xref: /linux/include/linux/sched.h (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
27 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
28 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
29 #define CLONE_NEWNET		0x40000000	/* New network namespace */
30 #define CLONE_IO		0x80000000	/* Clone io context */
31 
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL		0
36 #define SCHED_FIFO		1
37 #define SCHED_RR		2
38 #define SCHED_BATCH		3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE		5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK     0x40000000
43 
44 #ifdef __KERNEL__
45 
46 struct sched_param {
47 	int sched_priority;
48 };
49 
50 #include <asm/param.h>	/* for HZ */
51 
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64 
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69 
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84 
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94 
95 #include <asm/processor.h>
96 
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 
104 /*
105  * List of flags we want to share for kernel threads,
106  * if only because they are not used by them anyway.
107  */
108 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109 
110 /*
111  * These are the constant used to fake the fixed-point load-average
112  * counting. Some notes:
113  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
114  *    a load-average precision of 10 bits integer + 11 bits fractional
115  *  - if you want to count load-averages more often, you need more
116  *    precision, or rounding will get you. With 2-second counting freq,
117  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
118  *    11 bit fractions.
119  */
120 extern unsigned long avenrun[];		/* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 
123 #define FSHIFT		11		/* nr of bits of precision */
124 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
125 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
126 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5		2014		/* 1/exp(5sec/5min) */
128 #define EXP_15		2037		/* 1/exp(5sec/15min) */
129 
130 #define CALC_LOAD(load,exp,n) \
131 	load *= exp; \
132 	load += n*(FIXED_1-exp); \
133 	load >>= FSHIFT;
134 
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(void);
143 extern unsigned long this_cpu_load(void);
144 
145 
146 extern void calc_global_load(void);
147 
148 extern unsigned long get_parent_ip(unsigned long addr);
149 
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171 
172 /*
173  * Task state bitmask. NOTE! These bits are also
174  * encoded in fs/proc/array.c: get_task_state().
175  *
176  * We have two separate sets of flags: task->state
177  * is about runnability, while task->exit_state are
178  * about the task exiting. Confusing, but this way
179  * modifying one set can't modify the other one by
180  * mistake.
181  */
182 #define TASK_RUNNING		0
183 #define TASK_INTERRUPTIBLE	1
184 #define TASK_UNINTERRUPTIBLE	2
185 #define __TASK_STOPPED		4
186 #define __TASK_TRACED		8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE		16
189 #define EXIT_DEAD		32
190 /* in tsk->state again */
191 #define TASK_DEAD		64
192 #define TASK_WAKEKILL		128
193 #define TASK_WAKING		256
194 #define TASK_STATE_MAX		512
195 
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197 
198 extern char ___assert_task_state[1 - 2*!!(
199 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200 
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
205 
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209 
210 /* get_task_state() */
211 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 				 __TASK_TRACED)
214 
215 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
217 #define task_is_stopped_or_traced(task)	\
218 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219 #define task_contributes_to_load(task)	\
220 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221 				 (task->flags & PF_FREEZING) == 0)
222 
223 #define __set_task_state(tsk, state_value)		\
224 	do { (tsk)->state = (state_value); } while (0)
225 #define set_task_state(tsk, state_value)		\
226 	set_mb((tsk)->state, (state_value))
227 
228 /*
229  * set_current_state() includes a barrier so that the write of current->state
230  * is correctly serialised wrt the caller's subsequent test of whether to
231  * actually sleep:
232  *
233  *	set_current_state(TASK_UNINTERRUPTIBLE);
234  *	if (do_i_need_to_sleep())
235  *		schedule();
236  *
237  * If the caller does not need such serialisation then use __set_current_state()
238  */
239 #define __set_current_state(state_value)			\
240 	do { current->state = (state_value); } while (0)
241 #define set_current_state(state_value)		\
242 	set_mb(current->state, (state_value))
243 
244 /* Task command name length */
245 #define TASK_COMM_LEN 16
246 
247 #include <linux/spinlock.h>
248 
249 /*
250  * This serializes "schedule()" and also protects
251  * the run-queue from deletions/modifications (but
252  * _adding_ to the beginning of the run-queue has
253  * a separate lock).
254  */
255 extern rwlock_t tasklist_lock;
256 extern spinlock_t mmlist_lock;
257 
258 struct task_struct;
259 
260 #ifdef CONFIG_PROVE_RCU
261 extern int lockdep_tasklist_lock_is_held(void);
262 #endif /* #ifdef CONFIG_PROVE_RCU */
263 
264 extern void sched_init(void);
265 extern void sched_init_smp(void);
266 extern asmlinkage void schedule_tail(struct task_struct *prev);
267 extern void init_idle(struct task_struct *idle, int cpu);
268 extern void init_idle_bootup_task(struct task_struct *idle);
269 
270 extern int runqueue_is_locked(int cpu);
271 extern void task_rq_unlock_wait(struct task_struct *p);
272 
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern int select_nohz_load_balancer(int cpu);
276 extern int get_nohz_load_balancer(void);
277 extern int nohz_ratelimit(int cpu);
278 #else
279 static inline int select_nohz_load_balancer(int cpu)
280 {
281 	return 0;
282 }
283 
284 static inline int nohz_ratelimit(int cpu)
285 {
286 	return 0;
287 }
288 #endif
289 
290 /*
291  * Only dump TASK_* tasks. (0 for all tasks)
292  */
293 extern void show_state_filter(unsigned long state_filter);
294 
295 static inline void show_state(void)
296 {
297 	show_state_filter(0);
298 }
299 
300 extern void show_regs(struct pt_regs *);
301 
302 /*
303  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
304  * task), SP is the stack pointer of the first frame that should be shown in the back
305  * trace (or NULL if the entire call-chain of the task should be shown).
306  */
307 extern void show_stack(struct task_struct *task, unsigned long *sp);
308 
309 void io_schedule(void);
310 long io_schedule_timeout(long timeout);
311 
312 extern void cpu_init (void);
313 extern void trap_init(void);
314 extern void update_process_times(int user);
315 extern void scheduler_tick(void);
316 
317 extern void sched_show_task(struct task_struct *p);
318 
319 #ifdef CONFIG_DETECT_SOFTLOCKUP
320 extern void softlockup_tick(void);
321 extern void touch_softlockup_watchdog(void);
322 extern void touch_softlockup_watchdog_sync(void);
323 extern void touch_all_softlockup_watchdogs(void);
324 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
325 				    void __user *buffer,
326 				    size_t *lenp, loff_t *ppos);
327 extern unsigned int  softlockup_panic;
328 extern int softlockup_thresh;
329 #else
330 static inline void softlockup_tick(void)
331 {
332 }
333 static inline void touch_softlockup_watchdog(void)
334 {
335 }
336 static inline void touch_softlockup_watchdog_sync(void)
337 {
338 }
339 static inline void touch_all_softlockup_watchdogs(void)
340 {
341 }
342 #endif
343 
344 #ifdef CONFIG_DETECT_HUNG_TASK
345 extern unsigned int  sysctl_hung_task_panic;
346 extern unsigned long sysctl_hung_task_check_count;
347 extern unsigned long sysctl_hung_task_timeout_secs;
348 extern unsigned long sysctl_hung_task_warnings;
349 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
350 					 void __user *buffer,
351 					 size_t *lenp, loff_t *ppos);
352 #endif
353 
354 /* Attach to any functions which should be ignored in wchan output. */
355 #define __sched		__attribute__((__section__(".sched.text")))
356 
357 /* Linker adds these: start and end of __sched functions */
358 extern char __sched_text_start[], __sched_text_end[];
359 
360 /* Is this address in the __sched functions? */
361 extern int in_sched_functions(unsigned long addr);
362 
363 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
364 extern signed long schedule_timeout(signed long timeout);
365 extern signed long schedule_timeout_interruptible(signed long timeout);
366 extern signed long schedule_timeout_killable(signed long timeout);
367 extern signed long schedule_timeout_uninterruptible(signed long timeout);
368 asmlinkage void schedule(void);
369 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
370 
371 struct nsproxy;
372 struct user_namespace;
373 
374 /*
375  * Default maximum number of active map areas, this limits the number of vmas
376  * per mm struct. Users can overwrite this number by sysctl but there is a
377  * problem.
378  *
379  * When a program's coredump is generated as ELF format, a section is created
380  * per a vma. In ELF, the number of sections is represented in unsigned short.
381  * This means the number of sections should be smaller than 65535 at coredump.
382  * Because the kernel adds some informative sections to a image of program at
383  * generating coredump, we need some margin. The number of extra sections is
384  * 1-3 now and depends on arch. We use "5" as safe margin, here.
385  */
386 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
387 #define DEFAULT_MAX_MAP_COUNT	(USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
388 
389 extern int sysctl_max_map_count;
390 
391 #include <linux/aio.h>
392 
393 #ifdef CONFIG_MMU
394 extern void arch_pick_mmap_layout(struct mm_struct *mm);
395 extern unsigned long
396 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
397 		       unsigned long, unsigned long);
398 extern unsigned long
399 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
400 			  unsigned long len, unsigned long pgoff,
401 			  unsigned long flags);
402 extern void arch_unmap_area(struct mm_struct *, unsigned long);
403 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
404 #else
405 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
406 #endif
407 
408 
409 extern void set_dumpable(struct mm_struct *mm, int value);
410 extern int get_dumpable(struct mm_struct *mm);
411 
412 /* mm flags */
413 /* dumpable bits */
414 #define MMF_DUMPABLE      0  /* core dump is permitted */
415 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
416 
417 #define MMF_DUMPABLE_BITS 2
418 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
419 
420 /* coredump filter bits */
421 #define MMF_DUMP_ANON_PRIVATE	2
422 #define MMF_DUMP_ANON_SHARED	3
423 #define MMF_DUMP_MAPPED_PRIVATE	4
424 #define MMF_DUMP_MAPPED_SHARED	5
425 #define MMF_DUMP_ELF_HEADERS	6
426 #define MMF_DUMP_HUGETLB_PRIVATE 7
427 #define MMF_DUMP_HUGETLB_SHARED  8
428 
429 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
430 #define MMF_DUMP_FILTER_BITS	7
431 #define MMF_DUMP_FILTER_MASK \
432 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
433 #define MMF_DUMP_FILTER_DEFAULT \
434 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
435 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
436 
437 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
438 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
439 #else
440 # define MMF_DUMP_MASK_DEFAULT_ELF	0
441 #endif
442 					/* leave room for more dump flags */
443 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
444 
445 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
446 
447 struct sighand_struct {
448 	atomic_t		count;
449 	struct k_sigaction	action[_NSIG];
450 	spinlock_t		siglock;
451 	wait_queue_head_t	signalfd_wqh;
452 };
453 
454 struct pacct_struct {
455 	int			ac_flag;
456 	long			ac_exitcode;
457 	unsigned long		ac_mem;
458 	cputime_t		ac_utime, ac_stime;
459 	unsigned long		ac_minflt, ac_majflt;
460 };
461 
462 struct cpu_itimer {
463 	cputime_t expires;
464 	cputime_t incr;
465 	u32 error;
466 	u32 incr_error;
467 };
468 
469 /**
470  * struct task_cputime - collected CPU time counts
471  * @utime:		time spent in user mode, in &cputime_t units
472  * @stime:		time spent in kernel mode, in &cputime_t units
473  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
474  *
475  * This structure groups together three kinds of CPU time that are
476  * tracked for threads and thread groups.  Most things considering
477  * CPU time want to group these counts together and treat all three
478  * of them in parallel.
479  */
480 struct task_cputime {
481 	cputime_t utime;
482 	cputime_t stime;
483 	unsigned long long sum_exec_runtime;
484 };
485 /* Alternate field names when used to cache expirations. */
486 #define prof_exp	stime
487 #define virt_exp	utime
488 #define sched_exp	sum_exec_runtime
489 
490 #define INIT_CPUTIME	\
491 	(struct task_cputime) {					\
492 		.utime = cputime_zero,				\
493 		.stime = cputime_zero,				\
494 		.sum_exec_runtime = 0,				\
495 	}
496 
497 /*
498  * Disable preemption until the scheduler is running.
499  * Reset by start_kernel()->sched_init()->init_idle().
500  *
501  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
502  * before the scheduler is active -- see should_resched().
503  */
504 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
505 
506 /**
507  * struct thread_group_cputimer - thread group interval timer counts
508  * @cputime:		thread group interval timers.
509  * @running:		non-zero when there are timers running and
510  * 			@cputime receives updates.
511  * @lock:		lock for fields in this struct.
512  *
513  * This structure contains the version of task_cputime, above, that is
514  * used for thread group CPU timer calculations.
515  */
516 struct thread_group_cputimer {
517 	struct task_cputime cputime;
518 	int running;
519 	spinlock_t lock;
520 };
521 
522 /*
523  * NOTE! "signal_struct" does not have it's own
524  * locking, because a shared signal_struct always
525  * implies a shared sighand_struct, so locking
526  * sighand_struct is always a proper superset of
527  * the locking of signal_struct.
528  */
529 struct signal_struct {
530 	atomic_t		count;
531 	atomic_t		live;
532 
533 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
534 
535 	/* current thread group signal load-balancing target: */
536 	struct task_struct	*curr_target;
537 
538 	/* shared signal handling: */
539 	struct sigpending	shared_pending;
540 
541 	/* thread group exit support */
542 	int			group_exit_code;
543 	/* overloaded:
544 	 * - notify group_exit_task when ->count is equal to notify_count
545 	 * - everyone except group_exit_task is stopped during signal delivery
546 	 *   of fatal signals, group_exit_task processes the signal.
547 	 */
548 	int			notify_count;
549 	struct task_struct	*group_exit_task;
550 
551 	/* thread group stop support, overloads group_exit_code too */
552 	int			group_stop_count;
553 	unsigned int		flags; /* see SIGNAL_* flags below */
554 
555 	/* POSIX.1b Interval Timers */
556 	struct list_head posix_timers;
557 
558 	/* ITIMER_REAL timer for the process */
559 	struct hrtimer real_timer;
560 	struct pid *leader_pid;
561 	ktime_t it_real_incr;
562 
563 	/*
564 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566 	 * values are defined to 0 and 1 respectively
567 	 */
568 	struct cpu_itimer it[2];
569 
570 	/*
571 	 * Thread group totals for process CPU timers.
572 	 * See thread_group_cputimer(), et al, for details.
573 	 */
574 	struct thread_group_cputimer cputimer;
575 
576 	/* Earliest-expiration cache. */
577 	struct task_cputime cputime_expires;
578 
579 	struct list_head cpu_timers[3];
580 
581 	struct pid *tty_old_pgrp;
582 
583 	/* boolean value for session group leader */
584 	int leader;
585 
586 	struct tty_struct *tty; /* NULL if no tty */
587 
588 	/*
589 	 * Cumulative resource counters for dead threads in the group,
590 	 * and for reaped dead child processes forked by this group.
591 	 * Live threads maintain their own counters and add to these
592 	 * in __exit_signal, except for the group leader.
593 	 */
594 	cputime_t utime, stime, cutime, cstime;
595 	cputime_t gtime;
596 	cputime_t cgtime;
597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
598 	cputime_t prev_utime, prev_stime;
599 #endif
600 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 	unsigned long inblock, oublock, cinblock, coublock;
603 	unsigned long maxrss, cmaxrss;
604 	struct task_io_accounting ioac;
605 
606 	/*
607 	 * Cumulative ns of schedule CPU time fo dead threads in the
608 	 * group, not including a zombie group leader, (This only differs
609 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 	 * other than jiffies.)
611 	 */
612 	unsigned long long sum_sched_runtime;
613 
614 	/*
615 	 * We don't bother to synchronize most readers of this at all,
616 	 * because there is no reader checking a limit that actually needs
617 	 * to get both rlim_cur and rlim_max atomically, and either one
618 	 * alone is a single word that can safely be read normally.
619 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 	 * protect this instead of the siglock, because they really
621 	 * have no need to disable irqs.
622 	 */
623 	struct rlimit rlim[RLIM_NLIMITS];
624 
625 #ifdef CONFIG_BSD_PROCESS_ACCT
626 	struct pacct_struct pacct;	/* per-process accounting information */
627 #endif
628 #ifdef CONFIG_TASKSTATS
629 	struct taskstats *stats;
630 #endif
631 #ifdef CONFIG_AUDIT
632 	unsigned audit_tty;
633 	struct tty_audit_buf *tty_audit_buf;
634 #endif
635 
636 	int oom_adj;	/* OOM kill score adjustment (bit shift) */
637 };
638 
639 /* Context switch must be unlocked if interrupts are to be enabled */
640 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 # define __ARCH_WANT_UNLOCKED_CTXSW
642 #endif
643 
644 /*
645  * Bits in flags field of signal_struct.
646  */
647 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
648 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
649 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
650 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
651 /*
652  * Pending notifications to parent.
653  */
654 #define SIGNAL_CLD_STOPPED	0x00000010
655 #define SIGNAL_CLD_CONTINUED	0x00000020
656 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
657 
658 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
659 
660 /* If true, all threads except ->group_exit_task have pending SIGKILL */
661 static inline int signal_group_exit(const struct signal_struct *sig)
662 {
663 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
664 		(sig->group_exit_task != NULL);
665 }
666 
667 /*
668  * Some day this will be a full-fledged user tracking system..
669  */
670 struct user_struct {
671 	atomic_t __count;	/* reference count */
672 	atomic_t processes;	/* How many processes does this user have? */
673 	atomic_t files;		/* How many open files does this user have? */
674 	atomic_t sigpending;	/* How many pending signals does this user have? */
675 #ifdef CONFIG_INOTIFY_USER
676 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
677 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
678 #endif
679 #ifdef CONFIG_EPOLL
680 	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
681 #endif
682 #ifdef CONFIG_POSIX_MQUEUE
683 	/* protected by mq_lock	*/
684 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
685 #endif
686 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
687 
688 #ifdef CONFIG_KEYS
689 	struct key *uid_keyring;	/* UID specific keyring */
690 	struct key *session_keyring;	/* UID's default session keyring */
691 #endif
692 
693 	/* Hash table maintenance information */
694 	struct hlist_node uidhash_node;
695 	uid_t uid;
696 	struct user_namespace *user_ns;
697 
698 #ifdef CONFIG_PERF_EVENTS
699 	atomic_long_t locked_vm;
700 #endif
701 };
702 
703 extern int uids_sysfs_init(void);
704 
705 extern struct user_struct *find_user(uid_t);
706 
707 extern struct user_struct root_user;
708 #define INIT_USER (&root_user)
709 
710 
711 struct backing_dev_info;
712 struct reclaim_state;
713 
714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715 struct sched_info {
716 	/* cumulative counters */
717 	unsigned long pcount;	      /* # of times run on this cpu */
718 	unsigned long long run_delay; /* time spent waiting on a runqueue */
719 
720 	/* timestamps */
721 	unsigned long long last_arrival,/* when we last ran on a cpu */
722 			   last_queued;	/* when we were last queued to run */
723 #ifdef CONFIG_SCHEDSTATS
724 	/* BKL stats */
725 	unsigned int bkl_count;
726 #endif
727 };
728 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
729 
730 #ifdef CONFIG_TASK_DELAY_ACCT
731 struct task_delay_info {
732 	spinlock_t	lock;
733 	unsigned int	flags;	/* Private per-task flags */
734 
735 	/* For each stat XXX, add following, aligned appropriately
736 	 *
737 	 * struct timespec XXX_start, XXX_end;
738 	 * u64 XXX_delay;
739 	 * u32 XXX_count;
740 	 *
741 	 * Atomicity of updates to XXX_delay, XXX_count protected by
742 	 * single lock above (split into XXX_lock if contention is an issue).
743 	 */
744 
745 	/*
746 	 * XXX_count is incremented on every XXX operation, the delay
747 	 * associated with the operation is added to XXX_delay.
748 	 * XXX_delay contains the accumulated delay time in nanoseconds.
749 	 */
750 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
751 	u64 blkio_delay;	/* wait for sync block io completion */
752 	u64 swapin_delay;	/* wait for swapin block io completion */
753 	u32 blkio_count;	/* total count of the number of sync block */
754 				/* io operations performed */
755 	u32 swapin_count;	/* total count of the number of swapin block */
756 				/* io operations performed */
757 
758 	struct timespec freepages_start, freepages_end;
759 	u64 freepages_delay;	/* wait for memory reclaim */
760 	u32 freepages_count;	/* total count of memory reclaim */
761 };
762 #endif	/* CONFIG_TASK_DELAY_ACCT */
763 
764 static inline int sched_info_on(void)
765 {
766 #ifdef CONFIG_SCHEDSTATS
767 	return 1;
768 #elif defined(CONFIG_TASK_DELAY_ACCT)
769 	extern int delayacct_on;
770 	return delayacct_on;
771 #else
772 	return 0;
773 #endif
774 }
775 
776 enum cpu_idle_type {
777 	CPU_IDLE,
778 	CPU_NOT_IDLE,
779 	CPU_NEWLY_IDLE,
780 	CPU_MAX_IDLE_TYPES
781 };
782 
783 /*
784  * sched-domains (multiprocessor balancing) declarations:
785  */
786 
787 /*
788  * Increase resolution of nice-level calculations:
789  */
790 #define SCHED_LOAD_SHIFT	10
791 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
792 
793 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
794 
795 #ifdef CONFIG_SMP
796 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
797 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
798 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
799 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
800 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
801 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
802 #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
803 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
804 #define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
805 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
806 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
807 
808 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
809 
810 enum powersavings_balance_level {
811 	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
812 	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
813 					 * first for long running threads
814 					 */
815 	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
816 					 * cpu package for power savings
817 					 */
818 	MAX_POWERSAVINGS_BALANCE_LEVELS
819 };
820 
821 extern int sched_mc_power_savings, sched_smt_power_savings;
822 
823 static inline int sd_balance_for_mc_power(void)
824 {
825 	if (sched_smt_power_savings)
826 		return SD_POWERSAVINGS_BALANCE;
827 
828 	if (!sched_mc_power_savings)
829 		return SD_PREFER_SIBLING;
830 
831 	return 0;
832 }
833 
834 static inline int sd_balance_for_package_power(void)
835 {
836 	if (sched_mc_power_savings | sched_smt_power_savings)
837 		return SD_POWERSAVINGS_BALANCE;
838 
839 	return SD_PREFER_SIBLING;
840 }
841 
842 /*
843  * Optimise SD flags for power savings:
844  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
845  * Keep default SD flags if sched_{smt,mc}_power_saving=0
846  */
847 
848 static inline int sd_power_saving_flags(void)
849 {
850 	if (sched_mc_power_savings | sched_smt_power_savings)
851 		return SD_BALANCE_NEWIDLE;
852 
853 	return 0;
854 }
855 
856 struct sched_group {
857 	struct sched_group *next;	/* Must be a circular list */
858 
859 	/*
860 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
861 	 * single CPU.
862 	 */
863 	unsigned int cpu_power;
864 
865 	/*
866 	 * The CPUs this group covers.
867 	 *
868 	 * NOTE: this field is variable length. (Allocated dynamically
869 	 * by attaching extra space to the end of the structure,
870 	 * depending on how many CPUs the kernel has booted up with)
871 	 *
872 	 * It is also be embedded into static data structures at build
873 	 * time. (See 'struct static_sched_group' in kernel/sched.c)
874 	 */
875 	unsigned long cpumask[0];
876 };
877 
878 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
879 {
880 	return to_cpumask(sg->cpumask);
881 }
882 
883 enum sched_domain_level {
884 	SD_LV_NONE = 0,
885 	SD_LV_SIBLING,
886 	SD_LV_MC,
887 	SD_LV_CPU,
888 	SD_LV_NODE,
889 	SD_LV_ALLNODES,
890 	SD_LV_MAX
891 };
892 
893 struct sched_domain_attr {
894 	int relax_domain_level;
895 };
896 
897 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
898 	.relax_domain_level = -1,			\
899 }
900 
901 struct sched_domain {
902 	/* These fields must be setup */
903 	struct sched_domain *parent;	/* top domain must be null terminated */
904 	struct sched_domain *child;	/* bottom domain must be null terminated */
905 	struct sched_group *groups;	/* the balancing groups of the domain */
906 	unsigned long min_interval;	/* Minimum balance interval ms */
907 	unsigned long max_interval;	/* Maximum balance interval ms */
908 	unsigned int busy_factor;	/* less balancing by factor if busy */
909 	unsigned int imbalance_pct;	/* No balance until over watermark */
910 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
911 	unsigned int busy_idx;
912 	unsigned int idle_idx;
913 	unsigned int newidle_idx;
914 	unsigned int wake_idx;
915 	unsigned int forkexec_idx;
916 	unsigned int smt_gain;
917 	int flags;			/* See SD_* */
918 	enum sched_domain_level level;
919 
920 	/* Runtime fields. */
921 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
922 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
923 	unsigned int nr_balance_failed; /* initialise to 0 */
924 
925 	u64 last_update;
926 
927 #ifdef CONFIG_SCHEDSTATS
928 	/* load_balance() stats */
929 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
930 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
931 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
932 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
933 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
934 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
935 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
936 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
937 
938 	/* Active load balancing */
939 	unsigned int alb_count;
940 	unsigned int alb_failed;
941 	unsigned int alb_pushed;
942 
943 	/* SD_BALANCE_EXEC stats */
944 	unsigned int sbe_count;
945 	unsigned int sbe_balanced;
946 	unsigned int sbe_pushed;
947 
948 	/* SD_BALANCE_FORK stats */
949 	unsigned int sbf_count;
950 	unsigned int sbf_balanced;
951 	unsigned int sbf_pushed;
952 
953 	/* try_to_wake_up() stats */
954 	unsigned int ttwu_wake_remote;
955 	unsigned int ttwu_move_affine;
956 	unsigned int ttwu_move_balance;
957 #endif
958 #ifdef CONFIG_SCHED_DEBUG
959 	char *name;
960 #endif
961 
962 	unsigned int span_weight;
963 	/*
964 	 * Span of all CPUs in this domain.
965 	 *
966 	 * NOTE: this field is variable length. (Allocated dynamically
967 	 * by attaching extra space to the end of the structure,
968 	 * depending on how many CPUs the kernel has booted up with)
969 	 *
970 	 * It is also be embedded into static data structures at build
971 	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
972 	 */
973 	unsigned long span[0];
974 };
975 
976 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
977 {
978 	return to_cpumask(sd->span);
979 }
980 
981 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
982 				    struct sched_domain_attr *dattr_new);
983 
984 /* Allocate an array of sched domains, for partition_sched_domains(). */
985 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
986 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
987 
988 /* Test a flag in parent sched domain */
989 static inline int test_sd_parent(struct sched_domain *sd, int flag)
990 {
991 	if (sd->parent && (sd->parent->flags & flag))
992 		return 1;
993 
994 	return 0;
995 }
996 
997 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
998 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
999 
1000 #else /* CONFIG_SMP */
1001 
1002 struct sched_domain_attr;
1003 
1004 static inline void
1005 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1006 			struct sched_domain_attr *dattr_new)
1007 {
1008 }
1009 #endif	/* !CONFIG_SMP */
1010 
1011 
1012 struct io_context;			/* See blkdev.h */
1013 
1014 
1015 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1016 extern void prefetch_stack(struct task_struct *t);
1017 #else
1018 static inline void prefetch_stack(struct task_struct *t) { }
1019 #endif
1020 
1021 struct audit_context;		/* See audit.c */
1022 struct mempolicy;
1023 struct pipe_inode_info;
1024 struct uts_namespace;
1025 
1026 struct rq;
1027 struct sched_domain;
1028 
1029 /*
1030  * wake flags
1031  */
1032 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1033 #define WF_FORK		0x02		/* child wakeup after fork */
1034 
1035 #define ENQUEUE_WAKEUP		1
1036 #define ENQUEUE_WAKING		2
1037 #define ENQUEUE_HEAD		4
1038 
1039 #define DEQUEUE_SLEEP		1
1040 
1041 struct sched_class {
1042 	const struct sched_class *next;
1043 
1044 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046 	void (*yield_task) (struct rq *rq);
1047 
1048 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049 
1050 	struct task_struct * (*pick_next_task) (struct rq *rq);
1051 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052 
1053 #ifdef CONFIG_SMP
1054 	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1055 			       int sd_flag, int flags);
1056 
1057 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1058 	void (*post_schedule) (struct rq *this_rq);
1059 	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1060 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061 
1062 	void (*set_cpus_allowed)(struct task_struct *p,
1063 				 const struct cpumask *newmask);
1064 
1065 	void (*rq_online)(struct rq *rq);
1066 	void (*rq_offline)(struct rq *rq);
1067 #endif
1068 
1069 	void (*set_curr_task) (struct rq *rq);
1070 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1071 	void (*task_fork) (struct task_struct *p);
1072 
1073 	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1074 			       int running);
1075 	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1076 			     int running);
1077 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1078 			     int oldprio, int running);
1079 
1080 	unsigned int (*get_rr_interval) (struct rq *rq,
1081 					 struct task_struct *task);
1082 
1083 #ifdef CONFIG_FAIR_GROUP_SCHED
1084 	void (*moved_group) (struct task_struct *p, int on_rq);
1085 #endif
1086 };
1087 
1088 struct load_weight {
1089 	unsigned long weight, inv_weight;
1090 };
1091 
1092 #ifdef CONFIG_SCHEDSTATS
1093 struct sched_statistics {
1094 	u64			wait_start;
1095 	u64			wait_max;
1096 	u64			wait_count;
1097 	u64			wait_sum;
1098 	u64			iowait_count;
1099 	u64			iowait_sum;
1100 
1101 	u64			sleep_start;
1102 	u64			sleep_max;
1103 	s64			sum_sleep_runtime;
1104 
1105 	u64			block_start;
1106 	u64			block_max;
1107 	u64			exec_max;
1108 	u64			slice_max;
1109 
1110 	u64			nr_migrations_cold;
1111 	u64			nr_failed_migrations_affine;
1112 	u64			nr_failed_migrations_running;
1113 	u64			nr_failed_migrations_hot;
1114 	u64			nr_forced_migrations;
1115 
1116 	u64			nr_wakeups;
1117 	u64			nr_wakeups_sync;
1118 	u64			nr_wakeups_migrate;
1119 	u64			nr_wakeups_local;
1120 	u64			nr_wakeups_remote;
1121 	u64			nr_wakeups_affine;
1122 	u64			nr_wakeups_affine_attempts;
1123 	u64			nr_wakeups_passive;
1124 	u64			nr_wakeups_idle;
1125 };
1126 #endif
1127 
1128 struct sched_entity {
1129 	struct load_weight	load;		/* for load-balancing */
1130 	struct rb_node		run_node;
1131 	struct list_head	group_node;
1132 	unsigned int		on_rq;
1133 
1134 	u64			exec_start;
1135 	u64			sum_exec_runtime;
1136 	u64			vruntime;
1137 	u64			prev_sum_exec_runtime;
1138 
1139 	u64			nr_migrations;
1140 
1141 #ifdef CONFIG_SCHEDSTATS
1142 	struct sched_statistics statistics;
1143 #endif
1144 
1145 #ifdef CONFIG_FAIR_GROUP_SCHED
1146 	struct sched_entity	*parent;
1147 	/* rq on which this entity is (to be) queued: */
1148 	struct cfs_rq		*cfs_rq;
1149 	/* rq "owned" by this entity/group: */
1150 	struct cfs_rq		*my_q;
1151 #endif
1152 };
1153 
1154 struct sched_rt_entity {
1155 	struct list_head run_list;
1156 	unsigned long timeout;
1157 	unsigned int time_slice;
1158 	int nr_cpus_allowed;
1159 
1160 	struct sched_rt_entity *back;
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162 	struct sched_rt_entity	*parent;
1163 	/* rq on which this entity is (to be) queued: */
1164 	struct rt_rq		*rt_rq;
1165 	/* rq "owned" by this entity/group: */
1166 	struct rt_rq		*my_q;
1167 #endif
1168 };
1169 
1170 struct rcu_node;
1171 
1172 struct task_struct {
1173 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1174 	void *stack;
1175 	atomic_t usage;
1176 	unsigned int flags;	/* per process flags, defined below */
1177 	unsigned int ptrace;
1178 
1179 	int lock_depth;		/* BKL lock depth */
1180 
1181 #ifdef CONFIG_SMP
1182 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1183 	int oncpu;
1184 #endif
1185 #endif
1186 
1187 	int prio, static_prio, normal_prio;
1188 	unsigned int rt_priority;
1189 	const struct sched_class *sched_class;
1190 	struct sched_entity se;
1191 	struct sched_rt_entity rt;
1192 
1193 #ifdef CONFIG_PREEMPT_NOTIFIERS
1194 	/* list of struct preempt_notifier: */
1195 	struct hlist_head preempt_notifiers;
1196 #endif
1197 
1198 	/*
1199 	 * fpu_counter contains the number of consecutive context switches
1200 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1201 	 * saving becomes unlazy to save the trap. This is an unsigned char
1202 	 * so that after 256 times the counter wraps and the behavior turns
1203 	 * lazy again; this to deal with bursty apps that only use FPU for
1204 	 * a short time
1205 	 */
1206 	unsigned char fpu_counter;
1207 #ifdef CONFIG_BLK_DEV_IO_TRACE
1208 	unsigned int btrace_seq;
1209 #endif
1210 
1211 	unsigned int policy;
1212 	cpumask_t cpus_allowed;
1213 
1214 #ifdef CONFIG_TREE_PREEMPT_RCU
1215 	int rcu_read_lock_nesting;
1216 	char rcu_read_unlock_special;
1217 	struct rcu_node *rcu_blocked_node;
1218 	struct list_head rcu_node_entry;
1219 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1220 
1221 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1222 	struct sched_info sched_info;
1223 #endif
1224 
1225 	struct list_head tasks;
1226 	struct plist_node pushable_tasks;
1227 
1228 	struct mm_struct *mm, *active_mm;
1229 #if defined(SPLIT_RSS_COUNTING)
1230 	struct task_rss_stat	rss_stat;
1231 #endif
1232 /* task state */
1233 	int exit_state;
1234 	int exit_code, exit_signal;
1235 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1236 	/* ??? */
1237 	unsigned int personality;
1238 	unsigned did_exec:1;
1239 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1240 				 * execve */
1241 	unsigned in_iowait:1;
1242 
1243 
1244 	/* Revert to default priority/policy when forking */
1245 	unsigned sched_reset_on_fork:1;
1246 
1247 	pid_t pid;
1248 	pid_t tgid;
1249 
1250 #ifdef CONFIG_CC_STACKPROTECTOR
1251 	/* Canary value for the -fstack-protector gcc feature */
1252 	unsigned long stack_canary;
1253 #endif
1254 
1255 	/*
1256 	 * pointers to (original) parent process, youngest child, younger sibling,
1257 	 * older sibling, respectively.  (p->father can be replaced with
1258 	 * p->real_parent->pid)
1259 	 */
1260 	struct task_struct *real_parent; /* real parent process */
1261 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1262 	/*
1263 	 * children/sibling forms the list of my natural children
1264 	 */
1265 	struct list_head children;	/* list of my children */
1266 	struct list_head sibling;	/* linkage in my parent's children list */
1267 	struct task_struct *group_leader;	/* threadgroup leader */
1268 
1269 	/*
1270 	 * ptraced is the list of tasks this task is using ptrace on.
1271 	 * This includes both natural children and PTRACE_ATTACH targets.
1272 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1273 	 */
1274 	struct list_head ptraced;
1275 	struct list_head ptrace_entry;
1276 
1277 	/* PID/PID hash table linkage. */
1278 	struct pid_link pids[PIDTYPE_MAX];
1279 	struct list_head thread_group;
1280 
1281 	struct completion *vfork_done;		/* for vfork() */
1282 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1283 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1284 
1285 	cputime_t utime, stime, utimescaled, stimescaled;
1286 	cputime_t gtime;
1287 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1288 	cputime_t prev_utime, prev_stime;
1289 #endif
1290 	unsigned long nvcsw, nivcsw; /* context switch counts */
1291 	struct timespec start_time; 		/* monotonic time */
1292 	struct timespec real_start_time;	/* boot based time */
1293 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1294 	unsigned long min_flt, maj_flt;
1295 
1296 	struct task_cputime cputime_expires;
1297 	struct list_head cpu_timers[3];
1298 
1299 /* process credentials */
1300 	const struct cred *real_cred;	/* objective and real subjective task
1301 					 * credentials (COW) */
1302 	const struct cred *cred;	/* effective (overridable) subjective task
1303 					 * credentials (COW) */
1304 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1305 					 * credential calculations
1306 					 * (notably. ptrace) */
1307 	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1308 
1309 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1310 				     - access with [gs]et_task_comm (which lock
1311 				       it with task_lock())
1312 				     - initialized normally by setup_new_exec */
1313 /* file system info */
1314 	int link_count, total_link_count;
1315 #ifdef CONFIG_SYSVIPC
1316 /* ipc stuff */
1317 	struct sysv_sem sysvsem;
1318 #endif
1319 #ifdef CONFIG_DETECT_HUNG_TASK
1320 /* hung task detection */
1321 	unsigned long last_switch_count;
1322 #endif
1323 /* CPU-specific state of this task */
1324 	struct thread_struct thread;
1325 /* filesystem information */
1326 	struct fs_struct *fs;
1327 /* open file information */
1328 	struct files_struct *files;
1329 /* namespaces */
1330 	struct nsproxy *nsproxy;
1331 /* signal handlers */
1332 	struct signal_struct *signal;
1333 	struct sighand_struct *sighand;
1334 
1335 	sigset_t blocked, real_blocked;
1336 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1337 	struct sigpending pending;
1338 
1339 	unsigned long sas_ss_sp;
1340 	size_t sas_ss_size;
1341 	int (*notifier)(void *priv);
1342 	void *notifier_data;
1343 	sigset_t *notifier_mask;
1344 	struct audit_context *audit_context;
1345 #ifdef CONFIG_AUDITSYSCALL
1346 	uid_t loginuid;
1347 	unsigned int sessionid;
1348 #endif
1349 	seccomp_t seccomp;
1350 
1351 /* Thread group tracking */
1352    	u32 parent_exec_id;
1353    	u32 self_exec_id;
1354 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1355  * mempolicy */
1356 	spinlock_t alloc_lock;
1357 
1358 #ifdef CONFIG_GENERIC_HARDIRQS
1359 	/* IRQ handler threads */
1360 	struct irqaction *irqaction;
1361 #endif
1362 
1363 	/* Protection of the PI data structures: */
1364 	raw_spinlock_t pi_lock;
1365 
1366 #ifdef CONFIG_RT_MUTEXES
1367 	/* PI waiters blocked on a rt_mutex held by this task */
1368 	struct plist_head pi_waiters;
1369 	/* Deadlock detection and priority inheritance handling */
1370 	struct rt_mutex_waiter *pi_blocked_on;
1371 #endif
1372 
1373 #ifdef CONFIG_DEBUG_MUTEXES
1374 	/* mutex deadlock detection */
1375 	struct mutex_waiter *blocked_on;
1376 #endif
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378 	unsigned int irq_events;
1379 	unsigned long hardirq_enable_ip;
1380 	unsigned long hardirq_disable_ip;
1381 	unsigned int hardirq_enable_event;
1382 	unsigned int hardirq_disable_event;
1383 	int hardirqs_enabled;
1384 	int hardirq_context;
1385 	unsigned long softirq_disable_ip;
1386 	unsigned long softirq_enable_ip;
1387 	unsigned int softirq_disable_event;
1388 	unsigned int softirq_enable_event;
1389 	int softirqs_enabled;
1390 	int softirq_context;
1391 #endif
1392 #ifdef CONFIG_LOCKDEP
1393 # define MAX_LOCK_DEPTH 48UL
1394 	u64 curr_chain_key;
1395 	int lockdep_depth;
1396 	unsigned int lockdep_recursion;
1397 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1398 	gfp_t lockdep_reclaim_gfp;
1399 #endif
1400 
1401 /* journalling filesystem info */
1402 	void *journal_info;
1403 
1404 /* stacked block device info */
1405 	struct bio_list *bio_list;
1406 
1407 /* VM state */
1408 	struct reclaim_state *reclaim_state;
1409 
1410 	struct backing_dev_info *backing_dev_info;
1411 
1412 	struct io_context *io_context;
1413 
1414 	unsigned long ptrace_message;
1415 	siginfo_t *last_siginfo; /* For ptrace use.  */
1416 	struct task_io_accounting ioac;
1417 #if defined(CONFIG_TASK_XACCT)
1418 	u64 acct_rss_mem1;	/* accumulated rss usage */
1419 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1420 	cputime_t acct_timexpd;	/* stime + utime since last update */
1421 #endif
1422 #ifdef CONFIG_CPUSETS
1423 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1424 	int cpuset_mem_spread_rotor;
1425 #endif
1426 #ifdef CONFIG_CGROUPS
1427 	/* Control Group info protected by css_set_lock */
1428 	struct css_set *cgroups;
1429 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1430 	struct list_head cg_list;
1431 #endif
1432 #ifdef CONFIG_FUTEX
1433 	struct robust_list_head __user *robust_list;
1434 #ifdef CONFIG_COMPAT
1435 	struct compat_robust_list_head __user *compat_robust_list;
1436 #endif
1437 	struct list_head pi_state_list;
1438 	struct futex_pi_state *pi_state_cache;
1439 #endif
1440 #ifdef CONFIG_PERF_EVENTS
1441 	struct perf_event_context *perf_event_ctxp;
1442 	struct mutex perf_event_mutex;
1443 	struct list_head perf_event_list;
1444 #endif
1445 #ifdef CONFIG_NUMA
1446 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1447 	short il_next;
1448 #endif
1449 	atomic_t fs_excl;	/* holding fs exclusive resources */
1450 	struct rcu_head rcu;
1451 
1452 	/*
1453 	 * cache last used pipe for splice
1454 	 */
1455 	struct pipe_inode_info *splice_pipe;
1456 #ifdef	CONFIG_TASK_DELAY_ACCT
1457 	struct task_delay_info *delays;
1458 #endif
1459 #ifdef CONFIG_FAULT_INJECTION
1460 	int make_it_fail;
1461 #endif
1462 	struct prop_local_single dirties;
1463 #ifdef CONFIG_LATENCYTOP
1464 	int latency_record_count;
1465 	struct latency_record latency_record[LT_SAVECOUNT];
1466 #endif
1467 	/*
1468 	 * time slack values; these are used to round up poll() and
1469 	 * select() etc timeout values. These are in nanoseconds.
1470 	 */
1471 	unsigned long timer_slack_ns;
1472 	unsigned long default_timer_slack_ns;
1473 
1474 	struct list_head	*scm_work_list;
1475 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1476 	/* Index of current stored address in ret_stack */
1477 	int curr_ret_stack;
1478 	/* Stack of return addresses for return function tracing */
1479 	struct ftrace_ret_stack	*ret_stack;
1480 	/* time stamp for last schedule */
1481 	unsigned long long ftrace_timestamp;
1482 	/*
1483 	 * Number of functions that haven't been traced
1484 	 * because of depth overrun.
1485 	 */
1486 	atomic_t trace_overrun;
1487 	/* Pause for the tracing */
1488 	atomic_t tracing_graph_pause;
1489 #endif
1490 #ifdef CONFIG_TRACING
1491 	/* state flags for use by tracers */
1492 	unsigned long trace;
1493 	/* bitmask of trace recursion */
1494 	unsigned long trace_recursion;
1495 #endif /* CONFIG_TRACING */
1496 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1497 	struct memcg_batch_info {
1498 		int do_batch;	/* incremented when batch uncharge started */
1499 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1500 		unsigned long bytes; 		/* uncharged usage */
1501 		unsigned long memsw_bytes; /* uncharged mem+swap usage */
1502 	} memcg_batch;
1503 #endif
1504 };
1505 
1506 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1507 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1508 
1509 /*
1510  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1511  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1512  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1513  * values are inverted: lower p->prio value means higher priority.
1514  *
1515  * The MAX_USER_RT_PRIO value allows the actual maximum
1516  * RT priority to be separate from the value exported to
1517  * user-space.  This allows kernel threads to set their
1518  * priority to a value higher than any user task. Note:
1519  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1520  */
1521 
1522 #define MAX_USER_RT_PRIO	100
1523 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1524 
1525 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1526 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1527 
1528 static inline int rt_prio(int prio)
1529 {
1530 	if (unlikely(prio < MAX_RT_PRIO))
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 static inline int rt_task(struct task_struct *p)
1536 {
1537 	return rt_prio(p->prio);
1538 }
1539 
1540 static inline struct pid *task_pid(struct task_struct *task)
1541 {
1542 	return task->pids[PIDTYPE_PID].pid;
1543 }
1544 
1545 static inline struct pid *task_tgid(struct task_struct *task)
1546 {
1547 	return task->group_leader->pids[PIDTYPE_PID].pid;
1548 }
1549 
1550 /*
1551  * Without tasklist or rcu lock it is not safe to dereference
1552  * the result of task_pgrp/task_session even if task == current,
1553  * we can race with another thread doing sys_setsid/sys_setpgid.
1554  */
1555 static inline struct pid *task_pgrp(struct task_struct *task)
1556 {
1557 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1558 }
1559 
1560 static inline struct pid *task_session(struct task_struct *task)
1561 {
1562 	return task->group_leader->pids[PIDTYPE_SID].pid;
1563 }
1564 
1565 struct pid_namespace;
1566 
1567 /*
1568  * the helpers to get the task's different pids as they are seen
1569  * from various namespaces
1570  *
1571  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1572  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1573  *                     current.
1574  * task_xid_nr_ns()  : id seen from the ns specified;
1575  *
1576  * set_task_vxid()   : assigns a virtual id to a task;
1577  *
1578  * see also pid_nr() etc in include/linux/pid.h
1579  */
1580 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1581 			struct pid_namespace *ns);
1582 
1583 static inline pid_t task_pid_nr(struct task_struct *tsk)
1584 {
1585 	return tsk->pid;
1586 }
1587 
1588 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1589 					struct pid_namespace *ns)
1590 {
1591 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1592 }
1593 
1594 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1595 {
1596 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1597 }
1598 
1599 
1600 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1601 {
1602 	return tsk->tgid;
1603 }
1604 
1605 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1606 
1607 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1608 {
1609 	return pid_vnr(task_tgid(tsk));
1610 }
1611 
1612 
1613 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1614 					struct pid_namespace *ns)
1615 {
1616 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1617 }
1618 
1619 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1620 {
1621 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1622 }
1623 
1624 
1625 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1626 					struct pid_namespace *ns)
1627 {
1628 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1629 }
1630 
1631 static inline pid_t task_session_vnr(struct task_struct *tsk)
1632 {
1633 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1634 }
1635 
1636 /* obsolete, do not use */
1637 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1638 {
1639 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1640 }
1641 
1642 /**
1643  * pid_alive - check that a task structure is not stale
1644  * @p: Task structure to be checked.
1645  *
1646  * Test if a process is not yet dead (at most zombie state)
1647  * If pid_alive fails, then pointers within the task structure
1648  * can be stale and must not be dereferenced.
1649  */
1650 static inline int pid_alive(struct task_struct *p)
1651 {
1652 	return p->pids[PIDTYPE_PID].pid != NULL;
1653 }
1654 
1655 /**
1656  * is_global_init - check if a task structure is init
1657  * @tsk: Task structure to be checked.
1658  *
1659  * Check if a task structure is the first user space task the kernel created.
1660  */
1661 static inline int is_global_init(struct task_struct *tsk)
1662 {
1663 	return tsk->pid == 1;
1664 }
1665 
1666 /*
1667  * is_container_init:
1668  * check whether in the task is init in its own pid namespace.
1669  */
1670 extern int is_container_init(struct task_struct *tsk);
1671 
1672 extern struct pid *cad_pid;
1673 
1674 extern void free_task(struct task_struct *tsk);
1675 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1676 
1677 extern void __put_task_struct(struct task_struct *t);
1678 
1679 static inline void put_task_struct(struct task_struct *t)
1680 {
1681 	if (atomic_dec_and_test(&t->usage))
1682 		__put_task_struct(t);
1683 }
1684 
1685 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1686 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1687 
1688 /*
1689  * Per process flags
1690  */
1691 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1692 					/* Not implemented yet, only for 486*/
1693 #define PF_STARTING	0x00000002	/* being created */
1694 #define PF_EXITING	0x00000004	/* getting shut down */
1695 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1696 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1697 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1698 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1699 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1700 #define PF_DUMPCORE	0x00000200	/* dumped core */
1701 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1702 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1703 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1704 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1705 #define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1706 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1707 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1708 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1709 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1710 #define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1711 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1712 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1713 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1714 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1715 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1716 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1717 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1718 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1719 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1720 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1721 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1722 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1723 
1724 /*
1725  * Only the _current_ task can read/write to tsk->flags, but other
1726  * tasks can access tsk->flags in readonly mode for example
1727  * with tsk_used_math (like during threaded core dumping).
1728  * There is however an exception to this rule during ptrace
1729  * or during fork: the ptracer task is allowed to write to the
1730  * child->flags of its traced child (same goes for fork, the parent
1731  * can write to the child->flags), because we're guaranteed the
1732  * child is not running and in turn not changing child->flags
1733  * at the same time the parent does it.
1734  */
1735 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1736 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1737 #define clear_used_math() clear_stopped_child_used_math(current)
1738 #define set_used_math() set_stopped_child_used_math(current)
1739 #define conditional_stopped_child_used_math(condition, child) \
1740 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1741 #define conditional_used_math(condition) \
1742 	conditional_stopped_child_used_math(condition, current)
1743 #define copy_to_stopped_child_used_math(child) \
1744 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1745 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1746 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1747 #define used_math() tsk_used_math(current)
1748 
1749 #ifdef CONFIG_TREE_PREEMPT_RCU
1750 
1751 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1752 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1753 
1754 static inline void rcu_copy_process(struct task_struct *p)
1755 {
1756 	p->rcu_read_lock_nesting = 0;
1757 	p->rcu_read_unlock_special = 0;
1758 	p->rcu_blocked_node = NULL;
1759 	INIT_LIST_HEAD(&p->rcu_node_entry);
1760 }
1761 
1762 #else
1763 
1764 static inline void rcu_copy_process(struct task_struct *p)
1765 {
1766 }
1767 
1768 #endif
1769 
1770 #ifdef CONFIG_SMP
1771 extern int set_cpus_allowed_ptr(struct task_struct *p,
1772 				const struct cpumask *new_mask);
1773 #else
1774 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1775 				       const struct cpumask *new_mask)
1776 {
1777 	if (!cpumask_test_cpu(0, new_mask))
1778 		return -EINVAL;
1779 	return 0;
1780 }
1781 #endif
1782 
1783 #ifndef CONFIG_CPUMASK_OFFSTACK
1784 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1785 {
1786 	return set_cpus_allowed_ptr(p, &new_mask);
1787 }
1788 #endif
1789 
1790 /*
1791  * Architectures can set this to 1 if they have specified
1792  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1793  * but then during bootup it turns out that sched_clock()
1794  * is reliable after all:
1795  */
1796 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1797 extern int sched_clock_stable;
1798 #endif
1799 
1800 /* ftrace calls sched_clock() directly */
1801 extern unsigned long long notrace sched_clock(void);
1802 
1803 extern void sched_clock_init(void);
1804 extern u64 sched_clock_cpu(int cpu);
1805 
1806 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1807 static inline void sched_clock_tick(void)
1808 {
1809 }
1810 
1811 static inline void sched_clock_idle_sleep_event(void)
1812 {
1813 }
1814 
1815 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1816 {
1817 }
1818 #else
1819 extern void sched_clock_tick(void);
1820 extern void sched_clock_idle_sleep_event(void);
1821 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1822 #endif
1823 
1824 /*
1825  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1826  * clock constructed from sched_clock():
1827  */
1828 extern unsigned long long cpu_clock(int cpu);
1829 
1830 extern unsigned long long
1831 task_sched_runtime(struct task_struct *task);
1832 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1833 
1834 /* sched_exec is called by processes performing an exec */
1835 #ifdef CONFIG_SMP
1836 extern void sched_exec(void);
1837 #else
1838 #define sched_exec()   {}
1839 #endif
1840 
1841 extern void sched_clock_idle_sleep_event(void);
1842 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1843 
1844 #ifdef CONFIG_HOTPLUG_CPU
1845 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1846 extern void idle_task_exit(void);
1847 #else
1848 static inline void idle_task_exit(void) {}
1849 #endif
1850 
1851 extern void sched_idle_next(void);
1852 
1853 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1854 extern void wake_up_idle_cpu(int cpu);
1855 #else
1856 static inline void wake_up_idle_cpu(int cpu) { }
1857 #endif
1858 
1859 extern unsigned int sysctl_sched_latency;
1860 extern unsigned int sysctl_sched_min_granularity;
1861 extern unsigned int sysctl_sched_wakeup_granularity;
1862 extern unsigned int sysctl_sched_shares_ratelimit;
1863 extern unsigned int sysctl_sched_shares_thresh;
1864 extern unsigned int sysctl_sched_child_runs_first;
1865 
1866 enum sched_tunable_scaling {
1867 	SCHED_TUNABLESCALING_NONE,
1868 	SCHED_TUNABLESCALING_LOG,
1869 	SCHED_TUNABLESCALING_LINEAR,
1870 	SCHED_TUNABLESCALING_END,
1871 };
1872 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1873 
1874 #ifdef CONFIG_SCHED_DEBUG
1875 extern unsigned int sysctl_sched_migration_cost;
1876 extern unsigned int sysctl_sched_nr_migrate;
1877 extern unsigned int sysctl_sched_time_avg;
1878 extern unsigned int sysctl_timer_migration;
1879 
1880 int sched_proc_update_handler(struct ctl_table *table, int write,
1881 		void __user *buffer, size_t *length,
1882 		loff_t *ppos);
1883 #endif
1884 #ifdef CONFIG_SCHED_DEBUG
1885 static inline unsigned int get_sysctl_timer_migration(void)
1886 {
1887 	return sysctl_timer_migration;
1888 }
1889 #else
1890 static inline unsigned int get_sysctl_timer_migration(void)
1891 {
1892 	return 1;
1893 }
1894 #endif
1895 extern unsigned int sysctl_sched_rt_period;
1896 extern int sysctl_sched_rt_runtime;
1897 
1898 int sched_rt_handler(struct ctl_table *table, int write,
1899 		void __user *buffer, size_t *lenp,
1900 		loff_t *ppos);
1901 
1902 extern unsigned int sysctl_sched_compat_yield;
1903 
1904 #ifdef CONFIG_RT_MUTEXES
1905 extern int rt_mutex_getprio(struct task_struct *p);
1906 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1907 extern void rt_mutex_adjust_pi(struct task_struct *p);
1908 #else
1909 static inline int rt_mutex_getprio(struct task_struct *p)
1910 {
1911 	return p->normal_prio;
1912 }
1913 # define rt_mutex_adjust_pi(p)		do { } while (0)
1914 #endif
1915 
1916 extern void set_user_nice(struct task_struct *p, long nice);
1917 extern int task_prio(const struct task_struct *p);
1918 extern int task_nice(const struct task_struct *p);
1919 extern int can_nice(const struct task_struct *p, const int nice);
1920 extern int task_curr(const struct task_struct *p);
1921 extern int idle_cpu(int cpu);
1922 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1923 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1924 				      struct sched_param *);
1925 extern struct task_struct *idle_task(int cpu);
1926 extern struct task_struct *curr_task(int cpu);
1927 extern void set_curr_task(int cpu, struct task_struct *p);
1928 
1929 void yield(void);
1930 
1931 /*
1932  * The default (Linux) execution domain.
1933  */
1934 extern struct exec_domain	default_exec_domain;
1935 
1936 union thread_union {
1937 	struct thread_info thread_info;
1938 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1939 };
1940 
1941 #ifndef __HAVE_ARCH_KSTACK_END
1942 static inline int kstack_end(void *addr)
1943 {
1944 	/* Reliable end of stack detection:
1945 	 * Some APM bios versions misalign the stack
1946 	 */
1947 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1948 }
1949 #endif
1950 
1951 extern union thread_union init_thread_union;
1952 extern struct task_struct init_task;
1953 
1954 extern struct   mm_struct init_mm;
1955 
1956 extern struct pid_namespace init_pid_ns;
1957 
1958 /*
1959  * find a task by one of its numerical ids
1960  *
1961  * find_task_by_pid_ns():
1962  *      finds a task by its pid in the specified namespace
1963  * find_task_by_vpid():
1964  *      finds a task by its virtual pid
1965  *
1966  * see also find_vpid() etc in include/linux/pid.h
1967  */
1968 
1969 extern struct task_struct *find_task_by_vpid(pid_t nr);
1970 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1971 		struct pid_namespace *ns);
1972 
1973 extern void __set_special_pids(struct pid *pid);
1974 
1975 /* per-UID process charging. */
1976 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1977 static inline struct user_struct *get_uid(struct user_struct *u)
1978 {
1979 	atomic_inc(&u->__count);
1980 	return u;
1981 }
1982 extern void free_uid(struct user_struct *);
1983 extern void release_uids(struct user_namespace *ns);
1984 
1985 #include <asm/current.h>
1986 
1987 extern void do_timer(unsigned long ticks);
1988 
1989 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1990 extern int wake_up_process(struct task_struct *tsk);
1991 extern void wake_up_new_task(struct task_struct *tsk,
1992 				unsigned long clone_flags);
1993 #ifdef CONFIG_SMP
1994  extern void kick_process(struct task_struct *tsk);
1995 #else
1996  static inline void kick_process(struct task_struct *tsk) { }
1997 #endif
1998 extern void sched_fork(struct task_struct *p, int clone_flags);
1999 extern void sched_dead(struct task_struct *p);
2000 
2001 extern void proc_caches_init(void);
2002 extern void flush_signals(struct task_struct *);
2003 extern void __flush_signals(struct task_struct *);
2004 extern void ignore_signals(struct task_struct *);
2005 extern void flush_signal_handlers(struct task_struct *, int force_default);
2006 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2007 
2008 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2009 {
2010 	unsigned long flags;
2011 	int ret;
2012 
2013 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2014 	ret = dequeue_signal(tsk, mask, info);
2015 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2016 
2017 	return ret;
2018 }
2019 
2020 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2021 			      sigset_t *mask);
2022 extern void unblock_all_signals(void);
2023 extern void release_task(struct task_struct * p);
2024 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2025 extern int force_sigsegv(int, struct task_struct *);
2026 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2027 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2028 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2029 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2030 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2031 extern int kill_pid(struct pid *pid, int sig, int priv);
2032 extern int kill_proc_info(int, struct siginfo *, pid_t);
2033 extern int do_notify_parent(struct task_struct *, int);
2034 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2035 extern void force_sig(int, struct task_struct *);
2036 extern int send_sig(int, struct task_struct *, int);
2037 extern void zap_other_threads(struct task_struct *p);
2038 extern struct sigqueue *sigqueue_alloc(void);
2039 extern void sigqueue_free(struct sigqueue *);
2040 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2041 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2042 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2043 
2044 static inline int kill_cad_pid(int sig, int priv)
2045 {
2046 	return kill_pid(cad_pid, sig, priv);
2047 }
2048 
2049 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2050 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2051 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2052 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2053 
2054 /*
2055  * True if we are on the alternate signal stack.
2056  */
2057 static inline int on_sig_stack(unsigned long sp)
2058 {
2059 #ifdef CONFIG_STACK_GROWSUP
2060 	return sp >= current->sas_ss_sp &&
2061 		sp - current->sas_ss_sp < current->sas_ss_size;
2062 #else
2063 	return sp > current->sas_ss_sp &&
2064 		sp - current->sas_ss_sp <= current->sas_ss_size;
2065 #endif
2066 }
2067 
2068 static inline int sas_ss_flags(unsigned long sp)
2069 {
2070 	return (current->sas_ss_size == 0 ? SS_DISABLE
2071 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2072 }
2073 
2074 /*
2075  * Routines for handling mm_structs
2076  */
2077 extern struct mm_struct * mm_alloc(void);
2078 
2079 /* mmdrop drops the mm and the page tables */
2080 extern void __mmdrop(struct mm_struct *);
2081 static inline void mmdrop(struct mm_struct * mm)
2082 {
2083 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2084 		__mmdrop(mm);
2085 }
2086 
2087 /* mmput gets rid of the mappings and all user-space */
2088 extern void mmput(struct mm_struct *);
2089 /* Grab a reference to a task's mm, if it is not already going away */
2090 extern struct mm_struct *get_task_mm(struct task_struct *task);
2091 /* Remove the current tasks stale references to the old mm_struct */
2092 extern void mm_release(struct task_struct *, struct mm_struct *);
2093 /* Allocate a new mm structure and copy contents from tsk->mm */
2094 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2095 
2096 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2097 			struct task_struct *, struct pt_regs *);
2098 extern void flush_thread(void);
2099 extern void exit_thread(void);
2100 
2101 extern void exit_files(struct task_struct *);
2102 extern void __cleanup_signal(struct signal_struct *);
2103 extern void __cleanup_sighand(struct sighand_struct *);
2104 
2105 extern void exit_itimers(struct signal_struct *);
2106 extern void flush_itimer_signals(void);
2107 
2108 extern NORET_TYPE void do_group_exit(int);
2109 
2110 extern void daemonize(const char *, ...);
2111 extern int allow_signal(int);
2112 extern int disallow_signal(int);
2113 
2114 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2115 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2116 struct task_struct *fork_idle(int);
2117 
2118 extern void set_task_comm(struct task_struct *tsk, char *from);
2119 extern char *get_task_comm(char *to, struct task_struct *tsk);
2120 
2121 #ifdef CONFIG_SMP
2122 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2123 #else
2124 static inline unsigned long wait_task_inactive(struct task_struct *p,
2125 					       long match_state)
2126 {
2127 	return 1;
2128 }
2129 #endif
2130 
2131 #define next_task(p) \
2132 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2133 
2134 #define for_each_process(p) \
2135 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2136 
2137 extern bool current_is_single_threaded(void);
2138 
2139 /*
2140  * Careful: do_each_thread/while_each_thread is a double loop so
2141  *          'break' will not work as expected - use goto instead.
2142  */
2143 #define do_each_thread(g, t) \
2144 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2145 
2146 #define while_each_thread(g, t) \
2147 	while ((t = next_thread(t)) != g)
2148 
2149 /* de_thread depends on thread_group_leader not being a pid based check */
2150 #define thread_group_leader(p)	(p == p->group_leader)
2151 
2152 /* Do to the insanities of de_thread it is possible for a process
2153  * to have the pid of the thread group leader without actually being
2154  * the thread group leader.  For iteration through the pids in proc
2155  * all we care about is that we have a task with the appropriate
2156  * pid, we don't actually care if we have the right task.
2157  */
2158 static inline int has_group_leader_pid(struct task_struct *p)
2159 {
2160 	return p->pid == p->tgid;
2161 }
2162 
2163 static inline
2164 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2165 {
2166 	return p1->tgid == p2->tgid;
2167 }
2168 
2169 static inline struct task_struct *next_thread(const struct task_struct *p)
2170 {
2171 	return list_entry_rcu(p->thread_group.next,
2172 			      struct task_struct, thread_group);
2173 }
2174 
2175 static inline int thread_group_empty(struct task_struct *p)
2176 {
2177 	return list_empty(&p->thread_group);
2178 }
2179 
2180 #define delay_group_leader(p) \
2181 		(thread_group_leader(p) && !thread_group_empty(p))
2182 
2183 static inline int task_detached(struct task_struct *p)
2184 {
2185 	return p->exit_signal == -1;
2186 }
2187 
2188 /*
2189  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2190  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2191  * pins the final release of task.io_context.  Also protects ->cpuset and
2192  * ->cgroup.subsys[].
2193  *
2194  * Nests both inside and outside of read_lock(&tasklist_lock).
2195  * It must not be nested with write_lock_irq(&tasklist_lock),
2196  * neither inside nor outside.
2197  */
2198 static inline void task_lock(struct task_struct *p)
2199 {
2200 	spin_lock(&p->alloc_lock);
2201 }
2202 
2203 static inline void task_unlock(struct task_struct *p)
2204 {
2205 	spin_unlock(&p->alloc_lock);
2206 }
2207 
2208 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2209 							unsigned long *flags);
2210 
2211 static inline void unlock_task_sighand(struct task_struct *tsk,
2212 						unsigned long *flags)
2213 {
2214 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2215 }
2216 
2217 #ifndef __HAVE_THREAD_FUNCTIONS
2218 
2219 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2220 #define task_stack_page(task)	((task)->stack)
2221 
2222 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2223 {
2224 	*task_thread_info(p) = *task_thread_info(org);
2225 	task_thread_info(p)->task = p;
2226 }
2227 
2228 static inline unsigned long *end_of_stack(struct task_struct *p)
2229 {
2230 	return (unsigned long *)(task_thread_info(p) + 1);
2231 }
2232 
2233 #endif
2234 
2235 static inline int object_is_on_stack(void *obj)
2236 {
2237 	void *stack = task_stack_page(current);
2238 
2239 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2240 }
2241 
2242 extern void thread_info_cache_init(void);
2243 
2244 #ifdef CONFIG_DEBUG_STACK_USAGE
2245 static inline unsigned long stack_not_used(struct task_struct *p)
2246 {
2247 	unsigned long *n = end_of_stack(p);
2248 
2249 	do { 	/* Skip over canary */
2250 		n++;
2251 	} while (!*n);
2252 
2253 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2254 }
2255 #endif
2256 
2257 /* set thread flags in other task's structures
2258  * - see asm/thread_info.h for TIF_xxxx flags available
2259  */
2260 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2261 {
2262 	set_ti_thread_flag(task_thread_info(tsk), flag);
2263 }
2264 
2265 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2266 {
2267 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2268 }
2269 
2270 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2271 {
2272 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2273 }
2274 
2275 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2276 {
2277 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2278 }
2279 
2280 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2281 {
2282 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2283 }
2284 
2285 static inline void set_tsk_need_resched(struct task_struct *tsk)
2286 {
2287 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2288 }
2289 
2290 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2291 {
2292 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2293 }
2294 
2295 static inline int test_tsk_need_resched(struct task_struct *tsk)
2296 {
2297 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2298 }
2299 
2300 static inline int restart_syscall(void)
2301 {
2302 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2303 	return -ERESTARTNOINTR;
2304 }
2305 
2306 static inline int signal_pending(struct task_struct *p)
2307 {
2308 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2309 }
2310 
2311 static inline int __fatal_signal_pending(struct task_struct *p)
2312 {
2313 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2314 }
2315 
2316 static inline int fatal_signal_pending(struct task_struct *p)
2317 {
2318 	return signal_pending(p) && __fatal_signal_pending(p);
2319 }
2320 
2321 static inline int signal_pending_state(long state, struct task_struct *p)
2322 {
2323 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2324 		return 0;
2325 	if (!signal_pending(p))
2326 		return 0;
2327 
2328 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2329 }
2330 
2331 static inline int need_resched(void)
2332 {
2333 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2334 }
2335 
2336 /*
2337  * cond_resched() and cond_resched_lock(): latency reduction via
2338  * explicit rescheduling in places that are safe. The return
2339  * value indicates whether a reschedule was done in fact.
2340  * cond_resched_lock() will drop the spinlock before scheduling,
2341  * cond_resched_softirq() will enable bhs before scheduling.
2342  */
2343 extern int _cond_resched(void);
2344 
2345 #define cond_resched() ({			\
2346 	__might_sleep(__FILE__, __LINE__, 0);	\
2347 	_cond_resched();			\
2348 })
2349 
2350 extern int __cond_resched_lock(spinlock_t *lock);
2351 
2352 #ifdef CONFIG_PREEMPT
2353 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2354 #else
2355 #define PREEMPT_LOCK_OFFSET	0
2356 #endif
2357 
2358 #define cond_resched_lock(lock) ({				\
2359 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2360 	__cond_resched_lock(lock);				\
2361 })
2362 
2363 extern int __cond_resched_softirq(void);
2364 
2365 #define cond_resched_softirq() ({				\
2366 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2367 	__cond_resched_softirq();				\
2368 })
2369 
2370 /*
2371  * Does a critical section need to be broken due to another
2372  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2373  * but a general need for low latency)
2374  */
2375 static inline int spin_needbreak(spinlock_t *lock)
2376 {
2377 #ifdef CONFIG_PREEMPT
2378 	return spin_is_contended(lock);
2379 #else
2380 	return 0;
2381 #endif
2382 }
2383 
2384 /*
2385  * Thread group CPU time accounting.
2386  */
2387 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2388 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2389 
2390 static inline void thread_group_cputime_init(struct signal_struct *sig)
2391 {
2392 	spin_lock_init(&sig->cputimer.lock);
2393 }
2394 
2395 static inline void thread_group_cputime_free(struct signal_struct *sig)
2396 {
2397 }
2398 
2399 /*
2400  * Reevaluate whether the task has signals pending delivery.
2401  * Wake the task if so.
2402  * This is required every time the blocked sigset_t changes.
2403  * callers must hold sighand->siglock.
2404  */
2405 extern void recalc_sigpending_and_wake(struct task_struct *t);
2406 extern void recalc_sigpending(void);
2407 
2408 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2409 
2410 /*
2411  * Wrappers for p->thread_info->cpu access. No-op on UP.
2412  */
2413 #ifdef CONFIG_SMP
2414 
2415 static inline unsigned int task_cpu(const struct task_struct *p)
2416 {
2417 	return task_thread_info(p)->cpu;
2418 }
2419 
2420 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2421 
2422 #else
2423 
2424 static inline unsigned int task_cpu(const struct task_struct *p)
2425 {
2426 	return 0;
2427 }
2428 
2429 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2430 {
2431 }
2432 
2433 #endif /* CONFIG_SMP */
2434 
2435 #ifdef CONFIG_TRACING
2436 extern void
2437 __trace_special(void *__tr, void *__data,
2438 		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2439 #else
2440 static inline void
2441 __trace_special(void *__tr, void *__data,
2442 		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2443 {
2444 }
2445 #endif
2446 
2447 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2448 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2449 
2450 extern void normalize_rt_tasks(void);
2451 
2452 #ifdef CONFIG_CGROUP_SCHED
2453 
2454 extern struct task_group init_task_group;
2455 
2456 extern struct task_group *sched_create_group(struct task_group *parent);
2457 extern void sched_destroy_group(struct task_group *tg);
2458 extern void sched_move_task(struct task_struct *tsk);
2459 #ifdef CONFIG_FAIR_GROUP_SCHED
2460 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2461 extern unsigned long sched_group_shares(struct task_group *tg);
2462 #endif
2463 #ifdef CONFIG_RT_GROUP_SCHED
2464 extern int sched_group_set_rt_runtime(struct task_group *tg,
2465 				      long rt_runtime_us);
2466 extern long sched_group_rt_runtime(struct task_group *tg);
2467 extern int sched_group_set_rt_period(struct task_group *tg,
2468 				      long rt_period_us);
2469 extern long sched_group_rt_period(struct task_group *tg);
2470 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2471 #endif
2472 #endif
2473 
2474 extern int task_can_switch_user(struct user_struct *up,
2475 					struct task_struct *tsk);
2476 
2477 #ifdef CONFIG_TASK_XACCT
2478 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2479 {
2480 	tsk->ioac.rchar += amt;
2481 }
2482 
2483 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2484 {
2485 	tsk->ioac.wchar += amt;
2486 }
2487 
2488 static inline void inc_syscr(struct task_struct *tsk)
2489 {
2490 	tsk->ioac.syscr++;
2491 }
2492 
2493 static inline void inc_syscw(struct task_struct *tsk)
2494 {
2495 	tsk->ioac.syscw++;
2496 }
2497 #else
2498 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2499 {
2500 }
2501 
2502 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2503 {
2504 }
2505 
2506 static inline void inc_syscr(struct task_struct *tsk)
2507 {
2508 }
2509 
2510 static inline void inc_syscw(struct task_struct *tsk)
2511 {
2512 }
2513 #endif
2514 
2515 #ifndef TASK_SIZE_OF
2516 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2517 #endif
2518 
2519 /*
2520  * Call the function if the target task is executing on a CPU right now:
2521  */
2522 extern void task_oncpu_function_call(struct task_struct *p,
2523 				     void (*func) (void *info), void *info);
2524 
2525 
2526 #ifdef CONFIG_MM_OWNER
2527 extern void mm_update_next_owner(struct mm_struct *mm);
2528 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2529 #else
2530 static inline void mm_update_next_owner(struct mm_struct *mm)
2531 {
2532 }
2533 
2534 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2535 {
2536 }
2537 #endif /* CONFIG_MM_OWNER */
2538 
2539 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2540 		unsigned int limit)
2541 {
2542 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2543 }
2544 
2545 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2546 		unsigned int limit)
2547 {
2548 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2549 }
2550 
2551 static inline unsigned long rlimit(unsigned int limit)
2552 {
2553 	return task_rlimit(current, limit);
2554 }
2555 
2556 static inline unsigned long rlimit_max(unsigned int limit)
2557 {
2558 	return task_rlimit_max(current, limit);
2559 }
2560 
2561 #endif /* __KERNEL__ */
2562 
2563 #endif
2564