741 /* 1742 * cache last used pipe for splice 1743 */ 1744 struct pipe_inode_info *splice_pipe; 1745 1746 struct page_frag task_frag; 1747 1748 #ifdef CONFIG_TASK_DELAY_ACCT 1749 struct task_delay_info *delays; 1750 #endif 1751 #ifdef CONFIG_FAULT_INJECTION 1752 int make_it_fail; 1753 #endif 1754 /* 1755 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1756 * balance_dirty_pages() for some dirty throttling pause 1757 */ 1758 int nr_dirtied; 1759 int nr_dirtied_pause; 1760 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1761 1762 #ifdef CONFIG_LATENCYTOP 1763 int latency_record_count; 1764 struct latency_record latency_record[LT_SAVECOUNT]; 1765 #endif 1766 /* 1767 * time slack values; these are used to round up poll() and 1768 * select() etc timeout values. These are in nanoseconds. 1769 */ 1770 unsigned long timer_slack_ns; 1771 unsigned long default_timer_slack_ns; 1772 1773 #ifdef CONFIG_KASAN 1774 unsigned int kasan_depth; 1775 #endif 1776 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1777 /* Index of current stored address in ret_stack */ 1778 int curr_ret_stack; 1779 /* Stack of return addresses for return function tracing */ 1780 struct ftrace_ret_stack *ret_stack; 1781 /* time stamp for last schedule */ 1782 unsigned long long ftrace_timestamp; 1783 /* 1784 * Number of functions that haven't been traced 1785 * because of depth overrun. 1786 */ 1787 atomic_t trace_overrun; 1788 /* Pause for the tracing */ 1789 atomic_t tracing_graph_pause; 1790 #endif 1791 #ifdef CONFIG_TRACING 1792 /* state flags for use by tracers */ 1793 unsigned long trace; 1794 /* bitmask and counter of trace recursion */ 1795 unsigned long trace_recursion; 1796 #endif /* CONFIG_TRACING */ 1797 #ifdef CONFIG_MEMCG 1798 struct mem_cgroup *memcg_in_oom; 1799 gfp_t memcg_oom_gfp_mask; 1800 int memcg_oom_order; 1801 1802 /* number of pages to reclaim on returning to userland */ 1803 unsigned int memcg_nr_pages_over_high; 1804 #endif 1805 #ifdef CONFIG_UPROBES 1806 struct uprobe_task *utask; 1807 #endif 1808 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1809 unsigned int sequential_io; 1810 unsigned int sequential_io_avg; 1811 #endif 1812 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1813 unsigned long task_state_change; 1814 #endif 1815 int pagefault_disabled; 1816 /* CPU-specific state of this task */ 1817 struct thread_struct thread; 1818 /* 1819 * WARNING: on x86, 'thread_struct' contains a variable-sized 1820 * structure. It *MUST* be at the end of 'task_struct'. 1821 * 1822 * Do not put anything below here! 1823 */ 1824 }; 1825 1826 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1827 extern int arch_task_struct_size __read_mostly; 1828 #else 1829 # define arch_task_struct_size (sizeof(struct task_struct)) 1830 #endif 1831 1832 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1833 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1834 1835 #define TNF_MIGRATED 0x01 1836 #define TNF_NO_GROUP 0x02 1837 #define TNF_SHARED 0x04 1838 #define TNF_FAULT_LOCAL 0x08 1839 #define TNF_MIGRATE_FAIL 0x10 1840 1841 #ifdef CONFIG_NUMA_BALANCING 1842 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1843 extern pid_t task_numa_group_id(struct task_struct *p); 1844 extern void set_numabalancing_state(bool enabled); 1845 extern void task_numa_free(struct task_struct *p); 1846 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1847 int src_nid, int dst_cpu); 1848 #else 1849 static inline void task_numa_fault(int last_node, int node, int pages, 1850 int flags) 1851 { 1852 } 1853 static inline pid_t task_numa_group_id(struct task_struct *p) 1854 { 1855 return 0; 1856 } 1857 static inline void set_numabalancing_state(bool enabled) 1858 { 1859 } 1860 static inline void task_numa_free(struct task_struct *p) 1861 { 1862 } 1863 static inline bool should_numa_migrate_memory(struct task_struct *p, 1864 struct page *page, int src_nid, int dst_cpu) 1865 { 1866 return true; 1867 } 1868 #endif 1869 1870 static inline struct pid *task_pid(struct task_struct *task) 1871 { 1872 return task->pids[PIDTYPE_PID].pid; 1873 } 1874 1875 static inline struct pid *task_tgid(struct task_struct *task) 1876 { 1877 return task->group_leader->pids[PIDTYPE_PID].pid; 1878 } 1879 1880 /* 1881 * Without tasklist or rcu lock it is not safe to dereference 1882 * the result of task_pgrp/task_session even if task == current, 1883 * we can race with another thread doing sys_setsid/sys_setpgid. 1884 */ 1885 static inline struct pid *task_pgrp(struct task_struct *task) 1886 { 1887 return task->group_leader->pids[PIDTYPE_PGID].pid; 1888 } 1889 1890 static inline struct pid *task_session(struct task_struct *task) 1891 { 1892 return task->group_leader->pids[PIDTYPE_SID].pid; 1893 } 1894 1895 struct pid_namespace; 1896 1897 /* 1898 * the helpers to get the task's different pids as they are seen 1899 * from various namespaces 1900 * 1901 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1902 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1903 * current. 1904 * task_xid_nr_ns() : id seen from the ns specified; 1905 * 1906 * set_task_vxid() : assigns a virtual id to a task; 1907 * 1908 * see also pid_nr() etc in include/linux/pid.h 1909 */ 1910 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1911 struct pid_namespace *ns); 1912 1913 static inline pid_t task_pid_nr(struct task_struct *tsk) 1914 { 1915 return tsk->pid; 1916 } 1917 1918 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1919 struct pid_namespace *ns) 1920 { 1921 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1922 } 1923 1924 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1925 { 1926 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1927 } 1928 1929 1930 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1931 { 1932 return tsk->tgid; 1933 } 1934 1935 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1936 1937 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1938 { 1939 return pid_vnr(task_tgid(tsk)); 1940 } 1941 1942 1943 static inline int pid_alive(const struct task_struct *p); 1944 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1945 { 1946 pid_t pid = 0; 1947 1948 rcu_read_lock(); 1949 if (pid_alive(tsk)) 1950 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1951 rcu_read_unlock(); 1952 1953 return pid; 1954 } 1955 1956 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1957 { 1958 return task_ppid_nr_ns(tsk, &init_pid_ns); 1959 } 1960 1961 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1962 struct pid_namespace *ns) 1963 { 1964 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1965 } 1966 1967 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1968 { 1969 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1970 } 1971 1972 1973 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1974 struct pid_namespace *ns) 1975 { 1976 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1977 } 1978 1979 static inline pid_t task_session_vnr(struct task_struct *tsk) 1980 { 1981 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1982 } 1983 1984 /* obsolete, do not use */ 1985 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1986 { 1987 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1988 } 1989 1990 /** 1991 * pid_alive - check that a task structure is not stale 1992 * @p: Task structure to be checked. 1993 * 1994 * Test if a process is not yet dead (at most zombie state) 1995 * If pid_alive fails, then pointers within the task structure 1996 * can be stale and must not be dereferenced. 1997 * 1998 * Return: 1 if the process is alive. 0 otherwise. 1999 */ 2000 static inline int pid_alive(const struct task_struct *p) 2001 { 2002 return p->pids[PIDTYPE_PID].pid != NULL; 2003 } 2004 2005 /** 2006 * is_global_init - check if a task structure is init. Since init 2007 * is free to have sub-threads we need to check tgid. 2008 * @tsk: Task structure to be checked. 2009 * 2010 * Check if a task structure is the first user space task the kernel created. 2011 * 2012 * Return: 1 if the task structure is init. 0 otherwise. 2013 */ 2014 static inline int is_global_init(struct task_struct *tsk) 2015 { 2016 return task_tgid_nr(tsk) == 1; 2017 } 2018 2019 extern struct pid *cad_pid; 2020 2021 extern void free_task(struct task_struct *tsk); 2022 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2023 2024 extern void __put_task_struct(struct task_struct *t); 2025 2026 static inline void put_task_struct(struct task_struct *t) 2027 { 2028 if (atomic_dec_and_test(&t->usage)) 2029 __put_task_struct(t); 2030 } 2031 2032 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2033 extern void task_cputime(struct task_struct *t, 2034 cputime_t *utime, cputime_t *stime); 2035 extern void task_cputime_scaled(struct task_struct *t, 2036 cputime_t *utimescaled, cputime_t *stimescaled); 2037 extern cputime_t task_gtime(struct task_struct *t); 2038 #else 2039 static inline void task_cputime(struct task_struct *t, 2040 cputime_t *utime, cputime_t *stime) 2041 { 2042 if (utime) 2043 *utime = t->utime; 2044 if (stime) 2045 *stime = t->stime; 2046 } 2047 2048 static inline void task_cputime_scaled(struct task_struct *t, 2049 cputime_t *utimescaled, 2050 cputime_t *stimescaled) 2051 { 2052 if (utimescaled) 2053 *utimescaled = t->utimescaled; 2054 if (stimescaled) 2055 *stimescaled = t->stimescaled; 2056 } 2057 2058 static inline cputime_t task_gtime(struct task_struct *t) 2059 { 2060 return t->gtime; 2061 } 2062 #endif 2063 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2064 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2065 2066 /* 2067 * Per process flags 2068 */ 2069 #define PF_EXITING 0x00000004 /* getting shut down */ 2070 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2071 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2072 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2073 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2074 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2075 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2076 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2077 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2078 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2079 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2080 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2081 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2082 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2083 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2084 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2085 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2086 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2087 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2088 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2089 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2090 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2091 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2092 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2093 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2094 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2095 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2096 2097 /* 2098 * Only the _current_ task can read/write to tsk->flags, but other 2099 * tasks can access tsk->flags in readonly mode for example 2100 * with tsk_used_math (like during threaded core dumping). 2101 * There is however an exception to this rule during ptrace 2102 * or during fork: the ptracer task is allowed to write to the 2103 * child->flags of its traced child (same goes for fork, the parent 2104 * can write to the child->flags), because we're guaranteed the 2105 * child is not running and in turn not changing child->flags 2106 * at the same time the parent does it. 2107 */ 2108 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2109 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2110 #define clear_used_math() clear_stopped_child_used_math(current) 2111 #define set_used_math() set_stopped_child_used_math(current) 2112 #define conditional_stopped_child_used_math(condition, child) \ 2113 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2114 #define conditional_used_math(condition) \ 2115 conditional_stopped_child_used_math(condition, current) 2116 #define copy_to_stopped_child_used_math(child) \ 2117 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2118 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2119 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2120 #define used_math() tsk_used_math(current) 2121 2122 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2123 * __GFP_FS is also cleared as it implies __GFP_IO. 2124 */ 2125 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2126 { 2127 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2128 flags &= ~(__GFP_IO | __GFP_FS); 2129 return flags; 2130 } 2131 2132 static inline unsigned int memalloc_noio_save(void) 2133 { 2134 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2135 current->flags |= PF_MEMALLOC_NOIO; 2136 return flags; 2137 } 2138 2139 static inline void memalloc_noio_restore(unsigned int flags) 2140 { 2141 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2142 } 2143 2144 /* Per-process atomic flags. */ 2145 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2146 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2147 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2148 2149 2150 #define TASK_PFA_TEST(name, func) \ 2151 static inline bool task_##func(struct task_struct *p) \ 2152 { return test_bit(PFA_##name, &p->atomic_flags); } 2153 #define TASK_PFA_SET(name, func) \ 2154 static inline void task_set_##func(struct task_struct *p) \ 2155 { set_bit(PFA_##name, &p->atomic_flags); } 2156 #define TASK_PFA_CLEAR(name, func) \ 2157 static inline void task_clear_##func(struct task_struct *p) \ 2158 { clear_bit(PFA_##name, &p->atomic_flags); } 2159 2160 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2161 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2162 2163 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2164 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2165 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2166 2167 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2168 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2169 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2170 2171 /* 2172 * task->jobctl flags 2173 */ 2174 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2175 2176 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2177 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2178 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2179 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2180 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2181 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2182 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2183 2184 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2185 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2186 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2187 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2188 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2189 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2190 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2191 2192 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2193 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2194 2195 extern bool task_set_jobctl_pending(struct task_struct *task, 2196 unsigned long mask); 2197 extern void task_clear_jobctl_trapping(struct task_struct *task); 2198 extern void task_clear_jobctl_pending(struct task_struct *task, 2199 unsigned long mask); 2200 2201 static inline void rcu_copy_process(struct task_struct *p) 2202 { 2203 #ifdef CONFIG_PREEMPT_RCU 2204 p->rcu_read_lock_nesting = 0; 2205 p->rcu_read_unlock_special.s = 0; 2206 p->rcu_blocked_node = NULL; 2207 INIT_LIST_HEAD(&p->rcu_node_entry); 2208 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2209 #ifdef CONFIG_TASKS_RCU 2210 p->rcu_tasks_holdout = false; 2211 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2212 p->rcu_tasks_idle_cpu = -1; 2213 #endif /* #ifdef CONFIG_TASKS_RCU */ 2214 } 2215 2216 static inline void tsk_restore_flags(struct task_struct *task, 2217 unsigned long orig_flags, unsigned long flags) 2218 { 2219 task->flags &= ~flags; 2220 task->flags |= orig_flags & flags; 2221 } 2222 2223 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2224 const struct cpumask *trial); 2225 extern int task_can_attach(struct task_struct *p, 2226 const struct cpumask *cs_cpus_allowed); 2227 #ifdef CONFIG_SMP 2228 extern void do_set_cpus_allowed(struct task_struct *p, 2229 const struct cpumask *new_mask); 2230 2231 extern int set_cpus_allowed_ptr(struct task_struct *p, 2232 const struct cpumask *new_mask); 2233 #else 2234 static inline void do_set_cpus_allowed(struct task_struct *p, 2235 const struct cpumask *new_mask) 2236 { 2237 } 2238 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2239 const struct cpumask *new_mask) 2240 { 2241 if (!cpumask_test_cpu(0, new_mask)) 2242 return -EINVAL; 2243 return 0; 2244 } 2245 #endif 2246 2247 #ifdef CONFIG_NO_HZ_COMMON 2248 void calc_load_enter_idle(void); 2249 void calc_load_exit_idle(void); 2250 #else 2251 static inline void calc_load_enter_idle(void) { } 2252 static inline void calc_load_exit_idle(void) { } 2253 #endif /* CONFIG_NO_HZ_COMMON */ 2254 2255 /* 2256 * Do not use outside of architecture code which knows its limitations. 2257 * 2258 * sched_clock() has no promise of monotonicity or bounded drift between 2259 * CPUs, use (which you should not) requires disabling IRQs. 2260 * 2261 * Please use one of the three interfaces below. 2262 */ 2263 extern unsigned long long notrace sched_clock(void); 2264 /* 2265 * See the comment in kernel/sched/clock.c 2266 */ 2267 extern u64 cpu_clock(int cpu); 2268 extern u64 local_clock(void); 2269 extern u64 running_clock(void); 2270 extern u64 sched_clock_cpu(int cpu); 2271 2272 2273 extern void sched_clock_init(void); 2274 2275 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2276 static inline void sched_clock_tick(void) 2277 { 2278 } 2279 2280 static inline void sched_clock_idle_sleep_event(void) 2281 { 2282 } 2283 2284 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2285 { 2286 } 2287 #else 2288 /* 2289 * Architectures can set this to 1 if they have specified 2290 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2291 * but then during bootup it turns out that sched_clock() 2292 * is reliable after all: 2293 */ 2294 extern int sched_clock_stable(void); 2295 extern void set_sched_clock_stable(void); 2296 extern void clear_sched_clock_stable(void); 2297 2298 extern void sched_clock_tick(void); 2299 extern void sched_clock_idle_sleep_event(void); 2300 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2301 #endif 2302 2303 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2304 /* 2305 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2306 * The reason for this explicit opt-in is not to have perf penalty with 2307 * slow sched_clocks. 2308 */ 2309 extern void enable_sched_clock_irqtime(void); 2310 extern void disable_sched_clock_irqtime(void); 2311 #else 2312 static inline void enable_sched_clock_irqtime(void) {} 2313 static inline void disable_sched_clock_irqtime(void) {} 2314 #endif 2315 2316 extern unsigned long long 2317 task_sched_runtime(struct task_struct *task); 2318 2319 /* sched_exec is called by processes performing an exec */ 2320 #ifdef CONFIG_SMP 2321 extern void sched_exec(void); 2322 #else 2323 #define sched_exec() {} 2324 #endif 2325 2326 extern void sched_clock_idle_sleep_event(void); 2327 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2328 2329 #ifdef CONFIG_HOTPLUG_CPU 2330 extern void idle_task_exit(void); 2331 #else 2332 static inline void idle_task_exit(void) {} 2333 #endif 2334 2335 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2336 extern void wake_up_nohz_cpu(int cpu); 2337 #else 2338 static inline void wake_up_nohz_cpu(int cpu) { } 2339 #endif 2340 2341 #ifdef CONFIG_NO_HZ_FULL 2342 extern bool sched_can_stop_tick(void); 2343 extern u64 scheduler_tick_max_deferment(void); 2344 #else 2345 static inline bool sched_can_stop_tick(void) { return false; } 2346 #endif 2347 2348 #ifdef CONFIG_SCHED_AUTOGROUP 2349 extern void sched_autogroup_create_attach(struct task_struct *p); 2350 extern void sched_autogroup_detach(struct task_struct *p); 2351 extern void sched_autogroup_fork(struct signal_struct *sig); 2352 extern void sched_autogroup_exit(struct signal_struct *sig); 2353 #ifdef CONFIG_PROC_FS 2354 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2355 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2356 #endif 2357 #else 2358 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2359 static inline void sched_autogroup_detach(struct task_struct *p) { } 2360 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2361 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2362 #endif 2363 2364 extern int yield_to(struct task_struct *p, bool preempt); 2365 extern void set_user_nice(struct task_struct *p, long nice); 2366 extern int task_prio(const struct task_struct *p); 2367 /** 2368 * task_nice - return the nice value of a given task. 2369 * @p: the task in question. 2370 * 2371 * Return: The nice value [ -20 ... 0 ... 19 ]. 2372 */ 2373 static inline int task_nice(const struct task_struct *p) 2374 { 2375 return PRIO_TO_NICE((p)->static_prio); 2376 } 2377 extern int can_nice(const struct task_struct *p, const int nice); 2378 extern int task_curr(const struct task_struct *p); 2379 extern int idle_cpu(int cpu); 2380 extern int sched_setscheduler(struct task_struct *, int, 2381 const struct sched_param *); 2382 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2383 const struct sched_param *); 2384 extern int sched_setattr(struct task_struct *, 2385 const struct sched_attr *); 2386 extern struct task_struct *idle_task(int cpu); 2387 /** 2388 * is_idle_task - is the specified task an idle task? 2389 * @p: the task in question. 2390 * 2391 * Return: 1 if @p is an idle task. 0 otherwise. 2392 */ 2393 static inline bool is_idle_task(const struct task_struct *p) 2394 { 2395 return p->pid == 0; 2396 } 2397 extern struct task_struct *curr_task(int cpu); 2398 extern void set_curr_task(int cpu, struct task_struct *p); 2399 2400 void yield(void); 2401 2402 union thread_union { 2403 struct thread_info thread_info; 2404 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2405 }; 2406 2407 #ifndef __HAVE_ARCH_KSTACK_END 2408 static inline int kstack_end(void *addr) 2409 { 2410 /* Reliable end of stack detection: 2411 * Some APM bios versions misalign the stack 2412 */ 2413 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2414 } 2415 #endif 2416 2417 extern union thread_union init_thread_union; 2418 extern struct task_struct init_task; 2419 2420 extern struct mm_struct init_mm; 2421 2422 extern struct pid_namespace init_pid_ns; 2423 2424 /* 2425 * find a task by one of its numerical ids 2426 * 2427 * find_task_by_pid_ns(): 2428 * finds a task by its pid in the specified namespace 2429 * find_task_by_vpid(): 2430 * finds a task by its virtual pid 2431 * 2432 * see also find_vpid() etc in include/linux/pid.h 2433 */ 2434 2435 extern struct task_struct *find_task_by_vpid(pid_t nr); 2436 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2437 struct pid_namespace *ns); 2438 2439 /* per-UID process charging. */ 2440 extern struct user_struct * alloc_uid(kuid_t); 2441 static inline struct user_struct *get_uid(struct user_struct *u) 2442 { 2443 atomic_inc(&u->__count); 2444 return u; 2445 } 2446 extern void free_uid(struct user_struct *); 2447 2448 #include <asm/current.h> 2449 2450 extern void xtime_update(unsigned long ticks); 2451 2452 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2453 extern int wake_up_process(struct task_struct *tsk); 2454 extern void wake_up_new_task(struct task_struct *tsk); 2455 #ifdef CONFIG_SMP 2456 extern void kick_process(struct task_struct *tsk); 2457 #else 2458 static inline void kick_process(struct task_struct *tsk) { } 2459 #endif 2460 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2461 extern void sched_dead(struct task_struct *p); 2462 2463 extern void proc_caches_init(void); 2464 extern void flush_signals(struct task_struct *); 2465 extern void ignore_signals(struct task_struct *); 2466 extern void flush_signal_handlers(struct task_struct *, int force_default); 2467 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2468 2469 static inline int kernel_dequeue_signal(siginfo_t *info) 2470 { 2471 struct task_struct *tsk = current; 2472 siginfo_t __info; 2473 int ret; 2474 2475 spin_lock_irq(&tsk->sighand->siglock); 2476 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2477 spin_unlock_irq(&tsk->sighand->siglock); 2478 2479 return ret; 2480 } 2481 2482 static inline void kernel_signal_stop(void) 2483 { 2484 spin_lock_irq(¤t->sighand->siglock); 2485 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2486 __set_current_state(TASK_STOPPED); 2487 spin_unlock_irq(¤t->sighand->siglock); 2488 2489 schedule(); 2490 } 2491 2492 extern void release_task(struct task_struct * p); 2493 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2494 extern int force_sigsegv(int, struct task_struct *); 2495 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2496 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2497 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2498 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2499 const struct cred *, u32); 2500 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2501 extern int kill_pid(struct pid *pid, int sig, int priv); 2502 extern int kill_proc_info(int, struct siginfo *, pid_t); 2503 extern __must_check bool do_notify_parent(struct task_struct *, int); 2504 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2505 extern void force_sig(int, struct task_struct *); 2506 extern int send_sig(int, struct task_struct *, int); 2507 extern int zap_other_threads(struct task_struct *p); 2508 extern struct sigqueue *sigqueue_alloc(void); 2509 extern void sigqueue_free(struct sigqueue *); 2510 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2511 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2512 2513 static inline void restore_saved_sigmask(void) 2514 { 2515 if (test_and_clear_restore_sigmask()) 2516 __set_current_blocked(¤t->saved_sigmask); 2517 } 2518 2519 static inline sigset_t *sigmask_to_save(void) 2520 { 2521 sigset_t *res = ¤t->blocked; 2522 if (unlikely(test_restore_sigmask())) 2523 res = ¤t->saved_sigmask; 2524 return res; 2525 } 2526 2527 static inline int kill_cad_pid(int sig, int priv) 2528 { 2529 return kill_pid(cad_pid, sig, priv); 2530 } 2531 2532 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2533 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2534 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2535 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2536 2537 /* 2538 * True if we are on the alternate signal stack. 2539 */ 2540 static inline int on_sig_stack(unsigned long sp) 2541 { 2542 #ifdef CONFIG_STACK_GROWSUP 2543 return sp >= current->sas_ss_sp && 2544 sp - current->sas_ss_sp < current->sas_ss_size; 2545 #else 2546 return sp > current->sas_ss_sp && 2547 sp - current->sas_ss_sp <= current->sas_ss_size; 2548 #endif 2549 } 2550 2551 static inline int sas_ss_flags(unsigned long sp) 2552 { 2553 if (!current->sas_ss_size) 2554 return SS_DISABLE; 2555 2556 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2557 } 2558 2559 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2560 { 2561 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2562 #ifdef CONFIG_STACK_GROWSUP 2563 return current->sas_ss_sp; 2564 #else 2565 return current->sas_ss_sp + current->sas_ss_size; 2566 #endif 2567 return sp; 2568 } 2569 2570 /* 2571 * Routines for handling mm_structs 2572 */ 2573 extern struct mm_struct * mm_alloc(void); 2574 2575 /* mmdrop drops the mm and the page tables */ 2576 extern void __mmdrop(struct mm_struct *); 2577 static inline void mmdrop(struct mm_struct * mm) 2578 { 2579 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2580 __mmdrop(mm); 2581 } 2582 2583 /* mmput gets rid of the mappings and all user-space */ 2584 extern void mmput(struct mm_struct *); 2585 /* Grab a reference to a task's mm, if it is not already going away */ 2586 extern struct mm_struct *get_task_mm(struct task_struct *task); 2587 /* 2588 * Grab a reference to a task's mm, if it is not already going away 2589 * and ptrace_may_access with the mode parameter passed to it 2590 * succeeds. 2591 */ 2592 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2593 /* Remove the current tasks stale references to the old mm_struct */ 2594 extern void mm_release(struct task_struct *, struct mm_struct *); 2595 2596 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2597 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2598 struct task_struct *, unsigned long); 2599 #else 2600 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2601 struct task_struct *); 2602 2603 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2604 * via pt_regs, so ignore the tls argument passed via C. */ 2605 static inline int copy_thread_tls( 2606 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2607 struct task_struct *p, unsigned long tls) 2608 { 2609 return copy_thread(clone_flags, sp, arg, p); 2610 } 2611 #endif 2612 extern void flush_thread(void); 2613 extern void exit_thread(void); 2614 2615 extern void exit_files(struct task_struct *); 2616 extern void __cleanup_sighand(struct sighand_struct *); 2617 2618 extern void exit_itimers(struct signal_struct *); 2619 extern void flush_itimer_signals(void); 2620 2621 extern void do_group_exit(int); 2622 2623 extern int do_execve(struct filename *, 2624 const char __user * const __user *, 2625 const char __user * const __user *); 2626 extern int do_execveat(int, struct filename *, 2627 const char __user * const __user *, 2628 const char __user * const __user *, 2629 int); 2630 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2631 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2632 struct task_struct *fork_idle(int); 2633 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2634 2635 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2636 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2637 { 2638 __set_task_comm(tsk, from, false); 2639 } 2640 extern char *get_task_comm(char *to, struct task_struct *tsk); 2641 2642 #ifdef CONFIG_SMP 2643 void scheduler_ipi(void); 2644 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2645 #else 2646 static inline void scheduler_ipi(void) { } 2647 static inline unsigned long wait_task_inactive(struct task_struct *p, 2648 long match_state) 2649 { 2650 return 1; 2651 } 2652 #endif 2653 2654 #define tasklist_empty() \ 2655 list_empty(&init_task.tasks) 2656 2657 #define next_task(p) \ 2658 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2659 2660 #define for_each_process(p) \ 2661 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2662 2663 extern bool current_is_single_threaded(void); 2664 2665 /* 2666 * Careful: do_each_thread/while_each_thread is a double loop so 2667 * 'break' will not work as expected - use goto instead. 2668 */ 2669 #define do_each_thread(g, t) \ 2670 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2671 2672 #define while_each_thread(g, t) \ 2673 while ((t = next_thread(t)) != g) 2674 2675 #define __for_each_thread(signal, t) \ 2676 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2677 2678 #define for_each_thread(p, t) \ 2679 __for_each_thread((p)->signal, t) 2680 2681 /* Careful: this is a double loop, 'break' won't work as expected. */ 2682 #define for_each_process_thread(p, t) \ 2683 for_each_process(p) for_each_thread(p, t) 2684 2685 static inline int get_nr_threads(struct task_struct *tsk) 2686 { 2687 return tsk->signal->nr_threads; 2688 } 2689 2690 static inline bool thread_group_leader(struct task_struct *p) 2691 { 2692 return p->exit_signal >= 0; 2693 } 2694 2695 /* Do to the insanities of de_thread it is possible for a process 2696 * to have the pid of the thread group leader without actually being 2697 * the thread group leader. For iteration through the pids in proc 2698 * all we care about is that we have a task with the appropriate 2699 * pid, we don't actually care if we have the right task. 2700 */ 2701 static inline bool has_group_leader_pid(struct task_struct *p) 2702 { 2703 return task_pid(p) == p->signal->leader_pid; 2704 } 2705 2706 static inline 2707 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2708 { 2709 return p1->signal == p2->signal; 2710 } 2711 2712 static inline struct task_struct *next_thread(const struct task_struct *p) 2713 { 2714 return list_entry_rcu(p->thread_group.next, 2715 struct task_struct, thread_group); 2716 } 2717 2718 static inline int thread_group_empty(struct task_struct *p) 2719 { 2720 return list_empty(&p->thread_group); 2721 } 2722 2723 #define delay_group_leader(p) \ 2724 (thread_group_leader(p) && !thread_group_empty(p)) 2725 2726 /* 2727 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2728 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2729 * pins the final release of task.io_context. Also protects ->cpuset and 2730 * ->cgroup.subsys[]. And ->vfork_done. 2731 * 2732 * Nests both inside and outside of read_lock(&tasklist_lock). 2733 * It must not be nested with write_lock_irq(&tasklist_lock), 2734 * neither inside nor outside. 2735 */ 2736 static inline void task_lock(struct task_struct *p) 2737 { 2738 spin_lock(&p->alloc_lock); 2739 } 2740 2741 static inline void task_unlock(struct task_struct *p) 2742 { 2743 spin_unlock(&p->alloc_lock); 2744 } 2745 2746 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2747 unsigned long *flags); 2748 2749 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2750 unsigned long *flags) 2751 { 2752 struct sighand_struct *ret; 2753 2754 ret = __lock_task_sighand(tsk, flags); 2755 (void)__cond_lock(&tsk->sighand->siglock, ret); 2756 return ret; 2757 } 2758 2759 static inline void unlock_task_sighand(struct task_struct *tsk, 2760 unsigned long *flags) 2761 { 2762 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2763 } 2764 2765 /** 2766 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2767 * @tsk: task causing the changes 2768 * 2769 * All operations which modify a threadgroup - a new thread joining the 2770 * group, death of a member thread (the assertion of PF_EXITING) and 2771 * exec(2) dethreading the process and replacing the leader - are wrapped 2772 * by threadgroup_change_{begin|end}(). This is to provide a place which 2773 * subsystems needing threadgroup stability can hook into for 2774 * synchronization. 2775 */ 2776 static inline void threadgroup_change_begin(struct task_struct *tsk) 2777 { 2778 might_sleep(); 2779 cgroup_threadgroup_change_begin(tsk); 2780 } 2781 2782 /** 2783 * threadgroup_change_end - mark the end of changes to a threadgroup 2784 * @tsk: task causing the changes 2785 * 2786 * See threadgroup_change_begin(). 2787 */ 2788 static inline void threadgroup_change_end(struct task_struct *tsk) 2789 { 2790 cgroup_threadgroup_change_end(tsk); 2791 } 2792 2793 #ifndef __HAVE_THREAD_FUNCTIONS 2794 2795 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2796 #define task_stack_page(task) ((task)->stack) 2797 2798 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2799 { 2800 *task_thread_info(p) = *task_thread_info(org); 2801 task_thread_info(p)->task = p; 2802 } 2803 2804 /* 2805 * Return the address of the last usable long on the stack. 2806 * 2807 * When the stack grows down, this is just above the thread 2808 * info struct. Going any lower will corrupt the threadinfo. 2809 * 2810 * When the stack grows up, this is the highest address. 2811 * Beyond that position, we corrupt data on the next page. 2812 */ 2813 static inline unsigned long *end_of_stack(struct task_struct *p) 2814 { 2815 #ifdef CONFIG_STACK_GROWSUP 2816 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2817 #else 2818 return (unsigned long *)(task_thread_info(p) + 1); 2819 #endif 2820 } 2821 2822 #endif 2823 #define task_stack_end_corrupted(task) \ 2824 (*(end_of_stack(task)) != STACK_END_MAGIC) 2825 2826 static inline int object_is_on_stack(void *obj) 2827 { 2828 void *stack = task_stack_page(current); 2829 2830 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2831 } 2832 2833 extern void thread_info_cache_init(void); 2834 2835 #ifdef CONFIG_DEBUG_STACK_USAGE 2836 static inline unsigned long stack_not_used(struct task_struct *p) 2837 { 2838 unsigned long *n = end_of_stack(p); 2839 2840 do { /* Skip over canary */ 2841 n++; 2842 } while (!*n); 2843 2844 return (unsigned long)n - (unsigned long)end_of_stack(p); 2845 } 2846 #endif 2847 extern void set_task_stack_end_magic(struct task_struct *tsk); 2848 2849 /* set thread flags in other task's structures 2850 * - see asm/thread_info.h for TIF_xxxx flags available 2851 */ 2852 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2853 { 2854 set_ti_thread_flag(task_thread_info(tsk), flag); 2855 } 2856 2857 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2858 { 2859 clear_ti_thread_flag(task_thread_info(tsk), flag); 2860 } 2861 2862 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2863 { 2864 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2865 } 2866 2867 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2868 { 2869 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2870 } 2871 2872 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2873 { 2874 return test_ti_thread_flag(task_thread_info(tsk), flag); 2875 } 2876 2877 static inline void set_tsk_need_resched(struct task_struct *tsk) 2878 { 2879 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2880 } 2881 2882 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2883 { 2884 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2885 } 2886 2887 static inline int test_tsk_need_resched(struct task_struct *tsk) 2888 { 2889 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2890 } 2891 2892 static inline int restart_syscall(void) 2893 { 2894 set_tsk_thread_flag(current, TIF_SIGPENDING); 2895 return -ERESTARTNOINTR; 2896 } 2897 2898 static inline int signal_pending(struct task_struct *p) 2899 { 2900 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2901 } 2902 2903 static inline int __fatal_signal_pending(struct task_struct *p) 2904 { 2905 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2906 } 2907 2908 static inline int fatal_signal_pending(struct task_struct *p) 2909 { 2910 return signal_pending(p) && __fatal_signal_pending(p); 2911 } 2912 2913 static inline int signal_pending_state(long state, struct task_struct *p) 2914 { 2915 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2916 return 0; 2917 if (!signal_pending(p)) 2918 return 0; 2919 2920 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2921 } 2922 2923 /* 2924 * cond_resched() and cond_resched_lock(): latency reduction via 2925 * explicit rescheduling in places that are safe. The return 2926 * value indicates whether a reschedule was done in fact. 2927 * cond_resched_lock() will drop the spinlock before scheduling, 2928 * cond_resched_softirq() will enable bhs before scheduling. 2929 */ 2930 extern int _cond_resched(void); 2931 2932 #define cond_resched() ({ \ 2933 ___might_sleep(__FILE__, __LINE__, 0); \ 2934 _cond_resched(); \ 2935 }) 2936 2937 extern int __cond_resched_lock(spinlock_t *lock); 2938 2939 #define cond_resched_lock(lock) ({ \ 2940 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2941 __cond_resched_lock(lock); \ 2942 }) 2943 2944 extern int __cond_resched_softirq(void); 2945 2946 #define cond_resched_softirq() ({ \ 2947 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2948 __cond_resched_softirq(); \ 2949 }) 2950 2951 static inline void cond_resched_rcu(void) 2952 { 2953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2954 rcu_read_unlock(); 2955 cond_resched(); 2956 rcu_read_lock(); 2957 #endif 2958 } 2959 2960 /* 2961 * Does a critical section need to be broken due to another 2962 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2963 * but a general need for low latency) 2964 */ 2965 static inline int spin_needbreak(spinlock_t *lock) 2966 { 2967 #ifdef CONFIG_PREEMPT 2968 return spin_is_contended(lock); 2969 #else 2970 return 0; 2971 #endif 2972 } 2973 2974 /* 2975 * Idle thread specific functions to determine the need_resched 2976 * polling state. 2977 */ 2978 #ifdef TIF_POLLING_NRFLAG 2979 static inline int tsk_is_polling(struct task_struct *p) 2980 { 2981 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2982 } 2983 2984 static inline void __current_set_polling(void) 2985 { 2986 set_thread_flag(TIF_POLLING_NRFLAG); 2987 } 2988 2989 static inline bool __must_check current_set_polling_and_test(void) 2990 { 2991 __current_set_polling(); 2992 2993 /* 2994 * Polling state must be visible before we test NEED_RESCHED, 2995 * paired by resched_curr() 2996 */ 2997 smp_mb__after_atomic(); 2998 2999 return unlikely(tif_need_resched()); 3000 } 3001 3002 static inline void __current_clr_polling(void) 3003 { 3004 clear_thread_flag(TIF_POLLING_NRFLAG); 3005 } 3006 3007 static inline bool __must_check current_clr_polling_and_test(void) 3008 { 3009 __current_clr_polling(); 3010 3011 /* 3012 * Polling state must be visible before we test NEED_RESCHED, 3013 * paired by resched_curr() 3014 */ 3015 smp_mb__after_atomic(); 3016 3017 return unlikely(tif_need_resched()); 3018 } 3019 3020 #else 3021 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3022 static inline void __current_set_polling(void) { } 3023 static inline void __current_clr_polling(void) { } 3024 3025 static inline bool __must_check current_set_polling_and_test(void) 3026 { 3027 return unlikely(tif_need_resched()); 3028 } 3029 static inline bool __must_check current_clr_polling_and_test(void) 3030 { 3031 return unlikely(tif_need_resched()); 3032 } 3033 #endif 3034 3035 static inline void current_clr_polling(void) 3036 { 3037 __current_clr_polling(); 3038 3039 /* 3040 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3041 * Once the bit is cleared, we'll get IPIs with every new 3042 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3043 * fold. 3044 */ 3045 smp_mb(); /* paired with resched_curr() */ 3046 3047 preempt_fold_need_resched(); 3048 } 3049 3050 static __always_inline bool need_resched(void) 3051 { 3052 return unlikely(tif_need_resched()); 3053 } 3054 3055 /* 3056 * Thread group CPU time accounting. 3057 */ 3058 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3059 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3060 3061 /* 3062 * Reevaluate whether the task has signals pending delivery. 3063 * Wake the task if so. 3064 * This is required every time the blocked sigset_t changes. 3065 * callers must hold sighand->siglock. 3066 */ 3067 extern void recalc_sigpending_and_wake(struct task_struct *t); 3068 extern void recalc_sigpending(void); 3069 3070 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3071 3072 static inline void signal_wake_up(struct task_struct *t, bool resume) 3073 { 3074 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3075 } 3076 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3077 { 3078 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3079 } 3080 3081 /* 3082 * Wrappers for p->thread_info->cpu access. No-op on UP. 3083 */ 3084 #ifdef CONFIG_SMP 3085 3086 static inline unsigned int task_cpu(const struct task_struct *p) 3087 { 3088 return task_thread_info(p)->cpu; 3089 } 3090 3091 static inline int task_node(const struct task_struct *p) 3092 { 3093 return cpu_to_node(task_cpu(p)); 3094 } 3095 3096 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3097 3098 #else 3099 3100 static inline unsigned int task_cpu(const struct task_struct *p) 3101 { 3102 return 0; 3103 } 3104 3105 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3106 { 3107 } 3108 3109 #endif /* CONFIG_SMP */ 3110 3111 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3112 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3113 3114 #ifdef CONFIG_CGROUP_SCHED 3115 extern struct task_group root_task_group; 3116 #endif /* CONFIG_CGROUP_SCHED */ 3117 3118 extern int task_can_switch_user(struct user_struct *up, 3119 struct task_struct *tsk); 3120 3121 #ifdef CONFIG_TASK_XACCT 3122 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3123 { 3124 tsk->ioac.rchar += amt; 3125 } 3126 3127 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3128 { 3129 tsk->ioac.wchar += amt; 3130 } 3131 3132 static inline void inc_syscr(struct task_struct *tsk) 3133 { 3134 tsk->ioac.syscr++; 3135 } 3136 3137 static inline void inc_syscw(struct task_struct *tsk) 3138 { 3139 tsk->ioac.syscw++; 3140 } 3141 #else 3142 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3143 { 3144 } 3145 3146 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3147 { 3148 } 3149 3150 static inline void inc_syscr(struct task_struct *tsk) 3151 { 3152 } 3153 3154 static inline void inc_syscw(struct task_struct *tsk) 3155 { 3156 } 3157 #endif 3158 3159 #ifndef TASK_SIZE_OF 3160 #define TASK_SIZE_OF(tsk) TASK_SIZE 3161 #endif 3162 3163 #ifdef CONFIG_MEMCG 3164 extern void mm_update_next_owner(struct mm_struct *mm); 3165 #else 3166 static inline void mm_update_next_owner(struct mm_struct *mm) 3167 { 3168 } 3169 #endif /* CONFIG_MEMCG */ 3170 3171 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3172 unsigned int limit) 3173 { 3174 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3175 } 3176 3177 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3178 unsigned int limit) 3179 { 3180 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3181 } 3182 3183 static inline unsigned long rlimit(unsigned int limit) 3184 { 3185 return task_rlimit(current, limit); 3186 } 3187 3188 static inline unsigned long rlimit_max(unsigned int limit) 3189 { 3190 return task_rlimit_max(current, limit); 3191 } 3192 3193 #endif 3194