1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/seccomp.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rculist.h> 46 #include <linux/rtmutex.h> 47 48 #include <linux/time.h> 49 #include <linux/param.h> 50 #include <linux/resource.h> 51 #include <linux/timer.h> 52 #include <linux/hrtimer.h> 53 #include <linux/kcov.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void cpu_load_update_nohz_start(void); 181 extern void cpu_load_update_nohz_stop(void); 182 #else 183 static inline void cpu_load_update_nohz_start(void) { } 184 static inline void cpu_load_update_nohz_stop(void) { } 185 #endif 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_NEW 2048 223 #define TASK_STATE_MAX 4096 224 225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" 226 227 extern char ___assert_task_state[1 - 2*!!( 228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 229 230 /* Convenience macros for the sake of set_task_state */ 231 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 232 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 233 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 234 235 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 236 237 /* Convenience macros for the sake of wake_up */ 238 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 239 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 240 241 /* get_task_state() */ 242 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 245 246 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 247 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 248 #define task_is_stopped_or_traced(task) \ 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 250 #define task_contributes_to_load(task) \ 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 252 (task->flags & PF_FROZEN) == 0 && \ 253 (task->state & TASK_NOLOAD) == 0) 254 255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 256 257 #define __set_task_state(tsk, state_value) \ 258 do { \ 259 (tsk)->task_state_change = _THIS_IP_; \ 260 (tsk)->state = (state_value); \ 261 } while (0) 262 #define set_task_state(tsk, state_value) \ 263 do { \ 264 (tsk)->task_state_change = _THIS_IP_; \ 265 smp_store_mb((tsk)->state, (state_value)); \ 266 } while (0) 267 268 #define __set_current_state(state_value) \ 269 do { \ 270 current->task_state_change = _THIS_IP_; \ 271 current->state = (state_value); \ 272 } while (0) 273 #define set_current_state(state_value) \ 274 do { \ 275 current->task_state_change = _THIS_IP_; \ 276 smp_store_mb(current->state, (state_value)); \ 277 } while (0) 278 279 #else 280 281 /* 282 * @tsk had better be current, or you get to keep the pieces. 283 * 284 * The only reason is that computing current can be more expensive than 285 * using a pointer that's already available. 286 * 287 * Therefore, see set_current_state(). 288 */ 289 #define __set_task_state(tsk, state_value) \ 290 do { (tsk)->state = (state_value); } while (0) 291 #define set_task_state(tsk, state_value) \ 292 smp_store_mb((tsk)->state, (state_value)) 293 294 /* 295 * set_current_state() includes a barrier so that the write of current->state 296 * is correctly serialised wrt the caller's subsequent test of whether to 297 * actually sleep: 298 * 299 * for (;;) { 300 * set_current_state(TASK_UNINTERRUPTIBLE); 301 * if (!need_sleep) 302 * break; 303 * 304 * schedule(); 305 * } 306 * __set_current_state(TASK_RUNNING); 307 * 308 * If the caller does not need such serialisation (because, for instance, the 309 * condition test and condition change and wakeup are under the same lock) then 310 * use __set_current_state(). 311 * 312 * The above is typically ordered against the wakeup, which does: 313 * 314 * need_sleep = false; 315 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 316 * 317 * Where wake_up_state() (and all other wakeup primitives) imply enough 318 * barriers to order the store of the variable against wakeup. 319 * 320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 323 * 324 * This is obviously fine, since they both store the exact same value. 325 * 326 * Also see the comments of try_to_wake_up(). 327 */ 328 #define __set_current_state(state_value) \ 329 do { current->state = (state_value); } while (0) 330 #define set_current_state(state_value) \ 331 smp_store_mb(current->state, (state_value)) 332 333 #endif 334 335 /* Task command name length */ 336 #define TASK_COMM_LEN 16 337 338 #include <linux/spinlock.h> 339 340 /* 341 * This serializes "schedule()" and also protects 342 * the run-queue from deletions/modifications (but 343 * _adding_ to the beginning of the run-queue has 344 * a separate lock). 345 */ 346 extern rwlock_t tasklist_lock; 347 extern spinlock_t mmlist_lock; 348 349 struct task_struct; 350 351 #ifdef CONFIG_PROVE_RCU 352 extern int lockdep_tasklist_lock_is_held(void); 353 #endif /* #ifdef CONFIG_PROVE_RCU */ 354 355 extern void sched_init(void); 356 extern void sched_init_smp(void); 357 extern asmlinkage void schedule_tail(struct task_struct *prev); 358 extern void init_idle(struct task_struct *idle, int cpu); 359 extern void init_idle_bootup_task(struct task_struct *idle); 360 361 extern cpumask_var_t cpu_isolated_map; 362 363 extern int runqueue_is_locked(int cpu); 364 365 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 366 extern void nohz_balance_enter_idle(int cpu); 367 extern void set_cpu_sd_state_idle(void); 368 extern int get_nohz_timer_target(void); 369 #else 370 static inline void nohz_balance_enter_idle(int cpu) { } 371 static inline void set_cpu_sd_state_idle(void) { } 372 #endif 373 374 /* 375 * Only dump TASK_* tasks. (0 for all tasks) 376 */ 377 extern void show_state_filter(unsigned long state_filter); 378 379 static inline void show_state(void) 380 { 381 show_state_filter(0); 382 } 383 384 extern void show_regs(struct pt_regs *); 385 386 /* 387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 388 * task), SP is the stack pointer of the first frame that should be shown in the back 389 * trace (or NULL if the entire call-chain of the task should be shown). 390 */ 391 extern void show_stack(struct task_struct *task, unsigned long *sp); 392 393 extern void cpu_init (void); 394 extern void trap_init(void); 395 extern void update_process_times(int user); 396 extern void scheduler_tick(void); 397 extern int sched_cpu_starting(unsigned int cpu); 398 extern int sched_cpu_activate(unsigned int cpu); 399 extern int sched_cpu_deactivate(unsigned int cpu); 400 401 #ifdef CONFIG_HOTPLUG_CPU 402 extern int sched_cpu_dying(unsigned int cpu); 403 #else 404 # define sched_cpu_dying NULL 405 #endif 406 407 extern void sched_show_task(struct task_struct *p); 408 409 #ifdef CONFIG_LOCKUP_DETECTOR 410 extern void touch_softlockup_watchdog_sched(void); 411 extern void touch_softlockup_watchdog(void); 412 extern void touch_softlockup_watchdog_sync(void); 413 extern void touch_all_softlockup_watchdogs(void); 414 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 415 void __user *buffer, 416 size_t *lenp, loff_t *ppos); 417 extern unsigned int softlockup_panic; 418 extern unsigned int hardlockup_panic; 419 void lockup_detector_init(void); 420 #else 421 static inline void touch_softlockup_watchdog_sched(void) 422 { 423 } 424 static inline void touch_softlockup_watchdog(void) 425 { 426 } 427 static inline void touch_softlockup_watchdog_sync(void) 428 { 429 } 430 static inline void touch_all_softlockup_watchdogs(void) 431 { 432 } 433 static inline void lockup_detector_init(void) 434 { 435 } 436 #endif 437 438 #ifdef CONFIG_DETECT_HUNG_TASK 439 void reset_hung_task_detector(void); 440 #else 441 static inline void reset_hung_task_detector(void) 442 { 443 } 444 #endif 445 446 /* Attach to any functions which should be ignored in wchan output. */ 447 #define __sched __attribute__((__section__(".sched.text"))) 448 449 /* Linker adds these: start and end of __sched functions */ 450 extern char __sched_text_start[], __sched_text_end[]; 451 452 /* Is this address in the __sched functions? */ 453 extern int in_sched_functions(unsigned long addr); 454 455 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 456 extern signed long schedule_timeout(signed long timeout); 457 extern signed long schedule_timeout_interruptible(signed long timeout); 458 extern signed long schedule_timeout_killable(signed long timeout); 459 extern signed long schedule_timeout_uninterruptible(signed long timeout); 460 extern signed long schedule_timeout_idle(signed long timeout); 461 asmlinkage void schedule(void); 462 extern void schedule_preempt_disabled(void); 463 464 extern long io_schedule_timeout(long timeout); 465 466 static inline void io_schedule(void) 467 { 468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 469 } 470 471 void __noreturn do_task_dead(void); 472 473 struct nsproxy; 474 struct user_namespace; 475 476 #ifdef CONFIG_MMU 477 extern void arch_pick_mmap_layout(struct mm_struct *mm); 478 extern unsigned long 479 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 480 unsigned long, unsigned long); 481 extern unsigned long 482 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 483 unsigned long len, unsigned long pgoff, 484 unsigned long flags); 485 #else 486 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 487 #endif 488 489 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 490 #define SUID_DUMP_USER 1 /* Dump as user of process */ 491 #define SUID_DUMP_ROOT 2 /* Dump as root */ 492 493 /* mm flags */ 494 495 /* for SUID_DUMP_* above */ 496 #define MMF_DUMPABLE_BITS 2 497 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 498 499 extern void set_dumpable(struct mm_struct *mm, int value); 500 /* 501 * This returns the actual value of the suid_dumpable flag. For things 502 * that are using this for checking for privilege transitions, it must 503 * test against SUID_DUMP_USER rather than treating it as a boolean 504 * value. 505 */ 506 static inline int __get_dumpable(unsigned long mm_flags) 507 { 508 return mm_flags & MMF_DUMPABLE_MASK; 509 } 510 511 static inline int get_dumpable(struct mm_struct *mm) 512 { 513 return __get_dumpable(mm->flags); 514 } 515 516 /* coredump filter bits */ 517 #define MMF_DUMP_ANON_PRIVATE 2 518 #define MMF_DUMP_ANON_SHARED 3 519 #define MMF_DUMP_MAPPED_PRIVATE 4 520 #define MMF_DUMP_MAPPED_SHARED 5 521 #define MMF_DUMP_ELF_HEADERS 6 522 #define MMF_DUMP_HUGETLB_PRIVATE 7 523 #define MMF_DUMP_HUGETLB_SHARED 8 524 #define MMF_DUMP_DAX_PRIVATE 9 525 #define MMF_DUMP_DAX_SHARED 10 526 527 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 528 #define MMF_DUMP_FILTER_BITS 9 529 #define MMF_DUMP_FILTER_MASK \ 530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 531 #define MMF_DUMP_FILTER_DEFAULT \ 532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 534 535 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 536 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 537 #else 538 # define MMF_DUMP_MASK_DEFAULT_ELF 0 539 #endif 540 /* leave room for more dump flags */ 541 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 542 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 543 /* 544 * This one-shot flag is dropped due to necessity of changing exe once again 545 * on NFS restore 546 */ 547 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 548 549 #define MMF_HAS_UPROBES 19 /* has uprobes */ 550 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 551 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 552 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 553 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ 554 555 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 556 557 struct sighand_struct { 558 atomic_t count; 559 struct k_sigaction action[_NSIG]; 560 spinlock_t siglock; 561 wait_queue_head_t signalfd_wqh; 562 }; 563 564 struct pacct_struct { 565 int ac_flag; 566 long ac_exitcode; 567 unsigned long ac_mem; 568 cputime_t ac_utime, ac_stime; 569 unsigned long ac_minflt, ac_majflt; 570 }; 571 572 struct cpu_itimer { 573 cputime_t expires; 574 cputime_t incr; 575 u32 error; 576 u32 incr_error; 577 }; 578 579 /** 580 * struct prev_cputime - snaphsot of system and user cputime 581 * @utime: time spent in user mode 582 * @stime: time spent in system mode 583 * @lock: protects the above two fields 584 * 585 * Stores previous user/system time values such that we can guarantee 586 * monotonicity. 587 */ 588 struct prev_cputime { 589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 590 cputime_t utime; 591 cputime_t stime; 592 raw_spinlock_t lock; 593 #endif 594 }; 595 596 static inline void prev_cputime_init(struct prev_cputime *prev) 597 { 598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 599 prev->utime = prev->stime = 0; 600 raw_spin_lock_init(&prev->lock); 601 #endif 602 } 603 604 /** 605 * struct task_cputime - collected CPU time counts 606 * @utime: time spent in user mode, in &cputime_t units 607 * @stime: time spent in kernel mode, in &cputime_t units 608 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 609 * 610 * This structure groups together three kinds of CPU time that are tracked for 611 * threads and thread groups. Most things considering CPU time want to group 612 * these counts together and treat all three of them in parallel. 613 */ 614 struct task_cputime { 615 cputime_t utime; 616 cputime_t stime; 617 unsigned long long sum_exec_runtime; 618 }; 619 620 /* Alternate field names when used to cache expirations. */ 621 #define virt_exp utime 622 #define prof_exp stime 623 #define sched_exp sum_exec_runtime 624 625 #define INIT_CPUTIME \ 626 (struct task_cputime) { \ 627 .utime = 0, \ 628 .stime = 0, \ 629 .sum_exec_runtime = 0, \ 630 } 631 632 /* 633 * This is the atomic variant of task_cputime, which can be used for 634 * storing and updating task_cputime statistics without locking. 635 */ 636 struct task_cputime_atomic { 637 atomic64_t utime; 638 atomic64_t stime; 639 atomic64_t sum_exec_runtime; 640 }; 641 642 #define INIT_CPUTIME_ATOMIC \ 643 (struct task_cputime_atomic) { \ 644 .utime = ATOMIC64_INIT(0), \ 645 .stime = ATOMIC64_INIT(0), \ 646 .sum_exec_runtime = ATOMIC64_INIT(0), \ 647 } 648 649 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 650 651 /* 652 * Disable preemption until the scheduler is running -- use an unconditional 653 * value so that it also works on !PREEMPT_COUNT kernels. 654 * 655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 656 */ 657 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 658 659 /* 660 * Initial preempt_count value; reflects the preempt_count schedule invariant 661 * which states that during context switches: 662 * 663 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 664 * 665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 666 * Note: See finish_task_switch(). 667 */ 668 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 669 670 /** 671 * struct thread_group_cputimer - thread group interval timer counts 672 * @cputime_atomic: atomic thread group interval timers. 673 * @running: true when there are timers running and 674 * @cputime_atomic receives updates. 675 * @checking_timer: true when a thread in the group is in the 676 * process of checking for thread group timers. 677 * 678 * This structure contains the version of task_cputime, above, that is 679 * used for thread group CPU timer calculations. 680 */ 681 struct thread_group_cputimer { 682 struct task_cputime_atomic cputime_atomic; 683 bool running; 684 bool checking_timer; 685 }; 686 687 #include <linux/rwsem.h> 688 struct autogroup; 689 690 /* 691 * NOTE! "signal_struct" does not have its own 692 * locking, because a shared signal_struct always 693 * implies a shared sighand_struct, so locking 694 * sighand_struct is always a proper superset of 695 * the locking of signal_struct. 696 */ 697 struct signal_struct { 698 atomic_t sigcnt; 699 atomic_t live; 700 int nr_threads; 701 struct list_head thread_head; 702 703 wait_queue_head_t wait_chldexit; /* for wait4() */ 704 705 /* current thread group signal load-balancing target: */ 706 struct task_struct *curr_target; 707 708 /* shared signal handling: */ 709 struct sigpending shared_pending; 710 711 /* thread group exit support */ 712 int group_exit_code; 713 /* overloaded: 714 * - notify group_exit_task when ->count is equal to notify_count 715 * - everyone except group_exit_task is stopped during signal delivery 716 * of fatal signals, group_exit_task processes the signal. 717 */ 718 int notify_count; 719 struct task_struct *group_exit_task; 720 721 /* thread group stop support, overloads group_exit_code too */ 722 int group_stop_count; 723 unsigned int flags; /* see SIGNAL_* flags below */ 724 725 /* 726 * PR_SET_CHILD_SUBREAPER marks a process, like a service 727 * manager, to re-parent orphan (double-forking) child processes 728 * to this process instead of 'init'. The service manager is 729 * able to receive SIGCHLD signals and is able to investigate 730 * the process until it calls wait(). All children of this 731 * process will inherit a flag if they should look for a 732 * child_subreaper process at exit. 733 */ 734 unsigned int is_child_subreaper:1; 735 unsigned int has_child_subreaper:1; 736 737 /* POSIX.1b Interval Timers */ 738 int posix_timer_id; 739 struct list_head posix_timers; 740 741 /* ITIMER_REAL timer for the process */ 742 struct hrtimer real_timer; 743 struct pid *leader_pid; 744 ktime_t it_real_incr; 745 746 /* 747 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 748 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 749 * values are defined to 0 and 1 respectively 750 */ 751 struct cpu_itimer it[2]; 752 753 /* 754 * Thread group totals for process CPU timers. 755 * See thread_group_cputimer(), et al, for details. 756 */ 757 struct thread_group_cputimer cputimer; 758 759 /* Earliest-expiration cache. */ 760 struct task_cputime cputime_expires; 761 762 #ifdef CONFIG_NO_HZ_FULL 763 atomic_t tick_dep_mask; 764 #endif 765 766 struct list_head cpu_timers[3]; 767 768 struct pid *tty_old_pgrp; 769 770 /* boolean value for session group leader */ 771 int leader; 772 773 struct tty_struct *tty; /* NULL if no tty */ 774 775 #ifdef CONFIG_SCHED_AUTOGROUP 776 struct autogroup *autogroup; 777 #endif 778 /* 779 * Cumulative resource counters for dead threads in the group, 780 * and for reaped dead child processes forked by this group. 781 * Live threads maintain their own counters and add to these 782 * in __exit_signal, except for the group leader. 783 */ 784 seqlock_t stats_lock; 785 cputime_t utime, stime, cutime, cstime; 786 cputime_t gtime; 787 cputime_t cgtime; 788 struct prev_cputime prev_cputime; 789 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 790 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 791 unsigned long inblock, oublock, cinblock, coublock; 792 unsigned long maxrss, cmaxrss; 793 struct task_io_accounting ioac; 794 795 /* 796 * Cumulative ns of schedule CPU time fo dead threads in the 797 * group, not including a zombie group leader, (This only differs 798 * from jiffies_to_ns(utime + stime) if sched_clock uses something 799 * other than jiffies.) 800 */ 801 unsigned long long sum_sched_runtime; 802 803 /* 804 * We don't bother to synchronize most readers of this at all, 805 * because there is no reader checking a limit that actually needs 806 * to get both rlim_cur and rlim_max atomically, and either one 807 * alone is a single word that can safely be read normally. 808 * getrlimit/setrlimit use task_lock(current->group_leader) to 809 * protect this instead of the siglock, because they really 810 * have no need to disable irqs. 811 */ 812 struct rlimit rlim[RLIM_NLIMITS]; 813 814 #ifdef CONFIG_BSD_PROCESS_ACCT 815 struct pacct_struct pacct; /* per-process accounting information */ 816 #endif 817 #ifdef CONFIG_TASKSTATS 818 struct taskstats *stats; 819 #endif 820 #ifdef CONFIG_AUDIT 821 unsigned audit_tty; 822 struct tty_audit_buf *tty_audit_buf; 823 #endif 824 825 /* 826 * Thread is the potential origin of an oom condition; kill first on 827 * oom 828 */ 829 bool oom_flag_origin; 830 short oom_score_adj; /* OOM kill score adjustment */ 831 short oom_score_adj_min; /* OOM kill score adjustment min value. 832 * Only settable by CAP_SYS_RESOURCE. */ 833 struct mm_struct *oom_mm; /* recorded mm when the thread group got 834 * killed by the oom killer */ 835 836 struct mutex cred_guard_mutex; /* guard against foreign influences on 837 * credential calculations 838 * (notably. ptrace) */ 839 }; 840 841 /* 842 * Bits in flags field of signal_struct. 843 */ 844 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 845 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 846 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 847 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 848 /* 849 * Pending notifications to parent. 850 */ 851 #define SIGNAL_CLD_STOPPED 0x00000010 852 #define SIGNAL_CLD_CONTINUED 0x00000020 853 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 854 855 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 856 857 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 858 static inline int signal_group_exit(const struct signal_struct *sig) 859 { 860 return (sig->flags & SIGNAL_GROUP_EXIT) || 861 (sig->group_exit_task != NULL); 862 } 863 864 /* 865 * Some day this will be a full-fledged user tracking system.. 866 */ 867 struct user_struct { 868 atomic_t __count; /* reference count */ 869 atomic_t processes; /* How many processes does this user have? */ 870 atomic_t sigpending; /* How many pending signals does this user have? */ 871 #ifdef CONFIG_INOTIFY_USER 872 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 873 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 874 #endif 875 #ifdef CONFIG_FANOTIFY 876 atomic_t fanotify_listeners; 877 #endif 878 #ifdef CONFIG_EPOLL 879 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 880 #endif 881 #ifdef CONFIG_POSIX_MQUEUE 882 /* protected by mq_lock */ 883 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 884 #endif 885 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 886 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 887 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 888 889 #ifdef CONFIG_KEYS 890 struct key *uid_keyring; /* UID specific keyring */ 891 struct key *session_keyring; /* UID's default session keyring */ 892 #endif 893 894 /* Hash table maintenance information */ 895 struct hlist_node uidhash_node; 896 kuid_t uid; 897 898 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 899 atomic_long_t locked_vm; 900 #endif 901 }; 902 903 extern int uids_sysfs_init(void); 904 905 extern struct user_struct *find_user(kuid_t); 906 907 extern struct user_struct root_user; 908 #define INIT_USER (&root_user) 909 910 911 struct backing_dev_info; 912 struct reclaim_state; 913 914 #ifdef CONFIG_SCHED_INFO 915 struct sched_info { 916 /* cumulative counters */ 917 unsigned long pcount; /* # of times run on this cpu */ 918 unsigned long long run_delay; /* time spent waiting on a runqueue */ 919 920 /* timestamps */ 921 unsigned long long last_arrival,/* when we last ran on a cpu */ 922 last_queued; /* when we were last queued to run */ 923 }; 924 #endif /* CONFIG_SCHED_INFO */ 925 926 #ifdef CONFIG_TASK_DELAY_ACCT 927 struct task_delay_info { 928 spinlock_t lock; 929 unsigned int flags; /* Private per-task flags */ 930 931 /* For each stat XXX, add following, aligned appropriately 932 * 933 * struct timespec XXX_start, XXX_end; 934 * u64 XXX_delay; 935 * u32 XXX_count; 936 * 937 * Atomicity of updates to XXX_delay, XXX_count protected by 938 * single lock above (split into XXX_lock if contention is an issue). 939 */ 940 941 /* 942 * XXX_count is incremented on every XXX operation, the delay 943 * associated with the operation is added to XXX_delay. 944 * XXX_delay contains the accumulated delay time in nanoseconds. 945 */ 946 u64 blkio_start; /* Shared by blkio, swapin */ 947 u64 blkio_delay; /* wait for sync block io completion */ 948 u64 swapin_delay; /* wait for swapin block io completion */ 949 u32 blkio_count; /* total count of the number of sync block */ 950 /* io operations performed */ 951 u32 swapin_count; /* total count of the number of swapin block */ 952 /* io operations performed */ 953 954 u64 freepages_start; 955 u64 freepages_delay; /* wait for memory reclaim */ 956 u32 freepages_count; /* total count of memory reclaim */ 957 }; 958 #endif /* CONFIG_TASK_DELAY_ACCT */ 959 960 static inline int sched_info_on(void) 961 { 962 #ifdef CONFIG_SCHEDSTATS 963 return 1; 964 #elif defined(CONFIG_TASK_DELAY_ACCT) 965 extern int delayacct_on; 966 return delayacct_on; 967 #else 968 return 0; 969 #endif 970 } 971 972 #ifdef CONFIG_SCHEDSTATS 973 void force_schedstat_enabled(void); 974 #endif 975 976 enum cpu_idle_type { 977 CPU_IDLE, 978 CPU_NOT_IDLE, 979 CPU_NEWLY_IDLE, 980 CPU_MAX_IDLE_TYPES 981 }; 982 983 /* 984 * Integer metrics need fixed point arithmetic, e.g., sched/fair 985 * has a few: load, load_avg, util_avg, freq, and capacity. 986 * 987 * We define a basic fixed point arithmetic range, and then formalize 988 * all these metrics based on that basic range. 989 */ 990 # define SCHED_FIXEDPOINT_SHIFT 10 991 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 992 993 /* 994 * Increase resolution of cpu_capacity calculations 995 */ 996 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 997 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 998 999 /* 1000 * Wake-queues are lists of tasks with a pending wakeup, whose 1001 * callers have already marked the task as woken internally, 1002 * and can thus carry on. A common use case is being able to 1003 * do the wakeups once the corresponding user lock as been 1004 * released. 1005 * 1006 * We hold reference to each task in the list across the wakeup, 1007 * thus guaranteeing that the memory is still valid by the time 1008 * the actual wakeups are performed in wake_up_q(). 1009 * 1010 * One per task suffices, because there's never a need for a task to be 1011 * in two wake queues simultaneously; it is forbidden to abandon a task 1012 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 1013 * already in a wake queue, the wakeup will happen soon and the second 1014 * waker can just skip it. 1015 * 1016 * The DEFINE_WAKE_Q macro declares and initializes the list head. 1017 * wake_up_q() does NOT reinitialize the list; it's expected to be 1018 * called near the end of a function, where the fact that the queue is 1019 * not used again will be easy to see by inspection. 1020 * 1021 * Note that this can cause spurious wakeups. schedule() callers 1022 * must ensure the call is done inside a loop, confirming that the 1023 * wakeup condition has in fact occurred. 1024 */ 1025 struct wake_q_node { 1026 struct wake_q_node *next; 1027 }; 1028 1029 struct wake_q_head { 1030 struct wake_q_node *first; 1031 struct wake_q_node **lastp; 1032 }; 1033 1034 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1035 1036 #define DEFINE_WAKE_Q(name) \ 1037 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1038 1039 extern void wake_q_add(struct wake_q_head *head, 1040 struct task_struct *task); 1041 extern void wake_up_q(struct wake_q_head *head); 1042 1043 /* 1044 * sched-domains (multiprocessor balancing) declarations: 1045 */ 1046 #ifdef CONFIG_SMP 1047 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1048 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1049 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1050 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1051 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1052 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1053 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */ 1054 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */ 1055 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1056 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1057 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1058 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1059 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1060 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1061 #define SD_NUMA 0x4000 /* cross-node balancing */ 1062 1063 #ifdef CONFIG_SCHED_SMT 1064 static inline int cpu_smt_flags(void) 1065 { 1066 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1067 } 1068 #endif 1069 1070 #ifdef CONFIG_SCHED_MC 1071 static inline int cpu_core_flags(void) 1072 { 1073 return SD_SHARE_PKG_RESOURCES; 1074 } 1075 #endif 1076 1077 #ifdef CONFIG_NUMA 1078 static inline int cpu_numa_flags(void) 1079 { 1080 return SD_NUMA; 1081 } 1082 #endif 1083 1084 extern int arch_asym_cpu_priority(int cpu); 1085 1086 struct sched_domain_attr { 1087 int relax_domain_level; 1088 }; 1089 1090 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1091 .relax_domain_level = -1, \ 1092 } 1093 1094 extern int sched_domain_level_max; 1095 1096 struct sched_group; 1097 1098 struct sched_domain_shared { 1099 atomic_t ref; 1100 atomic_t nr_busy_cpus; 1101 int has_idle_cores; 1102 }; 1103 1104 struct sched_domain { 1105 /* These fields must be setup */ 1106 struct sched_domain *parent; /* top domain must be null terminated */ 1107 struct sched_domain *child; /* bottom domain must be null terminated */ 1108 struct sched_group *groups; /* the balancing groups of the domain */ 1109 unsigned long min_interval; /* Minimum balance interval ms */ 1110 unsigned long max_interval; /* Maximum balance interval ms */ 1111 unsigned int busy_factor; /* less balancing by factor if busy */ 1112 unsigned int imbalance_pct; /* No balance until over watermark */ 1113 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1114 unsigned int busy_idx; 1115 unsigned int idle_idx; 1116 unsigned int newidle_idx; 1117 unsigned int wake_idx; 1118 unsigned int forkexec_idx; 1119 unsigned int smt_gain; 1120 1121 int nohz_idle; /* NOHZ IDLE status */ 1122 int flags; /* See SD_* */ 1123 int level; 1124 1125 /* Runtime fields. */ 1126 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1127 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1128 unsigned int nr_balance_failed; /* initialise to 0 */ 1129 1130 /* idle_balance() stats */ 1131 u64 max_newidle_lb_cost; 1132 unsigned long next_decay_max_lb_cost; 1133 1134 u64 avg_scan_cost; /* select_idle_sibling */ 1135 1136 #ifdef CONFIG_SCHEDSTATS 1137 /* load_balance() stats */ 1138 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1139 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1140 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1141 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1142 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1143 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1144 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1145 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1146 1147 /* Active load balancing */ 1148 unsigned int alb_count; 1149 unsigned int alb_failed; 1150 unsigned int alb_pushed; 1151 1152 /* SD_BALANCE_EXEC stats */ 1153 unsigned int sbe_count; 1154 unsigned int sbe_balanced; 1155 unsigned int sbe_pushed; 1156 1157 /* SD_BALANCE_FORK stats */ 1158 unsigned int sbf_count; 1159 unsigned int sbf_balanced; 1160 unsigned int sbf_pushed; 1161 1162 /* try_to_wake_up() stats */ 1163 unsigned int ttwu_wake_remote; 1164 unsigned int ttwu_move_affine; 1165 unsigned int ttwu_move_balance; 1166 #endif 1167 #ifdef CONFIG_SCHED_DEBUG 1168 char *name; 1169 #endif 1170 union { 1171 void *private; /* used during construction */ 1172 struct rcu_head rcu; /* used during destruction */ 1173 }; 1174 struct sched_domain_shared *shared; 1175 1176 unsigned int span_weight; 1177 /* 1178 * Span of all CPUs in this domain. 1179 * 1180 * NOTE: this field is variable length. (Allocated dynamically 1181 * by attaching extra space to the end of the structure, 1182 * depending on how many CPUs the kernel has booted up with) 1183 */ 1184 unsigned long span[0]; 1185 }; 1186 1187 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1188 { 1189 return to_cpumask(sd->span); 1190 } 1191 1192 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1193 struct sched_domain_attr *dattr_new); 1194 1195 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1196 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1197 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1198 1199 bool cpus_share_cache(int this_cpu, int that_cpu); 1200 1201 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1202 typedef int (*sched_domain_flags_f)(void); 1203 1204 #define SDTL_OVERLAP 0x01 1205 1206 struct sd_data { 1207 struct sched_domain **__percpu sd; 1208 struct sched_domain_shared **__percpu sds; 1209 struct sched_group **__percpu sg; 1210 struct sched_group_capacity **__percpu sgc; 1211 }; 1212 1213 struct sched_domain_topology_level { 1214 sched_domain_mask_f mask; 1215 sched_domain_flags_f sd_flags; 1216 int flags; 1217 int numa_level; 1218 struct sd_data data; 1219 #ifdef CONFIG_SCHED_DEBUG 1220 char *name; 1221 #endif 1222 }; 1223 1224 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1225 extern void wake_up_if_idle(int cpu); 1226 1227 #ifdef CONFIG_SCHED_DEBUG 1228 # define SD_INIT_NAME(type) .name = #type 1229 #else 1230 # define SD_INIT_NAME(type) 1231 #endif 1232 1233 #else /* CONFIG_SMP */ 1234 1235 struct sched_domain_attr; 1236 1237 static inline void 1238 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1239 struct sched_domain_attr *dattr_new) 1240 { 1241 } 1242 1243 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1244 { 1245 return true; 1246 } 1247 1248 #endif /* !CONFIG_SMP */ 1249 1250 1251 struct io_context; /* See blkdev.h */ 1252 1253 1254 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1255 extern void prefetch_stack(struct task_struct *t); 1256 #else 1257 static inline void prefetch_stack(struct task_struct *t) { } 1258 #endif 1259 1260 struct audit_context; /* See audit.c */ 1261 struct mempolicy; 1262 struct pipe_inode_info; 1263 struct uts_namespace; 1264 1265 struct load_weight { 1266 unsigned long weight; 1267 u32 inv_weight; 1268 }; 1269 1270 /* 1271 * The load_avg/util_avg accumulates an infinite geometric series 1272 * (see __update_load_avg() in kernel/sched/fair.c). 1273 * 1274 * [load_avg definition] 1275 * 1276 * load_avg = runnable% * scale_load_down(load) 1277 * 1278 * where runnable% is the time ratio that a sched_entity is runnable. 1279 * For cfs_rq, it is the aggregated load_avg of all runnable and 1280 * blocked sched_entities. 1281 * 1282 * load_avg may also take frequency scaling into account: 1283 * 1284 * load_avg = runnable% * scale_load_down(load) * freq% 1285 * 1286 * where freq% is the CPU frequency normalized to the highest frequency. 1287 * 1288 * [util_avg definition] 1289 * 1290 * util_avg = running% * SCHED_CAPACITY_SCALE 1291 * 1292 * where running% is the time ratio that a sched_entity is running on 1293 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1294 * and blocked sched_entities. 1295 * 1296 * util_avg may also factor frequency scaling and CPU capacity scaling: 1297 * 1298 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1299 * 1300 * where freq% is the same as above, and capacity% is the CPU capacity 1301 * normalized to the greatest capacity (due to uarch differences, etc). 1302 * 1303 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1304 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1305 * we therefore scale them to as large a range as necessary. This is for 1306 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1307 * 1308 * [Overflow issue] 1309 * 1310 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1311 * with the highest load (=88761), always runnable on a single cfs_rq, 1312 * and should not overflow as the number already hits PID_MAX_LIMIT. 1313 * 1314 * For all other cases (including 32-bit kernels), struct load_weight's 1315 * weight will overflow first before we do, because: 1316 * 1317 * Max(load_avg) <= Max(load.weight) 1318 * 1319 * Then it is the load_weight's responsibility to consider overflow 1320 * issues. 1321 */ 1322 struct sched_avg { 1323 u64 last_update_time, load_sum; 1324 u32 util_sum, period_contrib; 1325 unsigned long load_avg, util_avg; 1326 }; 1327 1328 #ifdef CONFIG_SCHEDSTATS 1329 struct sched_statistics { 1330 u64 wait_start; 1331 u64 wait_max; 1332 u64 wait_count; 1333 u64 wait_sum; 1334 u64 iowait_count; 1335 u64 iowait_sum; 1336 1337 u64 sleep_start; 1338 u64 sleep_max; 1339 s64 sum_sleep_runtime; 1340 1341 u64 block_start; 1342 u64 block_max; 1343 u64 exec_max; 1344 u64 slice_max; 1345 1346 u64 nr_migrations_cold; 1347 u64 nr_failed_migrations_affine; 1348 u64 nr_failed_migrations_running; 1349 u64 nr_failed_migrations_hot; 1350 u64 nr_forced_migrations; 1351 1352 u64 nr_wakeups; 1353 u64 nr_wakeups_sync; 1354 u64 nr_wakeups_migrate; 1355 u64 nr_wakeups_local; 1356 u64 nr_wakeups_remote; 1357 u64 nr_wakeups_affine; 1358 u64 nr_wakeups_affine_attempts; 1359 u64 nr_wakeups_passive; 1360 u64 nr_wakeups_idle; 1361 }; 1362 #endif 1363 1364 struct sched_entity { 1365 struct load_weight load; /* for load-balancing */ 1366 struct rb_node run_node; 1367 struct list_head group_node; 1368 unsigned int on_rq; 1369 1370 u64 exec_start; 1371 u64 sum_exec_runtime; 1372 u64 vruntime; 1373 u64 prev_sum_exec_runtime; 1374 1375 u64 nr_migrations; 1376 1377 #ifdef CONFIG_SCHEDSTATS 1378 struct sched_statistics statistics; 1379 #endif 1380 1381 #ifdef CONFIG_FAIR_GROUP_SCHED 1382 int depth; 1383 struct sched_entity *parent; 1384 /* rq on which this entity is (to be) queued: */ 1385 struct cfs_rq *cfs_rq; 1386 /* rq "owned" by this entity/group: */ 1387 struct cfs_rq *my_q; 1388 #endif 1389 1390 #ifdef CONFIG_SMP 1391 /* 1392 * Per entity load average tracking. 1393 * 1394 * Put into separate cache line so it does not 1395 * collide with read-mostly values above. 1396 */ 1397 struct sched_avg avg ____cacheline_aligned_in_smp; 1398 #endif 1399 }; 1400 1401 struct sched_rt_entity { 1402 struct list_head run_list; 1403 unsigned long timeout; 1404 unsigned long watchdog_stamp; 1405 unsigned int time_slice; 1406 unsigned short on_rq; 1407 unsigned short on_list; 1408 1409 struct sched_rt_entity *back; 1410 #ifdef CONFIG_RT_GROUP_SCHED 1411 struct sched_rt_entity *parent; 1412 /* rq on which this entity is (to be) queued: */ 1413 struct rt_rq *rt_rq; 1414 /* rq "owned" by this entity/group: */ 1415 struct rt_rq *my_q; 1416 #endif 1417 }; 1418 1419 struct sched_dl_entity { 1420 struct rb_node rb_node; 1421 1422 /* 1423 * Original scheduling parameters. Copied here from sched_attr 1424 * during sched_setattr(), they will remain the same until 1425 * the next sched_setattr(). 1426 */ 1427 u64 dl_runtime; /* maximum runtime for each instance */ 1428 u64 dl_deadline; /* relative deadline of each instance */ 1429 u64 dl_period; /* separation of two instances (period) */ 1430 u64 dl_bw; /* dl_runtime / dl_deadline */ 1431 1432 /* 1433 * Actual scheduling parameters. Initialized with the values above, 1434 * they are continously updated during task execution. Note that 1435 * the remaining runtime could be < 0 in case we are in overrun. 1436 */ 1437 s64 runtime; /* remaining runtime for this instance */ 1438 u64 deadline; /* absolute deadline for this instance */ 1439 unsigned int flags; /* specifying the scheduler behaviour */ 1440 1441 /* 1442 * Some bool flags: 1443 * 1444 * @dl_throttled tells if we exhausted the runtime. If so, the 1445 * task has to wait for a replenishment to be performed at the 1446 * next firing of dl_timer. 1447 * 1448 * @dl_boosted tells if we are boosted due to DI. If so we are 1449 * outside bandwidth enforcement mechanism (but only until we 1450 * exit the critical section); 1451 * 1452 * @dl_yielded tells if task gave up the cpu before consuming 1453 * all its available runtime during the last job. 1454 */ 1455 int dl_throttled, dl_boosted, dl_yielded; 1456 1457 /* 1458 * Bandwidth enforcement timer. Each -deadline task has its 1459 * own bandwidth to be enforced, thus we need one timer per task. 1460 */ 1461 struct hrtimer dl_timer; 1462 }; 1463 1464 union rcu_special { 1465 struct { 1466 u8 blocked; 1467 u8 need_qs; 1468 u8 exp_need_qs; 1469 u8 pad; /* Otherwise the compiler can store garbage here. */ 1470 } b; /* Bits. */ 1471 u32 s; /* Set of bits. */ 1472 }; 1473 struct rcu_node; 1474 1475 enum perf_event_task_context { 1476 perf_invalid_context = -1, 1477 perf_hw_context = 0, 1478 perf_sw_context, 1479 perf_nr_task_contexts, 1480 }; 1481 1482 /* Track pages that require TLB flushes */ 1483 struct tlbflush_unmap_batch { 1484 /* 1485 * Each bit set is a CPU that potentially has a TLB entry for one of 1486 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1487 */ 1488 struct cpumask cpumask; 1489 1490 /* True if any bit in cpumask is set */ 1491 bool flush_required; 1492 1493 /* 1494 * If true then the PTE was dirty when unmapped. The entry must be 1495 * flushed before IO is initiated or a stale TLB entry potentially 1496 * allows an update without redirtying the page. 1497 */ 1498 bool writable; 1499 }; 1500 1501 struct task_struct { 1502 #ifdef CONFIG_THREAD_INFO_IN_TASK 1503 /* 1504 * For reasons of header soup (see current_thread_info()), this 1505 * must be the first element of task_struct. 1506 */ 1507 struct thread_info thread_info; 1508 #endif 1509 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1510 void *stack; 1511 atomic_t usage; 1512 unsigned int flags; /* per process flags, defined below */ 1513 unsigned int ptrace; 1514 1515 #ifdef CONFIG_SMP 1516 struct llist_node wake_entry; 1517 int on_cpu; 1518 #ifdef CONFIG_THREAD_INFO_IN_TASK 1519 unsigned int cpu; /* current CPU */ 1520 #endif 1521 unsigned int wakee_flips; 1522 unsigned long wakee_flip_decay_ts; 1523 struct task_struct *last_wakee; 1524 1525 int wake_cpu; 1526 #endif 1527 int on_rq; 1528 1529 int prio, static_prio, normal_prio; 1530 unsigned int rt_priority; 1531 const struct sched_class *sched_class; 1532 struct sched_entity se; 1533 struct sched_rt_entity rt; 1534 #ifdef CONFIG_CGROUP_SCHED 1535 struct task_group *sched_task_group; 1536 #endif 1537 struct sched_dl_entity dl; 1538 1539 #ifdef CONFIG_PREEMPT_NOTIFIERS 1540 /* list of struct preempt_notifier: */ 1541 struct hlist_head preempt_notifiers; 1542 #endif 1543 1544 #ifdef CONFIG_BLK_DEV_IO_TRACE 1545 unsigned int btrace_seq; 1546 #endif 1547 1548 unsigned int policy; 1549 int nr_cpus_allowed; 1550 cpumask_t cpus_allowed; 1551 1552 #ifdef CONFIG_PREEMPT_RCU 1553 int rcu_read_lock_nesting; 1554 union rcu_special rcu_read_unlock_special; 1555 struct list_head rcu_node_entry; 1556 struct rcu_node *rcu_blocked_node; 1557 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1558 #ifdef CONFIG_TASKS_RCU 1559 unsigned long rcu_tasks_nvcsw; 1560 bool rcu_tasks_holdout; 1561 struct list_head rcu_tasks_holdout_list; 1562 int rcu_tasks_idle_cpu; 1563 #endif /* #ifdef CONFIG_TASKS_RCU */ 1564 1565 #ifdef CONFIG_SCHED_INFO 1566 struct sched_info sched_info; 1567 #endif 1568 1569 struct list_head tasks; 1570 #ifdef CONFIG_SMP 1571 struct plist_node pushable_tasks; 1572 struct rb_node pushable_dl_tasks; 1573 #endif 1574 1575 struct mm_struct *mm, *active_mm; 1576 /* per-thread vma caching */ 1577 u32 vmacache_seqnum; 1578 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1579 #if defined(SPLIT_RSS_COUNTING) 1580 struct task_rss_stat rss_stat; 1581 #endif 1582 /* task state */ 1583 int exit_state; 1584 int exit_code, exit_signal; 1585 int pdeath_signal; /* The signal sent when the parent dies */ 1586 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1587 1588 /* Used for emulating ABI behavior of previous Linux versions */ 1589 unsigned int personality; 1590 1591 /* scheduler bits, serialized by scheduler locks */ 1592 unsigned sched_reset_on_fork:1; 1593 unsigned sched_contributes_to_load:1; 1594 unsigned sched_migrated:1; 1595 unsigned sched_remote_wakeup:1; 1596 unsigned :0; /* force alignment to the next boundary */ 1597 1598 /* unserialized, strictly 'current' */ 1599 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1600 unsigned in_iowait:1; 1601 #if !defined(TIF_RESTORE_SIGMASK) 1602 unsigned restore_sigmask:1; 1603 #endif 1604 #ifdef CONFIG_MEMCG 1605 unsigned memcg_may_oom:1; 1606 #ifndef CONFIG_SLOB 1607 unsigned memcg_kmem_skip_account:1; 1608 #endif 1609 #endif 1610 #ifdef CONFIG_COMPAT_BRK 1611 unsigned brk_randomized:1; 1612 #endif 1613 1614 unsigned long atomic_flags; /* Flags needing atomic access. */ 1615 1616 struct restart_block restart_block; 1617 1618 pid_t pid; 1619 pid_t tgid; 1620 1621 #ifdef CONFIG_CC_STACKPROTECTOR 1622 /* Canary value for the -fstack-protector gcc feature */ 1623 unsigned long stack_canary; 1624 #endif 1625 /* 1626 * pointers to (original) parent process, youngest child, younger sibling, 1627 * older sibling, respectively. (p->father can be replaced with 1628 * p->real_parent->pid) 1629 */ 1630 struct task_struct __rcu *real_parent; /* real parent process */ 1631 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1632 /* 1633 * children/sibling forms the list of my natural children 1634 */ 1635 struct list_head children; /* list of my children */ 1636 struct list_head sibling; /* linkage in my parent's children list */ 1637 struct task_struct *group_leader; /* threadgroup leader */ 1638 1639 /* 1640 * ptraced is the list of tasks this task is using ptrace on. 1641 * This includes both natural children and PTRACE_ATTACH targets. 1642 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1643 */ 1644 struct list_head ptraced; 1645 struct list_head ptrace_entry; 1646 1647 /* PID/PID hash table linkage. */ 1648 struct pid_link pids[PIDTYPE_MAX]; 1649 struct list_head thread_group; 1650 struct list_head thread_node; 1651 1652 struct completion *vfork_done; /* for vfork() */ 1653 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1654 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1655 1656 cputime_t utime, stime; 1657 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1658 cputime_t utimescaled, stimescaled; 1659 #endif 1660 cputime_t gtime; 1661 struct prev_cputime prev_cputime; 1662 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1663 seqcount_t vtime_seqcount; 1664 unsigned long long vtime_snap; 1665 enum { 1666 /* Task is sleeping or running in a CPU with VTIME inactive */ 1667 VTIME_INACTIVE = 0, 1668 /* Task runs in userspace in a CPU with VTIME active */ 1669 VTIME_USER, 1670 /* Task runs in kernelspace in a CPU with VTIME active */ 1671 VTIME_SYS, 1672 } vtime_snap_whence; 1673 #endif 1674 1675 #ifdef CONFIG_NO_HZ_FULL 1676 atomic_t tick_dep_mask; 1677 #endif 1678 unsigned long nvcsw, nivcsw; /* context switch counts */ 1679 u64 start_time; /* monotonic time in nsec */ 1680 u64 real_start_time; /* boot based time in nsec */ 1681 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1682 unsigned long min_flt, maj_flt; 1683 1684 struct task_cputime cputime_expires; 1685 struct list_head cpu_timers[3]; 1686 1687 /* process credentials */ 1688 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */ 1689 const struct cred __rcu *real_cred; /* objective and real subjective task 1690 * credentials (COW) */ 1691 const struct cred __rcu *cred; /* effective (overridable) subjective task 1692 * credentials (COW) */ 1693 char comm[TASK_COMM_LEN]; /* executable name excluding path 1694 - access with [gs]et_task_comm (which lock 1695 it with task_lock()) 1696 - initialized normally by setup_new_exec */ 1697 /* file system info */ 1698 struct nameidata *nameidata; 1699 #ifdef CONFIG_SYSVIPC 1700 /* ipc stuff */ 1701 struct sysv_sem sysvsem; 1702 struct sysv_shm sysvshm; 1703 #endif 1704 #ifdef CONFIG_DETECT_HUNG_TASK 1705 /* hung task detection */ 1706 unsigned long last_switch_count; 1707 #endif 1708 /* filesystem information */ 1709 struct fs_struct *fs; 1710 /* open file information */ 1711 struct files_struct *files; 1712 /* namespaces */ 1713 struct nsproxy *nsproxy; 1714 /* signal handlers */ 1715 struct signal_struct *signal; 1716 struct sighand_struct *sighand; 1717 1718 sigset_t blocked, real_blocked; 1719 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1720 struct sigpending pending; 1721 1722 unsigned long sas_ss_sp; 1723 size_t sas_ss_size; 1724 unsigned sas_ss_flags; 1725 1726 struct callback_head *task_works; 1727 1728 struct audit_context *audit_context; 1729 #ifdef CONFIG_AUDITSYSCALL 1730 kuid_t loginuid; 1731 unsigned int sessionid; 1732 #endif 1733 struct seccomp seccomp; 1734 1735 /* Thread group tracking */ 1736 u32 parent_exec_id; 1737 u32 self_exec_id; 1738 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1739 * mempolicy */ 1740 spinlock_t alloc_lock; 1741 1742 /* Protection of the PI data structures: */ 1743 raw_spinlock_t pi_lock; 1744 1745 struct wake_q_node wake_q; 1746 1747 #ifdef CONFIG_RT_MUTEXES 1748 /* PI waiters blocked on a rt_mutex held by this task */ 1749 struct rb_root pi_waiters; 1750 struct rb_node *pi_waiters_leftmost; 1751 /* Deadlock detection and priority inheritance handling */ 1752 struct rt_mutex_waiter *pi_blocked_on; 1753 #endif 1754 1755 #ifdef CONFIG_DEBUG_MUTEXES 1756 /* mutex deadlock detection */ 1757 struct mutex_waiter *blocked_on; 1758 #endif 1759 #ifdef CONFIG_TRACE_IRQFLAGS 1760 unsigned int irq_events; 1761 unsigned long hardirq_enable_ip; 1762 unsigned long hardirq_disable_ip; 1763 unsigned int hardirq_enable_event; 1764 unsigned int hardirq_disable_event; 1765 int hardirqs_enabled; 1766 int hardirq_context; 1767 unsigned long softirq_disable_ip; 1768 unsigned long softirq_enable_ip; 1769 unsigned int softirq_disable_event; 1770 unsigned int softirq_enable_event; 1771 int softirqs_enabled; 1772 int softirq_context; 1773 #endif 1774 #ifdef CONFIG_LOCKDEP 1775 # define MAX_LOCK_DEPTH 48UL 1776 u64 curr_chain_key; 1777 int lockdep_depth; 1778 unsigned int lockdep_recursion; 1779 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1780 gfp_t lockdep_reclaim_gfp; 1781 #endif 1782 #ifdef CONFIG_UBSAN 1783 unsigned int in_ubsan; 1784 #endif 1785 1786 /* journalling filesystem info */ 1787 void *journal_info; 1788 1789 /* stacked block device info */ 1790 struct bio_list *bio_list; 1791 1792 #ifdef CONFIG_BLOCK 1793 /* stack plugging */ 1794 struct blk_plug *plug; 1795 #endif 1796 1797 /* VM state */ 1798 struct reclaim_state *reclaim_state; 1799 1800 struct backing_dev_info *backing_dev_info; 1801 1802 struct io_context *io_context; 1803 1804 unsigned long ptrace_message; 1805 siginfo_t *last_siginfo; /* For ptrace use. */ 1806 struct task_io_accounting ioac; 1807 #if defined(CONFIG_TASK_XACCT) 1808 u64 acct_rss_mem1; /* accumulated rss usage */ 1809 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1810 cputime_t acct_timexpd; /* stime + utime since last update */ 1811 #endif 1812 #ifdef CONFIG_CPUSETS 1813 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1814 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1815 int cpuset_mem_spread_rotor; 1816 int cpuset_slab_spread_rotor; 1817 #endif 1818 #ifdef CONFIG_CGROUPS 1819 /* Control Group info protected by css_set_lock */ 1820 struct css_set __rcu *cgroups; 1821 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1822 struct list_head cg_list; 1823 #endif 1824 #ifdef CONFIG_INTEL_RDT_A 1825 int closid; 1826 #endif 1827 #ifdef CONFIG_FUTEX 1828 struct robust_list_head __user *robust_list; 1829 #ifdef CONFIG_COMPAT 1830 struct compat_robust_list_head __user *compat_robust_list; 1831 #endif 1832 struct list_head pi_state_list; 1833 struct futex_pi_state *pi_state_cache; 1834 #endif 1835 #ifdef CONFIG_PERF_EVENTS 1836 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1837 struct mutex perf_event_mutex; 1838 struct list_head perf_event_list; 1839 #endif 1840 #ifdef CONFIG_DEBUG_PREEMPT 1841 unsigned long preempt_disable_ip; 1842 #endif 1843 #ifdef CONFIG_NUMA 1844 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1845 short il_next; 1846 short pref_node_fork; 1847 #endif 1848 #ifdef CONFIG_NUMA_BALANCING 1849 int numa_scan_seq; 1850 unsigned int numa_scan_period; 1851 unsigned int numa_scan_period_max; 1852 int numa_preferred_nid; 1853 unsigned long numa_migrate_retry; 1854 u64 node_stamp; /* migration stamp */ 1855 u64 last_task_numa_placement; 1856 u64 last_sum_exec_runtime; 1857 struct callback_head numa_work; 1858 1859 struct list_head numa_entry; 1860 struct numa_group *numa_group; 1861 1862 /* 1863 * numa_faults is an array split into four regions: 1864 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1865 * in this precise order. 1866 * 1867 * faults_memory: Exponential decaying average of faults on a per-node 1868 * basis. Scheduling placement decisions are made based on these 1869 * counts. The values remain static for the duration of a PTE scan. 1870 * faults_cpu: Track the nodes the process was running on when a NUMA 1871 * hinting fault was incurred. 1872 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1873 * during the current scan window. When the scan completes, the counts 1874 * in faults_memory and faults_cpu decay and these values are copied. 1875 */ 1876 unsigned long *numa_faults; 1877 unsigned long total_numa_faults; 1878 1879 /* 1880 * numa_faults_locality tracks if faults recorded during the last 1881 * scan window were remote/local or failed to migrate. The task scan 1882 * period is adapted based on the locality of the faults with different 1883 * weights depending on whether they were shared or private faults 1884 */ 1885 unsigned long numa_faults_locality[3]; 1886 1887 unsigned long numa_pages_migrated; 1888 #endif /* CONFIG_NUMA_BALANCING */ 1889 1890 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1891 struct tlbflush_unmap_batch tlb_ubc; 1892 #endif 1893 1894 struct rcu_head rcu; 1895 1896 /* 1897 * cache last used pipe for splice 1898 */ 1899 struct pipe_inode_info *splice_pipe; 1900 1901 struct page_frag task_frag; 1902 1903 #ifdef CONFIG_TASK_DELAY_ACCT 1904 struct task_delay_info *delays; 1905 #endif 1906 #ifdef CONFIG_FAULT_INJECTION 1907 int make_it_fail; 1908 #endif 1909 /* 1910 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1911 * balance_dirty_pages() for some dirty throttling pause 1912 */ 1913 int nr_dirtied; 1914 int nr_dirtied_pause; 1915 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1916 1917 #ifdef CONFIG_LATENCYTOP 1918 int latency_record_count; 1919 struct latency_record latency_record[LT_SAVECOUNT]; 1920 #endif 1921 /* 1922 * time slack values; these are used to round up poll() and 1923 * select() etc timeout values. These are in nanoseconds. 1924 */ 1925 u64 timer_slack_ns; 1926 u64 default_timer_slack_ns; 1927 1928 #ifdef CONFIG_KASAN 1929 unsigned int kasan_depth; 1930 #endif 1931 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1932 /* Index of current stored address in ret_stack */ 1933 int curr_ret_stack; 1934 /* Stack of return addresses for return function tracing */ 1935 struct ftrace_ret_stack *ret_stack; 1936 /* time stamp for last schedule */ 1937 unsigned long long ftrace_timestamp; 1938 /* 1939 * Number of functions that haven't been traced 1940 * because of depth overrun. 1941 */ 1942 atomic_t trace_overrun; 1943 /* Pause for the tracing */ 1944 atomic_t tracing_graph_pause; 1945 #endif 1946 #ifdef CONFIG_TRACING 1947 /* state flags for use by tracers */ 1948 unsigned long trace; 1949 /* bitmask and counter of trace recursion */ 1950 unsigned long trace_recursion; 1951 #endif /* CONFIG_TRACING */ 1952 #ifdef CONFIG_KCOV 1953 /* Coverage collection mode enabled for this task (0 if disabled). */ 1954 enum kcov_mode kcov_mode; 1955 /* Size of the kcov_area. */ 1956 unsigned kcov_size; 1957 /* Buffer for coverage collection. */ 1958 void *kcov_area; 1959 /* kcov desciptor wired with this task or NULL. */ 1960 struct kcov *kcov; 1961 #endif 1962 #ifdef CONFIG_MEMCG 1963 struct mem_cgroup *memcg_in_oom; 1964 gfp_t memcg_oom_gfp_mask; 1965 int memcg_oom_order; 1966 1967 /* number of pages to reclaim on returning to userland */ 1968 unsigned int memcg_nr_pages_over_high; 1969 #endif 1970 #ifdef CONFIG_UPROBES 1971 struct uprobe_task *utask; 1972 #endif 1973 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1974 unsigned int sequential_io; 1975 unsigned int sequential_io_avg; 1976 #endif 1977 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1978 unsigned long task_state_change; 1979 #endif 1980 int pagefault_disabled; 1981 #ifdef CONFIG_MMU 1982 struct task_struct *oom_reaper_list; 1983 #endif 1984 #ifdef CONFIG_VMAP_STACK 1985 struct vm_struct *stack_vm_area; 1986 #endif 1987 #ifdef CONFIG_THREAD_INFO_IN_TASK 1988 /* A live task holds one reference. */ 1989 atomic_t stack_refcount; 1990 #endif 1991 /* CPU-specific state of this task */ 1992 struct thread_struct thread; 1993 /* 1994 * WARNING: on x86, 'thread_struct' contains a variable-sized 1995 * structure. It *MUST* be at the end of 'task_struct'. 1996 * 1997 * Do not put anything below here! 1998 */ 1999 }; 2000 2001 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 2002 extern int arch_task_struct_size __read_mostly; 2003 #else 2004 # define arch_task_struct_size (sizeof(struct task_struct)) 2005 #endif 2006 2007 #ifdef CONFIG_VMAP_STACK 2008 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 2009 { 2010 return t->stack_vm_area; 2011 } 2012 #else 2013 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 2014 { 2015 return NULL; 2016 } 2017 #endif 2018 2019 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 2020 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 2021 2022 static inline int tsk_nr_cpus_allowed(struct task_struct *p) 2023 { 2024 return p->nr_cpus_allowed; 2025 } 2026 2027 #define TNF_MIGRATED 0x01 2028 #define TNF_NO_GROUP 0x02 2029 #define TNF_SHARED 0x04 2030 #define TNF_FAULT_LOCAL 0x08 2031 #define TNF_MIGRATE_FAIL 0x10 2032 2033 static inline bool in_vfork(struct task_struct *tsk) 2034 { 2035 bool ret; 2036 2037 /* 2038 * need RCU to access ->real_parent if CLONE_VM was used along with 2039 * CLONE_PARENT. 2040 * 2041 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 2042 * imply CLONE_VM 2043 * 2044 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 2045 * ->real_parent is not necessarily the task doing vfork(), so in 2046 * theory we can't rely on task_lock() if we want to dereference it. 2047 * 2048 * And in this case we can't trust the real_parent->mm == tsk->mm 2049 * check, it can be false negative. But we do not care, if init or 2050 * another oom-unkillable task does this it should blame itself. 2051 */ 2052 rcu_read_lock(); 2053 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; 2054 rcu_read_unlock(); 2055 2056 return ret; 2057 } 2058 2059 #ifdef CONFIG_NUMA_BALANCING 2060 extern void task_numa_fault(int last_node, int node, int pages, int flags); 2061 extern pid_t task_numa_group_id(struct task_struct *p); 2062 extern void set_numabalancing_state(bool enabled); 2063 extern void task_numa_free(struct task_struct *p); 2064 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 2065 int src_nid, int dst_cpu); 2066 #else 2067 static inline void task_numa_fault(int last_node, int node, int pages, 2068 int flags) 2069 { 2070 } 2071 static inline pid_t task_numa_group_id(struct task_struct *p) 2072 { 2073 return 0; 2074 } 2075 static inline void set_numabalancing_state(bool enabled) 2076 { 2077 } 2078 static inline void task_numa_free(struct task_struct *p) 2079 { 2080 } 2081 static inline bool should_numa_migrate_memory(struct task_struct *p, 2082 struct page *page, int src_nid, int dst_cpu) 2083 { 2084 return true; 2085 } 2086 #endif 2087 2088 static inline struct pid *task_pid(struct task_struct *task) 2089 { 2090 return task->pids[PIDTYPE_PID].pid; 2091 } 2092 2093 static inline struct pid *task_tgid(struct task_struct *task) 2094 { 2095 return task->group_leader->pids[PIDTYPE_PID].pid; 2096 } 2097 2098 /* 2099 * Without tasklist or rcu lock it is not safe to dereference 2100 * the result of task_pgrp/task_session even if task == current, 2101 * we can race with another thread doing sys_setsid/sys_setpgid. 2102 */ 2103 static inline struct pid *task_pgrp(struct task_struct *task) 2104 { 2105 return task->group_leader->pids[PIDTYPE_PGID].pid; 2106 } 2107 2108 static inline struct pid *task_session(struct task_struct *task) 2109 { 2110 return task->group_leader->pids[PIDTYPE_SID].pid; 2111 } 2112 2113 struct pid_namespace; 2114 2115 /* 2116 * the helpers to get the task's different pids as they are seen 2117 * from various namespaces 2118 * 2119 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2120 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2121 * current. 2122 * task_xid_nr_ns() : id seen from the ns specified; 2123 * 2124 * set_task_vxid() : assigns a virtual id to a task; 2125 * 2126 * see also pid_nr() etc in include/linux/pid.h 2127 */ 2128 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2129 struct pid_namespace *ns); 2130 2131 static inline pid_t task_pid_nr(struct task_struct *tsk) 2132 { 2133 return tsk->pid; 2134 } 2135 2136 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2137 struct pid_namespace *ns) 2138 { 2139 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2140 } 2141 2142 static inline pid_t task_pid_vnr(struct task_struct *tsk) 2143 { 2144 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2145 } 2146 2147 2148 static inline pid_t task_tgid_nr(struct task_struct *tsk) 2149 { 2150 return tsk->tgid; 2151 } 2152 2153 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2154 2155 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2156 { 2157 return pid_vnr(task_tgid(tsk)); 2158 } 2159 2160 2161 static inline int pid_alive(const struct task_struct *p); 2162 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2163 { 2164 pid_t pid = 0; 2165 2166 rcu_read_lock(); 2167 if (pid_alive(tsk)) 2168 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2169 rcu_read_unlock(); 2170 2171 return pid; 2172 } 2173 2174 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2175 { 2176 return task_ppid_nr_ns(tsk, &init_pid_ns); 2177 } 2178 2179 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2180 struct pid_namespace *ns) 2181 { 2182 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2183 } 2184 2185 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2186 { 2187 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2188 } 2189 2190 2191 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2192 struct pid_namespace *ns) 2193 { 2194 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2195 } 2196 2197 static inline pid_t task_session_vnr(struct task_struct *tsk) 2198 { 2199 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2200 } 2201 2202 /* obsolete, do not use */ 2203 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2204 { 2205 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2206 } 2207 2208 /** 2209 * pid_alive - check that a task structure is not stale 2210 * @p: Task structure to be checked. 2211 * 2212 * Test if a process is not yet dead (at most zombie state) 2213 * If pid_alive fails, then pointers within the task structure 2214 * can be stale and must not be dereferenced. 2215 * 2216 * Return: 1 if the process is alive. 0 otherwise. 2217 */ 2218 static inline int pid_alive(const struct task_struct *p) 2219 { 2220 return p->pids[PIDTYPE_PID].pid != NULL; 2221 } 2222 2223 /** 2224 * is_global_init - check if a task structure is init. Since init 2225 * is free to have sub-threads we need to check tgid. 2226 * @tsk: Task structure to be checked. 2227 * 2228 * Check if a task structure is the first user space task the kernel created. 2229 * 2230 * Return: 1 if the task structure is init. 0 otherwise. 2231 */ 2232 static inline int is_global_init(struct task_struct *tsk) 2233 { 2234 return task_tgid_nr(tsk) == 1; 2235 } 2236 2237 extern struct pid *cad_pid; 2238 2239 extern void free_task(struct task_struct *tsk); 2240 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2241 2242 extern void __put_task_struct(struct task_struct *t); 2243 2244 static inline void put_task_struct(struct task_struct *t) 2245 { 2246 if (atomic_dec_and_test(&t->usage)) 2247 __put_task_struct(t); 2248 } 2249 2250 struct task_struct *task_rcu_dereference(struct task_struct **ptask); 2251 struct task_struct *try_get_task_struct(struct task_struct **ptask); 2252 2253 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2254 extern void task_cputime(struct task_struct *t, 2255 cputime_t *utime, cputime_t *stime); 2256 extern cputime_t task_gtime(struct task_struct *t); 2257 #else 2258 static inline void task_cputime(struct task_struct *t, 2259 cputime_t *utime, cputime_t *stime) 2260 { 2261 *utime = t->utime; 2262 *stime = t->stime; 2263 } 2264 2265 static inline cputime_t task_gtime(struct task_struct *t) 2266 { 2267 return t->gtime; 2268 } 2269 #endif 2270 2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2272 static inline void task_cputime_scaled(struct task_struct *t, 2273 cputime_t *utimescaled, 2274 cputime_t *stimescaled) 2275 { 2276 *utimescaled = t->utimescaled; 2277 *stimescaled = t->stimescaled; 2278 } 2279 #else 2280 static inline void task_cputime_scaled(struct task_struct *t, 2281 cputime_t *utimescaled, 2282 cputime_t *stimescaled) 2283 { 2284 task_cputime(t, utimescaled, stimescaled); 2285 } 2286 #endif 2287 2288 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2289 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2290 2291 /* 2292 * Per process flags 2293 */ 2294 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 2295 #define PF_EXITING 0x00000004 /* getting shut down */ 2296 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2297 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2298 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2299 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2300 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2301 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2302 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2303 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2304 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2305 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2306 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2307 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2308 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2309 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2310 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2311 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2312 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2313 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2314 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2315 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2316 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2317 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2318 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2319 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2320 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2321 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2322 2323 /* 2324 * Only the _current_ task can read/write to tsk->flags, but other 2325 * tasks can access tsk->flags in readonly mode for example 2326 * with tsk_used_math (like during threaded core dumping). 2327 * There is however an exception to this rule during ptrace 2328 * or during fork: the ptracer task is allowed to write to the 2329 * child->flags of its traced child (same goes for fork, the parent 2330 * can write to the child->flags), because we're guaranteed the 2331 * child is not running and in turn not changing child->flags 2332 * at the same time the parent does it. 2333 */ 2334 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2335 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2336 #define clear_used_math() clear_stopped_child_used_math(current) 2337 #define set_used_math() set_stopped_child_used_math(current) 2338 #define conditional_stopped_child_used_math(condition, child) \ 2339 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2340 #define conditional_used_math(condition) \ 2341 conditional_stopped_child_used_math(condition, current) 2342 #define copy_to_stopped_child_used_math(child) \ 2343 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2344 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2345 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2346 #define used_math() tsk_used_math(current) 2347 2348 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2349 * __GFP_FS is also cleared as it implies __GFP_IO. 2350 */ 2351 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2352 { 2353 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2354 flags &= ~(__GFP_IO | __GFP_FS); 2355 return flags; 2356 } 2357 2358 static inline unsigned int memalloc_noio_save(void) 2359 { 2360 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2361 current->flags |= PF_MEMALLOC_NOIO; 2362 return flags; 2363 } 2364 2365 static inline void memalloc_noio_restore(unsigned int flags) 2366 { 2367 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2368 } 2369 2370 /* Per-process atomic flags. */ 2371 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2372 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2373 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2374 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2375 2376 2377 #define TASK_PFA_TEST(name, func) \ 2378 static inline bool task_##func(struct task_struct *p) \ 2379 { return test_bit(PFA_##name, &p->atomic_flags); } 2380 #define TASK_PFA_SET(name, func) \ 2381 static inline void task_set_##func(struct task_struct *p) \ 2382 { set_bit(PFA_##name, &p->atomic_flags); } 2383 #define TASK_PFA_CLEAR(name, func) \ 2384 static inline void task_clear_##func(struct task_struct *p) \ 2385 { clear_bit(PFA_##name, &p->atomic_flags); } 2386 2387 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2388 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2389 2390 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2391 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2392 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2393 2394 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2395 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2396 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2397 2398 TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2399 TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2400 2401 /* 2402 * task->jobctl flags 2403 */ 2404 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2405 2406 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2407 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2408 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2409 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2410 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2411 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2412 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2413 2414 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2415 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2416 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2417 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2418 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2419 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2420 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2421 2422 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2423 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2424 2425 extern bool task_set_jobctl_pending(struct task_struct *task, 2426 unsigned long mask); 2427 extern void task_clear_jobctl_trapping(struct task_struct *task); 2428 extern void task_clear_jobctl_pending(struct task_struct *task, 2429 unsigned long mask); 2430 2431 static inline void rcu_copy_process(struct task_struct *p) 2432 { 2433 #ifdef CONFIG_PREEMPT_RCU 2434 p->rcu_read_lock_nesting = 0; 2435 p->rcu_read_unlock_special.s = 0; 2436 p->rcu_blocked_node = NULL; 2437 INIT_LIST_HEAD(&p->rcu_node_entry); 2438 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2439 #ifdef CONFIG_TASKS_RCU 2440 p->rcu_tasks_holdout = false; 2441 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2442 p->rcu_tasks_idle_cpu = -1; 2443 #endif /* #ifdef CONFIG_TASKS_RCU */ 2444 } 2445 2446 static inline void tsk_restore_flags(struct task_struct *task, 2447 unsigned long orig_flags, unsigned long flags) 2448 { 2449 task->flags &= ~flags; 2450 task->flags |= orig_flags & flags; 2451 } 2452 2453 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2454 const struct cpumask *trial); 2455 extern int task_can_attach(struct task_struct *p, 2456 const struct cpumask *cs_cpus_allowed); 2457 #ifdef CONFIG_SMP 2458 extern void do_set_cpus_allowed(struct task_struct *p, 2459 const struct cpumask *new_mask); 2460 2461 extern int set_cpus_allowed_ptr(struct task_struct *p, 2462 const struct cpumask *new_mask); 2463 #else 2464 static inline void do_set_cpus_allowed(struct task_struct *p, 2465 const struct cpumask *new_mask) 2466 { 2467 } 2468 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2469 const struct cpumask *new_mask) 2470 { 2471 if (!cpumask_test_cpu(0, new_mask)) 2472 return -EINVAL; 2473 return 0; 2474 } 2475 #endif 2476 2477 #ifdef CONFIG_NO_HZ_COMMON 2478 void calc_load_enter_idle(void); 2479 void calc_load_exit_idle(void); 2480 #else 2481 static inline void calc_load_enter_idle(void) { } 2482 static inline void calc_load_exit_idle(void) { } 2483 #endif /* CONFIG_NO_HZ_COMMON */ 2484 2485 #ifndef cpu_relax_yield 2486 #define cpu_relax_yield() cpu_relax() 2487 #endif 2488 2489 /* 2490 * Do not use outside of architecture code which knows its limitations. 2491 * 2492 * sched_clock() has no promise of monotonicity or bounded drift between 2493 * CPUs, use (which you should not) requires disabling IRQs. 2494 * 2495 * Please use one of the three interfaces below. 2496 */ 2497 extern unsigned long long notrace sched_clock(void); 2498 /* 2499 * See the comment in kernel/sched/clock.c 2500 */ 2501 extern u64 running_clock(void); 2502 extern u64 sched_clock_cpu(int cpu); 2503 2504 2505 extern void sched_clock_init(void); 2506 2507 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2508 static inline void sched_clock_tick(void) 2509 { 2510 } 2511 2512 static inline void sched_clock_idle_sleep_event(void) 2513 { 2514 } 2515 2516 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2517 { 2518 } 2519 2520 static inline u64 cpu_clock(int cpu) 2521 { 2522 return sched_clock(); 2523 } 2524 2525 static inline u64 local_clock(void) 2526 { 2527 return sched_clock(); 2528 } 2529 #else 2530 /* 2531 * Architectures can set this to 1 if they have specified 2532 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2533 * but then during bootup it turns out that sched_clock() 2534 * is reliable after all: 2535 */ 2536 extern int sched_clock_stable(void); 2537 extern void set_sched_clock_stable(void); 2538 extern void clear_sched_clock_stable(void); 2539 2540 extern void sched_clock_tick(void); 2541 extern void sched_clock_idle_sleep_event(void); 2542 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2543 2544 /* 2545 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2546 * time source that is monotonic per cpu argument and has bounded drift 2547 * between cpus. 2548 * 2549 * ######################### BIG FAT WARNING ########################## 2550 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2551 * # go backwards !! # 2552 * #################################################################### 2553 */ 2554 static inline u64 cpu_clock(int cpu) 2555 { 2556 return sched_clock_cpu(cpu); 2557 } 2558 2559 static inline u64 local_clock(void) 2560 { 2561 return sched_clock_cpu(raw_smp_processor_id()); 2562 } 2563 #endif 2564 2565 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2566 /* 2567 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2568 * The reason for this explicit opt-in is not to have perf penalty with 2569 * slow sched_clocks. 2570 */ 2571 extern void enable_sched_clock_irqtime(void); 2572 extern void disable_sched_clock_irqtime(void); 2573 #else 2574 static inline void enable_sched_clock_irqtime(void) {} 2575 static inline void disable_sched_clock_irqtime(void) {} 2576 #endif 2577 2578 extern unsigned long long 2579 task_sched_runtime(struct task_struct *task); 2580 2581 /* sched_exec is called by processes performing an exec */ 2582 #ifdef CONFIG_SMP 2583 extern void sched_exec(void); 2584 #else 2585 #define sched_exec() {} 2586 #endif 2587 2588 extern void sched_clock_idle_sleep_event(void); 2589 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2590 2591 #ifdef CONFIG_HOTPLUG_CPU 2592 extern void idle_task_exit(void); 2593 #else 2594 static inline void idle_task_exit(void) {} 2595 #endif 2596 2597 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2598 extern void wake_up_nohz_cpu(int cpu); 2599 #else 2600 static inline void wake_up_nohz_cpu(int cpu) { } 2601 #endif 2602 2603 #ifdef CONFIG_NO_HZ_FULL 2604 extern u64 scheduler_tick_max_deferment(void); 2605 #endif 2606 2607 #ifdef CONFIG_SCHED_AUTOGROUP 2608 extern void sched_autogroup_create_attach(struct task_struct *p); 2609 extern void sched_autogroup_detach(struct task_struct *p); 2610 extern void sched_autogroup_fork(struct signal_struct *sig); 2611 extern void sched_autogroup_exit(struct signal_struct *sig); 2612 extern void sched_autogroup_exit_task(struct task_struct *p); 2613 #ifdef CONFIG_PROC_FS 2614 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2615 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2616 #endif 2617 #else 2618 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2619 static inline void sched_autogroup_detach(struct task_struct *p) { } 2620 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2621 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2622 static inline void sched_autogroup_exit_task(struct task_struct *p) { } 2623 #endif 2624 2625 extern int yield_to(struct task_struct *p, bool preempt); 2626 extern void set_user_nice(struct task_struct *p, long nice); 2627 extern int task_prio(const struct task_struct *p); 2628 /** 2629 * task_nice - return the nice value of a given task. 2630 * @p: the task in question. 2631 * 2632 * Return: The nice value [ -20 ... 0 ... 19 ]. 2633 */ 2634 static inline int task_nice(const struct task_struct *p) 2635 { 2636 return PRIO_TO_NICE((p)->static_prio); 2637 } 2638 extern int can_nice(const struct task_struct *p, const int nice); 2639 extern int task_curr(const struct task_struct *p); 2640 extern int idle_cpu(int cpu); 2641 extern int sched_setscheduler(struct task_struct *, int, 2642 const struct sched_param *); 2643 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2644 const struct sched_param *); 2645 extern int sched_setattr(struct task_struct *, 2646 const struct sched_attr *); 2647 extern struct task_struct *idle_task(int cpu); 2648 /** 2649 * is_idle_task - is the specified task an idle task? 2650 * @p: the task in question. 2651 * 2652 * Return: 1 if @p is an idle task. 0 otherwise. 2653 */ 2654 static inline bool is_idle_task(const struct task_struct *p) 2655 { 2656 return !!(p->flags & PF_IDLE); 2657 } 2658 extern struct task_struct *curr_task(int cpu); 2659 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 2660 2661 void yield(void); 2662 2663 union thread_union { 2664 #ifndef CONFIG_THREAD_INFO_IN_TASK 2665 struct thread_info thread_info; 2666 #endif 2667 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2668 }; 2669 2670 #ifndef __HAVE_ARCH_KSTACK_END 2671 static inline int kstack_end(void *addr) 2672 { 2673 /* Reliable end of stack detection: 2674 * Some APM bios versions misalign the stack 2675 */ 2676 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2677 } 2678 #endif 2679 2680 extern union thread_union init_thread_union; 2681 extern struct task_struct init_task; 2682 2683 extern struct mm_struct init_mm; 2684 2685 extern struct pid_namespace init_pid_ns; 2686 2687 /* 2688 * find a task by one of its numerical ids 2689 * 2690 * find_task_by_pid_ns(): 2691 * finds a task by its pid in the specified namespace 2692 * find_task_by_vpid(): 2693 * finds a task by its virtual pid 2694 * 2695 * see also find_vpid() etc in include/linux/pid.h 2696 */ 2697 2698 extern struct task_struct *find_task_by_vpid(pid_t nr); 2699 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2700 struct pid_namespace *ns); 2701 2702 /* per-UID process charging. */ 2703 extern struct user_struct * alloc_uid(kuid_t); 2704 static inline struct user_struct *get_uid(struct user_struct *u) 2705 { 2706 atomic_inc(&u->__count); 2707 return u; 2708 } 2709 extern void free_uid(struct user_struct *); 2710 2711 #include <asm/current.h> 2712 2713 extern void xtime_update(unsigned long ticks); 2714 2715 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2716 extern int wake_up_process(struct task_struct *tsk); 2717 extern void wake_up_new_task(struct task_struct *tsk); 2718 #ifdef CONFIG_SMP 2719 extern void kick_process(struct task_struct *tsk); 2720 #else 2721 static inline void kick_process(struct task_struct *tsk) { } 2722 #endif 2723 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2724 extern void sched_dead(struct task_struct *p); 2725 2726 extern void proc_caches_init(void); 2727 extern void flush_signals(struct task_struct *); 2728 extern void ignore_signals(struct task_struct *); 2729 extern void flush_signal_handlers(struct task_struct *, int force_default); 2730 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2731 2732 static inline int kernel_dequeue_signal(siginfo_t *info) 2733 { 2734 struct task_struct *tsk = current; 2735 siginfo_t __info; 2736 int ret; 2737 2738 spin_lock_irq(&tsk->sighand->siglock); 2739 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2740 spin_unlock_irq(&tsk->sighand->siglock); 2741 2742 return ret; 2743 } 2744 2745 static inline void kernel_signal_stop(void) 2746 { 2747 spin_lock_irq(¤t->sighand->siglock); 2748 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2749 __set_current_state(TASK_STOPPED); 2750 spin_unlock_irq(¤t->sighand->siglock); 2751 2752 schedule(); 2753 } 2754 2755 extern void release_task(struct task_struct * p); 2756 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2757 extern int force_sigsegv(int, struct task_struct *); 2758 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2759 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2760 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2761 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2762 const struct cred *, u32); 2763 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2764 extern int kill_pid(struct pid *pid, int sig, int priv); 2765 extern int kill_proc_info(int, struct siginfo *, pid_t); 2766 extern __must_check bool do_notify_parent(struct task_struct *, int); 2767 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2768 extern void force_sig(int, struct task_struct *); 2769 extern int send_sig(int, struct task_struct *, int); 2770 extern int zap_other_threads(struct task_struct *p); 2771 extern struct sigqueue *sigqueue_alloc(void); 2772 extern void sigqueue_free(struct sigqueue *); 2773 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2774 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2775 2776 #ifdef TIF_RESTORE_SIGMASK 2777 /* 2778 * Legacy restore_sigmask accessors. These are inefficient on 2779 * SMP architectures because they require atomic operations. 2780 */ 2781 2782 /** 2783 * set_restore_sigmask() - make sure saved_sigmask processing gets done 2784 * 2785 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 2786 * will run before returning to user mode, to process the flag. For 2787 * all callers, TIF_SIGPENDING is already set or it's no harm to set 2788 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 2789 * arch code will notice on return to user mode, in case those bits 2790 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 2791 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 2792 */ 2793 static inline void set_restore_sigmask(void) 2794 { 2795 set_thread_flag(TIF_RESTORE_SIGMASK); 2796 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2797 } 2798 static inline void clear_restore_sigmask(void) 2799 { 2800 clear_thread_flag(TIF_RESTORE_SIGMASK); 2801 } 2802 static inline bool test_restore_sigmask(void) 2803 { 2804 return test_thread_flag(TIF_RESTORE_SIGMASK); 2805 } 2806 static inline bool test_and_clear_restore_sigmask(void) 2807 { 2808 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 2809 } 2810 2811 #else /* TIF_RESTORE_SIGMASK */ 2812 2813 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 2814 static inline void set_restore_sigmask(void) 2815 { 2816 current->restore_sigmask = true; 2817 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2818 } 2819 static inline void clear_restore_sigmask(void) 2820 { 2821 current->restore_sigmask = false; 2822 } 2823 static inline bool test_restore_sigmask(void) 2824 { 2825 return current->restore_sigmask; 2826 } 2827 static inline bool test_and_clear_restore_sigmask(void) 2828 { 2829 if (!current->restore_sigmask) 2830 return false; 2831 current->restore_sigmask = false; 2832 return true; 2833 } 2834 #endif 2835 2836 static inline void restore_saved_sigmask(void) 2837 { 2838 if (test_and_clear_restore_sigmask()) 2839 __set_current_blocked(¤t->saved_sigmask); 2840 } 2841 2842 static inline sigset_t *sigmask_to_save(void) 2843 { 2844 sigset_t *res = ¤t->blocked; 2845 if (unlikely(test_restore_sigmask())) 2846 res = ¤t->saved_sigmask; 2847 return res; 2848 } 2849 2850 static inline int kill_cad_pid(int sig, int priv) 2851 { 2852 return kill_pid(cad_pid, sig, priv); 2853 } 2854 2855 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2856 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2857 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2858 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2859 2860 /* 2861 * True if we are on the alternate signal stack. 2862 */ 2863 static inline int on_sig_stack(unsigned long sp) 2864 { 2865 /* 2866 * If the signal stack is SS_AUTODISARM then, by construction, we 2867 * can't be on the signal stack unless user code deliberately set 2868 * SS_AUTODISARM when we were already on it. 2869 * 2870 * This improves reliability: if user state gets corrupted such that 2871 * the stack pointer points very close to the end of the signal stack, 2872 * then this check will enable the signal to be handled anyway. 2873 */ 2874 if (current->sas_ss_flags & SS_AUTODISARM) 2875 return 0; 2876 2877 #ifdef CONFIG_STACK_GROWSUP 2878 return sp >= current->sas_ss_sp && 2879 sp - current->sas_ss_sp < current->sas_ss_size; 2880 #else 2881 return sp > current->sas_ss_sp && 2882 sp - current->sas_ss_sp <= current->sas_ss_size; 2883 #endif 2884 } 2885 2886 static inline int sas_ss_flags(unsigned long sp) 2887 { 2888 if (!current->sas_ss_size) 2889 return SS_DISABLE; 2890 2891 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2892 } 2893 2894 static inline void sas_ss_reset(struct task_struct *p) 2895 { 2896 p->sas_ss_sp = 0; 2897 p->sas_ss_size = 0; 2898 p->sas_ss_flags = SS_DISABLE; 2899 } 2900 2901 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2902 { 2903 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2904 #ifdef CONFIG_STACK_GROWSUP 2905 return current->sas_ss_sp; 2906 #else 2907 return current->sas_ss_sp + current->sas_ss_size; 2908 #endif 2909 return sp; 2910 } 2911 2912 /* 2913 * Routines for handling mm_structs 2914 */ 2915 extern struct mm_struct * mm_alloc(void); 2916 2917 /* mmdrop drops the mm and the page tables */ 2918 extern void __mmdrop(struct mm_struct *); 2919 static inline void mmdrop(struct mm_struct *mm) 2920 { 2921 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2922 __mmdrop(mm); 2923 } 2924 2925 static inline void mmdrop_async_fn(struct work_struct *work) 2926 { 2927 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); 2928 __mmdrop(mm); 2929 } 2930 2931 static inline void mmdrop_async(struct mm_struct *mm) 2932 { 2933 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 2934 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 2935 schedule_work(&mm->async_put_work); 2936 } 2937 } 2938 2939 static inline bool mmget_not_zero(struct mm_struct *mm) 2940 { 2941 return atomic_inc_not_zero(&mm->mm_users); 2942 } 2943 2944 /* mmput gets rid of the mappings and all user-space */ 2945 extern void mmput(struct mm_struct *); 2946 #ifdef CONFIG_MMU 2947 /* same as above but performs the slow path from the async context. Can 2948 * be called from the atomic context as well 2949 */ 2950 extern void mmput_async(struct mm_struct *); 2951 #endif 2952 2953 /* Grab a reference to a task's mm, if it is not already going away */ 2954 extern struct mm_struct *get_task_mm(struct task_struct *task); 2955 /* 2956 * Grab a reference to a task's mm, if it is not already going away 2957 * and ptrace_may_access with the mode parameter passed to it 2958 * succeeds. 2959 */ 2960 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2961 /* Remove the current tasks stale references to the old mm_struct */ 2962 extern void mm_release(struct task_struct *, struct mm_struct *); 2963 2964 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2965 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2966 struct task_struct *, unsigned long); 2967 #else 2968 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2969 struct task_struct *); 2970 2971 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2972 * via pt_regs, so ignore the tls argument passed via C. */ 2973 static inline int copy_thread_tls( 2974 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2975 struct task_struct *p, unsigned long tls) 2976 { 2977 return copy_thread(clone_flags, sp, arg, p); 2978 } 2979 #endif 2980 extern void flush_thread(void); 2981 2982 #ifdef CONFIG_HAVE_EXIT_THREAD 2983 extern void exit_thread(struct task_struct *tsk); 2984 #else 2985 static inline void exit_thread(struct task_struct *tsk) 2986 { 2987 } 2988 #endif 2989 2990 extern void exit_files(struct task_struct *); 2991 extern void __cleanup_sighand(struct sighand_struct *); 2992 2993 extern void exit_itimers(struct signal_struct *); 2994 extern void flush_itimer_signals(void); 2995 2996 extern void do_group_exit(int); 2997 2998 extern int do_execve(struct filename *, 2999 const char __user * const __user *, 3000 const char __user * const __user *); 3001 extern int do_execveat(int, struct filename *, 3002 const char __user * const __user *, 3003 const char __user * const __user *, 3004 int); 3005 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 3006 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 3007 struct task_struct *fork_idle(int); 3008 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 3009 3010 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 3011 static inline void set_task_comm(struct task_struct *tsk, const char *from) 3012 { 3013 __set_task_comm(tsk, from, false); 3014 } 3015 extern char *get_task_comm(char *to, struct task_struct *tsk); 3016 3017 #ifdef CONFIG_SMP 3018 void scheduler_ipi(void); 3019 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 3020 #else 3021 static inline void scheduler_ipi(void) { } 3022 static inline unsigned long wait_task_inactive(struct task_struct *p, 3023 long match_state) 3024 { 3025 return 1; 3026 } 3027 #endif 3028 3029 #define tasklist_empty() \ 3030 list_empty(&init_task.tasks) 3031 3032 #define next_task(p) \ 3033 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 3034 3035 #define for_each_process(p) \ 3036 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 3037 3038 extern bool current_is_single_threaded(void); 3039 3040 /* 3041 * Careful: do_each_thread/while_each_thread is a double loop so 3042 * 'break' will not work as expected - use goto instead. 3043 */ 3044 #define do_each_thread(g, t) \ 3045 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 3046 3047 #define while_each_thread(g, t) \ 3048 while ((t = next_thread(t)) != g) 3049 3050 #define __for_each_thread(signal, t) \ 3051 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 3052 3053 #define for_each_thread(p, t) \ 3054 __for_each_thread((p)->signal, t) 3055 3056 /* Careful: this is a double loop, 'break' won't work as expected. */ 3057 #define for_each_process_thread(p, t) \ 3058 for_each_process(p) for_each_thread(p, t) 3059 3060 static inline int get_nr_threads(struct task_struct *tsk) 3061 { 3062 return tsk->signal->nr_threads; 3063 } 3064 3065 static inline bool thread_group_leader(struct task_struct *p) 3066 { 3067 return p->exit_signal >= 0; 3068 } 3069 3070 /* Do to the insanities of de_thread it is possible for a process 3071 * to have the pid of the thread group leader without actually being 3072 * the thread group leader. For iteration through the pids in proc 3073 * all we care about is that we have a task with the appropriate 3074 * pid, we don't actually care if we have the right task. 3075 */ 3076 static inline bool has_group_leader_pid(struct task_struct *p) 3077 { 3078 return task_pid(p) == p->signal->leader_pid; 3079 } 3080 3081 static inline 3082 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 3083 { 3084 return p1->signal == p2->signal; 3085 } 3086 3087 static inline struct task_struct *next_thread(const struct task_struct *p) 3088 { 3089 return list_entry_rcu(p->thread_group.next, 3090 struct task_struct, thread_group); 3091 } 3092 3093 static inline int thread_group_empty(struct task_struct *p) 3094 { 3095 return list_empty(&p->thread_group); 3096 } 3097 3098 #define delay_group_leader(p) \ 3099 (thread_group_leader(p) && !thread_group_empty(p)) 3100 3101 /* 3102 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 3103 * subscriptions and synchronises with wait4(). Also used in procfs. Also 3104 * pins the final release of task.io_context. Also protects ->cpuset and 3105 * ->cgroup.subsys[]. And ->vfork_done. 3106 * 3107 * Nests both inside and outside of read_lock(&tasklist_lock). 3108 * It must not be nested with write_lock_irq(&tasklist_lock), 3109 * neither inside nor outside. 3110 */ 3111 static inline void task_lock(struct task_struct *p) 3112 { 3113 spin_lock(&p->alloc_lock); 3114 } 3115 3116 static inline void task_unlock(struct task_struct *p) 3117 { 3118 spin_unlock(&p->alloc_lock); 3119 } 3120 3121 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 3122 unsigned long *flags); 3123 3124 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 3125 unsigned long *flags) 3126 { 3127 struct sighand_struct *ret; 3128 3129 ret = __lock_task_sighand(tsk, flags); 3130 (void)__cond_lock(&tsk->sighand->siglock, ret); 3131 return ret; 3132 } 3133 3134 static inline void unlock_task_sighand(struct task_struct *tsk, 3135 unsigned long *flags) 3136 { 3137 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 3138 } 3139 3140 /** 3141 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 3142 * @tsk: task causing the changes 3143 * 3144 * All operations which modify a threadgroup - a new thread joining the 3145 * group, death of a member thread (the assertion of PF_EXITING) and 3146 * exec(2) dethreading the process and replacing the leader - are wrapped 3147 * by threadgroup_change_{begin|end}(). This is to provide a place which 3148 * subsystems needing threadgroup stability can hook into for 3149 * synchronization. 3150 */ 3151 static inline void threadgroup_change_begin(struct task_struct *tsk) 3152 { 3153 might_sleep(); 3154 cgroup_threadgroup_change_begin(tsk); 3155 } 3156 3157 /** 3158 * threadgroup_change_end - mark the end of changes to a threadgroup 3159 * @tsk: task causing the changes 3160 * 3161 * See threadgroup_change_begin(). 3162 */ 3163 static inline void threadgroup_change_end(struct task_struct *tsk) 3164 { 3165 cgroup_threadgroup_change_end(tsk); 3166 } 3167 3168 #ifdef CONFIG_THREAD_INFO_IN_TASK 3169 3170 static inline struct thread_info *task_thread_info(struct task_struct *task) 3171 { 3172 return &task->thread_info; 3173 } 3174 3175 /* 3176 * When accessing the stack of a non-current task that might exit, use 3177 * try_get_task_stack() instead. task_stack_page will return a pointer 3178 * that could get freed out from under you. 3179 */ 3180 static inline void *task_stack_page(const struct task_struct *task) 3181 { 3182 return task->stack; 3183 } 3184 3185 #define setup_thread_stack(new,old) do { } while(0) 3186 3187 static inline unsigned long *end_of_stack(const struct task_struct *task) 3188 { 3189 return task->stack; 3190 } 3191 3192 #elif !defined(__HAVE_THREAD_FUNCTIONS) 3193 3194 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 3195 #define task_stack_page(task) ((void *)(task)->stack) 3196 3197 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 3198 { 3199 *task_thread_info(p) = *task_thread_info(org); 3200 task_thread_info(p)->task = p; 3201 } 3202 3203 /* 3204 * Return the address of the last usable long on the stack. 3205 * 3206 * When the stack grows down, this is just above the thread 3207 * info struct. Going any lower will corrupt the threadinfo. 3208 * 3209 * When the stack grows up, this is the highest address. 3210 * Beyond that position, we corrupt data on the next page. 3211 */ 3212 static inline unsigned long *end_of_stack(struct task_struct *p) 3213 { 3214 #ifdef CONFIG_STACK_GROWSUP 3215 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 3216 #else 3217 return (unsigned long *)(task_thread_info(p) + 1); 3218 #endif 3219 } 3220 3221 #endif 3222 3223 #ifdef CONFIG_THREAD_INFO_IN_TASK 3224 static inline void *try_get_task_stack(struct task_struct *tsk) 3225 { 3226 return atomic_inc_not_zero(&tsk->stack_refcount) ? 3227 task_stack_page(tsk) : NULL; 3228 } 3229 3230 extern void put_task_stack(struct task_struct *tsk); 3231 #else 3232 static inline void *try_get_task_stack(struct task_struct *tsk) 3233 { 3234 return task_stack_page(tsk); 3235 } 3236 3237 static inline void put_task_stack(struct task_struct *tsk) {} 3238 #endif 3239 3240 #define task_stack_end_corrupted(task) \ 3241 (*(end_of_stack(task)) != STACK_END_MAGIC) 3242 3243 static inline int object_is_on_stack(void *obj) 3244 { 3245 void *stack = task_stack_page(current); 3246 3247 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3248 } 3249 3250 extern void thread_stack_cache_init(void); 3251 3252 #ifdef CONFIG_DEBUG_STACK_USAGE 3253 static inline unsigned long stack_not_used(struct task_struct *p) 3254 { 3255 unsigned long *n = end_of_stack(p); 3256 3257 do { /* Skip over canary */ 3258 # ifdef CONFIG_STACK_GROWSUP 3259 n--; 3260 # else 3261 n++; 3262 # endif 3263 } while (!*n); 3264 3265 # ifdef CONFIG_STACK_GROWSUP 3266 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3267 # else 3268 return (unsigned long)n - (unsigned long)end_of_stack(p); 3269 # endif 3270 } 3271 #endif 3272 extern void set_task_stack_end_magic(struct task_struct *tsk); 3273 3274 /* set thread flags in other task's structures 3275 * - see asm/thread_info.h for TIF_xxxx flags available 3276 */ 3277 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3278 { 3279 set_ti_thread_flag(task_thread_info(tsk), flag); 3280 } 3281 3282 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3283 { 3284 clear_ti_thread_flag(task_thread_info(tsk), flag); 3285 } 3286 3287 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3288 { 3289 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3290 } 3291 3292 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3293 { 3294 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3295 } 3296 3297 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3298 { 3299 return test_ti_thread_flag(task_thread_info(tsk), flag); 3300 } 3301 3302 static inline void set_tsk_need_resched(struct task_struct *tsk) 3303 { 3304 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3305 } 3306 3307 static inline void clear_tsk_need_resched(struct task_struct *tsk) 3308 { 3309 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3310 } 3311 3312 static inline int test_tsk_need_resched(struct task_struct *tsk) 3313 { 3314 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3315 } 3316 3317 static inline int restart_syscall(void) 3318 { 3319 set_tsk_thread_flag(current, TIF_SIGPENDING); 3320 return -ERESTARTNOINTR; 3321 } 3322 3323 static inline int signal_pending(struct task_struct *p) 3324 { 3325 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3326 } 3327 3328 static inline int __fatal_signal_pending(struct task_struct *p) 3329 { 3330 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3331 } 3332 3333 static inline int fatal_signal_pending(struct task_struct *p) 3334 { 3335 return signal_pending(p) && __fatal_signal_pending(p); 3336 } 3337 3338 static inline int signal_pending_state(long state, struct task_struct *p) 3339 { 3340 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3341 return 0; 3342 if (!signal_pending(p)) 3343 return 0; 3344 3345 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3346 } 3347 3348 /* 3349 * cond_resched() and cond_resched_lock(): latency reduction via 3350 * explicit rescheduling in places that are safe. The return 3351 * value indicates whether a reschedule was done in fact. 3352 * cond_resched_lock() will drop the spinlock before scheduling, 3353 * cond_resched_softirq() will enable bhs before scheduling. 3354 */ 3355 #ifndef CONFIG_PREEMPT 3356 extern int _cond_resched(void); 3357 #else 3358 static inline int _cond_resched(void) { return 0; } 3359 #endif 3360 3361 #define cond_resched() ({ \ 3362 ___might_sleep(__FILE__, __LINE__, 0); \ 3363 _cond_resched(); \ 3364 }) 3365 3366 extern int __cond_resched_lock(spinlock_t *lock); 3367 3368 #define cond_resched_lock(lock) ({ \ 3369 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3370 __cond_resched_lock(lock); \ 3371 }) 3372 3373 extern int __cond_resched_softirq(void); 3374 3375 #define cond_resched_softirq() ({ \ 3376 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3377 __cond_resched_softirq(); \ 3378 }) 3379 3380 static inline void cond_resched_rcu(void) 3381 { 3382 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3383 rcu_read_unlock(); 3384 cond_resched(); 3385 rcu_read_lock(); 3386 #endif 3387 } 3388 3389 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3390 { 3391 #ifdef CONFIG_DEBUG_PREEMPT 3392 return p->preempt_disable_ip; 3393 #else 3394 return 0; 3395 #endif 3396 } 3397 3398 /* 3399 * Does a critical section need to be broken due to another 3400 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3401 * but a general need for low latency) 3402 */ 3403 static inline int spin_needbreak(spinlock_t *lock) 3404 { 3405 #ifdef CONFIG_PREEMPT 3406 return spin_is_contended(lock); 3407 #else 3408 return 0; 3409 #endif 3410 } 3411 3412 /* 3413 * Idle thread specific functions to determine the need_resched 3414 * polling state. 3415 */ 3416 #ifdef TIF_POLLING_NRFLAG 3417 static inline int tsk_is_polling(struct task_struct *p) 3418 { 3419 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3420 } 3421 3422 static inline void __current_set_polling(void) 3423 { 3424 set_thread_flag(TIF_POLLING_NRFLAG); 3425 } 3426 3427 static inline bool __must_check current_set_polling_and_test(void) 3428 { 3429 __current_set_polling(); 3430 3431 /* 3432 * Polling state must be visible before we test NEED_RESCHED, 3433 * paired by resched_curr() 3434 */ 3435 smp_mb__after_atomic(); 3436 3437 return unlikely(tif_need_resched()); 3438 } 3439 3440 static inline void __current_clr_polling(void) 3441 { 3442 clear_thread_flag(TIF_POLLING_NRFLAG); 3443 } 3444 3445 static inline bool __must_check current_clr_polling_and_test(void) 3446 { 3447 __current_clr_polling(); 3448 3449 /* 3450 * Polling state must be visible before we test NEED_RESCHED, 3451 * paired by resched_curr() 3452 */ 3453 smp_mb__after_atomic(); 3454 3455 return unlikely(tif_need_resched()); 3456 } 3457 3458 #else 3459 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3460 static inline void __current_set_polling(void) { } 3461 static inline void __current_clr_polling(void) { } 3462 3463 static inline bool __must_check current_set_polling_and_test(void) 3464 { 3465 return unlikely(tif_need_resched()); 3466 } 3467 static inline bool __must_check current_clr_polling_and_test(void) 3468 { 3469 return unlikely(tif_need_resched()); 3470 } 3471 #endif 3472 3473 static inline void current_clr_polling(void) 3474 { 3475 __current_clr_polling(); 3476 3477 /* 3478 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3479 * Once the bit is cleared, we'll get IPIs with every new 3480 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3481 * fold. 3482 */ 3483 smp_mb(); /* paired with resched_curr() */ 3484 3485 preempt_fold_need_resched(); 3486 } 3487 3488 static __always_inline bool need_resched(void) 3489 { 3490 return unlikely(tif_need_resched()); 3491 } 3492 3493 /* 3494 * Thread group CPU time accounting. 3495 */ 3496 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3497 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3498 3499 /* 3500 * Reevaluate whether the task has signals pending delivery. 3501 * Wake the task if so. 3502 * This is required every time the blocked sigset_t changes. 3503 * callers must hold sighand->siglock. 3504 */ 3505 extern void recalc_sigpending_and_wake(struct task_struct *t); 3506 extern void recalc_sigpending(void); 3507 3508 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3509 3510 static inline void signal_wake_up(struct task_struct *t, bool resume) 3511 { 3512 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3513 } 3514 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3515 { 3516 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3517 } 3518 3519 /* 3520 * Wrappers for p->thread_info->cpu access. No-op on UP. 3521 */ 3522 #ifdef CONFIG_SMP 3523 3524 static inline unsigned int task_cpu(const struct task_struct *p) 3525 { 3526 #ifdef CONFIG_THREAD_INFO_IN_TASK 3527 return p->cpu; 3528 #else 3529 return task_thread_info(p)->cpu; 3530 #endif 3531 } 3532 3533 static inline int task_node(const struct task_struct *p) 3534 { 3535 return cpu_to_node(task_cpu(p)); 3536 } 3537 3538 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3539 3540 #else 3541 3542 static inline unsigned int task_cpu(const struct task_struct *p) 3543 { 3544 return 0; 3545 } 3546 3547 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3548 { 3549 } 3550 3551 #endif /* CONFIG_SMP */ 3552 3553 /* 3554 * In order to reduce various lock holder preemption latencies provide an 3555 * interface to see if a vCPU is currently running or not. 3556 * 3557 * This allows us to terminate optimistic spin loops and block, analogous to 3558 * the native optimistic spin heuristic of testing if the lock owner task is 3559 * running or not. 3560 */ 3561 #ifndef vcpu_is_preempted 3562 # define vcpu_is_preempted(cpu) false 3563 #endif 3564 3565 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3566 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3567 3568 #ifdef CONFIG_CGROUP_SCHED 3569 extern struct task_group root_task_group; 3570 #endif /* CONFIG_CGROUP_SCHED */ 3571 3572 extern int task_can_switch_user(struct user_struct *up, 3573 struct task_struct *tsk); 3574 3575 #ifdef CONFIG_TASK_XACCT 3576 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3577 { 3578 tsk->ioac.rchar += amt; 3579 } 3580 3581 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3582 { 3583 tsk->ioac.wchar += amt; 3584 } 3585 3586 static inline void inc_syscr(struct task_struct *tsk) 3587 { 3588 tsk->ioac.syscr++; 3589 } 3590 3591 static inline void inc_syscw(struct task_struct *tsk) 3592 { 3593 tsk->ioac.syscw++; 3594 } 3595 #else 3596 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3597 { 3598 } 3599 3600 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3601 { 3602 } 3603 3604 static inline void inc_syscr(struct task_struct *tsk) 3605 { 3606 } 3607 3608 static inline void inc_syscw(struct task_struct *tsk) 3609 { 3610 } 3611 #endif 3612 3613 #ifndef TASK_SIZE_OF 3614 #define TASK_SIZE_OF(tsk) TASK_SIZE 3615 #endif 3616 3617 #ifdef CONFIG_MEMCG 3618 extern void mm_update_next_owner(struct mm_struct *mm); 3619 #else 3620 static inline void mm_update_next_owner(struct mm_struct *mm) 3621 { 3622 } 3623 #endif /* CONFIG_MEMCG */ 3624 3625 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3626 unsigned int limit) 3627 { 3628 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3629 } 3630 3631 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3632 unsigned int limit) 3633 { 3634 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3635 } 3636 3637 static inline unsigned long rlimit(unsigned int limit) 3638 { 3639 return task_rlimit(current, limit); 3640 } 3641 3642 static inline unsigned long rlimit_max(unsigned int limit) 3643 { 3644 return task_rlimit_max(current, limit); 3645 } 3646 3647 #define SCHED_CPUFREQ_RT (1U << 0) 3648 #define SCHED_CPUFREQ_DL (1U << 1) 3649 #define SCHED_CPUFREQ_IOWAIT (1U << 2) 3650 3651 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL) 3652 3653 #ifdef CONFIG_CPU_FREQ 3654 struct update_util_data { 3655 void (*func)(struct update_util_data *data, u64 time, unsigned int flags); 3656 }; 3657 3658 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3659 void (*func)(struct update_util_data *data, u64 time, 3660 unsigned int flags)); 3661 void cpufreq_remove_update_util_hook(int cpu); 3662 #endif /* CONFIG_CPU_FREQ */ 3663 3664 #endif 3665