xref: /linux/include/linux/sched.h (revision a77f02e8489673cc80948a6f30ed262db1dee8d6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41 
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct seq_file;
67 struct sighand_struct;
68 struct signal_struct;
69 struct task_delay_info;
70 struct task_group;
71 struct user_event_mm;
72 
73 /*
74  * Task state bitmask. NOTE! These bits are also
75  * encoded in fs/proc/array.c: get_task_state().
76  *
77  * We have two separate sets of flags: task->__state
78  * is about runnability, while task->exit_state are
79  * about the task exiting. Confusing, but this way
80  * modifying one set can't modify the other one by
81  * mistake.
82  */
83 
84 /* Used in tsk->__state: */
85 #define TASK_RUNNING			0x00000000
86 #define TASK_INTERRUPTIBLE		0x00000001
87 #define TASK_UNINTERRUPTIBLE		0x00000002
88 #define __TASK_STOPPED			0x00000004
89 #define __TASK_TRACED			0x00000008
90 /* Used in tsk->exit_state: */
91 #define EXIT_DEAD			0x00000010
92 #define EXIT_ZOMBIE			0x00000020
93 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
94 /* Used in tsk->__state again: */
95 #define TASK_PARKED			0x00000040
96 #define TASK_DEAD			0x00000080
97 #define TASK_WAKEKILL			0x00000100
98 #define TASK_WAKING			0x00000200
99 #define TASK_NOLOAD			0x00000400
100 #define TASK_NEW			0x00000800
101 #define TASK_RTLOCK_WAIT		0x00001000
102 #define TASK_FREEZABLE			0x00002000
103 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 #define TASK_FROZEN			0x00008000
105 #define TASK_STATE_MAX			0x00010000
106 
107 #define TASK_ANY			(TASK_STATE_MAX-1)
108 
109 /*
110  * DO NOT ADD ANY NEW USERS !
111  */
112 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113 
114 /* Convenience macros for the sake of set_current_state: */
115 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
117 #define TASK_TRACED			__TASK_TRACED
118 
119 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120 
121 /* Convenience macros for the sake of wake_up(): */
122 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123 
124 /* get_task_state(): */
125 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 					 TASK_PARKED)
129 
130 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
131 
132 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135 
136 /*
137  * Special states are those that do not use the normal wait-loop pattern. See
138  * the comment with set_special_state().
139  */
140 #define is_special_task_state(state)				\
141 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142 
143 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 # define debug_normal_state_change(state_value)				\
145 	do {								\
146 		WARN_ON_ONCE(is_special_task_state(state_value));	\
147 		current->task_state_change = _THIS_IP_;			\
148 	} while (0)
149 
150 # define debug_special_state_change(state_value)			\
151 	do {								\
152 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
153 		current->task_state_change = _THIS_IP_;			\
154 	} while (0)
155 
156 # define debug_rtlock_wait_set_state()					\
157 	do {								 \
158 		current->saved_state_change = current->task_state_change;\
159 		current->task_state_change = _THIS_IP_;			 \
160 	} while (0)
161 
162 # define debug_rtlock_wait_restore_state()				\
163 	do {								 \
164 		current->task_state_change = current->saved_state_change;\
165 	} while (0)
166 
167 #else
168 # define debug_normal_state_change(cond)	do { } while (0)
169 # define debug_special_state_change(cond)	do { } while (0)
170 # define debug_rtlock_wait_set_state()		do { } while (0)
171 # define debug_rtlock_wait_restore_state()	do { } while (0)
172 #endif
173 
174 /*
175  * set_current_state() includes a barrier so that the write of current->__state
176  * is correctly serialised wrt the caller's subsequent test of whether to
177  * actually sleep:
178  *
179  *   for (;;) {
180  *	set_current_state(TASK_UNINTERRUPTIBLE);
181  *	if (CONDITION)
182  *	   break;
183  *
184  *	schedule();
185  *   }
186  *   __set_current_state(TASK_RUNNING);
187  *
188  * If the caller does not need such serialisation (because, for instance, the
189  * CONDITION test and condition change and wakeup are under the same lock) then
190  * use __set_current_state().
191  *
192  * The above is typically ordered against the wakeup, which does:
193  *
194  *   CONDITION = 1;
195  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
196  *
197  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198  * accessing p->__state.
199  *
200  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
201  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203  *
204  * However, with slightly different timing the wakeup TASK_RUNNING store can
205  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206  * a problem either because that will result in one extra go around the loop
207  * and our @cond test will save the day.
208  *
209  * Also see the comments of try_to_wake_up().
210  */
211 #define __set_current_state(state_value)				\
212 	do {								\
213 		debug_normal_state_change((state_value));		\
214 		WRITE_ONCE(current->__state, (state_value));		\
215 	} while (0)
216 
217 #define set_current_state(state_value)					\
218 	do {								\
219 		debug_normal_state_change((state_value));		\
220 		smp_store_mb(current->__state, (state_value));		\
221 	} while (0)
222 
223 /*
224  * set_special_state() should be used for those states when the blocking task
225  * can not use the regular condition based wait-loop. In that case we must
226  * serialize against wakeups such that any possible in-flight TASK_RUNNING
227  * stores will not collide with our state change.
228  */
229 #define set_special_state(state_value)					\
230 	do {								\
231 		unsigned long flags; /* may shadow */			\
232 									\
233 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
234 		debug_special_state_change((state_value));		\
235 		WRITE_ONCE(current->__state, (state_value));		\
236 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
237 	} while (0)
238 
239 /*
240  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241  *
242  * RT's spin/rwlock substitutions are state preserving. The state of the
243  * task when blocking on the lock is saved in task_struct::saved_state and
244  * restored after the lock has been acquired.  These operations are
245  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246  * lock related wakeups while the task is blocked on the lock are
247  * redirected to operate on task_struct::saved_state to ensure that these
248  * are not dropped. On restore task_struct::saved_state is set to
249  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250  *
251  * The lock operation looks like this:
252  *
253  *	current_save_and_set_rtlock_wait_state();
254  *	for (;;) {
255  *		if (try_lock())
256  *			break;
257  *		raw_spin_unlock_irq(&lock->wait_lock);
258  *		schedule_rtlock();
259  *		raw_spin_lock_irq(&lock->wait_lock);
260  *		set_current_state(TASK_RTLOCK_WAIT);
261  *	}
262  *	current_restore_rtlock_saved_state();
263  */
264 #define current_save_and_set_rtlock_wait_state()			\
265 	do {								\
266 		lockdep_assert_irqs_disabled();				\
267 		raw_spin_lock(&current->pi_lock);			\
268 		current->saved_state = current->__state;		\
269 		debug_rtlock_wait_set_state();				\
270 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
271 		raw_spin_unlock(&current->pi_lock);			\
272 	} while (0);
273 
274 #define current_restore_rtlock_saved_state()				\
275 	do {								\
276 		lockdep_assert_irqs_disabled();				\
277 		raw_spin_lock(&current->pi_lock);			\
278 		debug_rtlock_wait_restore_state();			\
279 		WRITE_ONCE(current->__state, current->saved_state);	\
280 		current->saved_state = TASK_RUNNING;			\
281 		raw_spin_unlock(&current->pi_lock);			\
282 	} while (0);
283 
284 #define get_current_state()	READ_ONCE(current->__state)
285 
286 /*
287  * Define the task command name length as enum, then it can be visible to
288  * BPF programs.
289  */
290 enum {
291 	TASK_COMM_LEN = 16,
292 };
293 
294 extern void scheduler_tick(void);
295 
296 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
297 
298 extern long schedule_timeout(long timeout);
299 extern long schedule_timeout_interruptible(long timeout);
300 extern long schedule_timeout_killable(long timeout);
301 extern long schedule_timeout_uninterruptible(long timeout);
302 extern long schedule_timeout_idle(long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305 asmlinkage void preempt_schedule_irq(void);
306 #ifdef CONFIG_PREEMPT_RT
307  extern void schedule_rtlock(void);
308 #endif
309 
310 extern int __must_check io_schedule_prepare(void);
311 extern void io_schedule_finish(int token);
312 extern long io_schedule_timeout(long timeout);
313 extern void io_schedule(void);
314 
315 /**
316  * struct prev_cputime - snapshot of system and user cputime
317  * @utime: time spent in user mode
318  * @stime: time spent in system mode
319  * @lock: protects the above two fields
320  *
321  * Stores previous user/system time values such that we can guarantee
322  * monotonicity.
323  */
324 struct prev_cputime {
325 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
326 	u64				utime;
327 	u64				stime;
328 	raw_spinlock_t			lock;
329 #endif
330 };
331 
332 enum vtime_state {
333 	/* Task is sleeping or running in a CPU with VTIME inactive: */
334 	VTIME_INACTIVE = 0,
335 	/* Task is idle */
336 	VTIME_IDLE,
337 	/* Task runs in kernelspace in a CPU with VTIME active: */
338 	VTIME_SYS,
339 	/* Task runs in userspace in a CPU with VTIME active: */
340 	VTIME_USER,
341 	/* Task runs as guests in a CPU with VTIME active: */
342 	VTIME_GUEST,
343 };
344 
345 struct vtime {
346 	seqcount_t		seqcount;
347 	unsigned long long	starttime;
348 	enum vtime_state	state;
349 	unsigned int		cpu;
350 	u64			utime;
351 	u64			stime;
352 	u64			gtime;
353 };
354 
355 /*
356  * Utilization clamp constraints.
357  * @UCLAMP_MIN:	Minimum utilization
358  * @UCLAMP_MAX:	Maximum utilization
359  * @UCLAMP_CNT:	Utilization clamp constraints count
360  */
361 enum uclamp_id {
362 	UCLAMP_MIN = 0,
363 	UCLAMP_MAX,
364 	UCLAMP_CNT
365 };
366 
367 #ifdef CONFIG_SMP
368 extern struct root_domain def_root_domain;
369 extern struct mutex sched_domains_mutex;
370 #endif
371 
372 struct sched_param {
373 	int sched_priority;
374 };
375 
376 struct sched_info {
377 #ifdef CONFIG_SCHED_INFO
378 	/* Cumulative counters: */
379 
380 	/* # of times we have run on this CPU: */
381 	unsigned long			pcount;
382 
383 	/* Time spent waiting on a runqueue: */
384 	unsigned long long		run_delay;
385 
386 	/* Timestamps: */
387 
388 	/* When did we last run on a CPU? */
389 	unsigned long long		last_arrival;
390 
391 	/* When were we last queued to run? */
392 	unsigned long long		last_queued;
393 
394 #endif /* CONFIG_SCHED_INFO */
395 };
396 
397 /*
398  * Integer metrics need fixed point arithmetic, e.g., sched/fair
399  * has a few: load, load_avg, util_avg, freq, and capacity.
400  *
401  * We define a basic fixed point arithmetic range, and then formalize
402  * all these metrics based on that basic range.
403  */
404 # define SCHED_FIXEDPOINT_SHIFT		10
405 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
406 
407 /* Increase resolution of cpu_capacity calculations */
408 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
409 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
410 
411 struct load_weight {
412 	unsigned long			weight;
413 	u32				inv_weight;
414 };
415 
416 /**
417  * struct util_est - Estimation utilization of FAIR tasks
418  * @enqueued: instantaneous estimated utilization of a task/cpu
419  * @ewma:     the Exponential Weighted Moving Average (EWMA)
420  *            utilization of a task
421  *
422  * Support data structure to track an Exponential Weighted Moving Average
423  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
424  * average each time a task completes an activation. Sample's weight is chosen
425  * so that the EWMA will be relatively insensitive to transient changes to the
426  * task's workload.
427  *
428  * The enqueued attribute has a slightly different meaning for tasks and cpus:
429  * - task:   the task's util_avg at last task dequeue time
430  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
431  * Thus, the util_est.enqueued of a task represents the contribution on the
432  * estimated utilization of the CPU where that task is currently enqueued.
433  *
434  * Only for tasks we track a moving average of the past instantaneous
435  * estimated utilization. This allows to absorb sporadic drops in utilization
436  * of an otherwise almost periodic task.
437  *
438  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
439  * updates. When a task is dequeued, its util_est should not be updated if its
440  * util_avg has not been updated in the meantime.
441  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
442  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
443  * for a task) it is safe to use MSB.
444  */
445 struct util_est {
446 	unsigned int			enqueued;
447 	unsigned int			ewma;
448 #define UTIL_EST_WEIGHT_SHIFT		2
449 #define UTIL_AVG_UNCHANGED		0x80000000
450 } __attribute__((__aligned__(sizeof(u64))));
451 
452 /*
453  * The load/runnable/util_avg accumulates an infinite geometric series
454  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
455  *
456  * [load_avg definition]
457  *
458  *   load_avg = runnable% * scale_load_down(load)
459  *
460  * [runnable_avg definition]
461  *
462  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
463  *
464  * [util_avg definition]
465  *
466  *   util_avg = running% * SCHED_CAPACITY_SCALE
467  *
468  * where runnable% is the time ratio that a sched_entity is runnable and
469  * running% the time ratio that a sched_entity is running.
470  *
471  * For cfs_rq, they are the aggregated values of all runnable and blocked
472  * sched_entities.
473  *
474  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
475  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
476  * for computing those signals (see update_rq_clock_pelt())
477  *
478  * N.B., the above ratios (runnable% and running%) themselves are in the
479  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
480  * to as large a range as necessary. This is for example reflected by
481  * util_avg's SCHED_CAPACITY_SCALE.
482  *
483  * [Overflow issue]
484  *
485  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
486  * with the highest load (=88761), always runnable on a single cfs_rq,
487  * and should not overflow as the number already hits PID_MAX_LIMIT.
488  *
489  * For all other cases (including 32-bit kernels), struct load_weight's
490  * weight will overflow first before we do, because:
491  *
492  *    Max(load_avg) <= Max(load.weight)
493  *
494  * Then it is the load_weight's responsibility to consider overflow
495  * issues.
496  */
497 struct sched_avg {
498 	u64				last_update_time;
499 	u64				load_sum;
500 	u64				runnable_sum;
501 	u32				util_sum;
502 	u32				period_contrib;
503 	unsigned long			load_avg;
504 	unsigned long			runnable_avg;
505 	unsigned long			util_avg;
506 	struct util_est			util_est;
507 } ____cacheline_aligned;
508 
509 struct sched_statistics {
510 #ifdef CONFIG_SCHEDSTATS
511 	u64				wait_start;
512 	u64				wait_max;
513 	u64				wait_count;
514 	u64				wait_sum;
515 	u64				iowait_count;
516 	u64				iowait_sum;
517 
518 	u64				sleep_start;
519 	u64				sleep_max;
520 	s64				sum_sleep_runtime;
521 
522 	u64				block_start;
523 	u64				block_max;
524 	s64				sum_block_runtime;
525 
526 	u64				exec_max;
527 	u64				slice_max;
528 
529 	u64				nr_migrations_cold;
530 	u64				nr_failed_migrations_affine;
531 	u64				nr_failed_migrations_running;
532 	u64				nr_failed_migrations_hot;
533 	u64				nr_forced_migrations;
534 
535 	u64				nr_wakeups;
536 	u64				nr_wakeups_sync;
537 	u64				nr_wakeups_migrate;
538 	u64				nr_wakeups_local;
539 	u64				nr_wakeups_remote;
540 	u64				nr_wakeups_affine;
541 	u64				nr_wakeups_affine_attempts;
542 	u64				nr_wakeups_passive;
543 	u64				nr_wakeups_idle;
544 
545 #ifdef CONFIG_SCHED_CORE
546 	u64				core_forceidle_sum;
547 #endif
548 #endif /* CONFIG_SCHEDSTATS */
549 } ____cacheline_aligned;
550 
551 struct sched_entity {
552 	/* For load-balancing: */
553 	struct load_weight		load;
554 	struct rb_node			run_node;
555 	u64				deadline;
556 	u64				min_deadline;
557 
558 	struct list_head		group_node;
559 	unsigned int			on_rq;
560 
561 	u64				exec_start;
562 	u64				sum_exec_runtime;
563 	u64				prev_sum_exec_runtime;
564 	u64				vruntime;
565 	s64				vlag;
566 	u64				slice;
567 
568 	u64				nr_migrations;
569 
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 	int				depth;
572 	struct sched_entity		*parent;
573 	/* rq on which this entity is (to be) queued: */
574 	struct cfs_rq			*cfs_rq;
575 	/* rq "owned" by this entity/group: */
576 	struct cfs_rq			*my_q;
577 	/* cached value of my_q->h_nr_running */
578 	unsigned long			runnable_weight;
579 #endif
580 
581 #ifdef CONFIG_SMP
582 	/*
583 	 * Per entity load average tracking.
584 	 *
585 	 * Put into separate cache line so it does not
586 	 * collide with read-mostly values above.
587 	 */
588 	struct sched_avg		avg;
589 #endif
590 };
591 
592 struct sched_rt_entity {
593 	struct list_head		run_list;
594 	unsigned long			timeout;
595 	unsigned long			watchdog_stamp;
596 	unsigned int			time_slice;
597 	unsigned short			on_rq;
598 	unsigned short			on_list;
599 
600 	struct sched_rt_entity		*back;
601 #ifdef CONFIG_RT_GROUP_SCHED
602 	struct sched_rt_entity		*parent;
603 	/* rq on which this entity is (to be) queued: */
604 	struct rt_rq			*rt_rq;
605 	/* rq "owned" by this entity/group: */
606 	struct rt_rq			*my_q;
607 #endif
608 } __randomize_layout;
609 
610 struct sched_dl_entity {
611 	struct rb_node			rb_node;
612 
613 	/*
614 	 * Original scheduling parameters. Copied here from sched_attr
615 	 * during sched_setattr(), they will remain the same until
616 	 * the next sched_setattr().
617 	 */
618 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
619 	u64				dl_deadline;	/* Relative deadline of each instance	*/
620 	u64				dl_period;	/* Separation of two instances (period) */
621 	u64				dl_bw;		/* dl_runtime / dl_period		*/
622 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
623 
624 	/*
625 	 * Actual scheduling parameters. Initialized with the values above,
626 	 * they are continuously updated during task execution. Note that
627 	 * the remaining runtime could be < 0 in case we are in overrun.
628 	 */
629 	s64				runtime;	/* Remaining runtime for this instance	*/
630 	u64				deadline;	/* Absolute deadline for this instance	*/
631 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
632 
633 	/*
634 	 * Some bool flags:
635 	 *
636 	 * @dl_throttled tells if we exhausted the runtime. If so, the
637 	 * task has to wait for a replenishment to be performed at the
638 	 * next firing of dl_timer.
639 	 *
640 	 * @dl_yielded tells if task gave up the CPU before consuming
641 	 * all its available runtime during the last job.
642 	 *
643 	 * @dl_non_contending tells if the task is inactive while still
644 	 * contributing to the active utilization. In other words, it
645 	 * indicates if the inactive timer has been armed and its handler
646 	 * has not been executed yet. This flag is useful to avoid race
647 	 * conditions between the inactive timer handler and the wakeup
648 	 * code.
649 	 *
650 	 * @dl_overrun tells if the task asked to be informed about runtime
651 	 * overruns.
652 	 */
653 	unsigned int			dl_throttled      : 1;
654 	unsigned int			dl_yielded        : 1;
655 	unsigned int			dl_non_contending : 1;
656 	unsigned int			dl_overrun	  : 1;
657 
658 	/*
659 	 * Bandwidth enforcement timer. Each -deadline task has its
660 	 * own bandwidth to be enforced, thus we need one timer per task.
661 	 */
662 	struct hrtimer			dl_timer;
663 
664 	/*
665 	 * Inactive timer, responsible for decreasing the active utilization
666 	 * at the "0-lag time". When a -deadline task blocks, it contributes
667 	 * to GRUB's active utilization until the "0-lag time", hence a
668 	 * timer is needed to decrease the active utilization at the correct
669 	 * time.
670 	 */
671 	struct hrtimer inactive_timer;
672 
673 #ifdef CONFIG_RT_MUTEXES
674 	/*
675 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
676 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
677 	 * to (the original one/itself).
678 	 */
679 	struct sched_dl_entity *pi_se;
680 #endif
681 };
682 
683 #ifdef CONFIG_UCLAMP_TASK
684 /* Number of utilization clamp buckets (shorter alias) */
685 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
686 
687 /*
688  * Utilization clamp for a scheduling entity
689  * @value:		clamp value "assigned" to a se
690  * @bucket_id:		bucket index corresponding to the "assigned" value
691  * @active:		the se is currently refcounted in a rq's bucket
692  * @user_defined:	the requested clamp value comes from user-space
693  *
694  * The bucket_id is the index of the clamp bucket matching the clamp value
695  * which is pre-computed and stored to avoid expensive integer divisions from
696  * the fast path.
697  *
698  * The active bit is set whenever a task has got an "effective" value assigned,
699  * which can be different from the clamp value "requested" from user-space.
700  * This allows to know a task is refcounted in the rq's bucket corresponding
701  * to the "effective" bucket_id.
702  *
703  * The user_defined bit is set whenever a task has got a task-specific clamp
704  * value requested from userspace, i.e. the system defaults apply to this task
705  * just as a restriction. This allows to relax default clamps when a less
706  * restrictive task-specific value has been requested, thus allowing to
707  * implement a "nice" semantic. For example, a task running with a 20%
708  * default boost can still drop its own boosting to 0%.
709  */
710 struct uclamp_se {
711 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
712 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
713 	unsigned int active		: 1;
714 	unsigned int user_defined	: 1;
715 };
716 #endif /* CONFIG_UCLAMP_TASK */
717 
718 union rcu_special {
719 	struct {
720 		u8			blocked;
721 		u8			need_qs;
722 		u8			exp_hint; /* Hint for performance. */
723 		u8			need_mb; /* Readers need smp_mb(). */
724 	} b; /* Bits. */
725 	u32 s; /* Set of bits. */
726 };
727 
728 enum perf_event_task_context {
729 	perf_invalid_context = -1,
730 	perf_hw_context = 0,
731 	perf_sw_context,
732 	perf_nr_task_contexts,
733 };
734 
735 struct wake_q_node {
736 	struct wake_q_node *next;
737 };
738 
739 struct kmap_ctrl {
740 #ifdef CONFIG_KMAP_LOCAL
741 	int				idx;
742 	pte_t				pteval[KM_MAX_IDX];
743 #endif
744 };
745 
746 struct task_struct {
747 #ifdef CONFIG_THREAD_INFO_IN_TASK
748 	/*
749 	 * For reasons of header soup (see current_thread_info()), this
750 	 * must be the first element of task_struct.
751 	 */
752 	struct thread_info		thread_info;
753 #endif
754 	unsigned int			__state;
755 
756 	/* saved state for "spinlock sleepers" */
757 	unsigned int			saved_state;
758 
759 	/*
760 	 * This begins the randomizable portion of task_struct. Only
761 	 * scheduling-critical items should be added above here.
762 	 */
763 	randomized_struct_fields_start
764 
765 	void				*stack;
766 	refcount_t			usage;
767 	/* Per task flags (PF_*), defined further below: */
768 	unsigned int			flags;
769 	unsigned int			ptrace;
770 
771 #ifdef CONFIG_SMP
772 	int				on_cpu;
773 	struct __call_single_node	wake_entry;
774 	unsigned int			wakee_flips;
775 	unsigned long			wakee_flip_decay_ts;
776 	struct task_struct		*last_wakee;
777 
778 	/*
779 	 * recent_used_cpu is initially set as the last CPU used by a task
780 	 * that wakes affine another task. Waker/wakee relationships can
781 	 * push tasks around a CPU where each wakeup moves to the next one.
782 	 * Tracking a recently used CPU allows a quick search for a recently
783 	 * used CPU that may be idle.
784 	 */
785 	int				recent_used_cpu;
786 	int				wake_cpu;
787 #endif
788 	int				on_rq;
789 
790 	int				prio;
791 	int				static_prio;
792 	int				normal_prio;
793 	unsigned int			rt_priority;
794 
795 	struct sched_entity		se;
796 	struct sched_rt_entity		rt;
797 	struct sched_dl_entity		dl;
798 	const struct sched_class	*sched_class;
799 
800 #ifdef CONFIG_SCHED_CORE
801 	struct rb_node			core_node;
802 	unsigned long			core_cookie;
803 	unsigned int			core_occupation;
804 #endif
805 
806 #ifdef CONFIG_CGROUP_SCHED
807 	struct task_group		*sched_task_group;
808 #endif
809 
810 #ifdef CONFIG_UCLAMP_TASK
811 	/*
812 	 * Clamp values requested for a scheduling entity.
813 	 * Must be updated with task_rq_lock() held.
814 	 */
815 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
816 	/*
817 	 * Effective clamp values used for a scheduling entity.
818 	 * Must be updated with task_rq_lock() held.
819 	 */
820 	struct uclamp_se		uclamp[UCLAMP_CNT];
821 #endif
822 
823 	struct sched_statistics         stats;
824 
825 #ifdef CONFIG_PREEMPT_NOTIFIERS
826 	/* List of struct preempt_notifier: */
827 	struct hlist_head		preempt_notifiers;
828 #endif
829 
830 #ifdef CONFIG_BLK_DEV_IO_TRACE
831 	unsigned int			btrace_seq;
832 #endif
833 
834 	unsigned int			policy;
835 	int				nr_cpus_allowed;
836 	const cpumask_t			*cpus_ptr;
837 	cpumask_t			*user_cpus_ptr;
838 	cpumask_t			cpus_mask;
839 	void				*migration_pending;
840 #ifdef CONFIG_SMP
841 	unsigned short			migration_disabled;
842 #endif
843 	unsigned short			migration_flags;
844 
845 #ifdef CONFIG_PREEMPT_RCU
846 	int				rcu_read_lock_nesting;
847 	union rcu_special		rcu_read_unlock_special;
848 	struct list_head		rcu_node_entry;
849 	struct rcu_node			*rcu_blocked_node;
850 #endif /* #ifdef CONFIG_PREEMPT_RCU */
851 
852 #ifdef CONFIG_TASKS_RCU
853 	unsigned long			rcu_tasks_nvcsw;
854 	u8				rcu_tasks_holdout;
855 	u8				rcu_tasks_idx;
856 	int				rcu_tasks_idle_cpu;
857 	struct list_head		rcu_tasks_holdout_list;
858 #endif /* #ifdef CONFIG_TASKS_RCU */
859 
860 #ifdef CONFIG_TASKS_TRACE_RCU
861 	int				trc_reader_nesting;
862 	int				trc_ipi_to_cpu;
863 	union rcu_special		trc_reader_special;
864 	struct list_head		trc_holdout_list;
865 	struct list_head		trc_blkd_node;
866 	int				trc_blkd_cpu;
867 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
868 
869 	struct sched_info		sched_info;
870 
871 	struct list_head		tasks;
872 #ifdef CONFIG_SMP
873 	struct plist_node		pushable_tasks;
874 	struct rb_node			pushable_dl_tasks;
875 #endif
876 
877 	struct mm_struct		*mm;
878 	struct mm_struct		*active_mm;
879 	struct address_space		*faults_disabled_mapping;
880 
881 	int				exit_state;
882 	int				exit_code;
883 	int				exit_signal;
884 	/* The signal sent when the parent dies: */
885 	int				pdeath_signal;
886 	/* JOBCTL_*, siglock protected: */
887 	unsigned long			jobctl;
888 
889 	/* Used for emulating ABI behavior of previous Linux versions: */
890 	unsigned int			personality;
891 
892 	/* Scheduler bits, serialized by scheduler locks: */
893 	unsigned			sched_reset_on_fork:1;
894 	unsigned			sched_contributes_to_load:1;
895 	unsigned			sched_migrated:1;
896 
897 	/* Force alignment to the next boundary: */
898 	unsigned			:0;
899 
900 	/* Unserialized, strictly 'current' */
901 
902 	/*
903 	 * This field must not be in the scheduler word above due to wakelist
904 	 * queueing no longer being serialized by p->on_cpu. However:
905 	 *
906 	 * p->XXX = X;			ttwu()
907 	 * schedule()			  if (p->on_rq && ..) // false
908 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
909 	 *   deactivate_task()		      ttwu_queue_wakelist())
910 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
911 	 *
912 	 * guarantees all stores of 'current' are visible before
913 	 * ->sched_remote_wakeup gets used, so it can be in this word.
914 	 */
915 	unsigned			sched_remote_wakeup:1;
916 #ifdef CONFIG_RT_MUTEXES
917 	unsigned			sched_rt_mutex:1;
918 #endif
919 
920 	/* Bit to tell LSMs we're in execve(): */
921 	unsigned			in_execve:1;
922 	unsigned			in_iowait:1;
923 #ifndef TIF_RESTORE_SIGMASK
924 	unsigned			restore_sigmask:1;
925 #endif
926 #ifdef CONFIG_MEMCG
927 	unsigned			in_user_fault:1;
928 #endif
929 #ifdef CONFIG_LRU_GEN
930 	/* whether the LRU algorithm may apply to this access */
931 	unsigned			in_lru_fault:1;
932 #endif
933 #ifdef CONFIG_COMPAT_BRK
934 	unsigned			brk_randomized:1;
935 #endif
936 #ifdef CONFIG_CGROUPS
937 	/* disallow userland-initiated cgroup migration */
938 	unsigned			no_cgroup_migration:1;
939 	/* task is frozen/stopped (used by the cgroup freezer) */
940 	unsigned			frozen:1;
941 #endif
942 #ifdef CONFIG_BLK_CGROUP
943 	unsigned			use_memdelay:1;
944 #endif
945 #ifdef CONFIG_PSI
946 	/* Stalled due to lack of memory */
947 	unsigned			in_memstall:1;
948 #endif
949 #ifdef CONFIG_PAGE_OWNER
950 	/* Used by page_owner=on to detect recursion in page tracking. */
951 	unsigned			in_page_owner:1;
952 #endif
953 #ifdef CONFIG_EVENTFD
954 	/* Recursion prevention for eventfd_signal() */
955 	unsigned			in_eventfd:1;
956 #endif
957 #ifdef CONFIG_IOMMU_SVA
958 	unsigned			pasid_activated:1;
959 #endif
960 #ifdef	CONFIG_CPU_SUP_INTEL
961 	unsigned			reported_split_lock:1;
962 #endif
963 #ifdef CONFIG_TASK_DELAY_ACCT
964 	/* delay due to memory thrashing */
965 	unsigned                        in_thrashing:1;
966 #endif
967 
968 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
969 
970 	struct restart_block		restart_block;
971 
972 	pid_t				pid;
973 	pid_t				tgid;
974 
975 #ifdef CONFIG_STACKPROTECTOR
976 	/* Canary value for the -fstack-protector GCC feature: */
977 	unsigned long			stack_canary;
978 #endif
979 	/*
980 	 * Pointers to the (original) parent process, youngest child, younger sibling,
981 	 * older sibling, respectively.  (p->father can be replaced with
982 	 * p->real_parent->pid)
983 	 */
984 
985 	/* Real parent process: */
986 	struct task_struct __rcu	*real_parent;
987 
988 	/* Recipient of SIGCHLD, wait4() reports: */
989 	struct task_struct __rcu	*parent;
990 
991 	/*
992 	 * Children/sibling form the list of natural children:
993 	 */
994 	struct list_head		children;
995 	struct list_head		sibling;
996 	struct task_struct		*group_leader;
997 
998 	/*
999 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1000 	 *
1001 	 * This includes both natural children and PTRACE_ATTACH targets.
1002 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1003 	 */
1004 	struct list_head		ptraced;
1005 	struct list_head		ptrace_entry;
1006 
1007 	/* PID/PID hash table linkage. */
1008 	struct pid			*thread_pid;
1009 	struct hlist_node		pid_links[PIDTYPE_MAX];
1010 	struct list_head		thread_node;
1011 
1012 	struct completion		*vfork_done;
1013 
1014 	/* CLONE_CHILD_SETTID: */
1015 	int __user			*set_child_tid;
1016 
1017 	/* CLONE_CHILD_CLEARTID: */
1018 	int __user			*clear_child_tid;
1019 
1020 	/* PF_KTHREAD | PF_IO_WORKER */
1021 	void				*worker_private;
1022 
1023 	u64				utime;
1024 	u64				stime;
1025 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1026 	u64				utimescaled;
1027 	u64				stimescaled;
1028 #endif
1029 	u64				gtime;
1030 	struct prev_cputime		prev_cputime;
1031 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1032 	struct vtime			vtime;
1033 #endif
1034 
1035 #ifdef CONFIG_NO_HZ_FULL
1036 	atomic_t			tick_dep_mask;
1037 #endif
1038 	/* Context switch counts: */
1039 	unsigned long			nvcsw;
1040 	unsigned long			nivcsw;
1041 
1042 	/* Monotonic time in nsecs: */
1043 	u64				start_time;
1044 
1045 	/* Boot based time in nsecs: */
1046 	u64				start_boottime;
1047 
1048 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1049 	unsigned long			min_flt;
1050 	unsigned long			maj_flt;
1051 
1052 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1053 	struct posix_cputimers		posix_cputimers;
1054 
1055 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1056 	struct posix_cputimers_work	posix_cputimers_work;
1057 #endif
1058 
1059 	/* Process credentials: */
1060 
1061 	/* Tracer's credentials at attach: */
1062 	const struct cred __rcu		*ptracer_cred;
1063 
1064 	/* Objective and real subjective task credentials (COW): */
1065 	const struct cred __rcu		*real_cred;
1066 
1067 	/* Effective (overridable) subjective task credentials (COW): */
1068 	const struct cred __rcu		*cred;
1069 
1070 #ifdef CONFIG_KEYS
1071 	/* Cached requested key. */
1072 	struct key			*cached_requested_key;
1073 #endif
1074 
1075 	/*
1076 	 * executable name, excluding path.
1077 	 *
1078 	 * - normally initialized setup_new_exec()
1079 	 * - access it with [gs]et_task_comm()
1080 	 * - lock it with task_lock()
1081 	 */
1082 	char				comm[TASK_COMM_LEN];
1083 
1084 	struct nameidata		*nameidata;
1085 
1086 #ifdef CONFIG_SYSVIPC
1087 	struct sysv_sem			sysvsem;
1088 	struct sysv_shm			sysvshm;
1089 #endif
1090 #ifdef CONFIG_DETECT_HUNG_TASK
1091 	unsigned long			last_switch_count;
1092 	unsigned long			last_switch_time;
1093 #endif
1094 	/* Filesystem information: */
1095 	struct fs_struct		*fs;
1096 
1097 	/* Open file information: */
1098 	struct files_struct		*files;
1099 
1100 #ifdef CONFIG_IO_URING
1101 	struct io_uring_task		*io_uring;
1102 #endif
1103 
1104 	/* Namespaces: */
1105 	struct nsproxy			*nsproxy;
1106 
1107 	/* Signal handlers: */
1108 	struct signal_struct		*signal;
1109 	struct sighand_struct __rcu		*sighand;
1110 	sigset_t			blocked;
1111 	sigset_t			real_blocked;
1112 	/* Restored if set_restore_sigmask() was used: */
1113 	sigset_t			saved_sigmask;
1114 	struct sigpending		pending;
1115 	unsigned long			sas_ss_sp;
1116 	size_t				sas_ss_size;
1117 	unsigned int			sas_ss_flags;
1118 
1119 	struct callback_head		*task_works;
1120 
1121 #ifdef CONFIG_AUDIT
1122 #ifdef CONFIG_AUDITSYSCALL
1123 	struct audit_context		*audit_context;
1124 #endif
1125 	kuid_t				loginuid;
1126 	unsigned int			sessionid;
1127 #endif
1128 	struct seccomp			seccomp;
1129 	struct syscall_user_dispatch	syscall_dispatch;
1130 
1131 	/* Thread group tracking: */
1132 	u64				parent_exec_id;
1133 	u64				self_exec_id;
1134 
1135 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1136 	spinlock_t			alloc_lock;
1137 
1138 	/* Protection of the PI data structures: */
1139 	raw_spinlock_t			pi_lock;
1140 
1141 	struct wake_q_node		wake_q;
1142 
1143 #ifdef CONFIG_RT_MUTEXES
1144 	/* PI waiters blocked on a rt_mutex held by this task: */
1145 	struct rb_root_cached		pi_waiters;
1146 	/* Updated under owner's pi_lock and rq lock */
1147 	struct task_struct		*pi_top_task;
1148 	/* Deadlock detection and priority inheritance handling: */
1149 	struct rt_mutex_waiter		*pi_blocked_on;
1150 #endif
1151 
1152 #ifdef CONFIG_DEBUG_MUTEXES
1153 	/* Mutex deadlock detection: */
1154 	struct mutex_waiter		*blocked_on;
1155 #endif
1156 
1157 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1158 	int				non_block_count;
1159 #endif
1160 
1161 #ifdef CONFIG_TRACE_IRQFLAGS
1162 	struct irqtrace_events		irqtrace;
1163 	unsigned int			hardirq_threaded;
1164 	u64				hardirq_chain_key;
1165 	int				softirqs_enabled;
1166 	int				softirq_context;
1167 	int				irq_config;
1168 #endif
1169 #ifdef CONFIG_PREEMPT_RT
1170 	int				softirq_disable_cnt;
1171 #endif
1172 
1173 #ifdef CONFIG_LOCKDEP
1174 # define MAX_LOCK_DEPTH			48UL
1175 	u64				curr_chain_key;
1176 	int				lockdep_depth;
1177 	unsigned int			lockdep_recursion;
1178 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1179 #endif
1180 
1181 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1182 	unsigned int			in_ubsan;
1183 #endif
1184 
1185 	/* Journalling filesystem info: */
1186 	void				*journal_info;
1187 
1188 	/* Stacked block device info: */
1189 	struct bio_list			*bio_list;
1190 
1191 	/* Stack plugging: */
1192 	struct blk_plug			*plug;
1193 
1194 	/* VM state: */
1195 	struct reclaim_state		*reclaim_state;
1196 
1197 	struct io_context		*io_context;
1198 
1199 #ifdef CONFIG_COMPACTION
1200 	struct capture_control		*capture_control;
1201 #endif
1202 	/* Ptrace state: */
1203 	unsigned long			ptrace_message;
1204 	kernel_siginfo_t		*last_siginfo;
1205 
1206 	struct task_io_accounting	ioac;
1207 #ifdef CONFIG_PSI
1208 	/* Pressure stall state */
1209 	unsigned int			psi_flags;
1210 #endif
1211 #ifdef CONFIG_TASK_XACCT
1212 	/* Accumulated RSS usage: */
1213 	u64				acct_rss_mem1;
1214 	/* Accumulated virtual memory usage: */
1215 	u64				acct_vm_mem1;
1216 	/* stime + utime since last update: */
1217 	u64				acct_timexpd;
1218 #endif
1219 #ifdef CONFIG_CPUSETS
1220 	/* Protected by ->alloc_lock: */
1221 	nodemask_t			mems_allowed;
1222 	/* Sequence number to catch updates: */
1223 	seqcount_spinlock_t		mems_allowed_seq;
1224 	int				cpuset_mem_spread_rotor;
1225 	int				cpuset_slab_spread_rotor;
1226 #endif
1227 #ifdef CONFIG_CGROUPS
1228 	/* Control Group info protected by css_set_lock: */
1229 	struct css_set __rcu		*cgroups;
1230 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1231 	struct list_head		cg_list;
1232 #endif
1233 #ifdef CONFIG_X86_CPU_RESCTRL
1234 	u32				closid;
1235 	u32				rmid;
1236 #endif
1237 #ifdef CONFIG_FUTEX
1238 	struct robust_list_head __user	*robust_list;
1239 #ifdef CONFIG_COMPAT
1240 	struct compat_robust_list_head __user *compat_robust_list;
1241 #endif
1242 	struct list_head		pi_state_list;
1243 	struct futex_pi_state		*pi_state_cache;
1244 	struct mutex			futex_exit_mutex;
1245 	unsigned int			futex_state;
1246 #endif
1247 #ifdef CONFIG_PERF_EVENTS
1248 	struct perf_event_context	*perf_event_ctxp;
1249 	struct mutex			perf_event_mutex;
1250 	struct list_head		perf_event_list;
1251 #endif
1252 #ifdef CONFIG_DEBUG_PREEMPT
1253 	unsigned long			preempt_disable_ip;
1254 #endif
1255 #ifdef CONFIG_NUMA
1256 	/* Protected by alloc_lock: */
1257 	struct mempolicy		*mempolicy;
1258 	short				il_prev;
1259 	short				pref_node_fork;
1260 #endif
1261 #ifdef CONFIG_NUMA_BALANCING
1262 	int				numa_scan_seq;
1263 	unsigned int			numa_scan_period;
1264 	unsigned int			numa_scan_period_max;
1265 	int				numa_preferred_nid;
1266 	unsigned long			numa_migrate_retry;
1267 	/* Migration stamp: */
1268 	u64				node_stamp;
1269 	u64				last_task_numa_placement;
1270 	u64				last_sum_exec_runtime;
1271 	struct callback_head		numa_work;
1272 
1273 	/*
1274 	 * This pointer is only modified for current in syscall and
1275 	 * pagefault context (and for tasks being destroyed), so it can be read
1276 	 * from any of the following contexts:
1277 	 *  - RCU read-side critical section
1278 	 *  - current->numa_group from everywhere
1279 	 *  - task's runqueue locked, task not running
1280 	 */
1281 	struct numa_group __rcu		*numa_group;
1282 
1283 	/*
1284 	 * numa_faults is an array split into four regions:
1285 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1286 	 * in this precise order.
1287 	 *
1288 	 * faults_memory: Exponential decaying average of faults on a per-node
1289 	 * basis. Scheduling placement decisions are made based on these
1290 	 * counts. The values remain static for the duration of a PTE scan.
1291 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1292 	 * hinting fault was incurred.
1293 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1294 	 * during the current scan window. When the scan completes, the counts
1295 	 * in faults_memory and faults_cpu decay and these values are copied.
1296 	 */
1297 	unsigned long			*numa_faults;
1298 	unsigned long			total_numa_faults;
1299 
1300 	/*
1301 	 * numa_faults_locality tracks if faults recorded during the last
1302 	 * scan window were remote/local or failed to migrate. The task scan
1303 	 * period is adapted based on the locality of the faults with different
1304 	 * weights depending on whether they were shared or private faults
1305 	 */
1306 	unsigned long			numa_faults_locality[3];
1307 
1308 	unsigned long			numa_pages_migrated;
1309 #endif /* CONFIG_NUMA_BALANCING */
1310 
1311 #ifdef CONFIG_RSEQ
1312 	struct rseq __user *rseq;
1313 	u32 rseq_len;
1314 	u32 rseq_sig;
1315 	/*
1316 	 * RmW on rseq_event_mask must be performed atomically
1317 	 * with respect to preemption.
1318 	 */
1319 	unsigned long rseq_event_mask;
1320 #endif
1321 
1322 #ifdef CONFIG_SCHED_MM_CID
1323 	int				mm_cid;		/* Current cid in mm */
1324 	int				last_mm_cid;	/* Most recent cid in mm */
1325 	int				migrate_from_cpu;
1326 	int				mm_cid_active;	/* Whether cid bitmap is active */
1327 	struct callback_head		cid_work;
1328 #endif
1329 
1330 	struct tlbflush_unmap_batch	tlb_ubc;
1331 
1332 	/* Cache last used pipe for splice(): */
1333 	struct pipe_inode_info		*splice_pipe;
1334 
1335 	struct page_frag		task_frag;
1336 
1337 #ifdef CONFIG_TASK_DELAY_ACCT
1338 	struct task_delay_info		*delays;
1339 #endif
1340 
1341 #ifdef CONFIG_FAULT_INJECTION
1342 	int				make_it_fail;
1343 	unsigned int			fail_nth;
1344 #endif
1345 	/*
1346 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1347 	 * balance_dirty_pages() for a dirty throttling pause:
1348 	 */
1349 	int				nr_dirtied;
1350 	int				nr_dirtied_pause;
1351 	/* Start of a write-and-pause period: */
1352 	unsigned long			dirty_paused_when;
1353 
1354 #ifdef CONFIG_LATENCYTOP
1355 	int				latency_record_count;
1356 	struct latency_record		latency_record[LT_SAVECOUNT];
1357 #endif
1358 	/*
1359 	 * Time slack values; these are used to round up poll() and
1360 	 * select() etc timeout values. These are in nanoseconds.
1361 	 */
1362 	u64				timer_slack_ns;
1363 	u64				default_timer_slack_ns;
1364 
1365 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1366 	unsigned int			kasan_depth;
1367 #endif
1368 
1369 #ifdef CONFIG_KCSAN
1370 	struct kcsan_ctx		kcsan_ctx;
1371 #ifdef CONFIG_TRACE_IRQFLAGS
1372 	struct irqtrace_events		kcsan_save_irqtrace;
1373 #endif
1374 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1375 	int				kcsan_stack_depth;
1376 #endif
1377 #endif
1378 
1379 #ifdef CONFIG_KMSAN
1380 	struct kmsan_ctx		kmsan_ctx;
1381 #endif
1382 
1383 #if IS_ENABLED(CONFIG_KUNIT)
1384 	struct kunit			*kunit_test;
1385 #endif
1386 
1387 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1388 	/* Index of current stored address in ret_stack: */
1389 	int				curr_ret_stack;
1390 	int				curr_ret_depth;
1391 
1392 	/* Stack of return addresses for return function tracing: */
1393 	struct ftrace_ret_stack		*ret_stack;
1394 
1395 	/* Timestamp for last schedule: */
1396 	unsigned long long		ftrace_timestamp;
1397 
1398 	/*
1399 	 * Number of functions that haven't been traced
1400 	 * because of depth overrun:
1401 	 */
1402 	atomic_t			trace_overrun;
1403 
1404 	/* Pause tracing: */
1405 	atomic_t			tracing_graph_pause;
1406 #endif
1407 
1408 #ifdef CONFIG_TRACING
1409 	/* Bitmask and counter of trace recursion: */
1410 	unsigned long			trace_recursion;
1411 #endif /* CONFIG_TRACING */
1412 
1413 #ifdef CONFIG_KCOV
1414 	/* See kernel/kcov.c for more details. */
1415 
1416 	/* Coverage collection mode enabled for this task (0 if disabled): */
1417 	unsigned int			kcov_mode;
1418 
1419 	/* Size of the kcov_area: */
1420 	unsigned int			kcov_size;
1421 
1422 	/* Buffer for coverage collection: */
1423 	void				*kcov_area;
1424 
1425 	/* KCOV descriptor wired with this task or NULL: */
1426 	struct kcov			*kcov;
1427 
1428 	/* KCOV common handle for remote coverage collection: */
1429 	u64				kcov_handle;
1430 
1431 	/* KCOV sequence number: */
1432 	int				kcov_sequence;
1433 
1434 	/* Collect coverage from softirq context: */
1435 	unsigned int			kcov_softirq;
1436 #endif
1437 
1438 #ifdef CONFIG_MEMCG
1439 	struct mem_cgroup		*memcg_in_oom;
1440 	gfp_t				memcg_oom_gfp_mask;
1441 	int				memcg_oom_order;
1442 
1443 	/* Number of pages to reclaim on returning to userland: */
1444 	unsigned int			memcg_nr_pages_over_high;
1445 
1446 	/* Used by memcontrol for targeted memcg charge: */
1447 	struct mem_cgroup		*active_memcg;
1448 #endif
1449 
1450 #ifdef CONFIG_MEMCG_KMEM
1451 	struct obj_cgroup		*objcg;
1452 #endif
1453 
1454 #ifdef CONFIG_BLK_CGROUP
1455 	struct gendisk			*throttle_disk;
1456 #endif
1457 
1458 #ifdef CONFIG_UPROBES
1459 	struct uprobe_task		*utask;
1460 #endif
1461 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1462 	unsigned int			sequential_io;
1463 	unsigned int			sequential_io_avg;
1464 #endif
1465 	struct kmap_ctrl		kmap_ctrl;
1466 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1467 	unsigned long			task_state_change;
1468 # ifdef CONFIG_PREEMPT_RT
1469 	unsigned long			saved_state_change;
1470 # endif
1471 #endif
1472 	struct rcu_head			rcu;
1473 	refcount_t			rcu_users;
1474 	int				pagefault_disabled;
1475 #ifdef CONFIG_MMU
1476 	struct task_struct		*oom_reaper_list;
1477 	struct timer_list		oom_reaper_timer;
1478 #endif
1479 #ifdef CONFIG_VMAP_STACK
1480 	struct vm_struct		*stack_vm_area;
1481 #endif
1482 #ifdef CONFIG_THREAD_INFO_IN_TASK
1483 	/* A live task holds one reference: */
1484 	refcount_t			stack_refcount;
1485 #endif
1486 #ifdef CONFIG_LIVEPATCH
1487 	int patch_state;
1488 #endif
1489 #ifdef CONFIG_SECURITY
1490 	/* Used by LSM modules for access restriction: */
1491 	void				*security;
1492 #endif
1493 #ifdef CONFIG_BPF_SYSCALL
1494 	/* Used by BPF task local storage */
1495 	struct bpf_local_storage __rcu	*bpf_storage;
1496 	/* Used for BPF run context */
1497 	struct bpf_run_ctx		*bpf_ctx;
1498 #endif
1499 
1500 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1501 	unsigned long			lowest_stack;
1502 	unsigned long			prev_lowest_stack;
1503 #endif
1504 
1505 #ifdef CONFIG_X86_MCE
1506 	void __user			*mce_vaddr;
1507 	__u64				mce_kflags;
1508 	u64				mce_addr;
1509 	__u64				mce_ripv : 1,
1510 					mce_whole_page : 1,
1511 					__mce_reserved : 62;
1512 	struct callback_head		mce_kill_me;
1513 	int				mce_count;
1514 #endif
1515 
1516 #ifdef CONFIG_KRETPROBES
1517 	struct llist_head               kretprobe_instances;
1518 #endif
1519 #ifdef CONFIG_RETHOOK
1520 	struct llist_head               rethooks;
1521 #endif
1522 
1523 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1524 	/*
1525 	 * If L1D flush is supported on mm context switch
1526 	 * then we use this callback head to queue kill work
1527 	 * to kill tasks that are not running on SMT disabled
1528 	 * cores
1529 	 */
1530 	struct callback_head		l1d_flush_kill;
1531 #endif
1532 
1533 #ifdef CONFIG_RV
1534 	/*
1535 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1536 	 * If we find justification for more monitors, we can think
1537 	 * about adding more or developing a dynamic method. So far,
1538 	 * none of these are justified.
1539 	 */
1540 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1541 #endif
1542 
1543 #ifdef CONFIG_USER_EVENTS
1544 	struct user_event_mm		*user_event_mm;
1545 #endif
1546 
1547 	/*
1548 	 * New fields for task_struct should be added above here, so that
1549 	 * they are included in the randomized portion of task_struct.
1550 	 */
1551 	randomized_struct_fields_end
1552 
1553 	/* CPU-specific state of this task: */
1554 	struct thread_struct		thread;
1555 
1556 	/*
1557 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1558 	 * structure.  It *MUST* be at the end of 'task_struct'.
1559 	 *
1560 	 * Do not put anything below here!
1561 	 */
1562 };
1563 
1564 static inline struct pid *task_pid(struct task_struct *task)
1565 {
1566 	return task->thread_pid;
1567 }
1568 
1569 /*
1570  * the helpers to get the task's different pids as they are seen
1571  * from various namespaces
1572  *
1573  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1574  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1575  *                     current.
1576  * task_xid_nr_ns()  : id seen from the ns specified;
1577  *
1578  * see also pid_nr() etc in include/linux/pid.h
1579  */
1580 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1581 
1582 static inline pid_t task_pid_nr(struct task_struct *tsk)
1583 {
1584 	return tsk->pid;
1585 }
1586 
1587 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1588 {
1589 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1590 }
1591 
1592 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1593 {
1594 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1595 }
1596 
1597 
1598 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1599 {
1600 	return tsk->tgid;
1601 }
1602 
1603 /**
1604  * pid_alive - check that a task structure is not stale
1605  * @p: Task structure to be checked.
1606  *
1607  * Test if a process is not yet dead (at most zombie state)
1608  * If pid_alive fails, then pointers within the task structure
1609  * can be stale and must not be dereferenced.
1610  *
1611  * Return: 1 if the process is alive. 0 otherwise.
1612  */
1613 static inline int pid_alive(const struct task_struct *p)
1614 {
1615 	return p->thread_pid != NULL;
1616 }
1617 
1618 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1619 {
1620 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1621 }
1622 
1623 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1624 {
1625 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1626 }
1627 
1628 
1629 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1630 {
1631 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1632 }
1633 
1634 static inline pid_t task_session_vnr(struct task_struct *tsk)
1635 {
1636 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1637 }
1638 
1639 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1640 {
1641 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1642 }
1643 
1644 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1645 {
1646 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1647 }
1648 
1649 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1650 {
1651 	pid_t pid = 0;
1652 
1653 	rcu_read_lock();
1654 	if (pid_alive(tsk))
1655 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1656 	rcu_read_unlock();
1657 
1658 	return pid;
1659 }
1660 
1661 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1662 {
1663 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1664 }
1665 
1666 /* Obsolete, do not use: */
1667 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1668 {
1669 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1670 }
1671 
1672 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1673 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1674 
1675 static inline unsigned int __task_state_index(unsigned int tsk_state,
1676 					      unsigned int tsk_exit_state)
1677 {
1678 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1679 
1680 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1681 
1682 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1683 		state = TASK_REPORT_IDLE;
1684 
1685 	/*
1686 	 * We're lying here, but rather than expose a completely new task state
1687 	 * to userspace, we can make this appear as if the task has gone through
1688 	 * a regular rt_mutex_lock() call.
1689 	 */
1690 	if (tsk_state & TASK_RTLOCK_WAIT)
1691 		state = TASK_UNINTERRUPTIBLE;
1692 
1693 	return fls(state);
1694 }
1695 
1696 static inline unsigned int task_state_index(struct task_struct *tsk)
1697 {
1698 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1699 }
1700 
1701 static inline char task_index_to_char(unsigned int state)
1702 {
1703 	static const char state_char[] = "RSDTtXZPI";
1704 
1705 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1706 
1707 	return state_char[state];
1708 }
1709 
1710 static inline char task_state_to_char(struct task_struct *tsk)
1711 {
1712 	return task_index_to_char(task_state_index(tsk));
1713 }
1714 
1715 /**
1716  * is_global_init - check if a task structure is init. Since init
1717  * is free to have sub-threads we need to check tgid.
1718  * @tsk: Task structure to be checked.
1719  *
1720  * Check if a task structure is the first user space task the kernel created.
1721  *
1722  * Return: 1 if the task structure is init. 0 otherwise.
1723  */
1724 static inline int is_global_init(struct task_struct *tsk)
1725 {
1726 	return task_tgid_nr(tsk) == 1;
1727 }
1728 
1729 extern struct pid *cad_pid;
1730 
1731 /*
1732  * Per process flags
1733  */
1734 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1735 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1736 #define PF_EXITING		0x00000004	/* Getting shut down */
1737 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1738 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1739 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1740 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1741 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1742 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1743 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1744 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1745 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1746 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1747 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1748 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1749 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1750 #define PF__HOLE__00010000	0x00010000
1751 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1752 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1753 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1754 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1755 						 * I am cleaning dirty pages from some other bdi. */
1756 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1757 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1758 #define PF__HOLE__00800000	0x00800000
1759 #define PF__HOLE__01000000	0x01000000
1760 #define PF__HOLE__02000000	0x02000000
1761 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1762 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1763 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1764 #define PF__HOLE__20000000	0x20000000
1765 #define PF__HOLE__40000000	0x40000000
1766 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1767 
1768 /*
1769  * Only the _current_ task can read/write to tsk->flags, but other
1770  * tasks can access tsk->flags in readonly mode for example
1771  * with tsk_used_math (like during threaded core dumping).
1772  * There is however an exception to this rule during ptrace
1773  * or during fork: the ptracer task is allowed to write to the
1774  * child->flags of its traced child (same goes for fork, the parent
1775  * can write to the child->flags), because we're guaranteed the
1776  * child is not running and in turn not changing child->flags
1777  * at the same time the parent does it.
1778  */
1779 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1780 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1781 #define clear_used_math()			clear_stopped_child_used_math(current)
1782 #define set_used_math()				set_stopped_child_used_math(current)
1783 
1784 #define conditional_stopped_child_used_math(condition, child) \
1785 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1786 
1787 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1788 
1789 #define copy_to_stopped_child_used_math(child) \
1790 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1791 
1792 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1793 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1794 #define used_math()				tsk_used_math(current)
1795 
1796 static __always_inline bool is_percpu_thread(void)
1797 {
1798 #ifdef CONFIG_SMP
1799 	return (current->flags & PF_NO_SETAFFINITY) &&
1800 		(current->nr_cpus_allowed  == 1);
1801 #else
1802 	return true;
1803 #endif
1804 }
1805 
1806 /* Per-process atomic flags. */
1807 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1808 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1809 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1810 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1811 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1812 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1813 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1814 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1815 
1816 #define TASK_PFA_TEST(name, func)					\
1817 	static inline bool task_##func(struct task_struct *p)		\
1818 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1819 
1820 #define TASK_PFA_SET(name, func)					\
1821 	static inline void task_set_##func(struct task_struct *p)	\
1822 	{ set_bit(PFA_##name, &p->atomic_flags); }
1823 
1824 #define TASK_PFA_CLEAR(name, func)					\
1825 	static inline void task_clear_##func(struct task_struct *p)	\
1826 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1827 
1828 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1829 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1830 
1831 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1832 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1833 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1834 
1835 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1836 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1837 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1838 
1839 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1840 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1841 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1842 
1843 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1844 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1845 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1846 
1847 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1848 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1849 
1850 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1851 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1852 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1853 
1854 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1855 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1856 
1857 static inline void
1858 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1859 {
1860 	current->flags &= ~flags;
1861 	current->flags |= orig_flags & flags;
1862 }
1863 
1864 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1865 extern int task_can_attach(struct task_struct *p);
1866 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1867 extern void dl_bw_free(int cpu, u64 dl_bw);
1868 #ifdef CONFIG_SMP
1869 
1870 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1871 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1872 
1873 /**
1874  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1875  * @p: the task
1876  * @new_mask: CPU affinity mask
1877  *
1878  * Return: zero if successful, or a negative error code
1879  */
1880 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1881 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1882 extern void release_user_cpus_ptr(struct task_struct *p);
1883 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1884 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1885 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1886 #else
1887 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1888 {
1889 }
1890 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1891 {
1892 	if (!cpumask_test_cpu(0, new_mask))
1893 		return -EINVAL;
1894 	return 0;
1895 }
1896 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1897 {
1898 	if (src->user_cpus_ptr)
1899 		return -EINVAL;
1900 	return 0;
1901 }
1902 static inline void release_user_cpus_ptr(struct task_struct *p)
1903 {
1904 	WARN_ON(p->user_cpus_ptr);
1905 }
1906 
1907 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1908 {
1909 	return 0;
1910 }
1911 #endif
1912 
1913 extern int yield_to(struct task_struct *p, bool preempt);
1914 extern void set_user_nice(struct task_struct *p, long nice);
1915 extern int task_prio(const struct task_struct *p);
1916 
1917 /**
1918  * task_nice - return the nice value of a given task.
1919  * @p: the task in question.
1920  *
1921  * Return: The nice value [ -20 ... 0 ... 19 ].
1922  */
1923 static inline int task_nice(const struct task_struct *p)
1924 {
1925 	return PRIO_TO_NICE((p)->static_prio);
1926 }
1927 
1928 extern int can_nice(const struct task_struct *p, const int nice);
1929 extern int task_curr(const struct task_struct *p);
1930 extern int idle_cpu(int cpu);
1931 extern int available_idle_cpu(int cpu);
1932 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1933 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1934 extern void sched_set_fifo(struct task_struct *p);
1935 extern void sched_set_fifo_low(struct task_struct *p);
1936 extern void sched_set_normal(struct task_struct *p, int nice);
1937 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1938 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1939 extern struct task_struct *idle_task(int cpu);
1940 
1941 /**
1942  * is_idle_task - is the specified task an idle task?
1943  * @p: the task in question.
1944  *
1945  * Return: 1 if @p is an idle task. 0 otherwise.
1946  */
1947 static __always_inline bool is_idle_task(const struct task_struct *p)
1948 {
1949 	return !!(p->flags & PF_IDLE);
1950 }
1951 
1952 extern struct task_struct *curr_task(int cpu);
1953 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1954 
1955 void yield(void);
1956 
1957 union thread_union {
1958 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1959 	struct task_struct task;
1960 #endif
1961 #ifndef CONFIG_THREAD_INFO_IN_TASK
1962 	struct thread_info thread_info;
1963 #endif
1964 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1965 };
1966 
1967 #ifndef CONFIG_THREAD_INFO_IN_TASK
1968 extern struct thread_info init_thread_info;
1969 #endif
1970 
1971 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1972 
1973 #ifdef CONFIG_THREAD_INFO_IN_TASK
1974 # define task_thread_info(task)	(&(task)->thread_info)
1975 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1976 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1977 #endif
1978 
1979 /*
1980  * find a task by one of its numerical ids
1981  *
1982  * find_task_by_pid_ns():
1983  *      finds a task by its pid in the specified namespace
1984  * find_task_by_vpid():
1985  *      finds a task by its virtual pid
1986  *
1987  * see also find_vpid() etc in include/linux/pid.h
1988  */
1989 
1990 extern struct task_struct *find_task_by_vpid(pid_t nr);
1991 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1992 
1993 /*
1994  * find a task by its virtual pid and get the task struct
1995  */
1996 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1997 
1998 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1999 extern int wake_up_process(struct task_struct *tsk);
2000 extern void wake_up_new_task(struct task_struct *tsk);
2001 
2002 #ifdef CONFIG_SMP
2003 extern void kick_process(struct task_struct *tsk);
2004 #else
2005 static inline void kick_process(struct task_struct *tsk) { }
2006 #endif
2007 
2008 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2009 
2010 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2011 {
2012 	__set_task_comm(tsk, from, false);
2013 }
2014 
2015 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2016 #define get_task_comm(buf, tsk) ({			\
2017 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2018 	__get_task_comm(buf, sizeof(buf), tsk);		\
2019 })
2020 
2021 #ifdef CONFIG_SMP
2022 static __always_inline void scheduler_ipi(void)
2023 {
2024 	/*
2025 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2026 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2027 	 * this IPI.
2028 	 */
2029 	preempt_fold_need_resched();
2030 }
2031 #else
2032 static inline void scheduler_ipi(void) { }
2033 #endif
2034 
2035 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2036 
2037 /*
2038  * Set thread flags in other task's structures.
2039  * See asm/thread_info.h for TIF_xxxx flags available:
2040  */
2041 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2042 {
2043 	set_ti_thread_flag(task_thread_info(tsk), flag);
2044 }
2045 
2046 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2047 {
2048 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2049 }
2050 
2051 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2052 					  bool value)
2053 {
2054 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2055 }
2056 
2057 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2058 {
2059 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2060 }
2061 
2062 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2063 {
2064 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2065 }
2066 
2067 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2068 {
2069 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2070 }
2071 
2072 static inline void set_tsk_need_resched(struct task_struct *tsk)
2073 {
2074 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2075 }
2076 
2077 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2078 {
2079 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2080 }
2081 
2082 static inline int test_tsk_need_resched(struct task_struct *tsk)
2083 {
2084 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2085 }
2086 
2087 /*
2088  * cond_resched() and cond_resched_lock(): latency reduction via
2089  * explicit rescheduling in places that are safe. The return
2090  * value indicates whether a reschedule was done in fact.
2091  * cond_resched_lock() will drop the spinlock before scheduling,
2092  */
2093 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2094 extern int __cond_resched(void);
2095 
2096 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2097 
2098 void sched_dynamic_klp_enable(void);
2099 void sched_dynamic_klp_disable(void);
2100 
2101 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2102 
2103 static __always_inline int _cond_resched(void)
2104 {
2105 	return static_call_mod(cond_resched)();
2106 }
2107 
2108 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2109 
2110 extern int dynamic_cond_resched(void);
2111 
2112 static __always_inline int _cond_resched(void)
2113 {
2114 	return dynamic_cond_resched();
2115 }
2116 
2117 #else /* !CONFIG_PREEMPTION */
2118 
2119 static inline int _cond_resched(void)
2120 {
2121 	klp_sched_try_switch();
2122 	return __cond_resched();
2123 }
2124 
2125 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2126 
2127 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2128 
2129 static inline int _cond_resched(void)
2130 {
2131 	klp_sched_try_switch();
2132 	return 0;
2133 }
2134 
2135 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2136 
2137 #define cond_resched() ({			\
2138 	__might_resched(__FILE__, __LINE__, 0);	\
2139 	_cond_resched();			\
2140 })
2141 
2142 extern int __cond_resched_lock(spinlock_t *lock);
2143 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2144 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2145 
2146 #define MIGHT_RESCHED_RCU_SHIFT		8
2147 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2148 
2149 #ifndef CONFIG_PREEMPT_RT
2150 /*
2151  * Non RT kernels have an elevated preempt count due to the held lock,
2152  * but are not allowed to be inside a RCU read side critical section
2153  */
2154 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2155 #else
2156 /*
2157  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2158  * cond_resched*lock() has to take that into account because it checks for
2159  * preempt_count() and rcu_preempt_depth().
2160  */
2161 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2162 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2163 #endif
2164 
2165 #define cond_resched_lock(lock) ({						\
2166 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2167 	__cond_resched_lock(lock);						\
2168 })
2169 
2170 #define cond_resched_rwlock_read(lock) ({					\
2171 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2172 	__cond_resched_rwlock_read(lock);					\
2173 })
2174 
2175 #define cond_resched_rwlock_write(lock) ({					\
2176 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2177 	__cond_resched_rwlock_write(lock);					\
2178 })
2179 
2180 static inline void cond_resched_rcu(void)
2181 {
2182 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2183 	rcu_read_unlock();
2184 	cond_resched();
2185 	rcu_read_lock();
2186 #endif
2187 }
2188 
2189 #ifdef CONFIG_PREEMPT_DYNAMIC
2190 
2191 extern bool preempt_model_none(void);
2192 extern bool preempt_model_voluntary(void);
2193 extern bool preempt_model_full(void);
2194 
2195 #else
2196 
2197 static inline bool preempt_model_none(void)
2198 {
2199 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2200 }
2201 static inline bool preempt_model_voluntary(void)
2202 {
2203 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2204 }
2205 static inline bool preempt_model_full(void)
2206 {
2207 	return IS_ENABLED(CONFIG_PREEMPT);
2208 }
2209 
2210 #endif
2211 
2212 static inline bool preempt_model_rt(void)
2213 {
2214 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2215 }
2216 
2217 /*
2218  * Does the preemption model allow non-cooperative preemption?
2219  *
2220  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2221  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2222  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2223  * PREEMPT_NONE model.
2224  */
2225 static inline bool preempt_model_preemptible(void)
2226 {
2227 	return preempt_model_full() || preempt_model_rt();
2228 }
2229 
2230 /*
2231  * Does a critical section need to be broken due to another
2232  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2233  * but a general need for low latency)
2234  */
2235 static inline int spin_needbreak(spinlock_t *lock)
2236 {
2237 #ifdef CONFIG_PREEMPTION
2238 	return spin_is_contended(lock);
2239 #else
2240 	return 0;
2241 #endif
2242 }
2243 
2244 /*
2245  * Check if a rwlock is contended.
2246  * Returns non-zero if there is another task waiting on the rwlock.
2247  * Returns zero if the lock is not contended or the system / underlying
2248  * rwlock implementation does not support contention detection.
2249  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2250  * for low latency.
2251  */
2252 static inline int rwlock_needbreak(rwlock_t *lock)
2253 {
2254 #ifdef CONFIG_PREEMPTION
2255 	return rwlock_is_contended(lock);
2256 #else
2257 	return 0;
2258 #endif
2259 }
2260 
2261 static __always_inline bool need_resched(void)
2262 {
2263 	return unlikely(tif_need_resched());
2264 }
2265 
2266 /*
2267  * Wrappers for p->thread_info->cpu access. No-op on UP.
2268  */
2269 #ifdef CONFIG_SMP
2270 
2271 static inline unsigned int task_cpu(const struct task_struct *p)
2272 {
2273 	return READ_ONCE(task_thread_info(p)->cpu);
2274 }
2275 
2276 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2277 
2278 #else
2279 
2280 static inline unsigned int task_cpu(const struct task_struct *p)
2281 {
2282 	return 0;
2283 }
2284 
2285 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2286 {
2287 }
2288 
2289 #endif /* CONFIG_SMP */
2290 
2291 extern bool sched_task_on_rq(struct task_struct *p);
2292 extern unsigned long get_wchan(struct task_struct *p);
2293 extern struct task_struct *cpu_curr_snapshot(int cpu);
2294 
2295 /*
2296  * In order to reduce various lock holder preemption latencies provide an
2297  * interface to see if a vCPU is currently running or not.
2298  *
2299  * This allows us to terminate optimistic spin loops and block, analogous to
2300  * the native optimistic spin heuristic of testing if the lock owner task is
2301  * running or not.
2302  */
2303 #ifndef vcpu_is_preempted
2304 static inline bool vcpu_is_preempted(int cpu)
2305 {
2306 	return false;
2307 }
2308 #endif
2309 
2310 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2311 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2312 
2313 #ifndef TASK_SIZE_OF
2314 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2315 #endif
2316 
2317 #ifdef CONFIG_SMP
2318 static inline bool owner_on_cpu(struct task_struct *owner)
2319 {
2320 	/*
2321 	 * As lock holder preemption issue, we both skip spinning if
2322 	 * task is not on cpu or its cpu is preempted
2323 	 */
2324 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2325 }
2326 
2327 /* Returns effective CPU energy utilization, as seen by the scheduler */
2328 unsigned long sched_cpu_util(int cpu);
2329 #endif /* CONFIG_SMP */
2330 
2331 #ifdef CONFIG_RSEQ
2332 
2333 /*
2334  * Map the event mask on the user-space ABI enum rseq_cs_flags
2335  * for direct mask checks.
2336  */
2337 enum rseq_event_mask_bits {
2338 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2339 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2340 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2341 };
2342 
2343 enum rseq_event_mask {
2344 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2345 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2346 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2347 };
2348 
2349 static inline void rseq_set_notify_resume(struct task_struct *t)
2350 {
2351 	if (t->rseq)
2352 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2353 }
2354 
2355 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2356 
2357 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2358 					     struct pt_regs *regs)
2359 {
2360 	if (current->rseq)
2361 		__rseq_handle_notify_resume(ksig, regs);
2362 }
2363 
2364 static inline void rseq_signal_deliver(struct ksignal *ksig,
2365 				       struct pt_regs *regs)
2366 {
2367 	preempt_disable();
2368 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2369 	preempt_enable();
2370 	rseq_handle_notify_resume(ksig, regs);
2371 }
2372 
2373 /* rseq_preempt() requires preemption to be disabled. */
2374 static inline void rseq_preempt(struct task_struct *t)
2375 {
2376 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2377 	rseq_set_notify_resume(t);
2378 }
2379 
2380 /* rseq_migrate() requires preemption to be disabled. */
2381 static inline void rseq_migrate(struct task_struct *t)
2382 {
2383 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2384 	rseq_set_notify_resume(t);
2385 }
2386 
2387 /*
2388  * If parent process has a registered restartable sequences area, the
2389  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2390  */
2391 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2392 {
2393 	if (clone_flags & CLONE_VM) {
2394 		t->rseq = NULL;
2395 		t->rseq_len = 0;
2396 		t->rseq_sig = 0;
2397 		t->rseq_event_mask = 0;
2398 	} else {
2399 		t->rseq = current->rseq;
2400 		t->rseq_len = current->rseq_len;
2401 		t->rseq_sig = current->rseq_sig;
2402 		t->rseq_event_mask = current->rseq_event_mask;
2403 	}
2404 }
2405 
2406 static inline void rseq_execve(struct task_struct *t)
2407 {
2408 	t->rseq = NULL;
2409 	t->rseq_len = 0;
2410 	t->rseq_sig = 0;
2411 	t->rseq_event_mask = 0;
2412 }
2413 
2414 #else
2415 
2416 static inline void rseq_set_notify_resume(struct task_struct *t)
2417 {
2418 }
2419 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2420 					     struct pt_regs *regs)
2421 {
2422 }
2423 static inline void rseq_signal_deliver(struct ksignal *ksig,
2424 				       struct pt_regs *regs)
2425 {
2426 }
2427 static inline void rseq_preempt(struct task_struct *t)
2428 {
2429 }
2430 static inline void rseq_migrate(struct task_struct *t)
2431 {
2432 }
2433 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2434 {
2435 }
2436 static inline void rseq_execve(struct task_struct *t)
2437 {
2438 }
2439 
2440 #endif
2441 
2442 #ifdef CONFIG_DEBUG_RSEQ
2443 
2444 void rseq_syscall(struct pt_regs *regs);
2445 
2446 #else
2447 
2448 static inline void rseq_syscall(struct pt_regs *regs)
2449 {
2450 }
2451 
2452 #endif
2453 
2454 #ifdef CONFIG_SCHED_CORE
2455 extern void sched_core_free(struct task_struct *tsk);
2456 extern void sched_core_fork(struct task_struct *p);
2457 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2458 				unsigned long uaddr);
2459 extern int sched_core_idle_cpu(int cpu);
2460 #else
2461 static inline void sched_core_free(struct task_struct *tsk) { }
2462 static inline void sched_core_fork(struct task_struct *p) { }
2463 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2464 #endif
2465 
2466 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2467 
2468 #endif
2469