xref: /linux/include/linux/sched.h (revision ae77cbc1e7b90473a2b0963bce0e1eb163873214)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
8 	int sched_priority;
9 };
10 
11 #include <asm/param.h>	/* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29 
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43 
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/processor.h>
57 
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65 
66 /*
67  * List of flags we want to share for kernel threads,
68  * if only because they are not used by them anyway.
69  */
70 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71 
72 /*
73  * These are the constant used to fake the fixed-point load-average
74  * counting. Some notes:
75  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
76  *    a load-average precision of 10 bits integer + 11 bits fractional
77  *  - if you want to count load-averages more often, you need more
78  *    precision, or rounding will get you. With 2-second counting freq,
79  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
80  *    11 bit fractions.
81  */
82 extern unsigned long avenrun[];		/* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84 
85 #define FSHIFT		11		/* nr of bits of precision */
86 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
87 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
88 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5		2014		/* 1/exp(5sec/5min) */
90 #define EXP_15		2037		/* 1/exp(5sec/15min) */
91 
92 #define CALC_LOAD(load,exp,n) \
93 	load *= exp; \
94 	load += n*(FIXED_1-exp); \
95 	load >>= FSHIFT;
96 
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105 
106 
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109 
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 	struct task_struct *task;
113 	int from_cpu;
114 	int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117 
118 extern unsigned long get_parent_ip(unsigned long addr);
119 
120 extern void dump_cpu_task(int cpu);
121 
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131 
132 /*
133  * Task state bitmask. NOTE! These bits are also
134  * encoded in fs/proc/array.c: get_task_state().
135  *
136  * We have two separate sets of flags: task->state
137  * is about runnability, while task->exit_state are
138  * about the task exiting. Confusing, but this way
139  * modifying one set can't modify the other one by
140  * mistake.
141  */
142 #define TASK_RUNNING		0
143 #define TASK_INTERRUPTIBLE	1
144 #define TASK_UNINTERRUPTIBLE	2
145 #define __TASK_STOPPED		4
146 #define __TASK_TRACED		8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE		16
149 #define EXIT_DEAD		32
150 /* in tsk->state again */
151 #define TASK_DEAD		64
152 #define TASK_WAKEKILL		128
153 #define TASK_WAKING		256
154 #define TASK_PARKED		512
155 #define TASK_STATE_MAX		1024
156 
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158 
159 extern char ___assert_task_state[1 - 2*!!(
160 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161 
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
166 
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170 
171 /* get_task_state() */
172 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 				 __TASK_TRACED)
175 
176 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task)	((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task)	\
180 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task)	\
182 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 				 (task->flags & PF_FROZEN) == 0)
184 
185 #define __set_task_state(tsk, state_value)		\
186 	do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value)		\
188 	set_mb((tsk)->state, (state_value))
189 
190 /*
191  * set_current_state() includes a barrier so that the write of current->state
192  * is correctly serialised wrt the caller's subsequent test of whether to
193  * actually sleep:
194  *
195  *	set_current_state(TASK_UNINTERRUPTIBLE);
196  *	if (do_i_need_to_sleep())
197  *		schedule();
198  *
199  * If the caller does not need such serialisation then use __set_current_state()
200  */
201 #define __set_current_state(state_value)			\
202 	do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value)		\
204 	set_mb(current->state, (state_value))
205 
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208 
209 #include <linux/spinlock.h>
210 
211 /*
212  * This serializes "schedule()" and also protects
213  * the run-queue from deletions/modifications (but
214  * _adding_ to the beginning of the run-queue has
215  * a separate lock).
216  */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219 
220 struct task_struct;
221 
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225 
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231 
232 extern int runqueue_is_locked(int cpu);
233 
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242 
243 /*
244  * Only dump TASK_* tasks. (0 for all tasks)
245  */
246 extern void show_state_filter(unsigned long state_filter);
247 
248 static inline void show_state(void)
249 {
250 	show_state_filter(0);
251 }
252 
253 extern void show_regs(struct pt_regs *);
254 
255 /*
256  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257  * task), SP is the stack pointer of the first frame that should be shown in the back
258  * trace (or NULL if the entire call-chain of the task should be shown).
259  */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261 
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264 
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269 
270 extern void sched_show_task(struct task_struct *p);
271 
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 				  void __user *buffer,
278 				  size_t *lenp, loff_t *ppos);
279 extern unsigned int  softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295 
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched		__attribute__((__section__(".sched.text")))
298 
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301 
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304 
305 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312 
313 struct nsproxy;
314 struct user_namespace;
315 
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 		       unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 			  unsigned long len, unsigned long pgoff,
324 			  unsigned long flags);
325 #else
326 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
327 #endif
328 
329 
330 extern void set_dumpable(struct mm_struct *mm, int value);
331 extern int get_dumpable(struct mm_struct *mm);
332 
333 /* mm flags */
334 /* dumpable bits */
335 #define MMF_DUMPABLE      0  /* core dump is permitted */
336 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
337 
338 #define MMF_DUMPABLE_BITS 2
339 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
340 
341 /* coredump filter bits */
342 #define MMF_DUMP_ANON_PRIVATE	2
343 #define MMF_DUMP_ANON_SHARED	3
344 #define MMF_DUMP_MAPPED_PRIVATE	4
345 #define MMF_DUMP_MAPPED_SHARED	5
346 #define MMF_DUMP_ELF_HEADERS	6
347 #define MMF_DUMP_HUGETLB_PRIVATE 7
348 #define MMF_DUMP_HUGETLB_SHARED  8
349 
350 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
351 #define MMF_DUMP_FILTER_BITS	7
352 #define MMF_DUMP_FILTER_MASK \
353 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
354 #define MMF_DUMP_FILTER_DEFAULT \
355 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
356 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
357 
358 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
359 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
360 #else
361 # define MMF_DUMP_MASK_DEFAULT_ELF	0
362 #endif
363 					/* leave room for more dump flags */
364 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
365 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
366 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
367 
368 #define MMF_HAS_UPROBES		19	/* has uprobes */
369 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
370 
371 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
372 
373 struct sighand_struct {
374 	atomic_t		count;
375 	struct k_sigaction	action[_NSIG];
376 	spinlock_t		siglock;
377 	wait_queue_head_t	signalfd_wqh;
378 };
379 
380 struct pacct_struct {
381 	int			ac_flag;
382 	long			ac_exitcode;
383 	unsigned long		ac_mem;
384 	cputime_t		ac_utime, ac_stime;
385 	unsigned long		ac_minflt, ac_majflt;
386 };
387 
388 struct cpu_itimer {
389 	cputime_t expires;
390 	cputime_t incr;
391 	u32 error;
392 	u32 incr_error;
393 };
394 
395 /**
396  * struct cputime - snaphsot of system and user cputime
397  * @utime: time spent in user mode
398  * @stime: time spent in system mode
399  *
400  * Gathers a generic snapshot of user and system time.
401  */
402 struct cputime {
403 	cputime_t utime;
404 	cputime_t stime;
405 };
406 
407 /**
408  * struct task_cputime - collected CPU time counts
409  * @utime:		time spent in user mode, in &cputime_t units
410  * @stime:		time spent in kernel mode, in &cputime_t units
411  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
412  *
413  * This is an extension of struct cputime that includes the total runtime
414  * spent by the task from the scheduler point of view.
415  *
416  * As a result, this structure groups together three kinds of CPU time
417  * that are tracked for threads and thread groups.  Most things considering
418  * CPU time want to group these counts together and treat all three
419  * of them in parallel.
420  */
421 struct task_cputime {
422 	cputime_t utime;
423 	cputime_t stime;
424 	unsigned long long sum_exec_runtime;
425 };
426 /* Alternate field names when used to cache expirations. */
427 #define prof_exp	stime
428 #define virt_exp	utime
429 #define sched_exp	sum_exec_runtime
430 
431 #define INIT_CPUTIME	\
432 	(struct task_cputime) {					\
433 		.utime = 0,					\
434 		.stime = 0,					\
435 		.sum_exec_runtime = 0,				\
436 	}
437 
438 /*
439  * Disable preemption until the scheduler is running.
440  * Reset by start_kernel()->sched_init()->init_idle().
441  *
442  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
443  * before the scheduler is active -- see should_resched().
444  */
445 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
446 
447 /**
448  * struct thread_group_cputimer - thread group interval timer counts
449  * @cputime:		thread group interval timers.
450  * @running:		non-zero when there are timers running and
451  * 			@cputime receives updates.
452  * @lock:		lock for fields in this struct.
453  *
454  * This structure contains the version of task_cputime, above, that is
455  * used for thread group CPU timer calculations.
456  */
457 struct thread_group_cputimer {
458 	struct task_cputime cputime;
459 	int running;
460 	raw_spinlock_t lock;
461 };
462 
463 #include <linux/rwsem.h>
464 struct autogroup;
465 
466 /*
467  * NOTE! "signal_struct" does not have its own
468  * locking, because a shared signal_struct always
469  * implies a shared sighand_struct, so locking
470  * sighand_struct is always a proper superset of
471  * the locking of signal_struct.
472  */
473 struct signal_struct {
474 	atomic_t		sigcnt;
475 	atomic_t		live;
476 	int			nr_threads;
477 
478 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
479 
480 	/* current thread group signal load-balancing target: */
481 	struct task_struct	*curr_target;
482 
483 	/* shared signal handling: */
484 	struct sigpending	shared_pending;
485 
486 	/* thread group exit support */
487 	int			group_exit_code;
488 	/* overloaded:
489 	 * - notify group_exit_task when ->count is equal to notify_count
490 	 * - everyone except group_exit_task is stopped during signal delivery
491 	 *   of fatal signals, group_exit_task processes the signal.
492 	 */
493 	int			notify_count;
494 	struct task_struct	*group_exit_task;
495 
496 	/* thread group stop support, overloads group_exit_code too */
497 	int			group_stop_count;
498 	unsigned int		flags; /* see SIGNAL_* flags below */
499 
500 	/*
501 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
502 	 * manager, to re-parent orphan (double-forking) child processes
503 	 * to this process instead of 'init'. The service manager is
504 	 * able to receive SIGCHLD signals and is able to investigate
505 	 * the process until it calls wait(). All children of this
506 	 * process will inherit a flag if they should look for a
507 	 * child_subreaper process at exit.
508 	 */
509 	unsigned int		is_child_subreaper:1;
510 	unsigned int		has_child_subreaper:1;
511 
512 	/* POSIX.1b Interval Timers */
513 	int			posix_timer_id;
514 	struct list_head	posix_timers;
515 
516 	/* ITIMER_REAL timer for the process */
517 	struct hrtimer real_timer;
518 	struct pid *leader_pid;
519 	ktime_t it_real_incr;
520 
521 	/*
522 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
523 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
524 	 * values are defined to 0 and 1 respectively
525 	 */
526 	struct cpu_itimer it[2];
527 
528 	/*
529 	 * Thread group totals for process CPU timers.
530 	 * See thread_group_cputimer(), et al, for details.
531 	 */
532 	struct thread_group_cputimer cputimer;
533 
534 	/* Earliest-expiration cache. */
535 	struct task_cputime cputime_expires;
536 
537 	struct list_head cpu_timers[3];
538 
539 	struct pid *tty_old_pgrp;
540 
541 	/* boolean value for session group leader */
542 	int leader;
543 
544 	struct tty_struct *tty; /* NULL if no tty */
545 
546 #ifdef CONFIG_SCHED_AUTOGROUP
547 	struct autogroup *autogroup;
548 #endif
549 	/*
550 	 * Cumulative resource counters for dead threads in the group,
551 	 * and for reaped dead child processes forked by this group.
552 	 * Live threads maintain their own counters and add to these
553 	 * in __exit_signal, except for the group leader.
554 	 */
555 	cputime_t utime, stime, cutime, cstime;
556 	cputime_t gtime;
557 	cputime_t cgtime;
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 	struct cputime prev_cputime;
560 #endif
561 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
562 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
563 	unsigned long inblock, oublock, cinblock, coublock;
564 	unsigned long maxrss, cmaxrss;
565 	struct task_io_accounting ioac;
566 
567 	/*
568 	 * Cumulative ns of schedule CPU time fo dead threads in the
569 	 * group, not including a zombie group leader, (This only differs
570 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
571 	 * other than jiffies.)
572 	 */
573 	unsigned long long sum_sched_runtime;
574 
575 	/*
576 	 * We don't bother to synchronize most readers of this at all,
577 	 * because there is no reader checking a limit that actually needs
578 	 * to get both rlim_cur and rlim_max atomically, and either one
579 	 * alone is a single word that can safely be read normally.
580 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
581 	 * protect this instead of the siglock, because they really
582 	 * have no need to disable irqs.
583 	 */
584 	struct rlimit rlim[RLIM_NLIMITS];
585 
586 #ifdef CONFIG_BSD_PROCESS_ACCT
587 	struct pacct_struct pacct;	/* per-process accounting information */
588 #endif
589 #ifdef CONFIG_TASKSTATS
590 	struct taskstats *stats;
591 #endif
592 #ifdef CONFIG_AUDIT
593 	unsigned audit_tty;
594 	unsigned audit_tty_log_passwd;
595 	struct tty_audit_buf *tty_audit_buf;
596 #endif
597 #ifdef CONFIG_CGROUPS
598 	/*
599 	 * group_rwsem prevents new tasks from entering the threadgroup and
600 	 * member tasks from exiting,a more specifically, setting of
601 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
602 	 * using threadgroup_change_begin/end().  Users which require
603 	 * threadgroup to remain stable should use threadgroup_[un]lock()
604 	 * which also takes care of exec path.  Currently, cgroup is the
605 	 * only user.
606 	 */
607 	struct rw_semaphore group_rwsem;
608 #endif
609 
610 	oom_flags_t oom_flags;
611 	short oom_score_adj;		/* OOM kill score adjustment */
612 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
613 					 * Only settable by CAP_SYS_RESOURCE. */
614 
615 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
616 					 * credential calculations
617 					 * (notably. ptrace) */
618 };
619 
620 /*
621  * Bits in flags field of signal_struct.
622  */
623 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
624 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
625 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
626 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
627 /*
628  * Pending notifications to parent.
629  */
630 #define SIGNAL_CLD_STOPPED	0x00000010
631 #define SIGNAL_CLD_CONTINUED	0x00000020
632 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
633 
634 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
635 
636 /* If true, all threads except ->group_exit_task have pending SIGKILL */
637 static inline int signal_group_exit(const struct signal_struct *sig)
638 {
639 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
640 		(sig->group_exit_task != NULL);
641 }
642 
643 /*
644  * Some day this will be a full-fledged user tracking system..
645  */
646 struct user_struct {
647 	atomic_t __count;	/* reference count */
648 	atomic_t processes;	/* How many processes does this user have? */
649 	atomic_t files;		/* How many open files does this user have? */
650 	atomic_t sigpending;	/* How many pending signals does this user have? */
651 #ifdef CONFIG_INOTIFY_USER
652 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
653 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
654 #endif
655 #ifdef CONFIG_FANOTIFY
656 	atomic_t fanotify_listeners;
657 #endif
658 #ifdef CONFIG_EPOLL
659 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
660 #endif
661 #ifdef CONFIG_POSIX_MQUEUE
662 	/* protected by mq_lock	*/
663 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
664 #endif
665 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
666 
667 #ifdef CONFIG_KEYS
668 	struct key *uid_keyring;	/* UID specific keyring */
669 	struct key *session_keyring;	/* UID's default session keyring */
670 #endif
671 
672 	/* Hash table maintenance information */
673 	struct hlist_node uidhash_node;
674 	kuid_t uid;
675 
676 #ifdef CONFIG_PERF_EVENTS
677 	atomic_long_t locked_vm;
678 #endif
679 };
680 
681 extern int uids_sysfs_init(void);
682 
683 extern struct user_struct *find_user(kuid_t);
684 
685 extern struct user_struct root_user;
686 #define INIT_USER (&root_user)
687 
688 
689 struct backing_dev_info;
690 struct reclaim_state;
691 
692 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
693 struct sched_info {
694 	/* cumulative counters */
695 	unsigned long pcount;	      /* # of times run on this cpu */
696 	unsigned long long run_delay; /* time spent waiting on a runqueue */
697 
698 	/* timestamps */
699 	unsigned long long last_arrival,/* when we last ran on a cpu */
700 			   last_queued;	/* when we were last queued to run */
701 };
702 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
703 
704 #ifdef CONFIG_TASK_DELAY_ACCT
705 struct task_delay_info {
706 	spinlock_t	lock;
707 	unsigned int	flags;	/* Private per-task flags */
708 
709 	/* For each stat XXX, add following, aligned appropriately
710 	 *
711 	 * struct timespec XXX_start, XXX_end;
712 	 * u64 XXX_delay;
713 	 * u32 XXX_count;
714 	 *
715 	 * Atomicity of updates to XXX_delay, XXX_count protected by
716 	 * single lock above (split into XXX_lock if contention is an issue).
717 	 */
718 
719 	/*
720 	 * XXX_count is incremented on every XXX operation, the delay
721 	 * associated with the operation is added to XXX_delay.
722 	 * XXX_delay contains the accumulated delay time in nanoseconds.
723 	 */
724 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
725 	u64 blkio_delay;	/* wait for sync block io completion */
726 	u64 swapin_delay;	/* wait for swapin block io completion */
727 	u32 blkio_count;	/* total count of the number of sync block */
728 				/* io operations performed */
729 	u32 swapin_count;	/* total count of the number of swapin block */
730 				/* io operations performed */
731 
732 	struct timespec freepages_start, freepages_end;
733 	u64 freepages_delay;	/* wait for memory reclaim */
734 	u32 freepages_count;	/* total count of memory reclaim */
735 };
736 #endif	/* CONFIG_TASK_DELAY_ACCT */
737 
738 static inline int sched_info_on(void)
739 {
740 #ifdef CONFIG_SCHEDSTATS
741 	return 1;
742 #elif defined(CONFIG_TASK_DELAY_ACCT)
743 	extern int delayacct_on;
744 	return delayacct_on;
745 #else
746 	return 0;
747 #endif
748 }
749 
750 enum cpu_idle_type {
751 	CPU_IDLE,
752 	CPU_NOT_IDLE,
753 	CPU_NEWLY_IDLE,
754 	CPU_MAX_IDLE_TYPES
755 };
756 
757 /*
758  * Increase resolution of cpu_power calculations
759  */
760 #define SCHED_POWER_SHIFT	10
761 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
762 
763 /*
764  * sched-domains (multiprocessor balancing) declarations:
765  */
766 #ifdef CONFIG_SMP
767 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
768 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
769 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
770 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
771 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
772 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
773 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
774 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
775 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
776 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
777 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
778 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
779 
780 extern int __weak arch_sd_sibiling_asym_packing(void);
781 
782 struct sched_domain_attr {
783 	int relax_domain_level;
784 };
785 
786 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
787 	.relax_domain_level = -1,			\
788 }
789 
790 extern int sched_domain_level_max;
791 
792 struct sched_group;
793 
794 struct sched_domain {
795 	/* These fields must be setup */
796 	struct sched_domain *parent;	/* top domain must be null terminated */
797 	struct sched_domain *child;	/* bottom domain must be null terminated */
798 	struct sched_group *groups;	/* the balancing groups of the domain */
799 	unsigned long min_interval;	/* Minimum balance interval ms */
800 	unsigned long max_interval;	/* Maximum balance interval ms */
801 	unsigned int busy_factor;	/* less balancing by factor if busy */
802 	unsigned int imbalance_pct;	/* No balance until over watermark */
803 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
804 	unsigned int busy_idx;
805 	unsigned int idle_idx;
806 	unsigned int newidle_idx;
807 	unsigned int wake_idx;
808 	unsigned int forkexec_idx;
809 	unsigned int smt_gain;
810 
811 	int nohz_idle;			/* NOHZ IDLE status */
812 	int flags;			/* See SD_* */
813 	int level;
814 
815 	/* Runtime fields. */
816 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
817 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
818 	unsigned int nr_balance_failed; /* initialise to 0 */
819 
820 	u64 last_update;
821 
822 #ifdef CONFIG_SCHEDSTATS
823 	/* load_balance() stats */
824 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
825 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
826 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
827 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
828 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
829 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
830 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
831 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
832 
833 	/* Active load balancing */
834 	unsigned int alb_count;
835 	unsigned int alb_failed;
836 	unsigned int alb_pushed;
837 
838 	/* SD_BALANCE_EXEC stats */
839 	unsigned int sbe_count;
840 	unsigned int sbe_balanced;
841 	unsigned int sbe_pushed;
842 
843 	/* SD_BALANCE_FORK stats */
844 	unsigned int sbf_count;
845 	unsigned int sbf_balanced;
846 	unsigned int sbf_pushed;
847 
848 	/* try_to_wake_up() stats */
849 	unsigned int ttwu_wake_remote;
850 	unsigned int ttwu_move_affine;
851 	unsigned int ttwu_move_balance;
852 #endif
853 #ifdef CONFIG_SCHED_DEBUG
854 	char *name;
855 #endif
856 	union {
857 		void *private;		/* used during construction */
858 		struct rcu_head rcu;	/* used during destruction */
859 	};
860 
861 	unsigned int span_weight;
862 	/*
863 	 * Span of all CPUs in this domain.
864 	 *
865 	 * NOTE: this field is variable length. (Allocated dynamically
866 	 * by attaching extra space to the end of the structure,
867 	 * depending on how many CPUs the kernel has booted up with)
868 	 */
869 	unsigned long span[0];
870 };
871 
872 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
873 {
874 	return to_cpumask(sd->span);
875 }
876 
877 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
878 				    struct sched_domain_attr *dattr_new);
879 
880 /* Allocate an array of sched domains, for partition_sched_domains(). */
881 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
882 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
883 
884 bool cpus_share_cache(int this_cpu, int that_cpu);
885 
886 #else /* CONFIG_SMP */
887 
888 struct sched_domain_attr;
889 
890 static inline void
891 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
892 			struct sched_domain_attr *dattr_new)
893 {
894 }
895 
896 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
897 {
898 	return true;
899 }
900 
901 #endif	/* !CONFIG_SMP */
902 
903 
904 struct io_context;			/* See blkdev.h */
905 
906 
907 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
908 extern void prefetch_stack(struct task_struct *t);
909 #else
910 static inline void prefetch_stack(struct task_struct *t) { }
911 #endif
912 
913 struct audit_context;		/* See audit.c */
914 struct mempolicy;
915 struct pipe_inode_info;
916 struct uts_namespace;
917 
918 struct load_weight {
919 	unsigned long weight, inv_weight;
920 };
921 
922 struct sched_avg {
923 	/*
924 	 * These sums represent an infinite geometric series and so are bound
925 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
926 	 * choices of y < 1-2^(-32)*1024.
927 	 */
928 	u32 runnable_avg_sum, runnable_avg_period;
929 	u64 last_runnable_update;
930 	s64 decay_count;
931 	unsigned long load_avg_contrib;
932 };
933 
934 #ifdef CONFIG_SCHEDSTATS
935 struct sched_statistics {
936 	u64			wait_start;
937 	u64			wait_max;
938 	u64			wait_count;
939 	u64			wait_sum;
940 	u64			iowait_count;
941 	u64			iowait_sum;
942 
943 	u64			sleep_start;
944 	u64			sleep_max;
945 	s64			sum_sleep_runtime;
946 
947 	u64			block_start;
948 	u64			block_max;
949 	u64			exec_max;
950 	u64			slice_max;
951 
952 	u64			nr_migrations_cold;
953 	u64			nr_failed_migrations_affine;
954 	u64			nr_failed_migrations_running;
955 	u64			nr_failed_migrations_hot;
956 	u64			nr_forced_migrations;
957 
958 	u64			nr_wakeups;
959 	u64			nr_wakeups_sync;
960 	u64			nr_wakeups_migrate;
961 	u64			nr_wakeups_local;
962 	u64			nr_wakeups_remote;
963 	u64			nr_wakeups_affine;
964 	u64			nr_wakeups_affine_attempts;
965 	u64			nr_wakeups_passive;
966 	u64			nr_wakeups_idle;
967 };
968 #endif
969 
970 struct sched_entity {
971 	struct load_weight	load;		/* for load-balancing */
972 	struct rb_node		run_node;
973 	struct list_head	group_node;
974 	unsigned int		on_rq;
975 
976 	u64			exec_start;
977 	u64			sum_exec_runtime;
978 	u64			vruntime;
979 	u64			prev_sum_exec_runtime;
980 
981 	u64			nr_migrations;
982 
983 #ifdef CONFIG_SCHEDSTATS
984 	struct sched_statistics statistics;
985 #endif
986 
987 #ifdef CONFIG_FAIR_GROUP_SCHED
988 	struct sched_entity	*parent;
989 	/* rq on which this entity is (to be) queued: */
990 	struct cfs_rq		*cfs_rq;
991 	/* rq "owned" by this entity/group: */
992 	struct cfs_rq		*my_q;
993 #endif
994 
995 #ifdef CONFIG_SMP
996 	/* Per-entity load-tracking */
997 	struct sched_avg	avg;
998 #endif
999 };
1000 
1001 struct sched_rt_entity {
1002 	struct list_head run_list;
1003 	unsigned long timeout;
1004 	unsigned long watchdog_stamp;
1005 	unsigned int time_slice;
1006 
1007 	struct sched_rt_entity *back;
1008 #ifdef CONFIG_RT_GROUP_SCHED
1009 	struct sched_rt_entity	*parent;
1010 	/* rq on which this entity is (to be) queued: */
1011 	struct rt_rq		*rt_rq;
1012 	/* rq "owned" by this entity/group: */
1013 	struct rt_rq		*my_q;
1014 #endif
1015 };
1016 
1017 
1018 struct rcu_node;
1019 
1020 enum perf_event_task_context {
1021 	perf_invalid_context = -1,
1022 	perf_hw_context = 0,
1023 	perf_sw_context,
1024 	perf_nr_task_contexts,
1025 };
1026 
1027 struct task_struct {
1028 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1029 	void *stack;
1030 	atomic_t usage;
1031 	unsigned int flags;	/* per process flags, defined below */
1032 	unsigned int ptrace;
1033 
1034 #ifdef CONFIG_SMP
1035 	struct llist_node wake_entry;
1036 	int on_cpu;
1037 #endif
1038 	int on_rq;
1039 
1040 	int prio, static_prio, normal_prio;
1041 	unsigned int rt_priority;
1042 	const struct sched_class *sched_class;
1043 	struct sched_entity se;
1044 	struct sched_rt_entity rt;
1045 #ifdef CONFIG_CGROUP_SCHED
1046 	struct task_group *sched_task_group;
1047 #endif
1048 
1049 #ifdef CONFIG_PREEMPT_NOTIFIERS
1050 	/* list of struct preempt_notifier: */
1051 	struct hlist_head preempt_notifiers;
1052 #endif
1053 
1054 	/*
1055 	 * fpu_counter contains the number of consecutive context switches
1056 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1057 	 * saving becomes unlazy to save the trap. This is an unsigned char
1058 	 * so that after 256 times the counter wraps and the behavior turns
1059 	 * lazy again; this to deal with bursty apps that only use FPU for
1060 	 * a short time
1061 	 */
1062 	unsigned char fpu_counter;
1063 #ifdef CONFIG_BLK_DEV_IO_TRACE
1064 	unsigned int btrace_seq;
1065 #endif
1066 
1067 	unsigned int policy;
1068 	int nr_cpus_allowed;
1069 	cpumask_t cpus_allowed;
1070 
1071 #ifdef CONFIG_PREEMPT_RCU
1072 	int rcu_read_lock_nesting;
1073 	char rcu_read_unlock_special;
1074 	struct list_head rcu_node_entry;
1075 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1076 #ifdef CONFIG_TREE_PREEMPT_RCU
1077 	struct rcu_node *rcu_blocked_node;
1078 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1079 #ifdef CONFIG_RCU_BOOST
1080 	struct rt_mutex *rcu_boost_mutex;
1081 #endif /* #ifdef CONFIG_RCU_BOOST */
1082 
1083 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1084 	struct sched_info sched_info;
1085 #endif
1086 
1087 	struct list_head tasks;
1088 #ifdef CONFIG_SMP
1089 	struct plist_node pushable_tasks;
1090 #endif
1091 
1092 	struct mm_struct *mm, *active_mm;
1093 #ifdef CONFIG_COMPAT_BRK
1094 	unsigned brk_randomized:1;
1095 #endif
1096 #if defined(SPLIT_RSS_COUNTING)
1097 	struct task_rss_stat	rss_stat;
1098 #endif
1099 /* task state */
1100 	int exit_state;
1101 	int exit_code, exit_signal;
1102 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1103 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1104 
1105 	/* Used for emulating ABI behavior of previous Linux versions */
1106 	unsigned int personality;
1107 
1108 	unsigned did_exec:1;
1109 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1110 				 * execve */
1111 	unsigned in_iowait:1;
1112 
1113 	/* task may not gain privileges */
1114 	unsigned no_new_privs:1;
1115 
1116 	/* Revert to default priority/policy when forking */
1117 	unsigned sched_reset_on_fork:1;
1118 	unsigned sched_contributes_to_load:1;
1119 
1120 	pid_t pid;
1121 	pid_t tgid;
1122 
1123 #ifdef CONFIG_CC_STACKPROTECTOR
1124 	/* Canary value for the -fstack-protector gcc feature */
1125 	unsigned long stack_canary;
1126 #endif
1127 	/*
1128 	 * pointers to (original) parent process, youngest child, younger sibling,
1129 	 * older sibling, respectively.  (p->father can be replaced with
1130 	 * p->real_parent->pid)
1131 	 */
1132 	struct task_struct __rcu *real_parent; /* real parent process */
1133 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1134 	/*
1135 	 * children/sibling forms the list of my natural children
1136 	 */
1137 	struct list_head children;	/* list of my children */
1138 	struct list_head sibling;	/* linkage in my parent's children list */
1139 	struct task_struct *group_leader;	/* threadgroup leader */
1140 
1141 	/*
1142 	 * ptraced is the list of tasks this task is using ptrace on.
1143 	 * This includes both natural children and PTRACE_ATTACH targets.
1144 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1145 	 */
1146 	struct list_head ptraced;
1147 	struct list_head ptrace_entry;
1148 
1149 	/* PID/PID hash table linkage. */
1150 	struct pid_link pids[PIDTYPE_MAX];
1151 	struct list_head thread_group;
1152 
1153 	struct completion *vfork_done;		/* for vfork() */
1154 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1155 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1156 
1157 	cputime_t utime, stime, utimescaled, stimescaled;
1158 	cputime_t gtime;
1159 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1160 	struct cputime prev_cputime;
1161 #endif
1162 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1163 	seqlock_t vtime_seqlock;
1164 	unsigned long long vtime_snap;
1165 	enum {
1166 		VTIME_SLEEPING = 0,
1167 		VTIME_USER,
1168 		VTIME_SYS,
1169 	} vtime_snap_whence;
1170 #endif
1171 	unsigned long nvcsw, nivcsw; /* context switch counts */
1172 	struct timespec start_time; 		/* monotonic time */
1173 	struct timespec real_start_time;	/* boot based time */
1174 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1175 	unsigned long min_flt, maj_flt;
1176 
1177 	struct task_cputime cputime_expires;
1178 	struct list_head cpu_timers[3];
1179 
1180 /* process credentials */
1181 	const struct cred __rcu *real_cred; /* objective and real subjective task
1182 					 * credentials (COW) */
1183 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1184 					 * credentials (COW) */
1185 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1186 				     - access with [gs]et_task_comm (which lock
1187 				       it with task_lock())
1188 				     - initialized normally by setup_new_exec */
1189 /* file system info */
1190 	int link_count, total_link_count;
1191 #ifdef CONFIG_SYSVIPC
1192 /* ipc stuff */
1193 	struct sysv_sem sysvsem;
1194 #endif
1195 #ifdef CONFIG_DETECT_HUNG_TASK
1196 /* hung task detection */
1197 	unsigned long last_switch_count;
1198 #endif
1199 /* CPU-specific state of this task */
1200 	struct thread_struct thread;
1201 /* filesystem information */
1202 	struct fs_struct *fs;
1203 /* open file information */
1204 	struct files_struct *files;
1205 /* namespaces */
1206 	struct nsproxy *nsproxy;
1207 /* signal handlers */
1208 	struct signal_struct *signal;
1209 	struct sighand_struct *sighand;
1210 
1211 	sigset_t blocked, real_blocked;
1212 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1213 	struct sigpending pending;
1214 
1215 	unsigned long sas_ss_sp;
1216 	size_t sas_ss_size;
1217 	int (*notifier)(void *priv);
1218 	void *notifier_data;
1219 	sigset_t *notifier_mask;
1220 	struct callback_head *task_works;
1221 
1222 	struct audit_context *audit_context;
1223 #ifdef CONFIG_AUDITSYSCALL
1224 	kuid_t loginuid;
1225 	unsigned int sessionid;
1226 #endif
1227 	struct seccomp seccomp;
1228 
1229 /* Thread group tracking */
1230    	u32 parent_exec_id;
1231    	u32 self_exec_id;
1232 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1233  * mempolicy */
1234 	spinlock_t alloc_lock;
1235 
1236 	/* Protection of the PI data structures: */
1237 	raw_spinlock_t pi_lock;
1238 
1239 #ifdef CONFIG_RT_MUTEXES
1240 	/* PI waiters blocked on a rt_mutex held by this task */
1241 	struct plist_head pi_waiters;
1242 	/* Deadlock detection and priority inheritance handling */
1243 	struct rt_mutex_waiter *pi_blocked_on;
1244 #endif
1245 
1246 #ifdef CONFIG_DEBUG_MUTEXES
1247 	/* mutex deadlock detection */
1248 	struct mutex_waiter *blocked_on;
1249 #endif
1250 #ifdef CONFIG_TRACE_IRQFLAGS
1251 	unsigned int irq_events;
1252 	unsigned long hardirq_enable_ip;
1253 	unsigned long hardirq_disable_ip;
1254 	unsigned int hardirq_enable_event;
1255 	unsigned int hardirq_disable_event;
1256 	int hardirqs_enabled;
1257 	int hardirq_context;
1258 	unsigned long softirq_disable_ip;
1259 	unsigned long softirq_enable_ip;
1260 	unsigned int softirq_disable_event;
1261 	unsigned int softirq_enable_event;
1262 	int softirqs_enabled;
1263 	int softirq_context;
1264 #endif
1265 #ifdef CONFIG_LOCKDEP
1266 # define MAX_LOCK_DEPTH 48UL
1267 	u64 curr_chain_key;
1268 	int lockdep_depth;
1269 	unsigned int lockdep_recursion;
1270 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1271 	gfp_t lockdep_reclaim_gfp;
1272 #endif
1273 
1274 /* journalling filesystem info */
1275 	void *journal_info;
1276 
1277 /* stacked block device info */
1278 	struct bio_list *bio_list;
1279 
1280 #ifdef CONFIG_BLOCK
1281 /* stack plugging */
1282 	struct blk_plug *plug;
1283 #endif
1284 
1285 /* VM state */
1286 	struct reclaim_state *reclaim_state;
1287 
1288 	struct backing_dev_info *backing_dev_info;
1289 
1290 	struct io_context *io_context;
1291 
1292 	unsigned long ptrace_message;
1293 	siginfo_t *last_siginfo; /* For ptrace use.  */
1294 	struct task_io_accounting ioac;
1295 #if defined(CONFIG_TASK_XACCT)
1296 	u64 acct_rss_mem1;	/* accumulated rss usage */
1297 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1298 	cputime_t acct_timexpd;	/* stime + utime since last update */
1299 #endif
1300 #ifdef CONFIG_CPUSETS
1301 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1302 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1303 	int cpuset_mem_spread_rotor;
1304 	int cpuset_slab_spread_rotor;
1305 #endif
1306 #ifdef CONFIG_CGROUPS
1307 	/* Control Group info protected by css_set_lock */
1308 	struct css_set __rcu *cgroups;
1309 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1310 	struct list_head cg_list;
1311 #endif
1312 #ifdef CONFIG_FUTEX
1313 	struct robust_list_head __user *robust_list;
1314 #ifdef CONFIG_COMPAT
1315 	struct compat_robust_list_head __user *compat_robust_list;
1316 #endif
1317 	struct list_head pi_state_list;
1318 	struct futex_pi_state *pi_state_cache;
1319 #endif
1320 #ifdef CONFIG_PERF_EVENTS
1321 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1322 	struct mutex perf_event_mutex;
1323 	struct list_head perf_event_list;
1324 #endif
1325 #ifdef CONFIG_NUMA
1326 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1327 	short il_next;
1328 	short pref_node_fork;
1329 #endif
1330 #ifdef CONFIG_NUMA_BALANCING
1331 	int numa_scan_seq;
1332 	int numa_migrate_seq;
1333 	unsigned int numa_scan_period;
1334 	u64 node_stamp;			/* migration stamp  */
1335 	struct callback_head numa_work;
1336 #endif /* CONFIG_NUMA_BALANCING */
1337 
1338 	struct rcu_head rcu;
1339 
1340 	/*
1341 	 * cache last used pipe for splice
1342 	 */
1343 	struct pipe_inode_info *splice_pipe;
1344 
1345 	struct page_frag task_frag;
1346 
1347 #ifdef	CONFIG_TASK_DELAY_ACCT
1348 	struct task_delay_info *delays;
1349 #endif
1350 #ifdef CONFIG_FAULT_INJECTION
1351 	int make_it_fail;
1352 #endif
1353 	/*
1354 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1355 	 * balance_dirty_pages() for some dirty throttling pause
1356 	 */
1357 	int nr_dirtied;
1358 	int nr_dirtied_pause;
1359 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1360 
1361 #ifdef CONFIG_LATENCYTOP
1362 	int latency_record_count;
1363 	struct latency_record latency_record[LT_SAVECOUNT];
1364 #endif
1365 	/*
1366 	 * time slack values; these are used to round up poll() and
1367 	 * select() etc timeout values. These are in nanoseconds.
1368 	 */
1369 	unsigned long timer_slack_ns;
1370 	unsigned long default_timer_slack_ns;
1371 
1372 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1373 	/* Index of current stored address in ret_stack */
1374 	int curr_ret_stack;
1375 	/* Stack of return addresses for return function tracing */
1376 	struct ftrace_ret_stack	*ret_stack;
1377 	/* time stamp for last schedule */
1378 	unsigned long long ftrace_timestamp;
1379 	/*
1380 	 * Number of functions that haven't been traced
1381 	 * because of depth overrun.
1382 	 */
1383 	atomic_t trace_overrun;
1384 	/* Pause for the tracing */
1385 	atomic_t tracing_graph_pause;
1386 #endif
1387 #ifdef CONFIG_TRACING
1388 	/* state flags for use by tracers */
1389 	unsigned long trace;
1390 	/* bitmask and counter of trace recursion */
1391 	unsigned long trace_recursion;
1392 #endif /* CONFIG_TRACING */
1393 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1394 	struct memcg_batch_info {
1395 		int do_batch;	/* incremented when batch uncharge started */
1396 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1397 		unsigned long nr_pages;	/* uncharged usage */
1398 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1399 	} memcg_batch;
1400 	unsigned int memcg_kmem_skip_account;
1401 #endif
1402 #ifdef CONFIG_UPROBES
1403 	struct uprobe_task *utask;
1404 #endif
1405 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1406 	unsigned int	sequential_io;
1407 	unsigned int	sequential_io_avg;
1408 #endif
1409 };
1410 
1411 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1412 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1413 
1414 #ifdef CONFIG_NUMA_BALANCING
1415 extern void task_numa_fault(int node, int pages, bool migrated);
1416 extern void set_numabalancing_state(bool enabled);
1417 #else
1418 static inline void task_numa_fault(int node, int pages, bool migrated)
1419 {
1420 }
1421 static inline void set_numabalancing_state(bool enabled)
1422 {
1423 }
1424 #endif
1425 
1426 static inline struct pid *task_pid(struct task_struct *task)
1427 {
1428 	return task->pids[PIDTYPE_PID].pid;
1429 }
1430 
1431 static inline struct pid *task_tgid(struct task_struct *task)
1432 {
1433 	return task->group_leader->pids[PIDTYPE_PID].pid;
1434 }
1435 
1436 /*
1437  * Without tasklist or rcu lock it is not safe to dereference
1438  * the result of task_pgrp/task_session even if task == current,
1439  * we can race with another thread doing sys_setsid/sys_setpgid.
1440  */
1441 static inline struct pid *task_pgrp(struct task_struct *task)
1442 {
1443 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1444 }
1445 
1446 static inline struct pid *task_session(struct task_struct *task)
1447 {
1448 	return task->group_leader->pids[PIDTYPE_SID].pid;
1449 }
1450 
1451 struct pid_namespace;
1452 
1453 /*
1454  * the helpers to get the task's different pids as they are seen
1455  * from various namespaces
1456  *
1457  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1458  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1459  *                     current.
1460  * task_xid_nr_ns()  : id seen from the ns specified;
1461  *
1462  * set_task_vxid()   : assigns a virtual id to a task;
1463  *
1464  * see also pid_nr() etc in include/linux/pid.h
1465  */
1466 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1467 			struct pid_namespace *ns);
1468 
1469 static inline pid_t task_pid_nr(struct task_struct *tsk)
1470 {
1471 	return tsk->pid;
1472 }
1473 
1474 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1475 					struct pid_namespace *ns)
1476 {
1477 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1478 }
1479 
1480 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1481 {
1482 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1483 }
1484 
1485 
1486 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1487 {
1488 	return tsk->tgid;
1489 }
1490 
1491 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1492 
1493 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1494 {
1495 	return pid_vnr(task_tgid(tsk));
1496 }
1497 
1498 
1499 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1500 					struct pid_namespace *ns)
1501 {
1502 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1503 }
1504 
1505 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1506 {
1507 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1508 }
1509 
1510 
1511 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1512 					struct pid_namespace *ns)
1513 {
1514 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1515 }
1516 
1517 static inline pid_t task_session_vnr(struct task_struct *tsk)
1518 {
1519 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1520 }
1521 
1522 /* obsolete, do not use */
1523 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1524 {
1525 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1526 }
1527 
1528 /**
1529  * pid_alive - check that a task structure is not stale
1530  * @p: Task structure to be checked.
1531  *
1532  * Test if a process is not yet dead (at most zombie state)
1533  * If pid_alive fails, then pointers within the task structure
1534  * can be stale and must not be dereferenced.
1535  *
1536  * Return: 1 if the process is alive. 0 otherwise.
1537  */
1538 static inline int pid_alive(struct task_struct *p)
1539 {
1540 	return p->pids[PIDTYPE_PID].pid != NULL;
1541 }
1542 
1543 /**
1544  * is_global_init - check if a task structure is init
1545  * @tsk: Task structure to be checked.
1546  *
1547  * Check if a task structure is the first user space task the kernel created.
1548  *
1549  * Return: 1 if the task structure is init. 0 otherwise.
1550  */
1551 static inline int is_global_init(struct task_struct *tsk)
1552 {
1553 	return tsk->pid == 1;
1554 }
1555 
1556 extern struct pid *cad_pid;
1557 
1558 extern void free_task(struct task_struct *tsk);
1559 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1560 
1561 extern void __put_task_struct(struct task_struct *t);
1562 
1563 static inline void put_task_struct(struct task_struct *t)
1564 {
1565 	if (atomic_dec_and_test(&t->usage))
1566 		__put_task_struct(t);
1567 }
1568 
1569 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1570 extern void task_cputime(struct task_struct *t,
1571 			 cputime_t *utime, cputime_t *stime);
1572 extern void task_cputime_scaled(struct task_struct *t,
1573 				cputime_t *utimescaled, cputime_t *stimescaled);
1574 extern cputime_t task_gtime(struct task_struct *t);
1575 #else
1576 static inline void task_cputime(struct task_struct *t,
1577 				cputime_t *utime, cputime_t *stime)
1578 {
1579 	if (utime)
1580 		*utime = t->utime;
1581 	if (stime)
1582 		*stime = t->stime;
1583 }
1584 
1585 static inline void task_cputime_scaled(struct task_struct *t,
1586 				       cputime_t *utimescaled,
1587 				       cputime_t *stimescaled)
1588 {
1589 	if (utimescaled)
1590 		*utimescaled = t->utimescaled;
1591 	if (stimescaled)
1592 		*stimescaled = t->stimescaled;
1593 }
1594 
1595 static inline cputime_t task_gtime(struct task_struct *t)
1596 {
1597 	return t->gtime;
1598 }
1599 #endif
1600 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1601 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1602 
1603 /*
1604  * Per process flags
1605  */
1606 #define PF_EXITING	0x00000004	/* getting shut down */
1607 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1608 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1609 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1610 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1611 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1612 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1613 #define PF_DUMPCORE	0x00000200	/* dumped core */
1614 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1615 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1616 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1617 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1618 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1619 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1620 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1621 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1622 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1623 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1624 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1625 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1626 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1627 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1628 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1629 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1630 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1631 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1632 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1633 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1634 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1635 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1636 
1637 /*
1638  * Only the _current_ task can read/write to tsk->flags, but other
1639  * tasks can access tsk->flags in readonly mode for example
1640  * with tsk_used_math (like during threaded core dumping).
1641  * There is however an exception to this rule during ptrace
1642  * or during fork: the ptracer task is allowed to write to the
1643  * child->flags of its traced child (same goes for fork, the parent
1644  * can write to the child->flags), because we're guaranteed the
1645  * child is not running and in turn not changing child->flags
1646  * at the same time the parent does it.
1647  */
1648 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1649 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1650 #define clear_used_math() clear_stopped_child_used_math(current)
1651 #define set_used_math() set_stopped_child_used_math(current)
1652 #define conditional_stopped_child_used_math(condition, child) \
1653 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1654 #define conditional_used_math(condition) \
1655 	conditional_stopped_child_used_math(condition, current)
1656 #define copy_to_stopped_child_used_math(child) \
1657 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1658 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1659 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1660 #define used_math() tsk_used_math(current)
1661 
1662 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1663 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1664 {
1665 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1666 		flags &= ~__GFP_IO;
1667 	return flags;
1668 }
1669 
1670 static inline unsigned int memalloc_noio_save(void)
1671 {
1672 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1673 	current->flags |= PF_MEMALLOC_NOIO;
1674 	return flags;
1675 }
1676 
1677 static inline void memalloc_noio_restore(unsigned int flags)
1678 {
1679 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1680 }
1681 
1682 /*
1683  * task->jobctl flags
1684  */
1685 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1686 
1687 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1688 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1689 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1690 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1691 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1692 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1693 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1694 
1695 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1696 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1697 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1698 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1699 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1700 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1701 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1702 
1703 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1704 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1705 
1706 extern bool task_set_jobctl_pending(struct task_struct *task,
1707 				    unsigned int mask);
1708 extern void task_clear_jobctl_trapping(struct task_struct *task);
1709 extern void task_clear_jobctl_pending(struct task_struct *task,
1710 				      unsigned int mask);
1711 
1712 #ifdef CONFIG_PREEMPT_RCU
1713 
1714 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1715 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1716 
1717 static inline void rcu_copy_process(struct task_struct *p)
1718 {
1719 	p->rcu_read_lock_nesting = 0;
1720 	p->rcu_read_unlock_special = 0;
1721 #ifdef CONFIG_TREE_PREEMPT_RCU
1722 	p->rcu_blocked_node = NULL;
1723 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1724 #ifdef CONFIG_RCU_BOOST
1725 	p->rcu_boost_mutex = NULL;
1726 #endif /* #ifdef CONFIG_RCU_BOOST */
1727 	INIT_LIST_HEAD(&p->rcu_node_entry);
1728 }
1729 
1730 #else
1731 
1732 static inline void rcu_copy_process(struct task_struct *p)
1733 {
1734 }
1735 
1736 #endif
1737 
1738 static inline void tsk_restore_flags(struct task_struct *task,
1739 				unsigned long orig_flags, unsigned long flags)
1740 {
1741 	task->flags &= ~flags;
1742 	task->flags |= orig_flags & flags;
1743 }
1744 
1745 #ifdef CONFIG_SMP
1746 extern void do_set_cpus_allowed(struct task_struct *p,
1747 			       const struct cpumask *new_mask);
1748 
1749 extern int set_cpus_allowed_ptr(struct task_struct *p,
1750 				const struct cpumask *new_mask);
1751 #else
1752 static inline void do_set_cpus_allowed(struct task_struct *p,
1753 				      const struct cpumask *new_mask)
1754 {
1755 }
1756 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1757 				       const struct cpumask *new_mask)
1758 {
1759 	if (!cpumask_test_cpu(0, new_mask))
1760 		return -EINVAL;
1761 	return 0;
1762 }
1763 #endif
1764 
1765 #ifdef CONFIG_NO_HZ_COMMON
1766 void calc_load_enter_idle(void);
1767 void calc_load_exit_idle(void);
1768 #else
1769 static inline void calc_load_enter_idle(void) { }
1770 static inline void calc_load_exit_idle(void) { }
1771 #endif /* CONFIG_NO_HZ_COMMON */
1772 
1773 #ifndef CONFIG_CPUMASK_OFFSTACK
1774 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1775 {
1776 	return set_cpus_allowed_ptr(p, &new_mask);
1777 }
1778 #endif
1779 
1780 /*
1781  * Do not use outside of architecture code which knows its limitations.
1782  *
1783  * sched_clock() has no promise of monotonicity or bounded drift between
1784  * CPUs, use (which you should not) requires disabling IRQs.
1785  *
1786  * Please use one of the three interfaces below.
1787  */
1788 extern unsigned long long notrace sched_clock(void);
1789 /*
1790  * See the comment in kernel/sched/clock.c
1791  */
1792 extern u64 cpu_clock(int cpu);
1793 extern u64 local_clock(void);
1794 extern u64 sched_clock_cpu(int cpu);
1795 
1796 
1797 extern void sched_clock_init(void);
1798 
1799 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1800 static inline void sched_clock_tick(void)
1801 {
1802 }
1803 
1804 static inline void sched_clock_idle_sleep_event(void)
1805 {
1806 }
1807 
1808 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1809 {
1810 }
1811 #else
1812 /*
1813  * Architectures can set this to 1 if they have specified
1814  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1815  * but then during bootup it turns out that sched_clock()
1816  * is reliable after all:
1817  */
1818 extern int sched_clock_stable;
1819 
1820 extern void sched_clock_tick(void);
1821 extern void sched_clock_idle_sleep_event(void);
1822 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1823 #endif
1824 
1825 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1826 /*
1827  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1828  * The reason for this explicit opt-in is not to have perf penalty with
1829  * slow sched_clocks.
1830  */
1831 extern void enable_sched_clock_irqtime(void);
1832 extern void disable_sched_clock_irqtime(void);
1833 #else
1834 static inline void enable_sched_clock_irqtime(void) {}
1835 static inline void disable_sched_clock_irqtime(void) {}
1836 #endif
1837 
1838 extern unsigned long long
1839 task_sched_runtime(struct task_struct *task);
1840 
1841 /* sched_exec is called by processes performing an exec */
1842 #ifdef CONFIG_SMP
1843 extern void sched_exec(void);
1844 #else
1845 #define sched_exec()   {}
1846 #endif
1847 
1848 extern void sched_clock_idle_sleep_event(void);
1849 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1850 
1851 #ifdef CONFIG_HOTPLUG_CPU
1852 extern void idle_task_exit(void);
1853 #else
1854 static inline void idle_task_exit(void) {}
1855 #endif
1856 
1857 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1858 extern void wake_up_nohz_cpu(int cpu);
1859 #else
1860 static inline void wake_up_nohz_cpu(int cpu) { }
1861 #endif
1862 
1863 #ifdef CONFIG_NO_HZ_FULL
1864 extern bool sched_can_stop_tick(void);
1865 extern u64 scheduler_tick_max_deferment(void);
1866 #else
1867 static inline bool sched_can_stop_tick(void) { return false; }
1868 #endif
1869 
1870 #ifdef CONFIG_SCHED_AUTOGROUP
1871 extern void sched_autogroup_create_attach(struct task_struct *p);
1872 extern void sched_autogroup_detach(struct task_struct *p);
1873 extern void sched_autogroup_fork(struct signal_struct *sig);
1874 extern void sched_autogroup_exit(struct signal_struct *sig);
1875 #ifdef CONFIG_PROC_FS
1876 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1877 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1878 #endif
1879 #else
1880 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1881 static inline void sched_autogroup_detach(struct task_struct *p) { }
1882 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1883 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1884 #endif
1885 
1886 extern bool yield_to(struct task_struct *p, bool preempt);
1887 extern void set_user_nice(struct task_struct *p, long nice);
1888 extern int task_prio(const struct task_struct *p);
1889 extern int task_nice(const struct task_struct *p);
1890 extern int can_nice(const struct task_struct *p, const int nice);
1891 extern int task_curr(const struct task_struct *p);
1892 extern int idle_cpu(int cpu);
1893 extern int sched_setscheduler(struct task_struct *, int,
1894 			      const struct sched_param *);
1895 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1896 				      const struct sched_param *);
1897 extern struct task_struct *idle_task(int cpu);
1898 /**
1899  * is_idle_task - is the specified task an idle task?
1900  * @p: the task in question.
1901  *
1902  * Return: 1 if @p is an idle task. 0 otherwise.
1903  */
1904 static inline bool is_idle_task(const struct task_struct *p)
1905 {
1906 	return p->pid == 0;
1907 }
1908 extern struct task_struct *curr_task(int cpu);
1909 extern void set_curr_task(int cpu, struct task_struct *p);
1910 
1911 void yield(void);
1912 
1913 /*
1914  * The default (Linux) execution domain.
1915  */
1916 extern struct exec_domain	default_exec_domain;
1917 
1918 union thread_union {
1919 	struct thread_info thread_info;
1920 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1921 };
1922 
1923 #ifndef __HAVE_ARCH_KSTACK_END
1924 static inline int kstack_end(void *addr)
1925 {
1926 	/* Reliable end of stack detection:
1927 	 * Some APM bios versions misalign the stack
1928 	 */
1929 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1930 }
1931 #endif
1932 
1933 extern union thread_union init_thread_union;
1934 extern struct task_struct init_task;
1935 
1936 extern struct   mm_struct init_mm;
1937 
1938 extern struct pid_namespace init_pid_ns;
1939 
1940 /*
1941  * find a task by one of its numerical ids
1942  *
1943  * find_task_by_pid_ns():
1944  *      finds a task by its pid in the specified namespace
1945  * find_task_by_vpid():
1946  *      finds a task by its virtual pid
1947  *
1948  * see also find_vpid() etc in include/linux/pid.h
1949  */
1950 
1951 extern struct task_struct *find_task_by_vpid(pid_t nr);
1952 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1953 		struct pid_namespace *ns);
1954 
1955 /* per-UID process charging. */
1956 extern struct user_struct * alloc_uid(kuid_t);
1957 static inline struct user_struct *get_uid(struct user_struct *u)
1958 {
1959 	atomic_inc(&u->__count);
1960 	return u;
1961 }
1962 extern void free_uid(struct user_struct *);
1963 
1964 #include <asm/current.h>
1965 
1966 extern void xtime_update(unsigned long ticks);
1967 
1968 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1969 extern int wake_up_process(struct task_struct *tsk);
1970 extern void wake_up_new_task(struct task_struct *tsk);
1971 #ifdef CONFIG_SMP
1972  extern void kick_process(struct task_struct *tsk);
1973 #else
1974  static inline void kick_process(struct task_struct *tsk) { }
1975 #endif
1976 extern void sched_fork(struct task_struct *p);
1977 extern void sched_dead(struct task_struct *p);
1978 
1979 extern void proc_caches_init(void);
1980 extern void flush_signals(struct task_struct *);
1981 extern void __flush_signals(struct task_struct *);
1982 extern void ignore_signals(struct task_struct *);
1983 extern void flush_signal_handlers(struct task_struct *, int force_default);
1984 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1985 
1986 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1987 {
1988 	unsigned long flags;
1989 	int ret;
1990 
1991 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1992 	ret = dequeue_signal(tsk, mask, info);
1993 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1994 
1995 	return ret;
1996 }
1997 
1998 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1999 			      sigset_t *mask);
2000 extern void unblock_all_signals(void);
2001 extern void release_task(struct task_struct * p);
2002 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2003 extern int force_sigsegv(int, struct task_struct *);
2004 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2005 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2006 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2007 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2008 				const struct cred *, u32);
2009 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2010 extern int kill_pid(struct pid *pid, int sig, int priv);
2011 extern int kill_proc_info(int, struct siginfo *, pid_t);
2012 extern __must_check bool do_notify_parent(struct task_struct *, int);
2013 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2014 extern void force_sig(int, struct task_struct *);
2015 extern int send_sig(int, struct task_struct *, int);
2016 extern int zap_other_threads(struct task_struct *p);
2017 extern struct sigqueue *sigqueue_alloc(void);
2018 extern void sigqueue_free(struct sigqueue *);
2019 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2020 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2021 
2022 static inline void restore_saved_sigmask(void)
2023 {
2024 	if (test_and_clear_restore_sigmask())
2025 		__set_current_blocked(&current->saved_sigmask);
2026 }
2027 
2028 static inline sigset_t *sigmask_to_save(void)
2029 {
2030 	sigset_t *res = &current->blocked;
2031 	if (unlikely(test_restore_sigmask()))
2032 		res = &current->saved_sigmask;
2033 	return res;
2034 }
2035 
2036 static inline int kill_cad_pid(int sig, int priv)
2037 {
2038 	return kill_pid(cad_pid, sig, priv);
2039 }
2040 
2041 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2042 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2043 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2044 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2045 
2046 /*
2047  * True if we are on the alternate signal stack.
2048  */
2049 static inline int on_sig_stack(unsigned long sp)
2050 {
2051 #ifdef CONFIG_STACK_GROWSUP
2052 	return sp >= current->sas_ss_sp &&
2053 		sp - current->sas_ss_sp < current->sas_ss_size;
2054 #else
2055 	return sp > current->sas_ss_sp &&
2056 		sp - current->sas_ss_sp <= current->sas_ss_size;
2057 #endif
2058 }
2059 
2060 static inline int sas_ss_flags(unsigned long sp)
2061 {
2062 	return (current->sas_ss_size == 0 ? SS_DISABLE
2063 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2064 }
2065 
2066 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2067 {
2068 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2069 #ifdef CONFIG_STACK_GROWSUP
2070 		return current->sas_ss_sp;
2071 #else
2072 		return current->sas_ss_sp + current->sas_ss_size;
2073 #endif
2074 	return sp;
2075 }
2076 
2077 /*
2078  * Routines for handling mm_structs
2079  */
2080 extern struct mm_struct * mm_alloc(void);
2081 
2082 /* mmdrop drops the mm and the page tables */
2083 extern void __mmdrop(struct mm_struct *);
2084 static inline void mmdrop(struct mm_struct * mm)
2085 {
2086 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2087 		__mmdrop(mm);
2088 }
2089 
2090 /* mmput gets rid of the mappings and all user-space */
2091 extern void mmput(struct mm_struct *);
2092 /* Grab a reference to a task's mm, if it is not already going away */
2093 extern struct mm_struct *get_task_mm(struct task_struct *task);
2094 /*
2095  * Grab a reference to a task's mm, if it is not already going away
2096  * and ptrace_may_access with the mode parameter passed to it
2097  * succeeds.
2098  */
2099 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2100 /* Remove the current tasks stale references to the old mm_struct */
2101 extern void mm_release(struct task_struct *, struct mm_struct *);
2102 /* Allocate a new mm structure and copy contents from tsk->mm */
2103 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2104 
2105 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2106 			struct task_struct *);
2107 extern void flush_thread(void);
2108 extern void exit_thread(void);
2109 
2110 extern void exit_files(struct task_struct *);
2111 extern void __cleanup_sighand(struct sighand_struct *);
2112 
2113 extern void exit_itimers(struct signal_struct *);
2114 extern void flush_itimer_signals(void);
2115 
2116 extern void do_group_exit(int);
2117 
2118 extern int allow_signal(int);
2119 extern int disallow_signal(int);
2120 
2121 extern int do_execve(const char *,
2122 		     const char __user * const __user *,
2123 		     const char __user * const __user *);
2124 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2125 struct task_struct *fork_idle(int);
2126 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2127 
2128 extern void set_task_comm(struct task_struct *tsk, char *from);
2129 extern char *get_task_comm(char *to, struct task_struct *tsk);
2130 
2131 #ifdef CONFIG_SMP
2132 void scheduler_ipi(void);
2133 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2134 #else
2135 static inline void scheduler_ipi(void) { }
2136 static inline unsigned long wait_task_inactive(struct task_struct *p,
2137 					       long match_state)
2138 {
2139 	return 1;
2140 }
2141 #endif
2142 
2143 #define next_task(p) \
2144 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2145 
2146 #define for_each_process(p) \
2147 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2148 
2149 extern bool current_is_single_threaded(void);
2150 
2151 /*
2152  * Careful: do_each_thread/while_each_thread is a double loop so
2153  *          'break' will not work as expected - use goto instead.
2154  */
2155 #define do_each_thread(g, t) \
2156 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2157 
2158 #define while_each_thread(g, t) \
2159 	while ((t = next_thread(t)) != g)
2160 
2161 static inline int get_nr_threads(struct task_struct *tsk)
2162 {
2163 	return tsk->signal->nr_threads;
2164 }
2165 
2166 static inline bool thread_group_leader(struct task_struct *p)
2167 {
2168 	return p->exit_signal >= 0;
2169 }
2170 
2171 /* Do to the insanities of de_thread it is possible for a process
2172  * to have the pid of the thread group leader without actually being
2173  * the thread group leader.  For iteration through the pids in proc
2174  * all we care about is that we have a task with the appropriate
2175  * pid, we don't actually care if we have the right task.
2176  */
2177 static inline int has_group_leader_pid(struct task_struct *p)
2178 {
2179 	return p->pid == p->tgid;
2180 }
2181 
2182 static inline
2183 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2184 {
2185 	return p1->tgid == p2->tgid;
2186 }
2187 
2188 static inline struct task_struct *next_thread(const struct task_struct *p)
2189 {
2190 	return list_entry_rcu(p->thread_group.next,
2191 			      struct task_struct, thread_group);
2192 }
2193 
2194 static inline int thread_group_empty(struct task_struct *p)
2195 {
2196 	return list_empty(&p->thread_group);
2197 }
2198 
2199 #define delay_group_leader(p) \
2200 		(thread_group_leader(p) && !thread_group_empty(p))
2201 
2202 /*
2203  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2204  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2205  * pins the final release of task.io_context.  Also protects ->cpuset and
2206  * ->cgroup.subsys[]. And ->vfork_done.
2207  *
2208  * Nests both inside and outside of read_lock(&tasklist_lock).
2209  * It must not be nested with write_lock_irq(&tasklist_lock),
2210  * neither inside nor outside.
2211  */
2212 static inline void task_lock(struct task_struct *p)
2213 {
2214 	spin_lock(&p->alloc_lock);
2215 }
2216 
2217 static inline void task_unlock(struct task_struct *p)
2218 {
2219 	spin_unlock(&p->alloc_lock);
2220 }
2221 
2222 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2223 							unsigned long *flags);
2224 
2225 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2226 						       unsigned long *flags)
2227 {
2228 	struct sighand_struct *ret;
2229 
2230 	ret = __lock_task_sighand(tsk, flags);
2231 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2232 	return ret;
2233 }
2234 
2235 static inline void unlock_task_sighand(struct task_struct *tsk,
2236 						unsigned long *flags)
2237 {
2238 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2239 }
2240 
2241 #ifdef CONFIG_CGROUPS
2242 static inline void threadgroup_change_begin(struct task_struct *tsk)
2243 {
2244 	down_read(&tsk->signal->group_rwsem);
2245 }
2246 static inline void threadgroup_change_end(struct task_struct *tsk)
2247 {
2248 	up_read(&tsk->signal->group_rwsem);
2249 }
2250 
2251 /**
2252  * threadgroup_lock - lock threadgroup
2253  * @tsk: member task of the threadgroup to lock
2254  *
2255  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2256  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2257  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2258  * needs to stay stable across blockable operations.
2259  *
2260  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2261  * synchronization.  While held, no new task will be added to threadgroup
2262  * and no existing live task will have its PF_EXITING set.
2263  *
2264  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2265  * sub-thread becomes a new leader.
2266  */
2267 static inline void threadgroup_lock(struct task_struct *tsk)
2268 {
2269 	down_write(&tsk->signal->group_rwsem);
2270 }
2271 
2272 /**
2273  * threadgroup_unlock - unlock threadgroup
2274  * @tsk: member task of the threadgroup to unlock
2275  *
2276  * Reverse threadgroup_lock().
2277  */
2278 static inline void threadgroup_unlock(struct task_struct *tsk)
2279 {
2280 	up_write(&tsk->signal->group_rwsem);
2281 }
2282 #else
2283 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2284 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2285 static inline void threadgroup_lock(struct task_struct *tsk) {}
2286 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2287 #endif
2288 
2289 #ifndef __HAVE_THREAD_FUNCTIONS
2290 
2291 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2292 #define task_stack_page(task)	((task)->stack)
2293 
2294 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2295 {
2296 	*task_thread_info(p) = *task_thread_info(org);
2297 	task_thread_info(p)->task = p;
2298 }
2299 
2300 static inline unsigned long *end_of_stack(struct task_struct *p)
2301 {
2302 	return (unsigned long *)(task_thread_info(p) + 1);
2303 }
2304 
2305 #endif
2306 
2307 static inline int object_is_on_stack(void *obj)
2308 {
2309 	void *stack = task_stack_page(current);
2310 
2311 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2312 }
2313 
2314 extern void thread_info_cache_init(void);
2315 
2316 #ifdef CONFIG_DEBUG_STACK_USAGE
2317 static inline unsigned long stack_not_used(struct task_struct *p)
2318 {
2319 	unsigned long *n = end_of_stack(p);
2320 
2321 	do { 	/* Skip over canary */
2322 		n++;
2323 	} while (!*n);
2324 
2325 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2326 }
2327 #endif
2328 
2329 /* set thread flags in other task's structures
2330  * - see asm/thread_info.h for TIF_xxxx flags available
2331  */
2332 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2333 {
2334 	set_ti_thread_flag(task_thread_info(tsk), flag);
2335 }
2336 
2337 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341 
2342 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346 
2347 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2348 {
2349 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2350 }
2351 
2352 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2353 {
2354 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2355 }
2356 
2357 static inline void set_tsk_need_resched(struct task_struct *tsk)
2358 {
2359 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360 }
2361 
2362 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2363 {
2364 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2365 }
2366 
2367 static inline int test_tsk_need_resched(struct task_struct *tsk)
2368 {
2369 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2370 }
2371 
2372 static inline int restart_syscall(void)
2373 {
2374 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2375 	return -ERESTARTNOINTR;
2376 }
2377 
2378 static inline int signal_pending(struct task_struct *p)
2379 {
2380 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2381 }
2382 
2383 static inline int __fatal_signal_pending(struct task_struct *p)
2384 {
2385 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2386 }
2387 
2388 static inline int fatal_signal_pending(struct task_struct *p)
2389 {
2390 	return signal_pending(p) && __fatal_signal_pending(p);
2391 }
2392 
2393 static inline int signal_pending_state(long state, struct task_struct *p)
2394 {
2395 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2396 		return 0;
2397 	if (!signal_pending(p))
2398 		return 0;
2399 
2400 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2401 }
2402 
2403 static inline int need_resched(void)
2404 {
2405 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2406 }
2407 
2408 /*
2409  * cond_resched() and cond_resched_lock(): latency reduction via
2410  * explicit rescheduling in places that are safe. The return
2411  * value indicates whether a reschedule was done in fact.
2412  * cond_resched_lock() will drop the spinlock before scheduling,
2413  * cond_resched_softirq() will enable bhs before scheduling.
2414  */
2415 extern int _cond_resched(void);
2416 
2417 #define cond_resched() ({			\
2418 	__might_sleep(__FILE__, __LINE__, 0);	\
2419 	_cond_resched();			\
2420 })
2421 
2422 extern int __cond_resched_lock(spinlock_t *lock);
2423 
2424 #ifdef CONFIG_PREEMPT_COUNT
2425 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2426 #else
2427 #define PREEMPT_LOCK_OFFSET	0
2428 #endif
2429 
2430 #define cond_resched_lock(lock) ({				\
2431 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2432 	__cond_resched_lock(lock);				\
2433 })
2434 
2435 extern int __cond_resched_softirq(void);
2436 
2437 #define cond_resched_softirq() ({					\
2438 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2439 	__cond_resched_softirq();					\
2440 })
2441 
2442 static inline void cond_resched_rcu(void)
2443 {
2444 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2445 	rcu_read_unlock();
2446 	cond_resched();
2447 	rcu_read_lock();
2448 #endif
2449 }
2450 
2451 /*
2452  * Does a critical section need to be broken due to another
2453  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2454  * but a general need for low latency)
2455  */
2456 static inline int spin_needbreak(spinlock_t *lock)
2457 {
2458 #ifdef CONFIG_PREEMPT
2459 	return spin_is_contended(lock);
2460 #else
2461 	return 0;
2462 #endif
2463 }
2464 
2465 /*
2466  * Idle thread specific functions to determine the need_resched
2467  * polling state. We have two versions, one based on TS_POLLING in
2468  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2469  * thread_info.flags
2470  */
2471 #ifdef TS_POLLING
2472 static inline int tsk_is_polling(struct task_struct *p)
2473 {
2474 	return task_thread_info(p)->status & TS_POLLING;
2475 }
2476 static inline void current_set_polling(void)
2477 {
2478 	current_thread_info()->status |= TS_POLLING;
2479 }
2480 
2481 static inline void current_clr_polling(void)
2482 {
2483 	current_thread_info()->status &= ~TS_POLLING;
2484 	smp_mb__after_clear_bit();
2485 }
2486 #elif defined(TIF_POLLING_NRFLAG)
2487 static inline int tsk_is_polling(struct task_struct *p)
2488 {
2489 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2490 }
2491 static inline void current_set_polling(void)
2492 {
2493 	set_thread_flag(TIF_POLLING_NRFLAG);
2494 }
2495 
2496 static inline void current_clr_polling(void)
2497 {
2498 	clear_thread_flag(TIF_POLLING_NRFLAG);
2499 }
2500 #else
2501 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2502 static inline void current_set_polling(void) { }
2503 static inline void current_clr_polling(void) { }
2504 #endif
2505 
2506 /*
2507  * Thread group CPU time accounting.
2508  */
2509 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2510 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2511 
2512 static inline void thread_group_cputime_init(struct signal_struct *sig)
2513 {
2514 	raw_spin_lock_init(&sig->cputimer.lock);
2515 }
2516 
2517 /*
2518  * Reevaluate whether the task has signals pending delivery.
2519  * Wake the task if so.
2520  * This is required every time the blocked sigset_t changes.
2521  * callers must hold sighand->siglock.
2522  */
2523 extern void recalc_sigpending_and_wake(struct task_struct *t);
2524 extern void recalc_sigpending(void);
2525 
2526 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2527 
2528 static inline void signal_wake_up(struct task_struct *t, bool resume)
2529 {
2530 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2531 }
2532 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2533 {
2534 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2535 }
2536 
2537 /*
2538  * Wrappers for p->thread_info->cpu access. No-op on UP.
2539  */
2540 #ifdef CONFIG_SMP
2541 
2542 static inline unsigned int task_cpu(const struct task_struct *p)
2543 {
2544 	return task_thread_info(p)->cpu;
2545 }
2546 
2547 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2548 
2549 #else
2550 
2551 static inline unsigned int task_cpu(const struct task_struct *p)
2552 {
2553 	return 0;
2554 }
2555 
2556 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2557 {
2558 }
2559 
2560 #endif /* CONFIG_SMP */
2561 
2562 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2563 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2564 
2565 #ifdef CONFIG_CGROUP_SCHED
2566 extern struct task_group root_task_group;
2567 #endif /* CONFIG_CGROUP_SCHED */
2568 
2569 extern int task_can_switch_user(struct user_struct *up,
2570 					struct task_struct *tsk);
2571 
2572 #ifdef CONFIG_TASK_XACCT
2573 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2574 {
2575 	tsk->ioac.rchar += amt;
2576 }
2577 
2578 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2579 {
2580 	tsk->ioac.wchar += amt;
2581 }
2582 
2583 static inline void inc_syscr(struct task_struct *tsk)
2584 {
2585 	tsk->ioac.syscr++;
2586 }
2587 
2588 static inline void inc_syscw(struct task_struct *tsk)
2589 {
2590 	tsk->ioac.syscw++;
2591 }
2592 #else
2593 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2594 {
2595 }
2596 
2597 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2598 {
2599 }
2600 
2601 static inline void inc_syscr(struct task_struct *tsk)
2602 {
2603 }
2604 
2605 static inline void inc_syscw(struct task_struct *tsk)
2606 {
2607 }
2608 #endif
2609 
2610 #ifndef TASK_SIZE_OF
2611 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2612 #endif
2613 
2614 #ifdef CONFIG_MM_OWNER
2615 extern void mm_update_next_owner(struct mm_struct *mm);
2616 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2617 #else
2618 static inline void mm_update_next_owner(struct mm_struct *mm)
2619 {
2620 }
2621 
2622 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2623 {
2624 }
2625 #endif /* CONFIG_MM_OWNER */
2626 
2627 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2628 		unsigned int limit)
2629 {
2630 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2631 }
2632 
2633 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2634 		unsigned int limit)
2635 {
2636 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2637 }
2638 
2639 static inline unsigned long rlimit(unsigned int limit)
2640 {
2641 	return task_rlimit(current, limit);
2642 }
2643 
2644 static inline unsigned long rlimit_max(unsigned int limit)
2645 {
2646 	return task_rlimit_max(current, limit);
2647 }
2648 
2649 #endif
2650