xref: /linux/include/linux/sched.h (revision ac8fa1bdc02671ff9c3e548878e68886b3f5daee)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct capture_control;
46 struct cfs_rq;
47 struct fs_struct;
48 struct futex_pi_state;
49 struct io_context;
50 struct io_uring_task;
51 struct mempolicy;
52 struct nameidata;
53 struct nsproxy;
54 struct perf_event_context;
55 struct pid_namespace;
56 struct pipe_inode_info;
57 struct rcu_node;
58 struct reclaim_state;
59 struct robust_list_head;
60 struct root_domain;
61 struct rq;
62 struct sched_attr;
63 struct sched_param;
64 struct seq_file;
65 struct sighand_struct;
66 struct signal_struct;
67 struct task_delay_info;
68 struct task_group;
69 
70 /*
71  * Task state bitmask. NOTE! These bits are also
72  * encoded in fs/proc/array.c: get_task_state().
73  *
74  * We have two separate sets of flags: task->state
75  * is about runnability, while task->exit_state are
76  * about the task exiting. Confusing, but this way
77  * modifying one set can't modify the other one by
78  * mistake.
79  */
80 
81 /* Used in tsk->state: */
82 #define TASK_RUNNING			0x0000
83 #define TASK_INTERRUPTIBLE		0x0001
84 #define TASK_UNINTERRUPTIBLE		0x0002
85 #define __TASK_STOPPED			0x0004
86 #define __TASK_TRACED			0x0008
87 /* Used in tsk->exit_state: */
88 #define EXIT_DEAD			0x0010
89 #define EXIT_ZOMBIE			0x0020
90 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
91 /* Used in tsk->state again: */
92 #define TASK_PARKED			0x0040
93 #define TASK_DEAD			0x0080
94 #define TASK_WAKEKILL			0x0100
95 #define TASK_WAKING			0x0200
96 #define TASK_NOLOAD			0x0400
97 #define TASK_NEW			0x0800
98 #define TASK_STATE_MAX			0x1000
99 
100 /* Convenience macros for the sake of set_current_state: */
101 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
103 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
104 
105 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106 
107 /* Convenience macros for the sake of wake_up(): */
108 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109 
110 /* get_task_state(): */
111 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 					 TASK_PARKED)
115 
116 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
117 
118 #define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
119 
120 #define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
121 
122 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
123 
124 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
125 
126 /*
127  * Special states are those that do not use the normal wait-loop pattern. See
128  * the comment with set_special_state().
129  */
130 #define is_special_task_state(state)				\
131 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
132 
133 #define __set_current_state(state_value)			\
134 	do {							\
135 		WARN_ON_ONCE(is_special_task_state(state_value));\
136 		current->task_state_change = _THIS_IP_;		\
137 		WRITE_ONCE(current->__state, (state_value));	\
138 	} while (0)
139 
140 #define set_current_state(state_value)				\
141 	do {							\
142 		WARN_ON_ONCE(is_special_task_state(state_value));\
143 		current->task_state_change = _THIS_IP_;		\
144 		smp_store_mb(current->__state, (state_value));	\
145 	} while (0)
146 
147 #define set_special_state(state_value)					\
148 	do {								\
149 		unsigned long flags; /* may shadow */			\
150 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
151 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
152 		current->task_state_change = _THIS_IP_;			\
153 		WRITE_ONCE(current->__state, (state_value));		\
154 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
155 	} while (0)
156 #else
157 /*
158  * set_current_state() includes a barrier so that the write of current->state
159  * is correctly serialised wrt the caller's subsequent test of whether to
160  * actually sleep:
161  *
162  *   for (;;) {
163  *	set_current_state(TASK_UNINTERRUPTIBLE);
164  *	if (CONDITION)
165  *	   break;
166  *
167  *	schedule();
168  *   }
169  *   __set_current_state(TASK_RUNNING);
170  *
171  * If the caller does not need such serialisation (because, for instance, the
172  * CONDITION test and condition change and wakeup are under the same lock) then
173  * use __set_current_state().
174  *
175  * The above is typically ordered against the wakeup, which does:
176  *
177  *   CONDITION = 1;
178  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
179  *
180  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
181  * accessing p->state.
182  *
183  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
184  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
185  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
186  *
187  * However, with slightly different timing the wakeup TASK_RUNNING store can
188  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
189  * a problem either because that will result in one extra go around the loop
190  * and our @cond test will save the day.
191  *
192  * Also see the comments of try_to_wake_up().
193  */
194 #define __set_current_state(state_value)				\
195 	WRITE_ONCE(current->__state, (state_value))
196 
197 #define set_current_state(state_value)					\
198 	smp_store_mb(current->__state, (state_value))
199 
200 /*
201  * set_special_state() should be used for those states when the blocking task
202  * can not use the regular condition based wait-loop. In that case we must
203  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
204  * will not collide with our state change.
205  */
206 #define set_special_state(state_value)					\
207 	do {								\
208 		unsigned long flags; /* may shadow */			\
209 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
210 		WRITE_ONCE(current->__state, (state_value));		\
211 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
212 	} while (0)
213 
214 #endif
215 
216 #define get_current_state()	READ_ONCE(current->__state)
217 
218 /* Task command name length: */
219 #define TASK_COMM_LEN			16
220 
221 extern void scheduler_tick(void);
222 
223 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
224 
225 extern long schedule_timeout(long timeout);
226 extern long schedule_timeout_interruptible(long timeout);
227 extern long schedule_timeout_killable(long timeout);
228 extern long schedule_timeout_uninterruptible(long timeout);
229 extern long schedule_timeout_idle(long timeout);
230 asmlinkage void schedule(void);
231 extern void schedule_preempt_disabled(void);
232 asmlinkage void preempt_schedule_irq(void);
233 
234 extern int __must_check io_schedule_prepare(void);
235 extern void io_schedule_finish(int token);
236 extern long io_schedule_timeout(long timeout);
237 extern void io_schedule(void);
238 
239 /**
240  * struct prev_cputime - snapshot of system and user cputime
241  * @utime: time spent in user mode
242  * @stime: time spent in system mode
243  * @lock: protects the above two fields
244  *
245  * Stores previous user/system time values such that we can guarantee
246  * monotonicity.
247  */
248 struct prev_cputime {
249 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
250 	u64				utime;
251 	u64				stime;
252 	raw_spinlock_t			lock;
253 #endif
254 };
255 
256 enum vtime_state {
257 	/* Task is sleeping or running in a CPU with VTIME inactive: */
258 	VTIME_INACTIVE = 0,
259 	/* Task is idle */
260 	VTIME_IDLE,
261 	/* Task runs in kernelspace in a CPU with VTIME active: */
262 	VTIME_SYS,
263 	/* Task runs in userspace in a CPU with VTIME active: */
264 	VTIME_USER,
265 	/* Task runs as guests in a CPU with VTIME active: */
266 	VTIME_GUEST,
267 };
268 
269 struct vtime {
270 	seqcount_t		seqcount;
271 	unsigned long long	starttime;
272 	enum vtime_state	state;
273 	unsigned int		cpu;
274 	u64			utime;
275 	u64			stime;
276 	u64			gtime;
277 };
278 
279 /*
280  * Utilization clamp constraints.
281  * @UCLAMP_MIN:	Minimum utilization
282  * @UCLAMP_MAX:	Maximum utilization
283  * @UCLAMP_CNT:	Utilization clamp constraints count
284  */
285 enum uclamp_id {
286 	UCLAMP_MIN = 0,
287 	UCLAMP_MAX,
288 	UCLAMP_CNT
289 };
290 
291 #ifdef CONFIG_SMP
292 extern struct root_domain def_root_domain;
293 extern struct mutex sched_domains_mutex;
294 #endif
295 
296 struct sched_info {
297 #ifdef CONFIG_SCHED_INFO
298 	/* Cumulative counters: */
299 
300 	/* # of times we have run on this CPU: */
301 	unsigned long			pcount;
302 
303 	/* Time spent waiting on a runqueue: */
304 	unsigned long long		run_delay;
305 
306 	/* Timestamps: */
307 
308 	/* When did we last run on a CPU? */
309 	unsigned long long		last_arrival;
310 
311 	/* When were we last queued to run? */
312 	unsigned long long		last_queued;
313 
314 #endif /* CONFIG_SCHED_INFO */
315 };
316 
317 /*
318  * Integer metrics need fixed point arithmetic, e.g., sched/fair
319  * has a few: load, load_avg, util_avg, freq, and capacity.
320  *
321  * We define a basic fixed point arithmetic range, and then formalize
322  * all these metrics based on that basic range.
323  */
324 # define SCHED_FIXEDPOINT_SHIFT		10
325 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
326 
327 /* Increase resolution of cpu_capacity calculations */
328 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
329 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
330 
331 struct load_weight {
332 	unsigned long			weight;
333 	u32				inv_weight;
334 };
335 
336 /**
337  * struct util_est - Estimation utilization of FAIR tasks
338  * @enqueued: instantaneous estimated utilization of a task/cpu
339  * @ewma:     the Exponential Weighted Moving Average (EWMA)
340  *            utilization of a task
341  *
342  * Support data structure to track an Exponential Weighted Moving Average
343  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
344  * average each time a task completes an activation. Sample's weight is chosen
345  * so that the EWMA will be relatively insensitive to transient changes to the
346  * task's workload.
347  *
348  * The enqueued attribute has a slightly different meaning for tasks and cpus:
349  * - task:   the task's util_avg at last task dequeue time
350  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
351  * Thus, the util_est.enqueued of a task represents the contribution on the
352  * estimated utilization of the CPU where that task is currently enqueued.
353  *
354  * Only for tasks we track a moving average of the past instantaneous
355  * estimated utilization. This allows to absorb sporadic drops in utilization
356  * of an otherwise almost periodic task.
357  *
358  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
359  * updates. When a task is dequeued, its util_est should not be updated if its
360  * util_avg has not been updated in the meantime.
361  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
362  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
363  * for a task) it is safe to use MSB.
364  */
365 struct util_est {
366 	unsigned int			enqueued;
367 	unsigned int			ewma;
368 #define UTIL_EST_WEIGHT_SHIFT		2
369 #define UTIL_AVG_UNCHANGED		0x80000000
370 } __attribute__((__aligned__(sizeof(u64))));
371 
372 /*
373  * The load/runnable/util_avg accumulates an infinite geometric series
374  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
375  *
376  * [load_avg definition]
377  *
378  *   load_avg = runnable% * scale_load_down(load)
379  *
380  * [runnable_avg definition]
381  *
382  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
383  *
384  * [util_avg definition]
385  *
386  *   util_avg = running% * SCHED_CAPACITY_SCALE
387  *
388  * where runnable% is the time ratio that a sched_entity is runnable and
389  * running% the time ratio that a sched_entity is running.
390  *
391  * For cfs_rq, they are the aggregated values of all runnable and blocked
392  * sched_entities.
393  *
394  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
395  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
396  * for computing those signals (see update_rq_clock_pelt())
397  *
398  * N.B., the above ratios (runnable% and running%) themselves are in the
399  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
400  * to as large a range as necessary. This is for example reflected by
401  * util_avg's SCHED_CAPACITY_SCALE.
402  *
403  * [Overflow issue]
404  *
405  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
406  * with the highest load (=88761), always runnable on a single cfs_rq,
407  * and should not overflow as the number already hits PID_MAX_LIMIT.
408  *
409  * For all other cases (including 32-bit kernels), struct load_weight's
410  * weight will overflow first before we do, because:
411  *
412  *    Max(load_avg) <= Max(load.weight)
413  *
414  * Then it is the load_weight's responsibility to consider overflow
415  * issues.
416  */
417 struct sched_avg {
418 	u64				last_update_time;
419 	u64				load_sum;
420 	u64				runnable_sum;
421 	u32				util_sum;
422 	u32				period_contrib;
423 	unsigned long			load_avg;
424 	unsigned long			runnable_avg;
425 	unsigned long			util_avg;
426 	struct util_est			util_est;
427 } ____cacheline_aligned;
428 
429 struct sched_statistics {
430 #ifdef CONFIG_SCHEDSTATS
431 	u64				wait_start;
432 	u64				wait_max;
433 	u64				wait_count;
434 	u64				wait_sum;
435 	u64				iowait_count;
436 	u64				iowait_sum;
437 
438 	u64				sleep_start;
439 	u64				sleep_max;
440 	s64				sum_sleep_runtime;
441 
442 	u64				block_start;
443 	u64				block_max;
444 	u64				exec_max;
445 	u64				slice_max;
446 
447 	u64				nr_migrations_cold;
448 	u64				nr_failed_migrations_affine;
449 	u64				nr_failed_migrations_running;
450 	u64				nr_failed_migrations_hot;
451 	u64				nr_forced_migrations;
452 
453 	u64				nr_wakeups;
454 	u64				nr_wakeups_sync;
455 	u64				nr_wakeups_migrate;
456 	u64				nr_wakeups_local;
457 	u64				nr_wakeups_remote;
458 	u64				nr_wakeups_affine;
459 	u64				nr_wakeups_affine_attempts;
460 	u64				nr_wakeups_passive;
461 	u64				nr_wakeups_idle;
462 #endif
463 };
464 
465 struct sched_entity {
466 	/* For load-balancing: */
467 	struct load_weight		load;
468 	struct rb_node			run_node;
469 	struct list_head		group_node;
470 	unsigned int			on_rq;
471 
472 	u64				exec_start;
473 	u64				sum_exec_runtime;
474 	u64				vruntime;
475 	u64				prev_sum_exec_runtime;
476 
477 	u64				nr_migrations;
478 
479 	struct sched_statistics		statistics;
480 
481 #ifdef CONFIG_FAIR_GROUP_SCHED
482 	int				depth;
483 	struct sched_entity		*parent;
484 	/* rq on which this entity is (to be) queued: */
485 	struct cfs_rq			*cfs_rq;
486 	/* rq "owned" by this entity/group: */
487 	struct cfs_rq			*my_q;
488 	/* cached value of my_q->h_nr_running */
489 	unsigned long			runnable_weight;
490 #endif
491 
492 #ifdef CONFIG_SMP
493 	/*
494 	 * Per entity load average tracking.
495 	 *
496 	 * Put into separate cache line so it does not
497 	 * collide with read-mostly values above.
498 	 */
499 	struct sched_avg		avg;
500 #endif
501 };
502 
503 struct sched_rt_entity {
504 	struct list_head		run_list;
505 	unsigned long			timeout;
506 	unsigned long			watchdog_stamp;
507 	unsigned int			time_slice;
508 	unsigned short			on_rq;
509 	unsigned short			on_list;
510 
511 	struct sched_rt_entity		*back;
512 #ifdef CONFIG_RT_GROUP_SCHED
513 	struct sched_rt_entity		*parent;
514 	/* rq on which this entity is (to be) queued: */
515 	struct rt_rq			*rt_rq;
516 	/* rq "owned" by this entity/group: */
517 	struct rt_rq			*my_q;
518 #endif
519 } __randomize_layout;
520 
521 struct sched_dl_entity {
522 	struct rb_node			rb_node;
523 
524 	/*
525 	 * Original scheduling parameters. Copied here from sched_attr
526 	 * during sched_setattr(), they will remain the same until
527 	 * the next sched_setattr().
528 	 */
529 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
530 	u64				dl_deadline;	/* Relative deadline of each instance	*/
531 	u64				dl_period;	/* Separation of two instances (period) */
532 	u64				dl_bw;		/* dl_runtime / dl_period		*/
533 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
534 
535 	/*
536 	 * Actual scheduling parameters. Initialized with the values above,
537 	 * they are continuously updated during task execution. Note that
538 	 * the remaining runtime could be < 0 in case we are in overrun.
539 	 */
540 	s64				runtime;	/* Remaining runtime for this instance	*/
541 	u64				deadline;	/* Absolute deadline for this instance	*/
542 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
543 
544 	/*
545 	 * Some bool flags:
546 	 *
547 	 * @dl_throttled tells if we exhausted the runtime. If so, the
548 	 * task has to wait for a replenishment to be performed at the
549 	 * next firing of dl_timer.
550 	 *
551 	 * @dl_boosted tells if we are boosted due to DI. If so we are
552 	 * outside bandwidth enforcement mechanism (but only until we
553 	 * exit the critical section);
554 	 *
555 	 * @dl_yielded tells if task gave up the CPU before consuming
556 	 * all its available runtime during the last job.
557 	 *
558 	 * @dl_non_contending tells if the task is inactive while still
559 	 * contributing to the active utilization. In other words, it
560 	 * indicates if the inactive timer has been armed and its handler
561 	 * has not been executed yet. This flag is useful to avoid race
562 	 * conditions between the inactive timer handler and the wakeup
563 	 * code.
564 	 *
565 	 * @dl_overrun tells if the task asked to be informed about runtime
566 	 * overruns.
567 	 */
568 	unsigned int			dl_throttled      : 1;
569 	unsigned int			dl_yielded        : 1;
570 	unsigned int			dl_non_contending : 1;
571 	unsigned int			dl_overrun	  : 1;
572 
573 	/*
574 	 * Bandwidth enforcement timer. Each -deadline task has its
575 	 * own bandwidth to be enforced, thus we need one timer per task.
576 	 */
577 	struct hrtimer			dl_timer;
578 
579 	/*
580 	 * Inactive timer, responsible for decreasing the active utilization
581 	 * at the "0-lag time". When a -deadline task blocks, it contributes
582 	 * to GRUB's active utilization until the "0-lag time", hence a
583 	 * timer is needed to decrease the active utilization at the correct
584 	 * time.
585 	 */
586 	struct hrtimer inactive_timer;
587 
588 #ifdef CONFIG_RT_MUTEXES
589 	/*
590 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
591 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
592 	 * to (the original one/itself).
593 	 */
594 	struct sched_dl_entity *pi_se;
595 #endif
596 };
597 
598 #ifdef CONFIG_UCLAMP_TASK
599 /* Number of utilization clamp buckets (shorter alias) */
600 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
601 
602 /*
603  * Utilization clamp for a scheduling entity
604  * @value:		clamp value "assigned" to a se
605  * @bucket_id:		bucket index corresponding to the "assigned" value
606  * @active:		the se is currently refcounted in a rq's bucket
607  * @user_defined:	the requested clamp value comes from user-space
608  *
609  * The bucket_id is the index of the clamp bucket matching the clamp value
610  * which is pre-computed and stored to avoid expensive integer divisions from
611  * the fast path.
612  *
613  * The active bit is set whenever a task has got an "effective" value assigned,
614  * which can be different from the clamp value "requested" from user-space.
615  * This allows to know a task is refcounted in the rq's bucket corresponding
616  * to the "effective" bucket_id.
617  *
618  * The user_defined bit is set whenever a task has got a task-specific clamp
619  * value requested from userspace, i.e. the system defaults apply to this task
620  * just as a restriction. This allows to relax default clamps when a less
621  * restrictive task-specific value has been requested, thus allowing to
622  * implement a "nice" semantic. For example, a task running with a 20%
623  * default boost can still drop its own boosting to 0%.
624  */
625 struct uclamp_se {
626 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
627 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
628 	unsigned int active		: 1;
629 	unsigned int user_defined	: 1;
630 };
631 #endif /* CONFIG_UCLAMP_TASK */
632 
633 union rcu_special {
634 	struct {
635 		u8			blocked;
636 		u8			need_qs;
637 		u8			exp_hint; /* Hint for performance. */
638 		u8			need_mb; /* Readers need smp_mb(). */
639 	} b; /* Bits. */
640 	u32 s; /* Set of bits. */
641 };
642 
643 enum perf_event_task_context {
644 	perf_invalid_context = -1,
645 	perf_hw_context = 0,
646 	perf_sw_context,
647 	perf_nr_task_contexts,
648 };
649 
650 struct wake_q_node {
651 	struct wake_q_node *next;
652 };
653 
654 struct kmap_ctrl {
655 #ifdef CONFIG_KMAP_LOCAL
656 	int				idx;
657 	pte_t				pteval[KM_MAX_IDX];
658 #endif
659 };
660 
661 struct task_struct {
662 #ifdef CONFIG_THREAD_INFO_IN_TASK
663 	/*
664 	 * For reasons of header soup (see current_thread_info()), this
665 	 * must be the first element of task_struct.
666 	 */
667 	struct thread_info		thread_info;
668 #endif
669 	unsigned int			__state;
670 
671 	/*
672 	 * This begins the randomizable portion of task_struct. Only
673 	 * scheduling-critical items should be added above here.
674 	 */
675 	randomized_struct_fields_start
676 
677 	void				*stack;
678 	refcount_t			usage;
679 	/* Per task flags (PF_*), defined further below: */
680 	unsigned int			flags;
681 	unsigned int			ptrace;
682 
683 #ifdef CONFIG_SMP
684 	int				on_cpu;
685 	struct __call_single_node	wake_entry;
686 #ifdef CONFIG_THREAD_INFO_IN_TASK
687 	/* Current CPU: */
688 	unsigned int			cpu;
689 #endif
690 	unsigned int			wakee_flips;
691 	unsigned long			wakee_flip_decay_ts;
692 	struct task_struct		*last_wakee;
693 
694 	/*
695 	 * recent_used_cpu is initially set as the last CPU used by a task
696 	 * that wakes affine another task. Waker/wakee relationships can
697 	 * push tasks around a CPU where each wakeup moves to the next one.
698 	 * Tracking a recently used CPU allows a quick search for a recently
699 	 * used CPU that may be idle.
700 	 */
701 	int				recent_used_cpu;
702 	int				wake_cpu;
703 #endif
704 	int				on_rq;
705 
706 	int				prio;
707 	int				static_prio;
708 	int				normal_prio;
709 	unsigned int			rt_priority;
710 
711 	const struct sched_class	*sched_class;
712 	struct sched_entity		se;
713 	struct sched_rt_entity		rt;
714 	struct sched_dl_entity		dl;
715 
716 #ifdef CONFIG_SCHED_CORE
717 	struct rb_node			core_node;
718 	unsigned long			core_cookie;
719 	unsigned int			core_occupation;
720 #endif
721 
722 #ifdef CONFIG_CGROUP_SCHED
723 	struct task_group		*sched_task_group;
724 #endif
725 
726 #ifdef CONFIG_UCLAMP_TASK
727 	/*
728 	 * Clamp values requested for a scheduling entity.
729 	 * Must be updated with task_rq_lock() held.
730 	 */
731 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
732 	/*
733 	 * Effective clamp values used for a scheduling entity.
734 	 * Must be updated with task_rq_lock() held.
735 	 */
736 	struct uclamp_se		uclamp[UCLAMP_CNT];
737 #endif
738 
739 #ifdef CONFIG_PREEMPT_NOTIFIERS
740 	/* List of struct preempt_notifier: */
741 	struct hlist_head		preempt_notifiers;
742 #endif
743 
744 #ifdef CONFIG_BLK_DEV_IO_TRACE
745 	unsigned int			btrace_seq;
746 #endif
747 
748 	unsigned int			policy;
749 	int				nr_cpus_allowed;
750 	const cpumask_t			*cpus_ptr;
751 	cpumask_t			cpus_mask;
752 	void				*migration_pending;
753 #ifdef CONFIG_SMP
754 	unsigned short			migration_disabled;
755 #endif
756 	unsigned short			migration_flags;
757 
758 #ifdef CONFIG_PREEMPT_RCU
759 	int				rcu_read_lock_nesting;
760 	union rcu_special		rcu_read_unlock_special;
761 	struct list_head		rcu_node_entry;
762 	struct rcu_node			*rcu_blocked_node;
763 #endif /* #ifdef CONFIG_PREEMPT_RCU */
764 
765 #ifdef CONFIG_TASKS_RCU
766 	unsigned long			rcu_tasks_nvcsw;
767 	u8				rcu_tasks_holdout;
768 	u8				rcu_tasks_idx;
769 	int				rcu_tasks_idle_cpu;
770 	struct list_head		rcu_tasks_holdout_list;
771 #endif /* #ifdef CONFIG_TASKS_RCU */
772 
773 #ifdef CONFIG_TASKS_TRACE_RCU
774 	int				trc_reader_nesting;
775 	int				trc_ipi_to_cpu;
776 	union rcu_special		trc_reader_special;
777 	bool				trc_reader_checked;
778 	struct list_head		trc_holdout_list;
779 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
780 
781 	struct sched_info		sched_info;
782 
783 	struct list_head		tasks;
784 #ifdef CONFIG_SMP
785 	struct plist_node		pushable_tasks;
786 	struct rb_node			pushable_dl_tasks;
787 #endif
788 
789 	struct mm_struct		*mm;
790 	struct mm_struct		*active_mm;
791 
792 	/* Per-thread vma caching: */
793 	struct vmacache			vmacache;
794 
795 #ifdef SPLIT_RSS_COUNTING
796 	struct task_rss_stat		rss_stat;
797 #endif
798 	int				exit_state;
799 	int				exit_code;
800 	int				exit_signal;
801 	/* The signal sent when the parent dies: */
802 	int				pdeath_signal;
803 	/* JOBCTL_*, siglock protected: */
804 	unsigned long			jobctl;
805 
806 	/* Used for emulating ABI behavior of previous Linux versions: */
807 	unsigned int			personality;
808 
809 	/* Scheduler bits, serialized by scheduler locks: */
810 	unsigned			sched_reset_on_fork:1;
811 	unsigned			sched_contributes_to_load:1;
812 	unsigned			sched_migrated:1;
813 #ifdef CONFIG_PSI
814 	unsigned			sched_psi_wake_requeue:1;
815 #endif
816 
817 	/* Force alignment to the next boundary: */
818 	unsigned			:0;
819 
820 	/* Unserialized, strictly 'current' */
821 
822 	/*
823 	 * This field must not be in the scheduler word above due to wakelist
824 	 * queueing no longer being serialized by p->on_cpu. However:
825 	 *
826 	 * p->XXX = X;			ttwu()
827 	 * schedule()			  if (p->on_rq && ..) // false
828 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
829 	 *   deactivate_task()		      ttwu_queue_wakelist())
830 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
831 	 *
832 	 * guarantees all stores of 'current' are visible before
833 	 * ->sched_remote_wakeup gets used, so it can be in this word.
834 	 */
835 	unsigned			sched_remote_wakeup:1;
836 
837 	/* Bit to tell LSMs we're in execve(): */
838 	unsigned			in_execve:1;
839 	unsigned			in_iowait:1;
840 #ifndef TIF_RESTORE_SIGMASK
841 	unsigned			restore_sigmask:1;
842 #endif
843 #ifdef CONFIG_MEMCG
844 	unsigned			in_user_fault:1;
845 #endif
846 #ifdef CONFIG_COMPAT_BRK
847 	unsigned			brk_randomized:1;
848 #endif
849 #ifdef CONFIG_CGROUPS
850 	/* disallow userland-initiated cgroup migration */
851 	unsigned			no_cgroup_migration:1;
852 	/* task is frozen/stopped (used by the cgroup freezer) */
853 	unsigned			frozen:1;
854 #endif
855 #ifdef CONFIG_BLK_CGROUP
856 	unsigned			use_memdelay:1;
857 #endif
858 #ifdef CONFIG_PSI
859 	/* Stalled due to lack of memory */
860 	unsigned			in_memstall:1;
861 #endif
862 #ifdef CONFIG_PAGE_OWNER
863 	/* Used by page_owner=on to detect recursion in page tracking. */
864 	unsigned			in_page_owner:1;
865 #endif
866 
867 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
868 
869 	struct restart_block		restart_block;
870 
871 	pid_t				pid;
872 	pid_t				tgid;
873 
874 #ifdef CONFIG_STACKPROTECTOR
875 	/* Canary value for the -fstack-protector GCC feature: */
876 	unsigned long			stack_canary;
877 #endif
878 	/*
879 	 * Pointers to the (original) parent process, youngest child, younger sibling,
880 	 * older sibling, respectively.  (p->father can be replaced with
881 	 * p->real_parent->pid)
882 	 */
883 
884 	/* Real parent process: */
885 	struct task_struct __rcu	*real_parent;
886 
887 	/* Recipient of SIGCHLD, wait4() reports: */
888 	struct task_struct __rcu	*parent;
889 
890 	/*
891 	 * Children/sibling form the list of natural children:
892 	 */
893 	struct list_head		children;
894 	struct list_head		sibling;
895 	struct task_struct		*group_leader;
896 
897 	/*
898 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
899 	 *
900 	 * This includes both natural children and PTRACE_ATTACH targets.
901 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
902 	 */
903 	struct list_head		ptraced;
904 	struct list_head		ptrace_entry;
905 
906 	/* PID/PID hash table linkage. */
907 	struct pid			*thread_pid;
908 	struct hlist_node		pid_links[PIDTYPE_MAX];
909 	struct list_head		thread_group;
910 	struct list_head		thread_node;
911 
912 	struct completion		*vfork_done;
913 
914 	/* CLONE_CHILD_SETTID: */
915 	int __user			*set_child_tid;
916 
917 	/* CLONE_CHILD_CLEARTID: */
918 	int __user			*clear_child_tid;
919 
920 	/* PF_IO_WORKER */
921 	void				*pf_io_worker;
922 
923 	u64				utime;
924 	u64				stime;
925 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
926 	u64				utimescaled;
927 	u64				stimescaled;
928 #endif
929 	u64				gtime;
930 	struct prev_cputime		prev_cputime;
931 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
932 	struct vtime			vtime;
933 #endif
934 
935 #ifdef CONFIG_NO_HZ_FULL
936 	atomic_t			tick_dep_mask;
937 #endif
938 	/* Context switch counts: */
939 	unsigned long			nvcsw;
940 	unsigned long			nivcsw;
941 
942 	/* Monotonic time in nsecs: */
943 	u64				start_time;
944 
945 	/* Boot based time in nsecs: */
946 	u64				start_boottime;
947 
948 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
949 	unsigned long			min_flt;
950 	unsigned long			maj_flt;
951 
952 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
953 	struct posix_cputimers		posix_cputimers;
954 
955 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
956 	struct posix_cputimers_work	posix_cputimers_work;
957 #endif
958 
959 	/* Process credentials: */
960 
961 	/* Tracer's credentials at attach: */
962 	const struct cred __rcu		*ptracer_cred;
963 
964 	/* Objective and real subjective task credentials (COW): */
965 	const struct cred __rcu		*real_cred;
966 
967 	/* Effective (overridable) subjective task credentials (COW): */
968 	const struct cred __rcu		*cred;
969 
970 #ifdef CONFIG_KEYS
971 	/* Cached requested key. */
972 	struct key			*cached_requested_key;
973 #endif
974 
975 	/*
976 	 * executable name, excluding path.
977 	 *
978 	 * - normally initialized setup_new_exec()
979 	 * - access it with [gs]et_task_comm()
980 	 * - lock it with task_lock()
981 	 */
982 	char				comm[TASK_COMM_LEN];
983 
984 	struct nameidata		*nameidata;
985 
986 #ifdef CONFIG_SYSVIPC
987 	struct sysv_sem			sysvsem;
988 	struct sysv_shm			sysvshm;
989 #endif
990 #ifdef CONFIG_DETECT_HUNG_TASK
991 	unsigned long			last_switch_count;
992 	unsigned long			last_switch_time;
993 #endif
994 	/* Filesystem information: */
995 	struct fs_struct		*fs;
996 
997 	/* Open file information: */
998 	struct files_struct		*files;
999 
1000 #ifdef CONFIG_IO_URING
1001 	struct io_uring_task		*io_uring;
1002 #endif
1003 
1004 	/* Namespaces: */
1005 	struct nsproxy			*nsproxy;
1006 
1007 	/* Signal handlers: */
1008 	struct signal_struct		*signal;
1009 	struct sighand_struct __rcu		*sighand;
1010 	sigset_t			blocked;
1011 	sigset_t			real_blocked;
1012 	/* Restored if set_restore_sigmask() was used: */
1013 	sigset_t			saved_sigmask;
1014 	struct sigpending		pending;
1015 	unsigned long			sas_ss_sp;
1016 	size_t				sas_ss_size;
1017 	unsigned int			sas_ss_flags;
1018 
1019 	struct callback_head		*task_works;
1020 
1021 #ifdef CONFIG_AUDIT
1022 #ifdef CONFIG_AUDITSYSCALL
1023 	struct audit_context		*audit_context;
1024 #endif
1025 	kuid_t				loginuid;
1026 	unsigned int			sessionid;
1027 #endif
1028 	struct seccomp			seccomp;
1029 	struct syscall_user_dispatch	syscall_dispatch;
1030 
1031 	/* Thread group tracking: */
1032 	u64				parent_exec_id;
1033 	u64				self_exec_id;
1034 
1035 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1036 	spinlock_t			alloc_lock;
1037 
1038 	/* Protection of the PI data structures: */
1039 	raw_spinlock_t			pi_lock;
1040 
1041 	struct wake_q_node		wake_q;
1042 
1043 #ifdef CONFIG_RT_MUTEXES
1044 	/* PI waiters blocked on a rt_mutex held by this task: */
1045 	struct rb_root_cached		pi_waiters;
1046 	/* Updated under owner's pi_lock and rq lock */
1047 	struct task_struct		*pi_top_task;
1048 	/* Deadlock detection and priority inheritance handling: */
1049 	struct rt_mutex_waiter		*pi_blocked_on;
1050 #endif
1051 
1052 #ifdef CONFIG_DEBUG_MUTEXES
1053 	/* Mutex deadlock detection: */
1054 	struct mutex_waiter		*blocked_on;
1055 #endif
1056 
1057 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1058 	int				non_block_count;
1059 #endif
1060 
1061 #ifdef CONFIG_TRACE_IRQFLAGS
1062 	struct irqtrace_events		irqtrace;
1063 	unsigned int			hardirq_threaded;
1064 	u64				hardirq_chain_key;
1065 	int				softirqs_enabled;
1066 	int				softirq_context;
1067 	int				irq_config;
1068 #endif
1069 #ifdef CONFIG_PREEMPT_RT
1070 	int				softirq_disable_cnt;
1071 #endif
1072 
1073 #ifdef CONFIG_LOCKDEP
1074 # define MAX_LOCK_DEPTH			48UL
1075 	u64				curr_chain_key;
1076 	int				lockdep_depth;
1077 	unsigned int			lockdep_recursion;
1078 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1079 #endif
1080 
1081 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1082 	unsigned int			in_ubsan;
1083 #endif
1084 
1085 	/* Journalling filesystem info: */
1086 	void				*journal_info;
1087 
1088 	/* Stacked block device info: */
1089 	struct bio_list			*bio_list;
1090 
1091 #ifdef CONFIG_BLOCK
1092 	/* Stack plugging: */
1093 	struct blk_plug			*plug;
1094 #endif
1095 
1096 	/* VM state: */
1097 	struct reclaim_state		*reclaim_state;
1098 
1099 	struct backing_dev_info		*backing_dev_info;
1100 
1101 	struct io_context		*io_context;
1102 
1103 #ifdef CONFIG_COMPACTION
1104 	struct capture_control		*capture_control;
1105 #endif
1106 	/* Ptrace state: */
1107 	unsigned long			ptrace_message;
1108 	kernel_siginfo_t		*last_siginfo;
1109 
1110 	struct task_io_accounting	ioac;
1111 #ifdef CONFIG_PSI
1112 	/* Pressure stall state */
1113 	unsigned int			psi_flags;
1114 #endif
1115 #ifdef CONFIG_TASK_XACCT
1116 	/* Accumulated RSS usage: */
1117 	u64				acct_rss_mem1;
1118 	/* Accumulated virtual memory usage: */
1119 	u64				acct_vm_mem1;
1120 	/* stime + utime since last update: */
1121 	u64				acct_timexpd;
1122 #endif
1123 #ifdef CONFIG_CPUSETS
1124 	/* Protected by ->alloc_lock: */
1125 	nodemask_t			mems_allowed;
1126 	/* Sequence number to catch updates: */
1127 	seqcount_spinlock_t		mems_allowed_seq;
1128 	int				cpuset_mem_spread_rotor;
1129 	int				cpuset_slab_spread_rotor;
1130 #endif
1131 #ifdef CONFIG_CGROUPS
1132 	/* Control Group info protected by css_set_lock: */
1133 	struct css_set __rcu		*cgroups;
1134 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1135 	struct list_head		cg_list;
1136 #endif
1137 #ifdef CONFIG_X86_CPU_RESCTRL
1138 	u32				closid;
1139 	u32				rmid;
1140 #endif
1141 #ifdef CONFIG_FUTEX
1142 	struct robust_list_head __user	*robust_list;
1143 #ifdef CONFIG_COMPAT
1144 	struct compat_robust_list_head __user *compat_robust_list;
1145 #endif
1146 	struct list_head		pi_state_list;
1147 	struct futex_pi_state		*pi_state_cache;
1148 	struct mutex			futex_exit_mutex;
1149 	unsigned int			futex_state;
1150 #endif
1151 #ifdef CONFIG_PERF_EVENTS
1152 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1153 	struct mutex			perf_event_mutex;
1154 	struct list_head		perf_event_list;
1155 #endif
1156 #ifdef CONFIG_DEBUG_PREEMPT
1157 	unsigned long			preempt_disable_ip;
1158 #endif
1159 #ifdef CONFIG_NUMA
1160 	/* Protected by alloc_lock: */
1161 	struct mempolicy		*mempolicy;
1162 	short				il_prev;
1163 	short				pref_node_fork;
1164 #endif
1165 #ifdef CONFIG_NUMA_BALANCING
1166 	int				numa_scan_seq;
1167 	unsigned int			numa_scan_period;
1168 	unsigned int			numa_scan_period_max;
1169 	int				numa_preferred_nid;
1170 	unsigned long			numa_migrate_retry;
1171 	/* Migration stamp: */
1172 	u64				node_stamp;
1173 	u64				last_task_numa_placement;
1174 	u64				last_sum_exec_runtime;
1175 	struct callback_head		numa_work;
1176 
1177 	/*
1178 	 * This pointer is only modified for current in syscall and
1179 	 * pagefault context (and for tasks being destroyed), so it can be read
1180 	 * from any of the following contexts:
1181 	 *  - RCU read-side critical section
1182 	 *  - current->numa_group from everywhere
1183 	 *  - task's runqueue locked, task not running
1184 	 */
1185 	struct numa_group __rcu		*numa_group;
1186 
1187 	/*
1188 	 * numa_faults is an array split into four regions:
1189 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1190 	 * in this precise order.
1191 	 *
1192 	 * faults_memory: Exponential decaying average of faults on a per-node
1193 	 * basis. Scheduling placement decisions are made based on these
1194 	 * counts. The values remain static for the duration of a PTE scan.
1195 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1196 	 * hinting fault was incurred.
1197 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1198 	 * during the current scan window. When the scan completes, the counts
1199 	 * in faults_memory and faults_cpu decay and these values are copied.
1200 	 */
1201 	unsigned long			*numa_faults;
1202 	unsigned long			total_numa_faults;
1203 
1204 	/*
1205 	 * numa_faults_locality tracks if faults recorded during the last
1206 	 * scan window were remote/local or failed to migrate. The task scan
1207 	 * period is adapted based on the locality of the faults with different
1208 	 * weights depending on whether they were shared or private faults
1209 	 */
1210 	unsigned long			numa_faults_locality[3];
1211 
1212 	unsigned long			numa_pages_migrated;
1213 #endif /* CONFIG_NUMA_BALANCING */
1214 
1215 #ifdef CONFIG_RSEQ
1216 	struct rseq __user *rseq;
1217 	u32 rseq_sig;
1218 	/*
1219 	 * RmW on rseq_event_mask must be performed atomically
1220 	 * with respect to preemption.
1221 	 */
1222 	unsigned long rseq_event_mask;
1223 #endif
1224 
1225 	struct tlbflush_unmap_batch	tlb_ubc;
1226 
1227 	union {
1228 		refcount_t		rcu_users;
1229 		struct rcu_head		rcu;
1230 	};
1231 
1232 	/* Cache last used pipe for splice(): */
1233 	struct pipe_inode_info		*splice_pipe;
1234 
1235 	struct page_frag		task_frag;
1236 
1237 #ifdef CONFIG_TASK_DELAY_ACCT
1238 	struct task_delay_info		*delays;
1239 #endif
1240 
1241 #ifdef CONFIG_FAULT_INJECTION
1242 	int				make_it_fail;
1243 	unsigned int			fail_nth;
1244 #endif
1245 	/*
1246 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1247 	 * balance_dirty_pages() for a dirty throttling pause:
1248 	 */
1249 	int				nr_dirtied;
1250 	int				nr_dirtied_pause;
1251 	/* Start of a write-and-pause period: */
1252 	unsigned long			dirty_paused_when;
1253 
1254 #ifdef CONFIG_LATENCYTOP
1255 	int				latency_record_count;
1256 	struct latency_record		latency_record[LT_SAVECOUNT];
1257 #endif
1258 	/*
1259 	 * Time slack values; these are used to round up poll() and
1260 	 * select() etc timeout values. These are in nanoseconds.
1261 	 */
1262 	u64				timer_slack_ns;
1263 	u64				default_timer_slack_ns;
1264 
1265 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1266 	unsigned int			kasan_depth;
1267 #endif
1268 
1269 #ifdef CONFIG_KCSAN
1270 	struct kcsan_ctx		kcsan_ctx;
1271 #ifdef CONFIG_TRACE_IRQFLAGS
1272 	struct irqtrace_events		kcsan_save_irqtrace;
1273 #endif
1274 #endif
1275 
1276 #if IS_ENABLED(CONFIG_KUNIT)
1277 	struct kunit			*kunit_test;
1278 #endif
1279 
1280 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1281 	/* Index of current stored address in ret_stack: */
1282 	int				curr_ret_stack;
1283 	int				curr_ret_depth;
1284 
1285 	/* Stack of return addresses for return function tracing: */
1286 	struct ftrace_ret_stack		*ret_stack;
1287 
1288 	/* Timestamp for last schedule: */
1289 	unsigned long long		ftrace_timestamp;
1290 
1291 	/*
1292 	 * Number of functions that haven't been traced
1293 	 * because of depth overrun:
1294 	 */
1295 	atomic_t			trace_overrun;
1296 
1297 	/* Pause tracing: */
1298 	atomic_t			tracing_graph_pause;
1299 #endif
1300 
1301 #ifdef CONFIG_TRACING
1302 	/* State flags for use by tracers: */
1303 	unsigned long			trace;
1304 
1305 	/* Bitmask and counter of trace recursion: */
1306 	unsigned long			trace_recursion;
1307 #endif /* CONFIG_TRACING */
1308 
1309 #ifdef CONFIG_KCOV
1310 	/* See kernel/kcov.c for more details. */
1311 
1312 	/* Coverage collection mode enabled for this task (0 if disabled): */
1313 	unsigned int			kcov_mode;
1314 
1315 	/* Size of the kcov_area: */
1316 	unsigned int			kcov_size;
1317 
1318 	/* Buffer for coverage collection: */
1319 	void				*kcov_area;
1320 
1321 	/* KCOV descriptor wired with this task or NULL: */
1322 	struct kcov			*kcov;
1323 
1324 	/* KCOV common handle for remote coverage collection: */
1325 	u64				kcov_handle;
1326 
1327 	/* KCOV sequence number: */
1328 	int				kcov_sequence;
1329 
1330 	/* Collect coverage from softirq context: */
1331 	unsigned int			kcov_softirq;
1332 #endif
1333 
1334 #ifdef CONFIG_MEMCG
1335 	struct mem_cgroup		*memcg_in_oom;
1336 	gfp_t				memcg_oom_gfp_mask;
1337 	int				memcg_oom_order;
1338 
1339 	/* Number of pages to reclaim on returning to userland: */
1340 	unsigned int			memcg_nr_pages_over_high;
1341 
1342 	/* Used by memcontrol for targeted memcg charge: */
1343 	struct mem_cgroup		*active_memcg;
1344 #endif
1345 
1346 #ifdef CONFIG_BLK_CGROUP
1347 	struct request_queue		*throttle_queue;
1348 #endif
1349 
1350 #ifdef CONFIG_UPROBES
1351 	struct uprobe_task		*utask;
1352 #endif
1353 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1354 	unsigned int			sequential_io;
1355 	unsigned int			sequential_io_avg;
1356 #endif
1357 	struct kmap_ctrl		kmap_ctrl;
1358 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1359 	unsigned long			task_state_change;
1360 #endif
1361 	int				pagefault_disabled;
1362 #ifdef CONFIG_MMU
1363 	struct task_struct		*oom_reaper_list;
1364 #endif
1365 #ifdef CONFIG_VMAP_STACK
1366 	struct vm_struct		*stack_vm_area;
1367 #endif
1368 #ifdef CONFIG_THREAD_INFO_IN_TASK
1369 	/* A live task holds one reference: */
1370 	refcount_t			stack_refcount;
1371 #endif
1372 #ifdef CONFIG_LIVEPATCH
1373 	int patch_state;
1374 #endif
1375 #ifdef CONFIG_SECURITY
1376 	/* Used by LSM modules for access restriction: */
1377 	void				*security;
1378 #endif
1379 #ifdef CONFIG_BPF_SYSCALL
1380 	/* Used by BPF task local storage */
1381 	struct bpf_local_storage __rcu	*bpf_storage;
1382 #endif
1383 
1384 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1385 	unsigned long			lowest_stack;
1386 	unsigned long			prev_lowest_stack;
1387 #endif
1388 
1389 #ifdef CONFIG_X86_MCE
1390 	void __user			*mce_vaddr;
1391 	__u64				mce_kflags;
1392 	u64				mce_addr;
1393 	__u64				mce_ripv : 1,
1394 					mce_whole_page : 1,
1395 					__mce_reserved : 62;
1396 	struct callback_head		mce_kill_me;
1397 #endif
1398 
1399 #ifdef CONFIG_KRETPROBES
1400 	struct llist_head               kretprobe_instances;
1401 #endif
1402 
1403 	/*
1404 	 * New fields for task_struct should be added above here, so that
1405 	 * they are included in the randomized portion of task_struct.
1406 	 */
1407 	randomized_struct_fields_end
1408 
1409 	/* CPU-specific state of this task: */
1410 	struct thread_struct		thread;
1411 
1412 	/*
1413 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1414 	 * structure.  It *MUST* be at the end of 'task_struct'.
1415 	 *
1416 	 * Do not put anything below here!
1417 	 */
1418 };
1419 
1420 static inline struct pid *task_pid(struct task_struct *task)
1421 {
1422 	return task->thread_pid;
1423 }
1424 
1425 /*
1426  * the helpers to get the task's different pids as they are seen
1427  * from various namespaces
1428  *
1429  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1430  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1431  *                     current.
1432  * task_xid_nr_ns()  : id seen from the ns specified;
1433  *
1434  * see also pid_nr() etc in include/linux/pid.h
1435  */
1436 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1437 
1438 static inline pid_t task_pid_nr(struct task_struct *tsk)
1439 {
1440 	return tsk->pid;
1441 }
1442 
1443 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1444 {
1445 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1446 }
1447 
1448 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1449 {
1450 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1451 }
1452 
1453 
1454 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1455 {
1456 	return tsk->tgid;
1457 }
1458 
1459 /**
1460  * pid_alive - check that a task structure is not stale
1461  * @p: Task structure to be checked.
1462  *
1463  * Test if a process is not yet dead (at most zombie state)
1464  * If pid_alive fails, then pointers within the task structure
1465  * can be stale and must not be dereferenced.
1466  *
1467  * Return: 1 if the process is alive. 0 otherwise.
1468  */
1469 static inline int pid_alive(const struct task_struct *p)
1470 {
1471 	return p->thread_pid != NULL;
1472 }
1473 
1474 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1475 {
1476 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1477 }
1478 
1479 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1480 {
1481 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1482 }
1483 
1484 
1485 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1486 {
1487 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1488 }
1489 
1490 static inline pid_t task_session_vnr(struct task_struct *tsk)
1491 {
1492 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1493 }
1494 
1495 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1496 {
1497 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1498 }
1499 
1500 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1501 {
1502 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1503 }
1504 
1505 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1506 {
1507 	pid_t pid = 0;
1508 
1509 	rcu_read_lock();
1510 	if (pid_alive(tsk))
1511 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1512 	rcu_read_unlock();
1513 
1514 	return pid;
1515 }
1516 
1517 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1518 {
1519 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1520 }
1521 
1522 /* Obsolete, do not use: */
1523 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1524 {
1525 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1526 }
1527 
1528 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1529 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1530 
1531 static inline unsigned int task_state_index(struct task_struct *tsk)
1532 {
1533 	unsigned int tsk_state = READ_ONCE(tsk->__state);
1534 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1535 
1536 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1537 
1538 	if (tsk_state == TASK_IDLE)
1539 		state = TASK_REPORT_IDLE;
1540 
1541 	return fls(state);
1542 }
1543 
1544 static inline char task_index_to_char(unsigned int state)
1545 {
1546 	static const char state_char[] = "RSDTtXZPI";
1547 
1548 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1549 
1550 	return state_char[state];
1551 }
1552 
1553 static inline char task_state_to_char(struct task_struct *tsk)
1554 {
1555 	return task_index_to_char(task_state_index(tsk));
1556 }
1557 
1558 /**
1559  * is_global_init - check if a task structure is init. Since init
1560  * is free to have sub-threads we need to check tgid.
1561  * @tsk: Task structure to be checked.
1562  *
1563  * Check if a task structure is the first user space task the kernel created.
1564  *
1565  * Return: 1 if the task structure is init. 0 otherwise.
1566  */
1567 static inline int is_global_init(struct task_struct *tsk)
1568 {
1569 	return task_tgid_nr(tsk) == 1;
1570 }
1571 
1572 extern struct pid *cad_pid;
1573 
1574 /*
1575  * Per process flags
1576  */
1577 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1578 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1579 #define PF_EXITING		0x00000004	/* Getting shut down */
1580 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1581 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1582 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1583 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1584 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1585 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1586 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1587 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1588 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1589 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1590 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1591 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1592 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1593 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1594 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1595 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1596 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1597 						 * I am cleaning dirty pages from some other bdi. */
1598 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1599 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1600 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1601 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1602 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1603 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1604 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1605 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1606 
1607 /*
1608  * Only the _current_ task can read/write to tsk->flags, but other
1609  * tasks can access tsk->flags in readonly mode for example
1610  * with tsk_used_math (like during threaded core dumping).
1611  * There is however an exception to this rule during ptrace
1612  * or during fork: the ptracer task is allowed to write to the
1613  * child->flags of its traced child (same goes for fork, the parent
1614  * can write to the child->flags), because we're guaranteed the
1615  * child is not running and in turn not changing child->flags
1616  * at the same time the parent does it.
1617  */
1618 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1619 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1620 #define clear_used_math()			clear_stopped_child_used_math(current)
1621 #define set_used_math()				set_stopped_child_used_math(current)
1622 
1623 #define conditional_stopped_child_used_math(condition, child) \
1624 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1625 
1626 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1627 
1628 #define copy_to_stopped_child_used_math(child) \
1629 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1630 
1631 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1632 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1633 #define used_math()				tsk_used_math(current)
1634 
1635 static inline bool is_percpu_thread(void)
1636 {
1637 #ifdef CONFIG_SMP
1638 	return (current->flags & PF_NO_SETAFFINITY) &&
1639 		(current->nr_cpus_allowed  == 1);
1640 #else
1641 	return true;
1642 #endif
1643 }
1644 
1645 /* Per-process atomic flags. */
1646 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1647 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1648 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1649 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1650 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1651 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1652 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1653 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1654 
1655 #define TASK_PFA_TEST(name, func)					\
1656 	static inline bool task_##func(struct task_struct *p)		\
1657 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1658 
1659 #define TASK_PFA_SET(name, func)					\
1660 	static inline void task_set_##func(struct task_struct *p)	\
1661 	{ set_bit(PFA_##name, &p->atomic_flags); }
1662 
1663 #define TASK_PFA_CLEAR(name, func)					\
1664 	static inline void task_clear_##func(struct task_struct *p)	\
1665 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1666 
1667 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1668 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1669 
1670 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1671 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1672 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1673 
1674 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1675 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1676 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1677 
1678 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1679 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1680 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1681 
1682 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1683 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1684 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1685 
1686 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1687 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1688 
1689 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1690 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1691 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1692 
1693 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1694 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1695 
1696 static inline void
1697 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1698 {
1699 	current->flags &= ~flags;
1700 	current->flags |= orig_flags & flags;
1701 }
1702 
1703 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1704 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1705 #ifdef CONFIG_SMP
1706 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1707 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1708 #else
1709 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1710 {
1711 }
1712 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1713 {
1714 	if (!cpumask_test_cpu(0, new_mask))
1715 		return -EINVAL;
1716 	return 0;
1717 }
1718 #endif
1719 
1720 extern int yield_to(struct task_struct *p, bool preempt);
1721 extern void set_user_nice(struct task_struct *p, long nice);
1722 extern int task_prio(const struct task_struct *p);
1723 
1724 /**
1725  * task_nice - return the nice value of a given task.
1726  * @p: the task in question.
1727  *
1728  * Return: The nice value [ -20 ... 0 ... 19 ].
1729  */
1730 static inline int task_nice(const struct task_struct *p)
1731 {
1732 	return PRIO_TO_NICE((p)->static_prio);
1733 }
1734 
1735 extern int can_nice(const struct task_struct *p, const int nice);
1736 extern int task_curr(const struct task_struct *p);
1737 extern int idle_cpu(int cpu);
1738 extern int available_idle_cpu(int cpu);
1739 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1740 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1741 extern void sched_set_fifo(struct task_struct *p);
1742 extern void sched_set_fifo_low(struct task_struct *p);
1743 extern void sched_set_normal(struct task_struct *p, int nice);
1744 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1745 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1746 extern struct task_struct *idle_task(int cpu);
1747 
1748 /**
1749  * is_idle_task - is the specified task an idle task?
1750  * @p: the task in question.
1751  *
1752  * Return: 1 if @p is an idle task. 0 otherwise.
1753  */
1754 static __always_inline bool is_idle_task(const struct task_struct *p)
1755 {
1756 	return !!(p->flags & PF_IDLE);
1757 }
1758 
1759 extern struct task_struct *curr_task(int cpu);
1760 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1761 
1762 void yield(void);
1763 
1764 union thread_union {
1765 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1766 	struct task_struct task;
1767 #endif
1768 #ifndef CONFIG_THREAD_INFO_IN_TASK
1769 	struct thread_info thread_info;
1770 #endif
1771 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1772 };
1773 
1774 #ifndef CONFIG_THREAD_INFO_IN_TASK
1775 extern struct thread_info init_thread_info;
1776 #endif
1777 
1778 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1779 
1780 #ifdef CONFIG_THREAD_INFO_IN_TASK
1781 static inline struct thread_info *task_thread_info(struct task_struct *task)
1782 {
1783 	return &task->thread_info;
1784 }
1785 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1786 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1787 #endif
1788 
1789 /*
1790  * find a task by one of its numerical ids
1791  *
1792  * find_task_by_pid_ns():
1793  *      finds a task by its pid in the specified namespace
1794  * find_task_by_vpid():
1795  *      finds a task by its virtual pid
1796  *
1797  * see also find_vpid() etc in include/linux/pid.h
1798  */
1799 
1800 extern struct task_struct *find_task_by_vpid(pid_t nr);
1801 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1802 
1803 /*
1804  * find a task by its virtual pid and get the task struct
1805  */
1806 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1807 
1808 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1809 extern int wake_up_process(struct task_struct *tsk);
1810 extern void wake_up_new_task(struct task_struct *tsk);
1811 
1812 #ifdef CONFIG_SMP
1813 extern void kick_process(struct task_struct *tsk);
1814 #else
1815 static inline void kick_process(struct task_struct *tsk) { }
1816 #endif
1817 
1818 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1819 
1820 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1821 {
1822 	__set_task_comm(tsk, from, false);
1823 }
1824 
1825 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1826 #define get_task_comm(buf, tsk) ({			\
1827 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1828 	__get_task_comm(buf, sizeof(buf), tsk);		\
1829 })
1830 
1831 #ifdef CONFIG_SMP
1832 static __always_inline void scheduler_ipi(void)
1833 {
1834 	/*
1835 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1836 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1837 	 * this IPI.
1838 	 */
1839 	preempt_fold_need_resched();
1840 }
1841 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1842 #else
1843 static inline void scheduler_ipi(void) { }
1844 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1845 {
1846 	return 1;
1847 }
1848 #endif
1849 
1850 /*
1851  * Set thread flags in other task's structures.
1852  * See asm/thread_info.h for TIF_xxxx flags available:
1853  */
1854 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1855 {
1856 	set_ti_thread_flag(task_thread_info(tsk), flag);
1857 }
1858 
1859 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1860 {
1861 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1862 }
1863 
1864 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1865 					  bool value)
1866 {
1867 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1868 }
1869 
1870 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1871 {
1872 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1873 }
1874 
1875 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1876 {
1877 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1878 }
1879 
1880 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1881 {
1882 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1883 }
1884 
1885 static inline void set_tsk_need_resched(struct task_struct *tsk)
1886 {
1887 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1888 }
1889 
1890 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1891 {
1892 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1893 }
1894 
1895 static inline int test_tsk_need_resched(struct task_struct *tsk)
1896 {
1897 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1898 }
1899 
1900 /*
1901  * cond_resched() and cond_resched_lock(): latency reduction via
1902  * explicit rescheduling in places that are safe. The return
1903  * value indicates whether a reschedule was done in fact.
1904  * cond_resched_lock() will drop the spinlock before scheduling,
1905  */
1906 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1907 extern int __cond_resched(void);
1908 
1909 #ifdef CONFIG_PREEMPT_DYNAMIC
1910 
1911 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1912 
1913 static __always_inline int _cond_resched(void)
1914 {
1915 	return static_call_mod(cond_resched)();
1916 }
1917 
1918 #else
1919 
1920 static inline int _cond_resched(void)
1921 {
1922 	return __cond_resched();
1923 }
1924 
1925 #endif /* CONFIG_PREEMPT_DYNAMIC */
1926 
1927 #else
1928 
1929 static inline int _cond_resched(void) { return 0; }
1930 
1931 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1932 
1933 #define cond_resched() ({			\
1934 	___might_sleep(__FILE__, __LINE__, 0);	\
1935 	_cond_resched();			\
1936 })
1937 
1938 extern int __cond_resched_lock(spinlock_t *lock);
1939 extern int __cond_resched_rwlock_read(rwlock_t *lock);
1940 extern int __cond_resched_rwlock_write(rwlock_t *lock);
1941 
1942 #define cond_resched_lock(lock) ({				\
1943 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1944 	__cond_resched_lock(lock);				\
1945 })
1946 
1947 #define cond_resched_rwlock_read(lock) ({			\
1948 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1949 	__cond_resched_rwlock_read(lock);			\
1950 })
1951 
1952 #define cond_resched_rwlock_write(lock) ({			\
1953 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1954 	__cond_resched_rwlock_write(lock);			\
1955 })
1956 
1957 static inline void cond_resched_rcu(void)
1958 {
1959 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1960 	rcu_read_unlock();
1961 	cond_resched();
1962 	rcu_read_lock();
1963 #endif
1964 }
1965 
1966 /*
1967  * Does a critical section need to be broken due to another
1968  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1969  * but a general need for low latency)
1970  */
1971 static inline int spin_needbreak(spinlock_t *lock)
1972 {
1973 #ifdef CONFIG_PREEMPTION
1974 	return spin_is_contended(lock);
1975 #else
1976 	return 0;
1977 #endif
1978 }
1979 
1980 /*
1981  * Check if a rwlock is contended.
1982  * Returns non-zero if there is another task waiting on the rwlock.
1983  * Returns zero if the lock is not contended or the system / underlying
1984  * rwlock implementation does not support contention detection.
1985  * Technically does not depend on CONFIG_PREEMPTION, but a general need
1986  * for low latency.
1987  */
1988 static inline int rwlock_needbreak(rwlock_t *lock)
1989 {
1990 #ifdef CONFIG_PREEMPTION
1991 	return rwlock_is_contended(lock);
1992 #else
1993 	return 0;
1994 #endif
1995 }
1996 
1997 static __always_inline bool need_resched(void)
1998 {
1999 	return unlikely(tif_need_resched());
2000 }
2001 
2002 /*
2003  * Wrappers for p->thread_info->cpu access. No-op on UP.
2004  */
2005 #ifdef CONFIG_SMP
2006 
2007 static inline unsigned int task_cpu(const struct task_struct *p)
2008 {
2009 #ifdef CONFIG_THREAD_INFO_IN_TASK
2010 	return READ_ONCE(p->cpu);
2011 #else
2012 	return READ_ONCE(task_thread_info(p)->cpu);
2013 #endif
2014 }
2015 
2016 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2017 
2018 #else
2019 
2020 static inline unsigned int task_cpu(const struct task_struct *p)
2021 {
2022 	return 0;
2023 }
2024 
2025 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2026 {
2027 }
2028 
2029 #endif /* CONFIG_SMP */
2030 
2031 extern bool sched_task_on_rq(struct task_struct *p);
2032 
2033 /*
2034  * In order to reduce various lock holder preemption latencies provide an
2035  * interface to see if a vCPU is currently running or not.
2036  *
2037  * This allows us to terminate optimistic spin loops and block, analogous to
2038  * the native optimistic spin heuristic of testing if the lock owner task is
2039  * running or not.
2040  */
2041 #ifndef vcpu_is_preempted
2042 static inline bool vcpu_is_preempted(int cpu)
2043 {
2044 	return false;
2045 }
2046 #endif
2047 
2048 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2049 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2050 
2051 #ifndef TASK_SIZE_OF
2052 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2053 #endif
2054 
2055 #ifdef CONFIG_SMP
2056 /* Returns effective CPU energy utilization, as seen by the scheduler */
2057 unsigned long sched_cpu_util(int cpu, unsigned long max);
2058 #endif /* CONFIG_SMP */
2059 
2060 #ifdef CONFIG_RSEQ
2061 
2062 /*
2063  * Map the event mask on the user-space ABI enum rseq_cs_flags
2064  * for direct mask checks.
2065  */
2066 enum rseq_event_mask_bits {
2067 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2068 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2069 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2070 };
2071 
2072 enum rseq_event_mask {
2073 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2074 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2075 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2076 };
2077 
2078 static inline void rseq_set_notify_resume(struct task_struct *t)
2079 {
2080 	if (t->rseq)
2081 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2082 }
2083 
2084 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2085 
2086 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2087 					     struct pt_regs *regs)
2088 {
2089 	if (current->rseq)
2090 		__rseq_handle_notify_resume(ksig, regs);
2091 }
2092 
2093 static inline void rseq_signal_deliver(struct ksignal *ksig,
2094 				       struct pt_regs *regs)
2095 {
2096 	preempt_disable();
2097 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2098 	preempt_enable();
2099 	rseq_handle_notify_resume(ksig, regs);
2100 }
2101 
2102 /* rseq_preempt() requires preemption to be disabled. */
2103 static inline void rseq_preempt(struct task_struct *t)
2104 {
2105 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2106 	rseq_set_notify_resume(t);
2107 }
2108 
2109 /* rseq_migrate() requires preemption to be disabled. */
2110 static inline void rseq_migrate(struct task_struct *t)
2111 {
2112 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2113 	rseq_set_notify_resume(t);
2114 }
2115 
2116 /*
2117  * If parent process has a registered restartable sequences area, the
2118  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2119  */
2120 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2121 {
2122 	if (clone_flags & CLONE_VM) {
2123 		t->rseq = NULL;
2124 		t->rseq_sig = 0;
2125 		t->rseq_event_mask = 0;
2126 	} else {
2127 		t->rseq = current->rseq;
2128 		t->rseq_sig = current->rseq_sig;
2129 		t->rseq_event_mask = current->rseq_event_mask;
2130 	}
2131 }
2132 
2133 static inline void rseq_execve(struct task_struct *t)
2134 {
2135 	t->rseq = NULL;
2136 	t->rseq_sig = 0;
2137 	t->rseq_event_mask = 0;
2138 }
2139 
2140 #else
2141 
2142 static inline void rseq_set_notify_resume(struct task_struct *t)
2143 {
2144 }
2145 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2146 					     struct pt_regs *regs)
2147 {
2148 }
2149 static inline void rseq_signal_deliver(struct ksignal *ksig,
2150 				       struct pt_regs *regs)
2151 {
2152 }
2153 static inline void rseq_preempt(struct task_struct *t)
2154 {
2155 }
2156 static inline void rseq_migrate(struct task_struct *t)
2157 {
2158 }
2159 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2160 {
2161 }
2162 static inline void rseq_execve(struct task_struct *t)
2163 {
2164 }
2165 
2166 #endif
2167 
2168 #ifdef CONFIG_DEBUG_RSEQ
2169 
2170 void rseq_syscall(struct pt_regs *regs);
2171 
2172 #else
2173 
2174 static inline void rseq_syscall(struct pt_regs *regs)
2175 {
2176 }
2177 
2178 #endif
2179 
2180 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2181 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2182 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2183 
2184 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2185 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2186 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2187 
2188 int sched_trace_rq_cpu(struct rq *rq);
2189 int sched_trace_rq_cpu_capacity(struct rq *rq);
2190 int sched_trace_rq_nr_running(struct rq *rq);
2191 
2192 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2193 
2194 #ifdef CONFIG_SCHED_CORE
2195 extern void sched_core_free(struct task_struct *tsk);
2196 extern void sched_core_fork(struct task_struct *p);
2197 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2198 				unsigned long uaddr);
2199 #else
2200 static inline void sched_core_free(struct task_struct *tsk) { }
2201 static inline void sched_core_fork(struct task_struct *p) { }
2202 #endif
2203 
2204 #endif
2205