1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(int active); 181 #else 182 static inline void update_cpu_load_nohz(int active) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 377 extern void sched_show_task(struct task_struct *p); 378 379 #ifdef CONFIG_LOCKUP_DETECTOR 380 extern void touch_softlockup_watchdog_sched(void); 381 extern void touch_softlockup_watchdog(void); 382 extern void touch_softlockup_watchdog_sync(void); 383 extern void touch_all_softlockup_watchdogs(void); 384 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 385 void __user *buffer, 386 size_t *lenp, loff_t *ppos); 387 extern unsigned int softlockup_panic; 388 extern unsigned int hardlockup_panic; 389 void lockup_detector_init(void); 390 #else 391 static inline void touch_softlockup_watchdog_sched(void) 392 { 393 } 394 static inline void touch_softlockup_watchdog(void) 395 { 396 } 397 static inline void touch_softlockup_watchdog_sync(void) 398 { 399 } 400 static inline void touch_all_softlockup_watchdogs(void) 401 { 402 } 403 static inline void lockup_detector_init(void) 404 { 405 } 406 #endif 407 408 #ifdef CONFIG_DETECT_HUNG_TASK 409 void reset_hung_task_detector(void); 410 #else 411 static inline void reset_hung_task_detector(void) 412 { 413 } 414 #endif 415 416 /* Attach to any functions which should be ignored in wchan output. */ 417 #define __sched __attribute__((__section__(".sched.text"))) 418 419 /* Linker adds these: start and end of __sched functions */ 420 extern char __sched_text_start[], __sched_text_end[]; 421 422 /* Is this address in the __sched functions? */ 423 extern int in_sched_functions(unsigned long addr); 424 425 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 426 extern signed long schedule_timeout(signed long timeout); 427 extern signed long schedule_timeout_interruptible(signed long timeout); 428 extern signed long schedule_timeout_killable(signed long timeout); 429 extern signed long schedule_timeout_uninterruptible(signed long timeout); 430 asmlinkage void schedule(void); 431 extern void schedule_preempt_disabled(void); 432 433 extern long io_schedule_timeout(long timeout); 434 435 static inline void io_schedule(void) 436 { 437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 438 } 439 440 struct nsproxy; 441 struct user_namespace; 442 443 #ifdef CONFIG_MMU 444 extern void arch_pick_mmap_layout(struct mm_struct *mm); 445 extern unsigned long 446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 447 unsigned long, unsigned long); 448 extern unsigned long 449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 450 unsigned long len, unsigned long pgoff, 451 unsigned long flags); 452 #else 453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 454 #endif 455 456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 457 #define SUID_DUMP_USER 1 /* Dump as user of process */ 458 #define SUID_DUMP_ROOT 2 /* Dump as root */ 459 460 /* mm flags */ 461 462 /* for SUID_DUMP_* above */ 463 #define MMF_DUMPABLE_BITS 2 464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 465 466 extern void set_dumpable(struct mm_struct *mm, int value); 467 /* 468 * This returns the actual value of the suid_dumpable flag. For things 469 * that are using this for checking for privilege transitions, it must 470 * test against SUID_DUMP_USER rather than treating it as a boolean 471 * value. 472 */ 473 static inline int __get_dumpable(unsigned long mm_flags) 474 { 475 return mm_flags & MMF_DUMPABLE_MASK; 476 } 477 478 static inline int get_dumpable(struct mm_struct *mm) 479 { 480 return __get_dumpable(mm->flags); 481 } 482 483 /* coredump filter bits */ 484 #define MMF_DUMP_ANON_PRIVATE 2 485 #define MMF_DUMP_ANON_SHARED 3 486 #define MMF_DUMP_MAPPED_PRIVATE 4 487 #define MMF_DUMP_MAPPED_SHARED 5 488 #define MMF_DUMP_ELF_HEADERS 6 489 #define MMF_DUMP_HUGETLB_PRIVATE 7 490 #define MMF_DUMP_HUGETLB_SHARED 8 491 #define MMF_DUMP_DAX_PRIVATE 9 492 #define MMF_DUMP_DAX_SHARED 10 493 494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 495 #define MMF_DUMP_FILTER_BITS 9 496 #define MMF_DUMP_FILTER_MASK \ 497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 498 #define MMF_DUMP_FILTER_DEFAULT \ 499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 501 502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 504 #else 505 # define MMF_DUMP_MASK_DEFAULT_ELF 0 506 #endif 507 /* leave room for more dump flags */ 508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 510 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 511 512 #define MMF_HAS_UPROBES 19 /* has uprobes */ 513 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 514 515 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 516 517 struct sighand_struct { 518 atomic_t count; 519 struct k_sigaction action[_NSIG]; 520 spinlock_t siglock; 521 wait_queue_head_t signalfd_wqh; 522 }; 523 524 struct pacct_struct { 525 int ac_flag; 526 long ac_exitcode; 527 unsigned long ac_mem; 528 cputime_t ac_utime, ac_stime; 529 unsigned long ac_minflt, ac_majflt; 530 }; 531 532 struct cpu_itimer { 533 cputime_t expires; 534 cputime_t incr; 535 u32 error; 536 u32 incr_error; 537 }; 538 539 /** 540 * struct prev_cputime - snaphsot of system and user cputime 541 * @utime: time spent in user mode 542 * @stime: time spent in system mode 543 * @lock: protects the above two fields 544 * 545 * Stores previous user/system time values such that we can guarantee 546 * monotonicity. 547 */ 548 struct prev_cputime { 549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 550 cputime_t utime; 551 cputime_t stime; 552 raw_spinlock_t lock; 553 #endif 554 }; 555 556 static inline void prev_cputime_init(struct prev_cputime *prev) 557 { 558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 559 prev->utime = prev->stime = 0; 560 raw_spin_lock_init(&prev->lock); 561 #endif 562 } 563 564 /** 565 * struct task_cputime - collected CPU time counts 566 * @utime: time spent in user mode, in &cputime_t units 567 * @stime: time spent in kernel mode, in &cputime_t units 568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 569 * 570 * This structure groups together three kinds of CPU time that are tracked for 571 * threads and thread groups. Most things considering CPU time want to group 572 * these counts together and treat all three of them in parallel. 573 */ 574 struct task_cputime { 575 cputime_t utime; 576 cputime_t stime; 577 unsigned long long sum_exec_runtime; 578 }; 579 580 /* Alternate field names when used to cache expirations. */ 581 #define virt_exp utime 582 #define prof_exp stime 583 #define sched_exp sum_exec_runtime 584 585 #define INIT_CPUTIME \ 586 (struct task_cputime) { \ 587 .utime = 0, \ 588 .stime = 0, \ 589 .sum_exec_runtime = 0, \ 590 } 591 592 /* 593 * This is the atomic variant of task_cputime, which can be used for 594 * storing and updating task_cputime statistics without locking. 595 */ 596 struct task_cputime_atomic { 597 atomic64_t utime; 598 atomic64_t stime; 599 atomic64_t sum_exec_runtime; 600 }; 601 602 #define INIT_CPUTIME_ATOMIC \ 603 (struct task_cputime_atomic) { \ 604 .utime = ATOMIC64_INIT(0), \ 605 .stime = ATOMIC64_INIT(0), \ 606 .sum_exec_runtime = ATOMIC64_INIT(0), \ 607 } 608 609 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 610 611 /* 612 * Disable preemption until the scheduler is running -- use an unconditional 613 * value so that it also works on !PREEMPT_COUNT kernels. 614 * 615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 616 */ 617 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 618 619 /* 620 * Initial preempt_count value; reflects the preempt_count schedule invariant 621 * which states that during context switches: 622 * 623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 624 * 625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 626 * Note: See finish_task_switch(). 627 */ 628 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 629 630 /** 631 * struct thread_group_cputimer - thread group interval timer counts 632 * @cputime_atomic: atomic thread group interval timers. 633 * @running: true when there are timers running and 634 * @cputime_atomic receives updates. 635 * @checking_timer: true when a thread in the group is in the 636 * process of checking for thread group timers. 637 * 638 * This structure contains the version of task_cputime, above, that is 639 * used for thread group CPU timer calculations. 640 */ 641 struct thread_group_cputimer { 642 struct task_cputime_atomic cputime_atomic; 643 bool running; 644 bool checking_timer; 645 }; 646 647 #include <linux/rwsem.h> 648 struct autogroup; 649 650 /* 651 * NOTE! "signal_struct" does not have its own 652 * locking, because a shared signal_struct always 653 * implies a shared sighand_struct, so locking 654 * sighand_struct is always a proper superset of 655 * the locking of signal_struct. 656 */ 657 struct signal_struct { 658 atomic_t sigcnt; 659 atomic_t live; 660 int nr_threads; 661 struct list_head thread_head; 662 663 wait_queue_head_t wait_chldexit; /* for wait4() */ 664 665 /* current thread group signal load-balancing target: */ 666 struct task_struct *curr_target; 667 668 /* shared signal handling: */ 669 struct sigpending shared_pending; 670 671 /* thread group exit support */ 672 int group_exit_code; 673 /* overloaded: 674 * - notify group_exit_task when ->count is equal to notify_count 675 * - everyone except group_exit_task is stopped during signal delivery 676 * of fatal signals, group_exit_task processes the signal. 677 */ 678 int notify_count; 679 struct task_struct *group_exit_task; 680 681 /* thread group stop support, overloads group_exit_code too */ 682 int group_stop_count; 683 unsigned int flags; /* see SIGNAL_* flags below */ 684 685 /* 686 * PR_SET_CHILD_SUBREAPER marks a process, like a service 687 * manager, to re-parent orphan (double-forking) child processes 688 * to this process instead of 'init'. The service manager is 689 * able to receive SIGCHLD signals and is able to investigate 690 * the process until it calls wait(). All children of this 691 * process will inherit a flag if they should look for a 692 * child_subreaper process at exit. 693 */ 694 unsigned int is_child_subreaper:1; 695 unsigned int has_child_subreaper:1; 696 697 /* POSIX.1b Interval Timers */ 698 int posix_timer_id; 699 struct list_head posix_timers; 700 701 /* ITIMER_REAL timer for the process */ 702 struct hrtimer real_timer; 703 struct pid *leader_pid; 704 ktime_t it_real_incr; 705 706 /* 707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 709 * values are defined to 0 and 1 respectively 710 */ 711 struct cpu_itimer it[2]; 712 713 /* 714 * Thread group totals for process CPU timers. 715 * See thread_group_cputimer(), et al, for details. 716 */ 717 struct thread_group_cputimer cputimer; 718 719 /* Earliest-expiration cache. */ 720 struct task_cputime cputime_expires; 721 722 struct list_head cpu_timers[3]; 723 724 struct pid *tty_old_pgrp; 725 726 /* boolean value for session group leader */ 727 int leader; 728 729 struct tty_struct *tty; /* NULL if no tty */ 730 731 #ifdef CONFIG_SCHED_AUTOGROUP 732 struct autogroup *autogroup; 733 #endif 734 /* 735 * Cumulative resource counters for dead threads in the group, 736 * and for reaped dead child processes forked by this group. 737 * Live threads maintain their own counters and add to these 738 * in __exit_signal, except for the group leader. 739 */ 740 seqlock_t stats_lock; 741 cputime_t utime, stime, cutime, cstime; 742 cputime_t gtime; 743 cputime_t cgtime; 744 struct prev_cputime prev_cputime; 745 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 746 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 747 unsigned long inblock, oublock, cinblock, coublock; 748 unsigned long maxrss, cmaxrss; 749 struct task_io_accounting ioac; 750 751 /* 752 * Cumulative ns of schedule CPU time fo dead threads in the 753 * group, not including a zombie group leader, (This only differs 754 * from jiffies_to_ns(utime + stime) if sched_clock uses something 755 * other than jiffies.) 756 */ 757 unsigned long long sum_sched_runtime; 758 759 /* 760 * We don't bother to synchronize most readers of this at all, 761 * because there is no reader checking a limit that actually needs 762 * to get both rlim_cur and rlim_max atomically, and either one 763 * alone is a single word that can safely be read normally. 764 * getrlimit/setrlimit use task_lock(current->group_leader) to 765 * protect this instead of the siglock, because they really 766 * have no need to disable irqs. 767 */ 768 struct rlimit rlim[RLIM_NLIMITS]; 769 770 #ifdef CONFIG_BSD_PROCESS_ACCT 771 struct pacct_struct pacct; /* per-process accounting information */ 772 #endif 773 #ifdef CONFIG_TASKSTATS 774 struct taskstats *stats; 775 #endif 776 #ifdef CONFIG_AUDIT 777 unsigned audit_tty; 778 unsigned audit_tty_log_passwd; 779 struct tty_audit_buf *tty_audit_buf; 780 #endif 781 782 oom_flags_t oom_flags; 783 short oom_score_adj; /* OOM kill score adjustment */ 784 short oom_score_adj_min; /* OOM kill score adjustment min value. 785 * Only settable by CAP_SYS_RESOURCE. */ 786 787 struct mutex cred_guard_mutex; /* guard against foreign influences on 788 * credential calculations 789 * (notably. ptrace) */ 790 }; 791 792 /* 793 * Bits in flags field of signal_struct. 794 */ 795 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 796 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 797 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 798 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 799 /* 800 * Pending notifications to parent. 801 */ 802 #define SIGNAL_CLD_STOPPED 0x00000010 803 #define SIGNAL_CLD_CONTINUED 0x00000020 804 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 805 806 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 807 808 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 809 static inline int signal_group_exit(const struct signal_struct *sig) 810 { 811 return (sig->flags & SIGNAL_GROUP_EXIT) || 812 (sig->group_exit_task != NULL); 813 } 814 815 /* 816 * Some day this will be a full-fledged user tracking system.. 817 */ 818 struct user_struct { 819 atomic_t __count; /* reference count */ 820 atomic_t processes; /* How many processes does this user have? */ 821 atomic_t sigpending; /* How many pending signals does this user have? */ 822 #ifdef CONFIG_INOTIFY_USER 823 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 824 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 825 #endif 826 #ifdef CONFIG_FANOTIFY 827 atomic_t fanotify_listeners; 828 #endif 829 #ifdef CONFIG_EPOLL 830 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 831 #endif 832 #ifdef CONFIG_POSIX_MQUEUE 833 /* protected by mq_lock */ 834 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 835 #endif 836 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 837 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 838 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 839 840 #ifdef CONFIG_KEYS 841 struct key *uid_keyring; /* UID specific keyring */ 842 struct key *session_keyring; /* UID's default session keyring */ 843 #endif 844 845 /* Hash table maintenance information */ 846 struct hlist_node uidhash_node; 847 kuid_t uid; 848 849 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 850 atomic_long_t locked_vm; 851 #endif 852 }; 853 854 extern int uids_sysfs_init(void); 855 856 extern struct user_struct *find_user(kuid_t); 857 858 extern struct user_struct root_user; 859 #define INIT_USER (&root_user) 860 861 862 struct backing_dev_info; 863 struct reclaim_state; 864 865 #ifdef CONFIG_SCHED_INFO 866 struct sched_info { 867 /* cumulative counters */ 868 unsigned long pcount; /* # of times run on this cpu */ 869 unsigned long long run_delay; /* time spent waiting on a runqueue */ 870 871 /* timestamps */ 872 unsigned long long last_arrival,/* when we last ran on a cpu */ 873 last_queued; /* when we were last queued to run */ 874 }; 875 #endif /* CONFIG_SCHED_INFO */ 876 877 #ifdef CONFIG_TASK_DELAY_ACCT 878 struct task_delay_info { 879 spinlock_t lock; 880 unsigned int flags; /* Private per-task flags */ 881 882 /* For each stat XXX, add following, aligned appropriately 883 * 884 * struct timespec XXX_start, XXX_end; 885 * u64 XXX_delay; 886 * u32 XXX_count; 887 * 888 * Atomicity of updates to XXX_delay, XXX_count protected by 889 * single lock above (split into XXX_lock if contention is an issue). 890 */ 891 892 /* 893 * XXX_count is incremented on every XXX operation, the delay 894 * associated with the operation is added to XXX_delay. 895 * XXX_delay contains the accumulated delay time in nanoseconds. 896 */ 897 u64 blkio_start; /* Shared by blkio, swapin */ 898 u64 blkio_delay; /* wait for sync block io completion */ 899 u64 swapin_delay; /* wait for swapin block io completion */ 900 u32 blkio_count; /* total count of the number of sync block */ 901 /* io operations performed */ 902 u32 swapin_count; /* total count of the number of swapin block */ 903 /* io operations performed */ 904 905 u64 freepages_start; 906 u64 freepages_delay; /* wait for memory reclaim */ 907 u32 freepages_count; /* total count of memory reclaim */ 908 }; 909 #endif /* CONFIG_TASK_DELAY_ACCT */ 910 911 static inline int sched_info_on(void) 912 { 913 #ifdef CONFIG_SCHEDSTATS 914 return 1; 915 #elif defined(CONFIG_TASK_DELAY_ACCT) 916 extern int delayacct_on; 917 return delayacct_on; 918 #else 919 return 0; 920 #endif 921 } 922 923 enum cpu_idle_type { 924 CPU_IDLE, 925 CPU_NOT_IDLE, 926 CPU_NEWLY_IDLE, 927 CPU_MAX_IDLE_TYPES 928 }; 929 930 /* 931 * Increase resolution of cpu_capacity calculations 932 */ 933 #define SCHED_CAPACITY_SHIFT 10 934 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 935 936 /* 937 * Wake-queues are lists of tasks with a pending wakeup, whose 938 * callers have already marked the task as woken internally, 939 * and can thus carry on. A common use case is being able to 940 * do the wakeups once the corresponding user lock as been 941 * released. 942 * 943 * We hold reference to each task in the list across the wakeup, 944 * thus guaranteeing that the memory is still valid by the time 945 * the actual wakeups are performed in wake_up_q(). 946 * 947 * One per task suffices, because there's never a need for a task to be 948 * in two wake queues simultaneously; it is forbidden to abandon a task 949 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 950 * already in a wake queue, the wakeup will happen soon and the second 951 * waker can just skip it. 952 * 953 * The WAKE_Q macro declares and initializes the list head. 954 * wake_up_q() does NOT reinitialize the list; it's expected to be 955 * called near the end of a function, where the fact that the queue is 956 * not used again will be easy to see by inspection. 957 * 958 * Note that this can cause spurious wakeups. schedule() callers 959 * must ensure the call is done inside a loop, confirming that the 960 * wakeup condition has in fact occurred. 961 */ 962 struct wake_q_node { 963 struct wake_q_node *next; 964 }; 965 966 struct wake_q_head { 967 struct wake_q_node *first; 968 struct wake_q_node **lastp; 969 }; 970 971 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 972 973 #define WAKE_Q(name) \ 974 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 975 976 extern void wake_q_add(struct wake_q_head *head, 977 struct task_struct *task); 978 extern void wake_up_q(struct wake_q_head *head); 979 980 /* 981 * sched-domains (multiprocessor balancing) declarations: 982 */ 983 #ifdef CONFIG_SMP 984 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 985 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 986 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 987 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 988 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 989 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 990 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 991 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 992 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 993 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 994 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 995 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 996 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 997 #define SD_NUMA 0x4000 /* cross-node balancing */ 998 999 #ifdef CONFIG_SCHED_SMT 1000 static inline int cpu_smt_flags(void) 1001 { 1002 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1003 } 1004 #endif 1005 1006 #ifdef CONFIG_SCHED_MC 1007 static inline int cpu_core_flags(void) 1008 { 1009 return SD_SHARE_PKG_RESOURCES; 1010 } 1011 #endif 1012 1013 #ifdef CONFIG_NUMA 1014 static inline int cpu_numa_flags(void) 1015 { 1016 return SD_NUMA; 1017 } 1018 #endif 1019 1020 struct sched_domain_attr { 1021 int relax_domain_level; 1022 }; 1023 1024 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1025 .relax_domain_level = -1, \ 1026 } 1027 1028 extern int sched_domain_level_max; 1029 1030 struct sched_group; 1031 1032 struct sched_domain { 1033 /* These fields must be setup */ 1034 struct sched_domain *parent; /* top domain must be null terminated */ 1035 struct sched_domain *child; /* bottom domain must be null terminated */ 1036 struct sched_group *groups; /* the balancing groups of the domain */ 1037 unsigned long min_interval; /* Minimum balance interval ms */ 1038 unsigned long max_interval; /* Maximum balance interval ms */ 1039 unsigned int busy_factor; /* less balancing by factor if busy */ 1040 unsigned int imbalance_pct; /* No balance until over watermark */ 1041 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1042 unsigned int busy_idx; 1043 unsigned int idle_idx; 1044 unsigned int newidle_idx; 1045 unsigned int wake_idx; 1046 unsigned int forkexec_idx; 1047 unsigned int smt_gain; 1048 1049 int nohz_idle; /* NOHZ IDLE status */ 1050 int flags; /* See SD_* */ 1051 int level; 1052 1053 /* Runtime fields. */ 1054 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1055 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1056 unsigned int nr_balance_failed; /* initialise to 0 */ 1057 1058 /* idle_balance() stats */ 1059 u64 max_newidle_lb_cost; 1060 unsigned long next_decay_max_lb_cost; 1061 1062 #ifdef CONFIG_SCHEDSTATS 1063 /* load_balance() stats */ 1064 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1065 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1066 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1067 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1068 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1069 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1070 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1071 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1072 1073 /* Active load balancing */ 1074 unsigned int alb_count; 1075 unsigned int alb_failed; 1076 unsigned int alb_pushed; 1077 1078 /* SD_BALANCE_EXEC stats */ 1079 unsigned int sbe_count; 1080 unsigned int sbe_balanced; 1081 unsigned int sbe_pushed; 1082 1083 /* SD_BALANCE_FORK stats */ 1084 unsigned int sbf_count; 1085 unsigned int sbf_balanced; 1086 unsigned int sbf_pushed; 1087 1088 /* try_to_wake_up() stats */ 1089 unsigned int ttwu_wake_remote; 1090 unsigned int ttwu_move_affine; 1091 unsigned int ttwu_move_balance; 1092 #endif 1093 #ifdef CONFIG_SCHED_DEBUG 1094 char *name; 1095 #endif 1096 union { 1097 void *private; /* used during construction */ 1098 struct rcu_head rcu; /* used during destruction */ 1099 }; 1100 1101 unsigned int span_weight; 1102 /* 1103 * Span of all CPUs in this domain. 1104 * 1105 * NOTE: this field is variable length. (Allocated dynamically 1106 * by attaching extra space to the end of the structure, 1107 * depending on how many CPUs the kernel has booted up with) 1108 */ 1109 unsigned long span[0]; 1110 }; 1111 1112 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1113 { 1114 return to_cpumask(sd->span); 1115 } 1116 1117 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1118 struct sched_domain_attr *dattr_new); 1119 1120 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1121 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1122 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1123 1124 bool cpus_share_cache(int this_cpu, int that_cpu); 1125 1126 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1127 typedef int (*sched_domain_flags_f)(void); 1128 1129 #define SDTL_OVERLAP 0x01 1130 1131 struct sd_data { 1132 struct sched_domain **__percpu sd; 1133 struct sched_group **__percpu sg; 1134 struct sched_group_capacity **__percpu sgc; 1135 }; 1136 1137 struct sched_domain_topology_level { 1138 sched_domain_mask_f mask; 1139 sched_domain_flags_f sd_flags; 1140 int flags; 1141 int numa_level; 1142 struct sd_data data; 1143 #ifdef CONFIG_SCHED_DEBUG 1144 char *name; 1145 #endif 1146 }; 1147 1148 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1149 extern void wake_up_if_idle(int cpu); 1150 1151 #ifdef CONFIG_SCHED_DEBUG 1152 # define SD_INIT_NAME(type) .name = #type 1153 #else 1154 # define SD_INIT_NAME(type) 1155 #endif 1156 1157 #else /* CONFIG_SMP */ 1158 1159 struct sched_domain_attr; 1160 1161 static inline void 1162 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1163 struct sched_domain_attr *dattr_new) 1164 { 1165 } 1166 1167 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1168 { 1169 return true; 1170 } 1171 1172 #endif /* !CONFIG_SMP */ 1173 1174 1175 struct io_context; /* See blkdev.h */ 1176 1177 1178 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1179 extern void prefetch_stack(struct task_struct *t); 1180 #else 1181 static inline void prefetch_stack(struct task_struct *t) { } 1182 #endif 1183 1184 struct audit_context; /* See audit.c */ 1185 struct mempolicy; 1186 struct pipe_inode_info; 1187 struct uts_namespace; 1188 1189 struct load_weight { 1190 unsigned long weight; 1191 u32 inv_weight; 1192 }; 1193 1194 /* 1195 * The load_avg/util_avg accumulates an infinite geometric series. 1196 * 1) load_avg factors frequency scaling into the amount of time that a 1197 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the 1198 * aggregated such weights of all runnable and blocked sched_entities. 1199 * 2) util_avg factors frequency and cpu scaling into the amount of time 1200 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1201 * For cfs_rq, it is the aggregated such times of all runnable and 1202 * blocked sched_entities. 1203 * The 64 bit load_sum can: 1204 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1205 * the highest weight (=88761) always runnable, we should not overflow 1206 * 2) for entity, support any load.weight always runnable 1207 */ 1208 struct sched_avg { 1209 u64 last_update_time, load_sum; 1210 u32 util_sum, period_contrib; 1211 unsigned long load_avg, util_avg; 1212 }; 1213 1214 #ifdef CONFIG_SCHEDSTATS 1215 struct sched_statistics { 1216 u64 wait_start; 1217 u64 wait_max; 1218 u64 wait_count; 1219 u64 wait_sum; 1220 u64 iowait_count; 1221 u64 iowait_sum; 1222 1223 u64 sleep_start; 1224 u64 sleep_max; 1225 s64 sum_sleep_runtime; 1226 1227 u64 block_start; 1228 u64 block_max; 1229 u64 exec_max; 1230 u64 slice_max; 1231 1232 u64 nr_migrations_cold; 1233 u64 nr_failed_migrations_affine; 1234 u64 nr_failed_migrations_running; 1235 u64 nr_failed_migrations_hot; 1236 u64 nr_forced_migrations; 1237 1238 u64 nr_wakeups; 1239 u64 nr_wakeups_sync; 1240 u64 nr_wakeups_migrate; 1241 u64 nr_wakeups_local; 1242 u64 nr_wakeups_remote; 1243 u64 nr_wakeups_affine; 1244 u64 nr_wakeups_affine_attempts; 1245 u64 nr_wakeups_passive; 1246 u64 nr_wakeups_idle; 1247 }; 1248 #endif 1249 1250 struct sched_entity { 1251 struct load_weight load; /* for load-balancing */ 1252 struct rb_node run_node; 1253 struct list_head group_node; 1254 unsigned int on_rq; 1255 1256 u64 exec_start; 1257 u64 sum_exec_runtime; 1258 u64 vruntime; 1259 u64 prev_sum_exec_runtime; 1260 1261 u64 nr_migrations; 1262 1263 #ifdef CONFIG_SCHEDSTATS 1264 struct sched_statistics statistics; 1265 #endif 1266 1267 #ifdef CONFIG_FAIR_GROUP_SCHED 1268 int depth; 1269 struct sched_entity *parent; 1270 /* rq on which this entity is (to be) queued: */ 1271 struct cfs_rq *cfs_rq; 1272 /* rq "owned" by this entity/group: */ 1273 struct cfs_rq *my_q; 1274 #endif 1275 1276 #ifdef CONFIG_SMP 1277 /* 1278 * Per entity load average tracking. 1279 * 1280 * Put into separate cache line so it does not 1281 * collide with read-mostly values above. 1282 */ 1283 struct sched_avg avg ____cacheline_aligned_in_smp; 1284 #endif 1285 }; 1286 1287 struct sched_rt_entity { 1288 struct list_head run_list; 1289 unsigned long timeout; 1290 unsigned long watchdog_stamp; 1291 unsigned int time_slice; 1292 1293 struct sched_rt_entity *back; 1294 #ifdef CONFIG_RT_GROUP_SCHED 1295 struct sched_rt_entity *parent; 1296 /* rq on which this entity is (to be) queued: */ 1297 struct rt_rq *rt_rq; 1298 /* rq "owned" by this entity/group: */ 1299 struct rt_rq *my_q; 1300 #endif 1301 }; 1302 1303 struct sched_dl_entity { 1304 struct rb_node rb_node; 1305 1306 /* 1307 * Original scheduling parameters. Copied here from sched_attr 1308 * during sched_setattr(), they will remain the same until 1309 * the next sched_setattr(). 1310 */ 1311 u64 dl_runtime; /* maximum runtime for each instance */ 1312 u64 dl_deadline; /* relative deadline of each instance */ 1313 u64 dl_period; /* separation of two instances (period) */ 1314 u64 dl_bw; /* dl_runtime / dl_deadline */ 1315 1316 /* 1317 * Actual scheduling parameters. Initialized with the values above, 1318 * they are continously updated during task execution. Note that 1319 * the remaining runtime could be < 0 in case we are in overrun. 1320 */ 1321 s64 runtime; /* remaining runtime for this instance */ 1322 u64 deadline; /* absolute deadline for this instance */ 1323 unsigned int flags; /* specifying the scheduler behaviour */ 1324 1325 /* 1326 * Some bool flags: 1327 * 1328 * @dl_throttled tells if we exhausted the runtime. If so, the 1329 * task has to wait for a replenishment to be performed at the 1330 * next firing of dl_timer. 1331 * 1332 * @dl_new tells if a new instance arrived. If so we must 1333 * start executing it with full runtime and reset its absolute 1334 * deadline; 1335 * 1336 * @dl_boosted tells if we are boosted due to DI. If so we are 1337 * outside bandwidth enforcement mechanism (but only until we 1338 * exit the critical section); 1339 * 1340 * @dl_yielded tells if task gave up the cpu before consuming 1341 * all its available runtime during the last job. 1342 */ 1343 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1344 1345 /* 1346 * Bandwidth enforcement timer. Each -deadline task has its 1347 * own bandwidth to be enforced, thus we need one timer per task. 1348 */ 1349 struct hrtimer dl_timer; 1350 }; 1351 1352 union rcu_special { 1353 struct { 1354 u8 blocked; 1355 u8 need_qs; 1356 u8 exp_need_qs; 1357 u8 pad; /* Otherwise the compiler can store garbage here. */ 1358 } b; /* Bits. */ 1359 u32 s; /* Set of bits. */ 1360 }; 1361 struct rcu_node; 1362 1363 enum perf_event_task_context { 1364 perf_invalid_context = -1, 1365 perf_hw_context = 0, 1366 perf_sw_context, 1367 perf_nr_task_contexts, 1368 }; 1369 1370 /* Track pages that require TLB flushes */ 1371 struct tlbflush_unmap_batch { 1372 /* 1373 * Each bit set is a CPU that potentially has a TLB entry for one of 1374 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1375 */ 1376 struct cpumask cpumask; 1377 1378 /* True if any bit in cpumask is set */ 1379 bool flush_required; 1380 1381 /* 1382 * If true then the PTE was dirty when unmapped. The entry must be 1383 * flushed before IO is initiated or a stale TLB entry potentially 1384 * allows an update without redirtying the page. 1385 */ 1386 bool writable; 1387 }; 1388 1389 struct task_struct { 1390 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1391 void *stack; 1392 atomic_t usage; 1393 unsigned int flags; /* per process flags, defined below */ 1394 unsigned int ptrace; 1395 1396 #ifdef CONFIG_SMP 1397 struct llist_node wake_entry; 1398 int on_cpu; 1399 unsigned int wakee_flips; 1400 unsigned long wakee_flip_decay_ts; 1401 struct task_struct *last_wakee; 1402 1403 int wake_cpu; 1404 #endif 1405 int on_rq; 1406 1407 int prio, static_prio, normal_prio; 1408 unsigned int rt_priority; 1409 const struct sched_class *sched_class; 1410 struct sched_entity se; 1411 struct sched_rt_entity rt; 1412 #ifdef CONFIG_CGROUP_SCHED 1413 struct task_group *sched_task_group; 1414 #endif 1415 struct sched_dl_entity dl; 1416 1417 #ifdef CONFIG_PREEMPT_NOTIFIERS 1418 /* list of struct preempt_notifier: */ 1419 struct hlist_head preempt_notifiers; 1420 #endif 1421 1422 #ifdef CONFIG_BLK_DEV_IO_TRACE 1423 unsigned int btrace_seq; 1424 #endif 1425 1426 unsigned int policy; 1427 int nr_cpus_allowed; 1428 cpumask_t cpus_allowed; 1429 1430 #ifdef CONFIG_PREEMPT_RCU 1431 int rcu_read_lock_nesting; 1432 union rcu_special rcu_read_unlock_special; 1433 struct list_head rcu_node_entry; 1434 struct rcu_node *rcu_blocked_node; 1435 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1436 #ifdef CONFIG_TASKS_RCU 1437 unsigned long rcu_tasks_nvcsw; 1438 bool rcu_tasks_holdout; 1439 struct list_head rcu_tasks_holdout_list; 1440 int rcu_tasks_idle_cpu; 1441 #endif /* #ifdef CONFIG_TASKS_RCU */ 1442 1443 #ifdef CONFIG_SCHED_INFO 1444 struct sched_info sched_info; 1445 #endif 1446 1447 struct list_head tasks; 1448 #ifdef CONFIG_SMP 1449 struct plist_node pushable_tasks; 1450 struct rb_node pushable_dl_tasks; 1451 #endif 1452 1453 struct mm_struct *mm, *active_mm; 1454 /* per-thread vma caching */ 1455 u32 vmacache_seqnum; 1456 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1457 #if defined(SPLIT_RSS_COUNTING) 1458 struct task_rss_stat rss_stat; 1459 #endif 1460 /* task state */ 1461 int exit_state; 1462 int exit_code, exit_signal; 1463 int pdeath_signal; /* The signal sent when the parent dies */ 1464 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1465 1466 /* Used for emulating ABI behavior of previous Linux versions */ 1467 unsigned int personality; 1468 1469 /* scheduler bits, serialized by scheduler locks */ 1470 unsigned sched_reset_on_fork:1; 1471 unsigned sched_contributes_to_load:1; 1472 unsigned sched_migrated:1; 1473 unsigned :0; /* force alignment to the next boundary */ 1474 1475 /* unserialized, strictly 'current' */ 1476 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1477 unsigned in_iowait:1; 1478 #ifdef CONFIG_MEMCG 1479 unsigned memcg_may_oom:1; 1480 #ifndef CONFIG_SLOB 1481 unsigned memcg_kmem_skip_account:1; 1482 #endif 1483 #endif 1484 #ifdef CONFIG_COMPAT_BRK 1485 unsigned brk_randomized:1; 1486 #endif 1487 1488 unsigned long atomic_flags; /* Flags needing atomic access. */ 1489 1490 struct restart_block restart_block; 1491 1492 pid_t pid; 1493 pid_t tgid; 1494 1495 #ifdef CONFIG_CC_STACKPROTECTOR 1496 /* Canary value for the -fstack-protector gcc feature */ 1497 unsigned long stack_canary; 1498 #endif 1499 /* 1500 * pointers to (original) parent process, youngest child, younger sibling, 1501 * older sibling, respectively. (p->father can be replaced with 1502 * p->real_parent->pid) 1503 */ 1504 struct task_struct __rcu *real_parent; /* real parent process */ 1505 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1506 /* 1507 * children/sibling forms the list of my natural children 1508 */ 1509 struct list_head children; /* list of my children */ 1510 struct list_head sibling; /* linkage in my parent's children list */ 1511 struct task_struct *group_leader; /* threadgroup leader */ 1512 1513 /* 1514 * ptraced is the list of tasks this task is using ptrace on. 1515 * This includes both natural children and PTRACE_ATTACH targets. 1516 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1517 */ 1518 struct list_head ptraced; 1519 struct list_head ptrace_entry; 1520 1521 /* PID/PID hash table linkage. */ 1522 struct pid_link pids[PIDTYPE_MAX]; 1523 struct list_head thread_group; 1524 struct list_head thread_node; 1525 1526 struct completion *vfork_done; /* for vfork() */ 1527 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1528 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1529 1530 cputime_t utime, stime, utimescaled, stimescaled; 1531 cputime_t gtime; 1532 struct prev_cputime prev_cputime; 1533 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1534 seqcount_t vtime_seqcount; 1535 unsigned long long vtime_snap; 1536 enum { 1537 /* Task is sleeping or running in a CPU with VTIME inactive */ 1538 VTIME_INACTIVE = 0, 1539 /* Task runs in userspace in a CPU with VTIME active */ 1540 VTIME_USER, 1541 /* Task runs in kernelspace in a CPU with VTIME active */ 1542 VTIME_SYS, 1543 } vtime_snap_whence; 1544 #endif 1545 unsigned long nvcsw, nivcsw; /* context switch counts */ 1546 u64 start_time; /* monotonic time in nsec */ 1547 u64 real_start_time; /* boot based time in nsec */ 1548 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1549 unsigned long min_flt, maj_flt; 1550 1551 struct task_cputime cputime_expires; 1552 struct list_head cpu_timers[3]; 1553 1554 /* process credentials */ 1555 const struct cred __rcu *real_cred; /* objective and real subjective task 1556 * credentials (COW) */ 1557 const struct cred __rcu *cred; /* effective (overridable) subjective task 1558 * credentials (COW) */ 1559 char comm[TASK_COMM_LEN]; /* executable name excluding path 1560 - access with [gs]et_task_comm (which lock 1561 it with task_lock()) 1562 - initialized normally by setup_new_exec */ 1563 /* file system info */ 1564 struct nameidata *nameidata; 1565 #ifdef CONFIG_SYSVIPC 1566 /* ipc stuff */ 1567 struct sysv_sem sysvsem; 1568 struct sysv_shm sysvshm; 1569 #endif 1570 #ifdef CONFIG_DETECT_HUNG_TASK 1571 /* hung task detection */ 1572 unsigned long last_switch_count; 1573 #endif 1574 /* filesystem information */ 1575 struct fs_struct *fs; 1576 /* open file information */ 1577 struct files_struct *files; 1578 /* namespaces */ 1579 struct nsproxy *nsproxy; 1580 /* signal handlers */ 1581 struct signal_struct *signal; 1582 struct sighand_struct *sighand; 1583 1584 sigset_t blocked, real_blocked; 1585 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1586 struct sigpending pending; 1587 1588 unsigned long sas_ss_sp; 1589 size_t sas_ss_size; 1590 1591 struct callback_head *task_works; 1592 1593 struct audit_context *audit_context; 1594 #ifdef CONFIG_AUDITSYSCALL 1595 kuid_t loginuid; 1596 unsigned int sessionid; 1597 #endif 1598 struct seccomp seccomp; 1599 1600 /* Thread group tracking */ 1601 u32 parent_exec_id; 1602 u32 self_exec_id; 1603 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1604 * mempolicy */ 1605 spinlock_t alloc_lock; 1606 1607 /* Protection of the PI data structures: */ 1608 raw_spinlock_t pi_lock; 1609 1610 struct wake_q_node wake_q; 1611 1612 #ifdef CONFIG_RT_MUTEXES 1613 /* PI waiters blocked on a rt_mutex held by this task */ 1614 struct rb_root pi_waiters; 1615 struct rb_node *pi_waiters_leftmost; 1616 /* Deadlock detection and priority inheritance handling */ 1617 struct rt_mutex_waiter *pi_blocked_on; 1618 #endif 1619 1620 #ifdef CONFIG_DEBUG_MUTEXES 1621 /* mutex deadlock detection */ 1622 struct mutex_waiter *blocked_on; 1623 #endif 1624 #ifdef CONFIG_TRACE_IRQFLAGS 1625 unsigned int irq_events; 1626 unsigned long hardirq_enable_ip; 1627 unsigned long hardirq_disable_ip; 1628 unsigned int hardirq_enable_event; 1629 unsigned int hardirq_disable_event; 1630 int hardirqs_enabled; 1631 int hardirq_context; 1632 unsigned long softirq_disable_ip; 1633 unsigned long softirq_enable_ip; 1634 unsigned int softirq_disable_event; 1635 unsigned int softirq_enable_event; 1636 int softirqs_enabled; 1637 int softirq_context; 1638 #endif 1639 #ifdef CONFIG_LOCKDEP 1640 # define MAX_LOCK_DEPTH 48UL 1641 u64 curr_chain_key; 1642 int lockdep_depth; 1643 unsigned int lockdep_recursion; 1644 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1645 gfp_t lockdep_reclaim_gfp; 1646 #endif 1647 #ifdef CONFIG_UBSAN 1648 unsigned int in_ubsan; 1649 #endif 1650 1651 /* journalling filesystem info */ 1652 void *journal_info; 1653 1654 /* stacked block device info */ 1655 struct bio_list *bio_list; 1656 1657 #ifdef CONFIG_BLOCK 1658 /* stack plugging */ 1659 struct blk_plug *plug; 1660 #endif 1661 1662 /* VM state */ 1663 struct reclaim_state *reclaim_state; 1664 1665 struct backing_dev_info *backing_dev_info; 1666 1667 struct io_context *io_context; 1668 1669 unsigned long ptrace_message; 1670 siginfo_t *last_siginfo; /* For ptrace use. */ 1671 struct task_io_accounting ioac; 1672 #if defined(CONFIG_TASK_XACCT) 1673 u64 acct_rss_mem1; /* accumulated rss usage */ 1674 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1675 cputime_t acct_timexpd; /* stime + utime since last update */ 1676 #endif 1677 #ifdef CONFIG_CPUSETS 1678 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1679 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1680 int cpuset_mem_spread_rotor; 1681 int cpuset_slab_spread_rotor; 1682 #endif 1683 #ifdef CONFIG_CGROUPS 1684 /* Control Group info protected by css_set_lock */ 1685 struct css_set __rcu *cgroups; 1686 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1687 struct list_head cg_list; 1688 #endif 1689 #ifdef CONFIG_FUTEX 1690 struct robust_list_head __user *robust_list; 1691 #ifdef CONFIG_COMPAT 1692 struct compat_robust_list_head __user *compat_robust_list; 1693 #endif 1694 struct list_head pi_state_list; 1695 struct futex_pi_state *pi_state_cache; 1696 #endif 1697 #ifdef CONFIG_PERF_EVENTS 1698 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1699 struct mutex perf_event_mutex; 1700 struct list_head perf_event_list; 1701 #endif 1702 #ifdef CONFIG_DEBUG_PREEMPT 1703 unsigned long preempt_disable_ip; 1704 #endif 1705 #ifdef CONFIG_NUMA 1706 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1707 short il_next; 1708 short pref_node_fork; 1709 #endif 1710 #ifdef CONFIG_NUMA_BALANCING 1711 int numa_scan_seq; 1712 unsigned int numa_scan_period; 1713 unsigned int numa_scan_period_max; 1714 int numa_preferred_nid; 1715 unsigned long numa_migrate_retry; 1716 u64 node_stamp; /* migration stamp */ 1717 u64 last_task_numa_placement; 1718 u64 last_sum_exec_runtime; 1719 struct callback_head numa_work; 1720 1721 struct list_head numa_entry; 1722 struct numa_group *numa_group; 1723 1724 /* 1725 * numa_faults is an array split into four regions: 1726 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1727 * in this precise order. 1728 * 1729 * faults_memory: Exponential decaying average of faults on a per-node 1730 * basis. Scheduling placement decisions are made based on these 1731 * counts. The values remain static for the duration of a PTE scan. 1732 * faults_cpu: Track the nodes the process was running on when a NUMA 1733 * hinting fault was incurred. 1734 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1735 * during the current scan window. When the scan completes, the counts 1736 * in faults_memory and faults_cpu decay and these values are copied. 1737 */ 1738 unsigned long *numa_faults; 1739 unsigned long total_numa_faults; 1740 1741 /* 1742 * numa_faults_locality tracks if faults recorded during the last 1743 * scan window were remote/local or failed to migrate. The task scan 1744 * period is adapted based on the locality of the faults with different 1745 * weights depending on whether they were shared or private faults 1746 */ 1747 unsigned long numa_faults_locality[3]; 1748 1749 unsigned long numa_pages_migrated; 1750 #endif /* CONFIG_NUMA_BALANCING */ 1751 1752 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1753 struct tlbflush_unmap_batch tlb_ubc; 1754 #endif 1755 1756 struct rcu_head rcu; 1757 1758 /* 1759 * cache last used pipe for splice 1760 */ 1761 struct pipe_inode_info *splice_pipe; 1762 1763 struct page_frag task_frag; 1764 1765 #ifdef CONFIG_TASK_DELAY_ACCT 1766 struct task_delay_info *delays; 1767 #endif 1768 #ifdef CONFIG_FAULT_INJECTION 1769 int make_it_fail; 1770 #endif 1771 /* 1772 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1773 * balance_dirty_pages() for some dirty throttling pause 1774 */ 1775 int nr_dirtied; 1776 int nr_dirtied_pause; 1777 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1778 1779 #ifdef CONFIG_LATENCYTOP 1780 int latency_record_count; 1781 struct latency_record latency_record[LT_SAVECOUNT]; 1782 #endif 1783 /* 1784 * time slack values; these are used to round up poll() and 1785 * select() etc timeout values. These are in nanoseconds. 1786 */ 1787 unsigned long timer_slack_ns; 1788 unsigned long default_timer_slack_ns; 1789 1790 #ifdef CONFIG_KASAN 1791 unsigned int kasan_depth; 1792 #endif 1793 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1794 /* Index of current stored address in ret_stack */ 1795 int curr_ret_stack; 1796 /* Stack of return addresses for return function tracing */ 1797 struct ftrace_ret_stack *ret_stack; 1798 /* time stamp for last schedule */ 1799 unsigned long long ftrace_timestamp; 1800 /* 1801 * Number of functions that haven't been traced 1802 * because of depth overrun. 1803 */ 1804 atomic_t trace_overrun; 1805 /* Pause for the tracing */ 1806 atomic_t tracing_graph_pause; 1807 #endif 1808 #ifdef CONFIG_TRACING 1809 /* state flags for use by tracers */ 1810 unsigned long trace; 1811 /* bitmask and counter of trace recursion */ 1812 unsigned long trace_recursion; 1813 #endif /* CONFIG_TRACING */ 1814 #ifdef CONFIG_MEMCG 1815 struct mem_cgroup *memcg_in_oom; 1816 gfp_t memcg_oom_gfp_mask; 1817 int memcg_oom_order; 1818 1819 /* number of pages to reclaim on returning to userland */ 1820 unsigned int memcg_nr_pages_over_high; 1821 #endif 1822 #ifdef CONFIG_UPROBES 1823 struct uprobe_task *utask; 1824 #endif 1825 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1826 unsigned int sequential_io; 1827 unsigned int sequential_io_avg; 1828 #endif 1829 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1830 unsigned long task_state_change; 1831 #endif 1832 int pagefault_disabled; 1833 /* CPU-specific state of this task */ 1834 struct thread_struct thread; 1835 /* 1836 * WARNING: on x86, 'thread_struct' contains a variable-sized 1837 * structure. It *MUST* be at the end of 'task_struct'. 1838 * 1839 * Do not put anything below here! 1840 */ 1841 }; 1842 1843 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1844 extern int arch_task_struct_size __read_mostly; 1845 #else 1846 # define arch_task_struct_size (sizeof(struct task_struct)) 1847 #endif 1848 1849 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1850 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1851 1852 #define TNF_MIGRATED 0x01 1853 #define TNF_NO_GROUP 0x02 1854 #define TNF_SHARED 0x04 1855 #define TNF_FAULT_LOCAL 0x08 1856 #define TNF_MIGRATE_FAIL 0x10 1857 1858 #ifdef CONFIG_NUMA_BALANCING 1859 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1860 extern pid_t task_numa_group_id(struct task_struct *p); 1861 extern void set_numabalancing_state(bool enabled); 1862 extern void task_numa_free(struct task_struct *p); 1863 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1864 int src_nid, int dst_cpu); 1865 #else 1866 static inline void task_numa_fault(int last_node, int node, int pages, 1867 int flags) 1868 { 1869 } 1870 static inline pid_t task_numa_group_id(struct task_struct *p) 1871 { 1872 return 0; 1873 } 1874 static inline void set_numabalancing_state(bool enabled) 1875 { 1876 } 1877 static inline void task_numa_free(struct task_struct *p) 1878 { 1879 } 1880 static inline bool should_numa_migrate_memory(struct task_struct *p, 1881 struct page *page, int src_nid, int dst_cpu) 1882 { 1883 return true; 1884 } 1885 #endif 1886 1887 static inline struct pid *task_pid(struct task_struct *task) 1888 { 1889 return task->pids[PIDTYPE_PID].pid; 1890 } 1891 1892 static inline struct pid *task_tgid(struct task_struct *task) 1893 { 1894 return task->group_leader->pids[PIDTYPE_PID].pid; 1895 } 1896 1897 /* 1898 * Without tasklist or rcu lock it is not safe to dereference 1899 * the result of task_pgrp/task_session even if task == current, 1900 * we can race with another thread doing sys_setsid/sys_setpgid. 1901 */ 1902 static inline struct pid *task_pgrp(struct task_struct *task) 1903 { 1904 return task->group_leader->pids[PIDTYPE_PGID].pid; 1905 } 1906 1907 static inline struct pid *task_session(struct task_struct *task) 1908 { 1909 return task->group_leader->pids[PIDTYPE_SID].pid; 1910 } 1911 1912 struct pid_namespace; 1913 1914 /* 1915 * the helpers to get the task's different pids as they are seen 1916 * from various namespaces 1917 * 1918 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1919 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1920 * current. 1921 * task_xid_nr_ns() : id seen from the ns specified; 1922 * 1923 * set_task_vxid() : assigns a virtual id to a task; 1924 * 1925 * see also pid_nr() etc in include/linux/pid.h 1926 */ 1927 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1928 struct pid_namespace *ns); 1929 1930 static inline pid_t task_pid_nr(struct task_struct *tsk) 1931 { 1932 return tsk->pid; 1933 } 1934 1935 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1936 struct pid_namespace *ns) 1937 { 1938 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1939 } 1940 1941 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1942 { 1943 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1944 } 1945 1946 1947 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1948 { 1949 return tsk->tgid; 1950 } 1951 1952 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1953 1954 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1955 { 1956 return pid_vnr(task_tgid(tsk)); 1957 } 1958 1959 1960 static inline int pid_alive(const struct task_struct *p); 1961 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1962 { 1963 pid_t pid = 0; 1964 1965 rcu_read_lock(); 1966 if (pid_alive(tsk)) 1967 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1968 rcu_read_unlock(); 1969 1970 return pid; 1971 } 1972 1973 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1974 { 1975 return task_ppid_nr_ns(tsk, &init_pid_ns); 1976 } 1977 1978 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1979 struct pid_namespace *ns) 1980 { 1981 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1982 } 1983 1984 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1985 { 1986 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1987 } 1988 1989 1990 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1991 struct pid_namespace *ns) 1992 { 1993 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1994 } 1995 1996 static inline pid_t task_session_vnr(struct task_struct *tsk) 1997 { 1998 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1999 } 2000 2001 /* obsolete, do not use */ 2002 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2003 { 2004 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2005 } 2006 2007 /** 2008 * pid_alive - check that a task structure is not stale 2009 * @p: Task structure to be checked. 2010 * 2011 * Test if a process is not yet dead (at most zombie state) 2012 * If pid_alive fails, then pointers within the task structure 2013 * can be stale and must not be dereferenced. 2014 * 2015 * Return: 1 if the process is alive. 0 otherwise. 2016 */ 2017 static inline int pid_alive(const struct task_struct *p) 2018 { 2019 return p->pids[PIDTYPE_PID].pid != NULL; 2020 } 2021 2022 /** 2023 * is_global_init - check if a task structure is init. Since init 2024 * is free to have sub-threads we need to check tgid. 2025 * @tsk: Task structure to be checked. 2026 * 2027 * Check if a task structure is the first user space task the kernel created. 2028 * 2029 * Return: 1 if the task structure is init. 0 otherwise. 2030 */ 2031 static inline int is_global_init(struct task_struct *tsk) 2032 { 2033 return task_tgid_nr(tsk) == 1; 2034 } 2035 2036 extern struct pid *cad_pid; 2037 2038 extern void free_task(struct task_struct *tsk); 2039 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2040 2041 extern void __put_task_struct(struct task_struct *t); 2042 2043 static inline void put_task_struct(struct task_struct *t) 2044 { 2045 if (atomic_dec_and_test(&t->usage)) 2046 __put_task_struct(t); 2047 } 2048 2049 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2050 extern void task_cputime(struct task_struct *t, 2051 cputime_t *utime, cputime_t *stime); 2052 extern void task_cputime_scaled(struct task_struct *t, 2053 cputime_t *utimescaled, cputime_t *stimescaled); 2054 extern cputime_t task_gtime(struct task_struct *t); 2055 #else 2056 static inline void task_cputime(struct task_struct *t, 2057 cputime_t *utime, cputime_t *stime) 2058 { 2059 if (utime) 2060 *utime = t->utime; 2061 if (stime) 2062 *stime = t->stime; 2063 } 2064 2065 static inline void task_cputime_scaled(struct task_struct *t, 2066 cputime_t *utimescaled, 2067 cputime_t *stimescaled) 2068 { 2069 if (utimescaled) 2070 *utimescaled = t->utimescaled; 2071 if (stimescaled) 2072 *stimescaled = t->stimescaled; 2073 } 2074 2075 static inline cputime_t task_gtime(struct task_struct *t) 2076 { 2077 return t->gtime; 2078 } 2079 #endif 2080 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2081 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2082 2083 /* 2084 * Per process flags 2085 */ 2086 #define PF_EXITING 0x00000004 /* getting shut down */ 2087 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2088 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2089 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2090 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2091 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2092 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2093 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2094 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2095 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2096 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2097 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2098 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2099 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2100 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2101 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2102 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2103 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2104 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2105 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2106 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2107 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2108 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2109 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2110 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2111 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2112 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2113 2114 /* 2115 * Only the _current_ task can read/write to tsk->flags, but other 2116 * tasks can access tsk->flags in readonly mode for example 2117 * with tsk_used_math (like during threaded core dumping). 2118 * There is however an exception to this rule during ptrace 2119 * or during fork: the ptracer task is allowed to write to the 2120 * child->flags of its traced child (same goes for fork, the parent 2121 * can write to the child->flags), because we're guaranteed the 2122 * child is not running and in turn not changing child->flags 2123 * at the same time the parent does it. 2124 */ 2125 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2126 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2127 #define clear_used_math() clear_stopped_child_used_math(current) 2128 #define set_used_math() set_stopped_child_used_math(current) 2129 #define conditional_stopped_child_used_math(condition, child) \ 2130 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2131 #define conditional_used_math(condition) \ 2132 conditional_stopped_child_used_math(condition, current) 2133 #define copy_to_stopped_child_used_math(child) \ 2134 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2135 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2136 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2137 #define used_math() tsk_used_math(current) 2138 2139 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2140 * __GFP_FS is also cleared as it implies __GFP_IO. 2141 */ 2142 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2143 { 2144 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2145 flags &= ~(__GFP_IO | __GFP_FS); 2146 return flags; 2147 } 2148 2149 static inline unsigned int memalloc_noio_save(void) 2150 { 2151 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2152 current->flags |= PF_MEMALLOC_NOIO; 2153 return flags; 2154 } 2155 2156 static inline void memalloc_noio_restore(unsigned int flags) 2157 { 2158 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2159 } 2160 2161 /* Per-process atomic flags. */ 2162 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2163 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2164 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2165 2166 2167 #define TASK_PFA_TEST(name, func) \ 2168 static inline bool task_##func(struct task_struct *p) \ 2169 { return test_bit(PFA_##name, &p->atomic_flags); } 2170 #define TASK_PFA_SET(name, func) \ 2171 static inline void task_set_##func(struct task_struct *p) \ 2172 { set_bit(PFA_##name, &p->atomic_flags); } 2173 #define TASK_PFA_CLEAR(name, func) \ 2174 static inline void task_clear_##func(struct task_struct *p) \ 2175 { clear_bit(PFA_##name, &p->atomic_flags); } 2176 2177 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2178 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2179 2180 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2181 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2182 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2183 2184 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2185 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2186 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2187 2188 /* 2189 * task->jobctl flags 2190 */ 2191 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2192 2193 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2194 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2195 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2196 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2197 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2198 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2199 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2200 2201 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2202 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2203 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2204 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2205 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2206 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2207 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2208 2209 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2210 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2211 2212 extern bool task_set_jobctl_pending(struct task_struct *task, 2213 unsigned long mask); 2214 extern void task_clear_jobctl_trapping(struct task_struct *task); 2215 extern void task_clear_jobctl_pending(struct task_struct *task, 2216 unsigned long mask); 2217 2218 static inline void rcu_copy_process(struct task_struct *p) 2219 { 2220 #ifdef CONFIG_PREEMPT_RCU 2221 p->rcu_read_lock_nesting = 0; 2222 p->rcu_read_unlock_special.s = 0; 2223 p->rcu_blocked_node = NULL; 2224 INIT_LIST_HEAD(&p->rcu_node_entry); 2225 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2226 #ifdef CONFIG_TASKS_RCU 2227 p->rcu_tasks_holdout = false; 2228 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2229 p->rcu_tasks_idle_cpu = -1; 2230 #endif /* #ifdef CONFIG_TASKS_RCU */ 2231 } 2232 2233 static inline void tsk_restore_flags(struct task_struct *task, 2234 unsigned long orig_flags, unsigned long flags) 2235 { 2236 task->flags &= ~flags; 2237 task->flags |= orig_flags & flags; 2238 } 2239 2240 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2241 const struct cpumask *trial); 2242 extern int task_can_attach(struct task_struct *p, 2243 const struct cpumask *cs_cpus_allowed); 2244 #ifdef CONFIG_SMP 2245 extern void do_set_cpus_allowed(struct task_struct *p, 2246 const struct cpumask *new_mask); 2247 2248 extern int set_cpus_allowed_ptr(struct task_struct *p, 2249 const struct cpumask *new_mask); 2250 #else 2251 static inline void do_set_cpus_allowed(struct task_struct *p, 2252 const struct cpumask *new_mask) 2253 { 2254 } 2255 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2256 const struct cpumask *new_mask) 2257 { 2258 if (!cpumask_test_cpu(0, new_mask)) 2259 return -EINVAL; 2260 return 0; 2261 } 2262 #endif 2263 2264 #ifdef CONFIG_NO_HZ_COMMON 2265 void calc_load_enter_idle(void); 2266 void calc_load_exit_idle(void); 2267 #else 2268 static inline void calc_load_enter_idle(void) { } 2269 static inline void calc_load_exit_idle(void) { } 2270 #endif /* CONFIG_NO_HZ_COMMON */ 2271 2272 /* 2273 * Do not use outside of architecture code which knows its limitations. 2274 * 2275 * sched_clock() has no promise of monotonicity or bounded drift between 2276 * CPUs, use (which you should not) requires disabling IRQs. 2277 * 2278 * Please use one of the three interfaces below. 2279 */ 2280 extern unsigned long long notrace sched_clock(void); 2281 /* 2282 * See the comment in kernel/sched/clock.c 2283 */ 2284 extern u64 cpu_clock(int cpu); 2285 extern u64 local_clock(void); 2286 extern u64 running_clock(void); 2287 extern u64 sched_clock_cpu(int cpu); 2288 2289 2290 extern void sched_clock_init(void); 2291 2292 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2293 static inline void sched_clock_tick(void) 2294 { 2295 } 2296 2297 static inline void sched_clock_idle_sleep_event(void) 2298 { 2299 } 2300 2301 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2302 { 2303 } 2304 #else 2305 /* 2306 * Architectures can set this to 1 if they have specified 2307 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2308 * but then during bootup it turns out that sched_clock() 2309 * is reliable after all: 2310 */ 2311 extern int sched_clock_stable(void); 2312 extern void set_sched_clock_stable(void); 2313 extern void clear_sched_clock_stable(void); 2314 2315 extern void sched_clock_tick(void); 2316 extern void sched_clock_idle_sleep_event(void); 2317 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2318 #endif 2319 2320 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2321 /* 2322 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2323 * The reason for this explicit opt-in is not to have perf penalty with 2324 * slow sched_clocks. 2325 */ 2326 extern void enable_sched_clock_irqtime(void); 2327 extern void disable_sched_clock_irqtime(void); 2328 #else 2329 static inline void enable_sched_clock_irqtime(void) {} 2330 static inline void disable_sched_clock_irqtime(void) {} 2331 #endif 2332 2333 extern unsigned long long 2334 task_sched_runtime(struct task_struct *task); 2335 2336 /* sched_exec is called by processes performing an exec */ 2337 #ifdef CONFIG_SMP 2338 extern void sched_exec(void); 2339 #else 2340 #define sched_exec() {} 2341 #endif 2342 2343 extern void sched_clock_idle_sleep_event(void); 2344 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2345 2346 #ifdef CONFIG_HOTPLUG_CPU 2347 extern void idle_task_exit(void); 2348 #else 2349 static inline void idle_task_exit(void) {} 2350 #endif 2351 2352 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2353 extern void wake_up_nohz_cpu(int cpu); 2354 #else 2355 static inline void wake_up_nohz_cpu(int cpu) { } 2356 #endif 2357 2358 #ifdef CONFIG_NO_HZ_FULL 2359 extern bool sched_can_stop_tick(void); 2360 extern u64 scheduler_tick_max_deferment(void); 2361 #else 2362 static inline bool sched_can_stop_tick(void) { return false; } 2363 #endif 2364 2365 #ifdef CONFIG_SCHED_AUTOGROUP 2366 extern void sched_autogroup_create_attach(struct task_struct *p); 2367 extern void sched_autogroup_detach(struct task_struct *p); 2368 extern void sched_autogroup_fork(struct signal_struct *sig); 2369 extern void sched_autogroup_exit(struct signal_struct *sig); 2370 #ifdef CONFIG_PROC_FS 2371 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2372 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2373 #endif 2374 #else 2375 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2376 static inline void sched_autogroup_detach(struct task_struct *p) { } 2377 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2378 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2379 #endif 2380 2381 extern int yield_to(struct task_struct *p, bool preempt); 2382 extern void set_user_nice(struct task_struct *p, long nice); 2383 extern int task_prio(const struct task_struct *p); 2384 /** 2385 * task_nice - return the nice value of a given task. 2386 * @p: the task in question. 2387 * 2388 * Return: The nice value [ -20 ... 0 ... 19 ]. 2389 */ 2390 static inline int task_nice(const struct task_struct *p) 2391 { 2392 return PRIO_TO_NICE((p)->static_prio); 2393 } 2394 extern int can_nice(const struct task_struct *p, const int nice); 2395 extern int task_curr(const struct task_struct *p); 2396 extern int idle_cpu(int cpu); 2397 extern int sched_setscheduler(struct task_struct *, int, 2398 const struct sched_param *); 2399 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2400 const struct sched_param *); 2401 extern int sched_setattr(struct task_struct *, 2402 const struct sched_attr *); 2403 extern struct task_struct *idle_task(int cpu); 2404 /** 2405 * is_idle_task - is the specified task an idle task? 2406 * @p: the task in question. 2407 * 2408 * Return: 1 if @p is an idle task. 0 otherwise. 2409 */ 2410 static inline bool is_idle_task(const struct task_struct *p) 2411 { 2412 return p->pid == 0; 2413 } 2414 extern struct task_struct *curr_task(int cpu); 2415 extern void set_curr_task(int cpu, struct task_struct *p); 2416 2417 void yield(void); 2418 2419 union thread_union { 2420 struct thread_info thread_info; 2421 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2422 }; 2423 2424 #ifndef __HAVE_ARCH_KSTACK_END 2425 static inline int kstack_end(void *addr) 2426 { 2427 /* Reliable end of stack detection: 2428 * Some APM bios versions misalign the stack 2429 */ 2430 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2431 } 2432 #endif 2433 2434 extern union thread_union init_thread_union; 2435 extern struct task_struct init_task; 2436 2437 extern struct mm_struct init_mm; 2438 2439 extern struct pid_namespace init_pid_ns; 2440 2441 /* 2442 * find a task by one of its numerical ids 2443 * 2444 * find_task_by_pid_ns(): 2445 * finds a task by its pid in the specified namespace 2446 * find_task_by_vpid(): 2447 * finds a task by its virtual pid 2448 * 2449 * see also find_vpid() etc in include/linux/pid.h 2450 */ 2451 2452 extern struct task_struct *find_task_by_vpid(pid_t nr); 2453 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2454 struct pid_namespace *ns); 2455 2456 /* per-UID process charging. */ 2457 extern struct user_struct * alloc_uid(kuid_t); 2458 static inline struct user_struct *get_uid(struct user_struct *u) 2459 { 2460 atomic_inc(&u->__count); 2461 return u; 2462 } 2463 extern void free_uid(struct user_struct *); 2464 2465 #include <asm/current.h> 2466 2467 extern void xtime_update(unsigned long ticks); 2468 2469 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2470 extern int wake_up_process(struct task_struct *tsk); 2471 extern void wake_up_new_task(struct task_struct *tsk); 2472 #ifdef CONFIG_SMP 2473 extern void kick_process(struct task_struct *tsk); 2474 #else 2475 static inline void kick_process(struct task_struct *tsk) { } 2476 #endif 2477 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2478 extern void sched_dead(struct task_struct *p); 2479 2480 extern void proc_caches_init(void); 2481 extern void flush_signals(struct task_struct *); 2482 extern void ignore_signals(struct task_struct *); 2483 extern void flush_signal_handlers(struct task_struct *, int force_default); 2484 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2485 2486 static inline int kernel_dequeue_signal(siginfo_t *info) 2487 { 2488 struct task_struct *tsk = current; 2489 siginfo_t __info; 2490 int ret; 2491 2492 spin_lock_irq(&tsk->sighand->siglock); 2493 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2494 spin_unlock_irq(&tsk->sighand->siglock); 2495 2496 return ret; 2497 } 2498 2499 static inline void kernel_signal_stop(void) 2500 { 2501 spin_lock_irq(¤t->sighand->siglock); 2502 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2503 __set_current_state(TASK_STOPPED); 2504 spin_unlock_irq(¤t->sighand->siglock); 2505 2506 schedule(); 2507 } 2508 2509 extern void release_task(struct task_struct * p); 2510 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2511 extern int force_sigsegv(int, struct task_struct *); 2512 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2513 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2514 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2515 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2516 const struct cred *, u32); 2517 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2518 extern int kill_pid(struct pid *pid, int sig, int priv); 2519 extern int kill_proc_info(int, struct siginfo *, pid_t); 2520 extern __must_check bool do_notify_parent(struct task_struct *, int); 2521 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2522 extern void force_sig(int, struct task_struct *); 2523 extern int send_sig(int, struct task_struct *, int); 2524 extern int zap_other_threads(struct task_struct *p); 2525 extern struct sigqueue *sigqueue_alloc(void); 2526 extern void sigqueue_free(struct sigqueue *); 2527 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2528 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2529 2530 static inline void restore_saved_sigmask(void) 2531 { 2532 if (test_and_clear_restore_sigmask()) 2533 __set_current_blocked(¤t->saved_sigmask); 2534 } 2535 2536 static inline sigset_t *sigmask_to_save(void) 2537 { 2538 sigset_t *res = ¤t->blocked; 2539 if (unlikely(test_restore_sigmask())) 2540 res = ¤t->saved_sigmask; 2541 return res; 2542 } 2543 2544 static inline int kill_cad_pid(int sig, int priv) 2545 { 2546 return kill_pid(cad_pid, sig, priv); 2547 } 2548 2549 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2550 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2551 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2552 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2553 2554 /* 2555 * True if we are on the alternate signal stack. 2556 */ 2557 static inline int on_sig_stack(unsigned long sp) 2558 { 2559 #ifdef CONFIG_STACK_GROWSUP 2560 return sp >= current->sas_ss_sp && 2561 sp - current->sas_ss_sp < current->sas_ss_size; 2562 #else 2563 return sp > current->sas_ss_sp && 2564 sp - current->sas_ss_sp <= current->sas_ss_size; 2565 #endif 2566 } 2567 2568 static inline int sas_ss_flags(unsigned long sp) 2569 { 2570 if (!current->sas_ss_size) 2571 return SS_DISABLE; 2572 2573 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2574 } 2575 2576 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2577 { 2578 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2579 #ifdef CONFIG_STACK_GROWSUP 2580 return current->sas_ss_sp; 2581 #else 2582 return current->sas_ss_sp + current->sas_ss_size; 2583 #endif 2584 return sp; 2585 } 2586 2587 /* 2588 * Routines for handling mm_structs 2589 */ 2590 extern struct mm_struct * mm_alloc(void); 2591 2592 /* mmdrop drops the mm and the page tables */ 2593 extern void __mmdrop(struct mm_struct *); 2594 static inline void mmdrop(struct mm_struct * mm) 2595 { 2596 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2597 __mmdrop(mm); 2598 } 2599 2600 /* mmput gets rid of the mappings and all user-space */ 2601 extern void mmput(struct mm_struct *); 2602 /* Grab a reference to a task's mm, if it is not already going away */ 2603 extern struct mm_struct *get_task_mm(struct task_struct *task); 2604 /* 2605 * Grab a reference to a task's mm, if it is not already going away 2606 * and ptrace_may_access with the mode parameter passed to it 2607 * succeeds. 2608 */ 2609 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2610 /* Remove the current tasks stale references to the old mm_struct */ 2611 extern void mm_release(struct task_struct *, struct mm_struct *); 2612 2613 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2614 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2615 struct task_struct *, unsigned long); 2616 #else 2617 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2618 struct task_struct *); 2619 2620 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2621 * via pt_regs, so ignore the tls argument passed via C. */ 2622 static inline int copy_thread_tls( 2623 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2624 struct task_struct *p, unsigned long tls) 2625 { 2626 return copy_thread(clone_flags, sp, arg, p); 2627 } 2628 #endif 2629 extern void flush_thread(void); 2630 extern void exit_thread(void); 2631 2632 extern void exit_files(struct task_struct *); 2633 extern void __cleanup_sighand(struct sighand_struct *); 2634 2635 extern void exit_itimers(struct signal_struct *); 2636 extern void flush_itimer_signals(void); 2637 2638 extern void do_group_exit(int); 2639 2640 extern int do_execve(struct filename *, 2641 const char __user * const __user *, 2642 const char __user * const __user *); 2643 extern int do_execveat(int, struct filename *, 2644 const char __user * const __user *, 2645 const char __user * const __user *, 2646 int); 2647 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2648 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2649 struct task_struct *fork_idle(int); 2650 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2651 2652 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2653 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2654 { 2655 __set_task_comm(tsk, from, false); 2656 } 2657 extern char *get_task_comm(char *to, struct task_struct *tsk); 2658 2659 #ifdef CONFIG_SMP 2660 void scheduler_ipi(void); 2661 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2662 #else 2663 static inline void scheduler_ipi(void) { } 2664 static inline unsigned long wait_task_inactive(struct task_struct *p, 2665 long match_state) 2666 { 2667 return 1; 2668 } 2669 #endif 2670 2671 #define tasklist_empty() \ 2672 list_empty(&init_task.tasks) 2673 2674 #define next_task(p) \ 2675 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2676 2677 #define for_each_process(p) \ 2678 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2679 2680 extern bool current_is_single_threaded(void); 2681 2682 /* 2683 * Careful: do_each_thread/while_each_thread is a double loop so 2684 * 'break' will not work as expected - use goto instead. 2685 */ 2686 #define do_each_thread(g, t) \ 2687 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2688 2689 #define while_each_thread(g, t) \ 2690 while ((t = next_thread(t)) != g) 2691 2692 #define __for_each_thread(signal, t) \ 2693 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2694 2695 #define for_each_thread(p, t) \ 2696 __for_each_thread((p)->signal, t) 2697 2698 /* Careful: this is a double loop, 'break' won't work as expected. */ 2699 #define for_each_process_thread(p, t) \ 2700 for_each_process(p) for_each_thread(p, t) 2701 2702 static inline int get_nr_threads(struct task_struct *tsk) 2703 { 2704 return tsk->signal->nr_threads; 2705 } 2706 2707 static inline bool thread_group_leader(struct task_struct *p) 2708 { 2709 return p->exit_signal >= 0; 2710 } 2711 2712 /* Do to the insanities of de_thread it is possible for a process 2713 * to have the pid of the thread group leader without actually being 2714 * the thread group leader. For iteration through the pids in proc 2715 * all we care about is that we have a task with the appropriate 2716 * pid, we don't actually care if we have the right task. 2717 */ 2718 static inline bool has_group_leader_pid(struct task_struct *p) 2719 { 2720 return task_pid(p) == p->signal->leader_pid; 2721 } 2722 2723 static inline 2724 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2725 { 2726 return p1->signal == p2->signal; 2727 } 2728 2729 static inline struct task_struct *next_thread(const struct task_struct *p) 2730 { 2731 return list_entry_rcu(p->thread_group.next, 2732 struct task_struct, thread_group); 2733 } 2734 2735 static inline int thread_group_empty(struct task_struct *p) 2736 { 2737 return list_empty(&p->thread_group); 2738 } 2739 2740 #define delay_group_leader(p) \ 2741 (thread_group_leader(p) && !thread_group_empty(p)) 2742 2743 /* 2744 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2745 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2746 * pins the final release of task.io_context. Also protects ->cpuset and 2747 * ->cgroup.subsys[]. And ->vfork_done. 2748 * 2749 * Nests both inside and outside of read_lock(&tasklist_lock). 2750 * It must not be nested with write_lock_irq(&tasklist_lock), 2751 * neither inside nor outside. 2752 */ 2753 static inline void task_lock(struct task_struct *p) 2754 { 2755 spin_lock(&p->alloc_lock); 2756 } 2757 2758 static inline void task_unlock(struct task_struct *p) 2759 { 2760 spin_unlock(&p->alloc_lock); 2761 } 2762 2763 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2764 unsigned long *flags); 2765 2766 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2767 unsigned long *flags) 2768 { 2769 struct sighand_struct *ret; 2770 2771 ret = __lock_task_sighand(tsk, flags); 2772 (void)__cond_lock(&tsk->sighand->siglock, ret); 2773 return ret; 2774 } 2775 2776 static inline void unlock_task_sighand(struct task_struct *tsk, 2777 unsigned long *flags) 2778 { 2779 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2780 } 2781 2782 /** 2783 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2784 * @tsk: task causing the changes 2785 * 2786 * All operations which modify a threadgroup - a new thread joining the 2787 * group, death of a member thread (the assertion of PF_EXITING) and 2788 * exec(2) dethreading the process and replacing the leader - are wrapped 2789 * by threadgroup_change_{begin|end}(). This is to provide a place which 2790 * subsystems needing threadgroup stability can hook into for 2791 * synchronization. 2792 */ 2793 static inline void threadgroup_change_begin(struct task_struct *tsk) 2794 { 2795 might_sleep(); 2796 cgroup_threadgroup_change_begin(tsk); 2797 } 2798 2799 /** 2800 * threadgroup_change_end - mark the end of changes to a threadgroup 2801 * @tsk: task causing the changes 2802 * 2803 * See threadgroup_change_begin(). 2804 */ 2805 static inline void threadgroup_change_end(struct task_struct *tsk) 2806 { 2807 cgroup_threadgroup_change_end(tsk); 2808 } 2809 2810 #ifndef __HAVE_THREAD_FUNCTIONS 2811 2812 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2813 #define task_stack_page(task) ((task)->stack) 2814 2815 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2816 { 2817 *task_thread_info(p) = *task_thread_info(org); 2818 task_thread_info(p)->task = p; 2819 } 2820 2821 /* 2822 * Return the address of the last usable long on the stack. 2823 * 2824 * When the stack grows down, this is just above the thread 2825 * info struct. Going any lower will corrupt the threadinfo. 2826 * 2827 * When the stack grows up, this is the highest address. 2828 * Beyond that position, we corrupt data on the next page. 2829 */ 2830 static inline unsigned long *end_of_stack(struct task_struct *p) 2831 { 2832 #ifdef CONFIG_STACK_GROWSUP 2833 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2834 #else 2835 return (unsigned long *)(task_thread_info(p) + 1); 2836 #endif 2837 } 2838 2839 #endif 2840 #define task_stack_end_corrupted(task) \ 2841 (*(end_of_stack(task)) != STACK_END_MAGIC) 2842 2843 static inline int object_is_on_stack(void *obj) 2844 { 2845 void *stack = task_stack_page(current); 2846 2847 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2848 } 2849 2850 extern void thread_info_cache_init(void); 2851 2852 #ifdef CONFIG_DEBUG_STACK_USAGE 2853 static inline unsigned long stack_not_used(struct task_struct *p) 2854 { 2855 unsigned long *n = end_of_stack(p); 2856 2857 do { /* Skip over canary */ 2858 n++; 2859 } while (!*n); 2860 2861 return (unsigned long)n - (unsigned long)end_of_stack(p); 2862 } 2863 #endif 2864 extern void set_task_stack_end_magic(struct task_struct *tsk); 2865 2866 /* set thread flags in other task's structures 2867 * - see asm/thread_info.h for TIF_xxxx flags available 2868 */ 2869 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2870 { 2871 set_ti_thread_flag(task_thread_info(tsk), flag); 2872 } 2873 2874 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2875 { 2876 clear_ti_thread_flag(task_thread_info(tsk), flag); 2877 } 2878 2879 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2880 { 2881 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2882 } 2883 2884 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2885 { 2886 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2887 } 2888 2889 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2890 { 2891 return test_ti_thread_flag(task_thread_info(tsk), flag); 2892 } 2893 2894 static inline void set_tsk_need_resched(struct task_struct *tsk) 2895 { 2896 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2897 } 2898 2899 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2900 { 2901 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2902 } 2903 2904 static inline int test_tsk_need_resched(struct task_struct *tsk) 2905 { 2906 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2907 } 2908 2909 static inline int restart_syscall(void) 2910 { 2911 set_tsk_thread_flag(current, TIF_SIGPENDING); 2912 return -ERESTARTNOINTR; 2913 } 2914 2915 static inline int signal_pending(struct task_struct *p) 2916 { 2917 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2918 } 2919 2920 static inline int __fatal_signal_pending(struct task_struct *p) 2921 { 2922 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2923 } 2924 2925 static inline int fatal_signal_pending(struct task_struct *p) 2926 { 2927 return signal_pending(p) && __fatal_signal_pending(p); 2928 } 2929 2930 static inline int signal_pending_state(long state, struct task_struct *p) 2931 { 2932 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2933 return 0; 2934 if (!signal_pending(p)) 2935 return 0; 2936 2937 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2938 } 2939 2940 /* 2941 * cond_resched() and cond_resched_lock(): latency reduction via 2942 * explicit rescheduling in places that are safe. The return 2943 * value indicates whether a reschedule was done in fact. 2944 * cond_resched_lock() will drop the spinlock before scheduling, 2945 * cond_resched_softirq() will enable bhs before scheduling. 2946 */ 2947 extern int _cond_resched(void); 2948 2949 #define cond_resched() ({ \ 2950 ___might_sleep(__FILE__, __LINE__, 0); \ 2951 _cond_resched(); \ 2952 }) 2953 2954 extern int __cond_resched_lock(spinlock_t *lock); 2955 2956 #define cond_resched_lock(lock) ({ \ 2957 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2958 __cond_resched_lock(lock); \ 2959 }) 2960 2961 extern int __cond_resched_softirq(void); 2962 2963 #define cond_resched_softirq() ({ \ 2964 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2965 __cond_resched_softirq(); \ 2966 }) 2967 2968 static inline void cond_resched_rcu(void) 2969 { 2970 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2971 rcu_read_unlock(); 2972 cond_resched(); 2973 rcu_read_lock(); 2974 #endif 2975 } 2976 2977 /* 2978 * Does a critical section need to be broken due to another 2979 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2980 * but a general need for low latency) 2981 */ 2982 static inline int spin_needbreak(spinlock_t *lock) 2983 { 2984 #ifdef CONFIG_PREEMPT 2985 return spin_is_contended(lock); 2986 #else 2987 return 0; 2988 #endif 2989 } 2990 2991 /* 2992 * Idle thread specific functions to determine the need_resched 2993 * polling state. 2994 */ 2995 #ifdef TIF_POLLING_NRFLAG 2996 static inline int tsk_is_polling(struct task_struct *p) 2997 { 2998 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2999 } 3000 3001 static inline void __current_set_polling(void) 3002 { 3003 set_thread_flag(TIF_POLLING_NRFLAG); 3004 } 3005 3006 static inline bool __must_check current_set_polling_and_test(void) 3007 { 3008 __current_set_polling(); 3009 3010 /* 3011 * Polling state must be visible before we test NEED_RESCHED, 3012 * paired by resched_curr() 3013 */ 3014 smp_mb__after_atomic(); 3015 3016 return unlikely(tif_need_resched()); 3017 } 3018 3019 static inline void __current_clr_polling(void) 3020 { 3021 clear_thread_flag(TIF_POLLING_NRFLAG); 3022 } 3023 3024 static inline bool __must_check current_clr_polling_and_test(void) 3025 { 3026 __current_clr_polling(); 3027 3028 /* 3029 * Polling state must be visible before we test NEED_RESCHED, 3030 * paired by resched_curr() 3031 */ 3032 smp_mb__after_atomic(); 3033 3034 return unlikely(tif_need_resched()); 3035 } 3036 3037 #else 3038 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3039 static inline void __current_set_polling(void) { } 3040 static inline void __current_clr_polling(void) { } 3041 3042 static inline bool __must_check current_set_polling_and_test(void) 3043 { 3044 return unlikely(tif_need_resched()); 3045 } 3046 static inline bool __must_check current_clr_polling_and_test(void) 3047 { 3048 return unlikely(tif_need_resched()); 3049 } 3050 #endif 3051 3052 static inline void current_clr_polling(void) 3053 { 3054 __current_clr_polling(); 3055 3056 /* 3057 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3058 * Once the bit is cleared, we'll get IPIs with every new 3059 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3060 * fold. 3061 */ 3062 smp_mb(); /* paired with resched_curr() */ 3063 3064 preempt_fold_need_resched(); 3065 } 3066 3067 static __always_inline bool need_resched(void) 3068 { 3069 return unlikely(tif_need_resched()); 3070 } 3071 3072 /* 3073 * Thread group CPU time accounting. 3074 */ 3075 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3076 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3077 3078 /* 3079 * Reevaluate whether the task has signals pending delivery. 3080 * Wake the task if so. 3081 * This is required every time the blocked sigset_t changes. 3082 * callers must hold sighand->siglock. 3083 */ 3084 extern void recalc_sigpending_and_wake(struct task_struct *t); 3085 extern void recalc_sigpending(void); 3086 3087 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3088 3089 static inline void signal_wake_up(struct task_struct *t, bool resume) 3090 { 3091 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3092 } 3093 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3094 { 3095 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3096 } 3097 3098 /* 3099 * Wrappers for p->thread_info->cpu access. No-op on UP. 3100 */ 3101 #ifdef CONFIG_SMP 3102 3103 static inline unsigned int task_cpu(const struct task_struct *p) 3104 { 3105 return task_thread_info(p)->cpu; 3106 } 3107 3108 static inline int task_node(const struct task_struct *p) 3109 { 3110 return cpu_to_node(task_cpu(p)); 3111 } 3112 3113 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3114 3115 #else 3116 3117 static inline unsigned int task_cpu(const struct task_struct *p) 3118 { 3119 return 0; 3120 } 3121 3122 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3123 { 3124 } 3125 3126 #endif /* CONFIG_SMP */ 3127 3128 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3129 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3130 3131 #ifdef CONFIG_CGROUP_SCHED 3132 extern struct task_group root_task_group; 3133 #endif /* CONFIG_CGROUP_SCHED */ 3134 3135 extern int task_can_switch_user(struct user_struct *up, 3136 struct task_struct *tsk); 3137 3138 #ifdef CONFIG_TASK_XACCT 3139 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3140 { 3141 tsk->ioac.rchar += amt; 3142 } 3143 3144 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3145 { 3146 tsk->ioac.wchar += amt; 3147 } 3148 3149 static inline void inc_syscr(struct task_struct *tsk) 3150 { 3151 tsk->ioac.syscr++; 3152 } 3153 3154 static inline void inc_syscw(struct task_struct *tsk) 3155 { 3156 tsk->ioac.syscw++; 3157 } 3158 #else 3159 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3160 { 3161 } 3162 3163 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3164 { 3165 } 3166 3167 static inline void inc_syscr(struct task_struct *tsk) 3168 { 3169 } 3170 3171 static inline void inc_syscw(struct task_struct *tsk) 3172 { 3173 } 3174 #endif 3175 3176 #ifndef TASK_SIZE_OF 3177 #define TASK_SIZE_OF(tsk) TASK_SIZE 3178 #endif 3179 3180 #ifdef CONFIG_MEMCG 3181 extern void mm_update_next_owner(struct mm_struct *mm); 3182 #else 3183 static inline void mm_update_next_owner(struct mm_struct *mm) 3184 { 3185 } 3186 #endif /* CONFIG_MEMCG */ 3187 3188 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3189 unsigned int limit) 3190 { 3191 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3192 } 3193 3194 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3195 unsigned int limit) 3196 { 3197 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3198 } 3199 3200 static inline unsigned long rlimit(unsigned int limit) 3201 { 3202 return task_rlimit(current, limit); 3203 } 3204 3205 static inline unsigned long rlimit_max(unsigned int limit) 3206 { 3207 return task_rlimit_max(current, limit); 3208 } 3209 3210 #endif 3211