1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(void); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(void); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_stopped_or_traced(task) \ 218 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 219 #define task_contributes_to_load(task) \ 220 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 221 (task->flags & PF_FREEZING) == 0) 222 223 #define __set_task_state(tsk, state_value) \ 224 do { (tsk)->state = (state_value); } while (0) 225 #define set_task_state(tsk, state_value) \ 226 set_mb((tsk)->state, (state_value)) 227 228 /* 229 * set_current_state() includes a barrier so that the write of current->state 230 * is correctly serialised wrt the caller's subsequent test of whether to 231 * actually sleep: 232 * 233 * set_current_state(TASK_UNINTERRUPTIBLE); 234 * if (do_i_need_to_sleep()) 235 * schedule(); 236 * 237 * If the caller does not need such serialisation then use __set_current_state() 238 */ 239 #define __set_current_state(state_value) \ 240 do { current->state = (state_value); } while (0) 241 #define set_current_state(state_value) \ 242 set_mb(current->state, (state_value)) 243 244 /* Task command name length */ 245 #define TASK_COMM_LEN 16 246 247 #include <linux/spinlock.h> 248 249 /* 250 * This serializes "schedule()" and also protects 251 * the run-queue from deletions/modifications (but 252 * _adding_ to the beginning of the run-queue has 253 * a separate lock). 254 */ 255 extern rwlock_t tasklist_lock; 256 extern spinlock_t mmlist_lock; 257 258 struct task_struct; 259 260 #ifdef CONFIG_PROVE_RCU 261 extern int lockdep_tasklist_lock_is_held(void); 262 #endif /* #ifdef CONFIG_PROVE_RCU */ 263 264 extern void sched_init(void); 265 extern void sched_init_smp(void); 266 extern asmlinkage void schedule_tail(struct task_struct *prev); 267 extern void init_idle(struct task_struct *idle, int cpu); 268 extern void init_idle_bootup_task(struct task_struct *idle); 269 270 extern int runqueue_is_locked(int cpu); 271 extern void task_rq_unlock_wait(struct task_struct *p); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern int select_nohz_load_balancer(int cpu); 276 extern int get_nohz_load_balancer(void); 277 extern int nohz_ratelimit(int cpu); 278 #else 279 static inline int select_nohz_load_balancer(int cpu) 280 { 281 return 0; 282 } 283 284 static inline int nohz_ratelimit(int cpu) 285 { 286 return 0; 287 } 288 #endif 289 290 /* 291 * Only dump TASK_* tasks. (0 for all tasks) 292 */ 293 extern void show_state_filter(unsigned long state_filter); 294 295 static inline void show_state(void) 296 { 297 show_state_filter(0); 298 } 299 300 extern void show_regs(struct pt_regs *); 301 302 /* 303 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 304 * task), SP is the stack pointer of the first frame that should be shown in the back 305 * trace (or NULL if the entire call-chain of the task should be shown). 306 */ 307 extern void show_stack(struct task_struct *task, unsigned long *sp); 308 309 void io_schedule(void); 310 long io_schedule_timeout(long timeout); 311 312 extern void cpu_init (void); 313 extern void trap_init(void); 314 extern void update_process_times(int user); 315 extern void scheduler_tick(void); 316 317 extern void sched_show_task(struct task_struct *p); 318 319 #ifdef CONFIG_DETECT_SOFTLOCKUP 320 extern void softlockup_tick(void); 321 extern void touch_softlockup_watchdog(void); 322 extern void touch_softlockup_watchdog_sync(void); 323 extern void touch_all_softlockup_watchdogs(void); 324 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 325 void __user *buffer, 326 size_t *lenp, loff_t *ppos); 327 extern unsigned int softlockup_panic; 328 extern int softlockup_thresh; 329 #else 330 static inline void softlockup_tick(void) 331 { 332 } 333 static inline void touch_softlockup_watchdog(void) 334 { 335 } 336 static inline void touch_softlockup_watchdog_sync(void) 337 { 338 } 339 static inline void touch_all_softlockup_watchdogs(void) 340 { 341 } 342 #endif 343 344 #ifdef CONFIG_DETECT_HUNG_TASK 345 extern unsigned int sysctl_hung_task_panic; 346 extern unsigned long sysctl_hung_task_check_count; 347 extern unsigned long sysctl_hung_task_timeout_secs; 348 extern unsigned long sysctl_hung_task_warnings; 349 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 350 void __user *buffer, 351 size_t *lenp, loff_t *ppos); 352 #endif 353 354 /* Attach to any functions which should be ignored in wchan output. */ 355 #define __sched __attribute__((__section__(".sched.text"))) 356 357 /* Linker adds these: start and end of __sched functions */ 358 extern char __sched_text_start[], __sched_text_end[]; 359 360 /* Is this address in the __sched functions? */ 361 extern int in_sched_functions(unsigned long addr); 362 363 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 364 extern signed long schedule_timeout(signed long timeout); 365 extern signed long schedule_timeout_interruptible(signed long timeout); 366 extern signed long schedule_timeout_killable(signed long timeout); 367 extern signed long schedule_timeout_uninterruptible(signed long timeout); 368 asmlinkage void schedule(void); 369 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 370 371 struct nsproxy; 372 struct user_namespace; 373 374 /* 375 * Default maximum number of active map areas, this limits the number of vmas 376 * per mm struct. Users can overwrite this number by sysctl but there is a 377 * problem. 378 * 379 * When a program's coredump is generated as ELF format, a section is created 380 * per a vma. In ELF, the number of sections is represented in unsigned short. 381 * This means the number of sections should be smaller than 65535 at coredump. 382 * Because the kernel adds some informative sections to a image of program at 383 * generating coredump, we need some margin. The number of extra sections is 384 * 1-3 now and depends on arch. We use "5" as safe margin, here. 385 */ 386 #define MAPCOUNT_ELF_CORE_MARGIN (5) 387 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 388 389 extern int sysctl_max_map_count; 390 391 #include <linux/aio.h> 392 393 #ifdef CONFIG_MMU 394 extern void arch_pick_mmap_layout(struct mm_struct *mm); 395 extern unsigned long 396 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 397 unsigned long, unsigned long); 398 extern unsigned long 399 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 400 unsigned long len, unsigned long pgoff, 401 unsigned long flags); 402 extern void arch_unmap_area(struct mm_struct *, unsigned long); 403 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 404 #else 405 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 406 #endif 407 408 409 extern void set_dumpable(struct mm_struct *mm, int value); 410 extern int get_dumpable(struct mm_struct *mm); 411 412 /* mm flags */ 413 /* dumpable bits */ 414 #define MMF_DUMPABLE 0 /* core dump is permitted */ 415 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 416 417 #define MMF_DUMPABLE_BITS 2 418 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 419 420 /* coredump filter bits */ 421 #define MMF_DUMP_ANON_PRIVATE 2 422 #define MMF_DUMP_ANON_SHARED 3 423 #define MMF_DUMP_MAPPED_PRIVATE 4 424 #define MMF_DUMP_MAPPED_SHARED 5 425 #define MMF_DUMP_ELF_HEADERS 6 426 #define MMF_DUMP_HUGETLB_PRIVATE 7 427 #define MMF_DUMP_HUGETLB_SHARED 8 428 429 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 430 #define MMF_DUMP_FILTER_BITS 7 431 #define MMF_DUMP_FILTER_MASK \ 432 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 433 #define MMF_DUMP_FILTER_DEFAULT \ 434 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 435 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 436 437 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 438 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 439 #else 440 # define MMF_DUMP_MASK_DEFAULT_ELF 0 441 #endif 442 /* leave room for more dump flags */ 443 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 444 445 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 446 447 struct sighand_struct { 448 atomic_t count; 449 struct k_sigaction action[_NSIG]; 450 spinlock_t siglock; 451 wait_queue_head_t signalfd_wqh; 452 }; 453 454 struct pacct_struct { 455 int ac_flag; 456 long ac_exitcode; 457 unsigned long ac_mem; 458 cputime_t ac_utime, ac_stime; 459 unsigned long ac_minflt, ac_majflt; 460 }; 461 462 struct cpu_itimer { 463 cputime_t expires; 464 cputime_t incr; 465 u32 error; 466 u32 incr_error; 467 }; 468 469 /** 470 * struct task_cputime - collected CPU time counts 471 * @utime: time spent in user mode, in &cputime_t units 472 * @stime: time spent in kernel mode, in &cputime_t units 473 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 474 * 475 * This structure groups together three kinds of CPU time that are 476 * tracked for threads and thread groups. Most things considering 477 * CPU time want to group these counts together and treat all three 478 * of them in parallel. 479 */ 480 struct task_cputime { 481 cputime_t utime; 482 cputime_t stime; 483 unsigned long long sum_exec_runtime; 484 }; 485 /* Alternate field names when used to cache expirations. */ 486 #define prof_exp stime 487 #define virt_exp utime 488 #define sched_exp sum_exec_runtime 489 490 #define INIT_CPUTIME \ 491 (struct task_cputime) { \ 492 .utime = cputime_zero, \ 493 .stime = cputime_zero, \ 494 .sum_exec_runtime = 0, \ 495 } 496 497 /* 498 * Disable preemption until the scheduler is running. 499 * Reset by start_kernel()->sched_init()->init_idle(). 500 * 501 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 502 * before the scheduler is active -- see should_resched(). 503 */ 504 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 505 506 /** 507 * struct thread_group_cputimer - thread group interval timer counts 508 * @cputime: thread group interval timers. 509 * @running: non-zero when there are timers running and 510 * @cputime receives updates. 511 * @lock: lock for fields in this struct. 512 * 513 * This structure contains the version of task_cputime, above, that is 514 * used for thread group CPU timer calculations. 515 */ 516 struct thread_group_cputimer { 517 struct task_cputime cputime; 518 int running; 519 spinlock_t lock; 520 }; 521 522 /* 523 * NOTE! "signal_struct" does not have it's own 524 * locking, because a shared signal_struct always 525 * implies a shared sighand_struct, so locking 526 * sighand_struct is always a proper superset of 527 * the locking of signal_struct. 528 */ 529 struct signal_struct { 530 atomic_t count; 531 atomic_t live; 532 533 wait_queue_head_t wait_chldexit; /* for wait4() */ 534 535 /* current thread group signal load-balancing target: */ 536 struct task_struct *curr_target; 537 538 /* shared signal handling: */ 539 struct sigpending shared_pending; 540 541 /* thread group exit support */ 542 int group_exit_code; 543 /* overloaded: 544 * - notify group_exit_task when ->count is equal to notify_count 545 * - everyone except group_exit_task is stopped during signal delivery 546 * of fatal signals, group_exit_task processes the signal. 547 */ 548 int notify_count; 549 struct task_struct *group_exit_task; 550 551 /* thread group stop support, overloads group_exit_code too */ 552 int group_stop_count; 553 unsigned int flags; /* see SIGNAL_* flags below */ 554 555 /* POSIX.1b Interval Timers */ 556 struct list_head posix_timers; 557 558 /* ITIMER_REAL timer for the process */ 559 struct hrtimer real_timer; 560 struct pid *leader_pid; 561 ktime_t it_real_incr; 562 563 /* 564 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 565 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 566 * values are defined to 0 and 1 respectively 567 */ 568 struct cpu_itimer it[2]; 569 570 /* 571 * Thread group totals for process CPU timers. 572 * See thread_group_cputimer(), et al, for details. 573 */ 574 struct thread_group_cputimer cputimer; 575 576 /* Earliest-expiration cache. */ 577 struct task_cputime cputime_expires; 578 579 struct list_head cpu_timers[3]; 580 581 struct pid *tty_old_pgrp; 582 583 /* boolean value for session group leader */ 584 int leader; 585 586 struct tty_struct *tty; /* NULL if no tty */ 587 588 /* 589 * Cumulative resource counters for dead threads in the group, 590 * and for reaped dead child processes forked by this group. 591 * Live threads maintain their own counters and add to these 592 * in __exit_signal, except for the group leader. 593 */ 594 cputime_t utime, stime, cutime, cstime; 595 cputime_t gtime; 596 cputime_t cgtime; 597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 598 cputime_t prev_utime, prev_stime; 599 #endif 600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 602 unsigned long inblock, oublock, cinblock, coublock; 603 unsigned long maxrss, cmaxrss; 604 struct task_io_accounting ioac; 605 606 /* 607 * Cumulative ns of schedule CPU time fo dead threads in the 608 * group, not including a zombie group leader, (This only differs 609 * from jiffies_to_ns(utime + stime) if sched_clock uses something 610 * other than jiffies.) 611 */ 612 unsigned long long sum_sched_runtime; 613 614 /* 615 * We don't bother to synchronize most readers of this at all, 616 * because there is no reader checking a limit that actually needs 617 * to get both rlim_cur and rlim_max atomically, and either one 618 * alone is a single word that can safely be read normally. 619 * getrlimit/setrlimit use task_lock(current->group_leader) to 620 * protect this instead of the siglock, because they really 621 * have no need to disable irqs. 622 */ 623 struct rlimit rlim[RLIM_NLIMITS]; 624 625 #ifdef CONFIG_BSD_PROCESS_ACCT 626 struct pacct_struct pacct; /* per-process accounting information */ 627 #endif 628 #ifdef CONFIG_TASKSTATS 629 struct taskstats *stats; 630 #endif 631 #ifdef CONFIG_AUDIT 632 unsigned audit_tty; 633 struct tty_audit_buf *tty_audit_buf; 634 #endif 635 636 int oom_adj; /* OOM kill score adjustment (bit shift) */ 637 }; 638 639 /* Context switch must be unlocked if interrupts are to be enabled */ 640 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 641 # define __ARCH_WANT_UNLOCKED_CTXSW 642 #endif 643 644 /* 645 * Bits in flags field of signal_struct. 646 */ 647 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 648 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 649 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 650 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 651 /* 652 * Pending notifications to parent. 653 */ 654 #define SIGNAL_CLD_STOPPED 0x00000010 655 #define SIGNAL_CLD_CONTINUED 0x00000020 656 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 657 658 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 659 660 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 661 static inline int signal_group_exit(const struct signal_struct *sig) 662 { 663 return (sig->flags & SIGNAL_GROUP_EXIT) || 664 (sig->group_exit_task != NULL); 665 } 666 667 /* 668 * Some day this will be a full-fledged user tracking system.. 669 */ 670 struct user_struct { 671 atomic_t __count; /* reference count */ 672 atomic_t processes; /* How many processes does this user have? */ 673 atomic_t files; /* How many open files does this user have? */ 674 atomic_t sigpending; /* How many pending signals does this user have? */ 675 #ifdef CONFIG_INOTIFY_USER 676 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 677 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 678 #endif 679 #ifdef CONFIG_EPOLL 680 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 681 #endif 682 #ifdef CONFIG_POSIX_MQUEUE 683 /* protected by mq_lock */ 684 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 685 #endif 686 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 687 688 #ifdef CONFIG_KEYS 689 struct key *uid_keyring; /* UID specific keyring */ 690 struct key *session_keyring; /* UID's default session keyring */ 691 #endif 692 693 /* Hash table maintenance information */ 694 struct hlist_node uidhash_node; 695 uid_t uid; 696 struct user_namespace *user_ns; 697 698 #ifdef CONFIG_PERF_EVENTS 699 atomic_long_t locked_vm; 700 #endif 701 }; 702 703 extern int uids_sysfs_init(void); 704 705 extern struct user_struct *find_user(uid_t); 706 707 extern struct user_struct root_user; 708 #define INIT_USER (&root_user) 709 710 711 struct backing_dev_info; 712 struct reclaim_state; 713 714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 715 struct sched_info { 716 /* cumulative counters */ 717 unsigned long pcount; /* # of times run on this cpu */ 718 unsigned long long run_delay; /* time spent waiting on a runqueue */ 719 720 /* timestamps */ 721 unsigned long long last_arrival,/* when we last ran on a cpu */ 722 last_queued; /* when we were last queued to run */ 723 #ifdef CONFIG_SCHEDSTATS 724 /* BKL stats */ 725 unsigned int bkl_count; 726 #endif 727 }; 728 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 729 730 #ifdef CONFIG_TASK_DELAY_ACCT 731 struct task_delay_info { 732 spinlock_t lock; 733 unsigned int flags; /* Private per-task flags */ 734 735 /* For each stat XXX, add following, aligned appropriately 736 * 737 * struct timespec XXX_start, XXX_end; 738 * u64 XXX_delay; 739 * u32 XXX_count; 740 * 741 * Atomicity of updates to XXX_delay, XXX_count protected by 742 * single lock above (split into XXX_lock if contention is an issue). 743 */ 744 745 /* 746 * XXX_count is incremented on every XXX operation, the delay 747 * associated with the operation is added to XXX_delay. 748 * XXX_delay contains the accumulated delay time in nanoseconds. 749 */ 750 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 751 u64 blkio_delay; /* wait for sync block io completion */ 752 u64 swapin_delay; /* wait for swapin block io completion */ 753 u32 blkio_count; /* total count of the number of sync block */ 754 /* io operations performed */ 755 u32 swapin_count; /* total count of the number of swapin block */ 756 /* io operations performed */ 757 758 struct timespec freepages_start, freepages_end; 759 u64 freepages_delay; /* wait for memory reclaim */ 760 u32 freepages_count; /* total count of memory reclaim */ 761 }; 762 #endif /* CONFIG_TASK_DELAY_ACCT */ 763 764 static inline int sched_info_on(void) 765 { 766 #ifdef CONFIG_SCHEDSTATS 767 return 1; 768 #elif defined(CONFIG_TASK_DELAY_ACCT) 769 extern int delayacct_on; 770 return delayacct_on; 771 #else 772 return 0; 773 #endif 774 } 775 776 enum cpu_idle_type { 777 CPU_IDLE, 778 CPU_NOT_IDLE, 779 CPU_NEWLY_IDLE, 780 CPU_MAX_IDLE_TYPES 781 }; 782 783 /* 784 * sched-domains (multiprocessor balancing) declarations: 785 */ 786 787 /* 788 * Increase resolution of nice-level calculations: 789 */ 790 #define SCHED_LOAD_SHIFT 10 791 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 792 793 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 794 795 #ifdef CONFIG_SMP 796 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 797 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 798 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 799 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 800 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 801 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 802 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 803 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 804 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 805 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 806 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 807 808 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 809 810 enum powersavings_balance_level { 811 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 812 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 813 * first for long running threads 814 */ 815 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 816 * cpu package for power savings 817 */ 818 MAX_POWERSAVINGS_BALANCE_LEVELS 819 }; 820 821 extern int sched_mc_power_savings, sched_smt_power_savings; 822 823 static inline int sd_balance_for_mc_power(void) 824 { 825 if (sched_smt_power_savings) 826 return SD_POWERSAVINGS_BALANCE; 827 828 if (!sched_mc_power_savings) 829 return SD_PREFER_SIBLING; 830 831 return 0; 832 } 833 834 static inline int sd_balance_for_package_power(void) 835 { 836 if (sched_mc_power_savings | sched_smt_power_savings) 837 return SD_POWERSAVINGS_BALANCE; 838 839 return SD_PREFER_SIBLING; 840 } 841 842 /* 843 * Optimise SD flags for power savings: 844 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 845 * Keep default SD flags if sched_{smt,mc}_power_saving=0 846 */ 847 848 static inline int sd_power_saving_flags(void) 849 { 850 if (sched_mc_power_savings | sched_smt_power_savings) 851 return SD_BALANCE_NEWIDLE; 852 853 return 0; 854 } 855 856 struct sched_group { 857 struct sched_group *next; /* Must be a circular list */ 858 859 /* 860 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 861 * single CPU. 862 */ 863 unsigned int cpu_power; 864 865 /* 866 * The CPUs this group covers. 867 * 868 * NOTE: this field is variable length. (Allocated dynamically 869 * by attaching extra space to the end of the structure, 870 * depending on how many CPUs the kernel has booted up with) 871 * 872 * It is also be embedded into static data structures at build 873 * time. (See 'struct static_sched_group' in kernel/sched.c) 874 */ 875 unsigned long cpumask[0]; 876 }; 877 878 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 879 { 880 return to_cpumask(sg->cpumask); 881 } 882 883 enum sched_domain_level { 884 SD_LV_NONE = 0, 885 SD_LV_SIBLING, 886 SD_LV_MC, 887 SD_LV_CPU, 888 SD_LV_NODE, 889 SD_LV_ALLNODES, 890 SD_LV_MAX 891 }; 892 893 struct sched_domain_attr { 894 int relax_domain_level; 895 }; 896 897 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 898 .relax_domain_level = -1, \ 899 } 900 901 struct sched_domain { 902 /* These fields must be setup */ 903 struct sched_domain *parent; /* top domain must be null terminated */ 904 struct sched_domain *child; /* bottom domain must be null terminated */ 905 struct sched_group *groups; /* the balancing groups of the domain */ 906 unsigned long min_interval; /* Minimum balance interval ms */ 907 unsigned long max_interval; /* Maximum balance interval ms */ 908 unsigned int busy_factor; /* less balancing by factor if busy */ 909 unsigned int imbalance_pct; /* No balance until over watermark */ 910 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 911 unsigned int busy_idx; 912 unsigned int idle_idx; 913 unsigned int newidle_idx; 914 unsigned int wake_idx; 915 unsigned int forkexec_idx; 916 unsigned int smt_gain; 917 int flags; /* See SD_* */ 918 enum sched_domain_level level; 919 920 /* Runtime fields. */ 921 unsigned long last_balance; /* init to jiffies. units in jiffies */ 922 unsigned int balance_interval; /* initialise to 1. units in ms. */ 923 unsigned int nr_balance_failed; /* initialise to 0 */ 924 925 u64 last_update; 926 927 #ifdef CONFIG_SCHEDSTATS 928 /* load_balance() stats */ 929 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 930 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 931 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 932 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 933 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 934 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 935 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 936 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 937 938 /* Active load balancing */ 939 unsigned int alb_count; 940 unsigned int alb_failed; 941 unsigned int alb_pushed; 942 943 /* SD_BALANCE_EXEC stats */ 944 unsigned int sbe_count; 945 unsigned int sbe_balanced; 946 unsigned int sbe_pushed; 947 948 /* SD_BALANCE_FORK stats */ 949 unsigned int sbf_count; 950 unsigned int sbf_balanced; 951 unsigned int sbf_pushed; 952 953 /* try_to_wake_up() stats */ 954 unsigned int ttwu_wake_remote; 955 unsigned int ttwu_move_affine; 956 unsigned int ttwu_move_balance; 957 #endif 958 #ifdef CONFIG_SCHED_DEBUG 959 char *name; 960 #endif 961 962 unsigned int span_weight; 963 /* 964 * Span of all CPUs in this domain. 965 * 966 * NOTE: this field is variable length. (Allocated dynamically 967 * by attaching extra space to the end of the structure, 968 * depending on how many CPUs the kernel has booted up with) 969 * 970 * It is also be embedded into static data structures at build 971 * time. (See 'struct static_sched_domain' in kernel/sched.c) 972 */ 973 unsigned long span[0]; 974 }; 975 976 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 977 { 978 return to_cpumask(sd->span); 979 } 980 981 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 982 struct sched_domain_attr *dattr_new); 983 984 /* Allocate an array of sched domains, for partition_sched_domains(). */ 985 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 986 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 987 988 /* Test a flag in parent sched domain */ 989 static inline int test_sd_parent(struct sched_domain *sd, int flag) 990 { 991 if (sd->parent && (sd->parent->flags & flag)) 992 return 1; 993 994 return 0; 995 } 996 997 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 998 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 999 1000 #else /* CONFIG_SMP */ 1001 1002 struct sched_domain_attr; 1003 1004 static inline void 1005 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1006 struct sched_domain_attr *dattr_new) 1007 { 1008 } 1009 #endif /* !CONFIG_SMP */ 1010 1011 1012 struct io_context; /* See blkdev.h */ 1013 1014 1015 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1016 extern void prefetch_stack(struct task_struct *t); 1017 #else 1018 static inline void prefetch_stack(struct task_struct *t) { } 1019 #endif 1020 1021 struct audit_context; /* See audit.c */ 1022 struct mempolicy; 1023 struct pipe_inode_info; 1024 struct uts_namespace; 1025 1026 struct rq; 1027 struct sched_domain; 1028 1029 /* 1030 * wake flags 1031 */ 1032 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1033 #define WF_FORK 0x02 /* child wakeup after fork */ 1034 1035 #define ENQUEUE_WAKEUP 1 1036 #define ENQUEUE_WAKING 2 1037 #define ENQUEUE_HEAD 4 1038 1039 #define DEQUEUE_SLEEP 1 1040 1041 struct sched_class { 1042 const struct sched_class *next; 1043 1044 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1045 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1046 void (*yield_task) (struct rq *rq); 1047 1048 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1049 1050 struct task_struct * (*pick_next_task) (struct rq *rq); 1051 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1052 1053 #ifdef CONFIG_SMP 1054 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1055 int sd_flag, int flags); 1056 1057 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1058 void (*post_schedule) (struct rq *this_rq); 1059 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1060 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1061 1062 void (*set_cpus_allowed)(struct task_struct *p, 1063 const struct cpumask *newmask); 1064 1065 void (*rq_online)(struct rq *rq); 1066 void (*rq_offline)(struct rq *rq); 1067 #endif 1068 1069 void (*set_curr_task) (struct rq *rq); 1070 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1071 void (*task_fork) (struct task_struct *p); 1072 1073 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1074 int running); 1075 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1076 int running); 1077 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1078 int oldprio, int running); 1079 1080 unsigned int (*get_rr_interval) (struct rq *rq, 1081 struct task_struct *task); 1082 1083 #ifdef CONFIG_FAIR_GROUP_SCHED 1084 void (*moved_group) (struct task_struct *p, int on_rq); 1085 #endif 1086 }; 1087 1088 struct load_weight { 1089 unsigned long weight, inv_weight; 1090 }; 1091 1092 #ifdef CONFIG_SCHEDSTATS 1093 struct sched_statistics { 1094 u64 wait_start; 1095 u64 wait_max; 1096 u64 wait_count; 1097 u64 wait_sum; 1098 u64 iowait_count; 1099 u64 iowait_sum; 1100 1101 u64 sleep_start; 1102 u64 sleep_max; 1103 s64 sum_sleep_runtime; 1104 1105 u64 block_start; 1106 u64 block_max; 1107 u64 exec_max; 1108 u64 slice_max; 1109 1110 u64 nr_migrations_cold; 1111 u64 nr_failed_migrations_affine; 1112 u64 nr_failed_migrations_running; 1113 u64 nr_failed_migrations_hot; 1114 u64 nr_forced_migrations; 1115 1116 u64 nr_wakeups; 1117 u64 nr_wakeups_sync; 1118 u64 nr_wakeups_migrate; 1119 u64 nr_wakeups_local; 1120 u64 nr_wakeups_remote; 1121 u64 nr_wakeups_affine; 1122 u64 nr_wakeups_affine_attempts; 1123 u64 nr_wakeups_passive; 1124 u64 nr_wakeups_idle; 1125 }; 1126 #endif 1127 1128 struct sched_entity { 1129 struct load_weight load; /* for load-balancing */ 1130 struct rb_node run_node; 1131 struct list_head group_node; 1132 unsigned int on_rq; 1133 1134 u64 exec_start; 1135 u64 sum_exec_runtime; 1136 u64 vruntime; 1137 u64 prev_sum_exec_runtime; 1138 1139 u64 nr_migrations; 1140 1141 #ifdef CONFIG_SCHEDSTATS 1142 struct sched_statistics statistics; 1143 #endif 1144 1145 #ifdef CONFIG_FAIR_GROUP_SCHED 1146 struct sched_entity *parent; 1147 /* rq on which this entity is (to be) queued: */ 1148 struct cfs_rq *cfs_rq; 1149 /* rq "owned" by this entity/group: */ 1150 struct cfs_rq *my_q; 1151 #endif 1152 }; 1153 1154 struct sched_rt_entity { 1155 struct list_head run_list; 1156 unsigned long timeout; 1157 unsigned int time_slice; 1158 int nr_cpus_allowed; 1159 1160 struct sched_rt_entity *back; 1161 #ifdef CONFIG_RT_GROUP_SCHED 1162 struct sched_rt_entity *parent; 1163 /* rq on which this entity is (to be) queued: */ 1164 struct rt_rq *rt_rq; 1165 /* rq "owned" by this entity/group: */ 1166 struct rt_rq *my_q; 1167 #endif 1168 }; 1169 1170 struct rcu_node; 1171 1172 struct task_struct { 1173 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1174 void *stack; 1175 atomic_t usage; 1176 unsigned int flags; /* per process flags, defined below */ 1177 unsigned int ptrace; 1178 1179 int lock_depth; /* BKL lock depth */ 1180 1181 #ifdef CONFIG_SMP 1182 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1183 int oncpu; 1184 #endif 1185 #endif 1186 1187 int prio, static_prio, normal_prio; 1188 unsigned int rt_priority; 1189 const struct sched_class *sched_class; 1190 struct sched_entity se; 1191 struct sched_rt_entity rt; 1192 1193 #ifdef CONFIG_PREEMPT_NOTIFIERS 1194 /* list of struct preempt_notifier: */ 1195 struct hlist_head preempt_notifiers; 1196 #endif 1197 1198 /* 1199 * fpu_counter contains the number of consecutive context switches 1200 * that the FPU is used. If this is over a threshold, the lazy fpu 1201 * saving becomes unlazy to save the trap. This is an unsigned char 1202 * so that after 256 times the counter wraps and the behavior turns 1203 * lazy again; this to deal with bursty apps that only use FPU for 1204 * a short time 1205 */ 1206 unsigned char fpu_counter; 1207 #ifdef CONFIG_BLK_DEV_IO_TRACE 1208 unsigned int btrace_seq; 1209 #endif 1210 1211 unsigned int policy; 1212 cpumask_t cpus_allowed; 1213 1214 #ifdef CONFIG_TREE_PREEMPT_RCU 1215 int rcu_read_lock_nesting; 1216 char rcu_read_unlock_special; 1217 struct rcu_node *rcu_blocked_node; 1218 struct list_head rcu_node_entry; 1219 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1220 1221 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1222 struct sched_info sched_info; 1223 #endif 1224 1225 struct list_head tasks; 1226 struct plist_node pushable_tasks; 1227 1228 struct mm_struct *mm, *active_mm; 1229 #if defined(SPLIT_RSS_COUNTING) 1230 struct task_rss_stat rss_stat; 1231 #endif 1232 /* task state */ 1233 int exit_state; 1234 int exit_code, exit_signal; 1235 int pdeath_signal; /* The signal sent when the parent dies */ 1236 /* ??? */ 1237 unsigned int personality; 1238 unsigned did_exec:1; 1239 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1240 * execve */ 1241 unsigned in_iowait:1; 1242 1243 1244 /* Revert to default priority/policy when forking */ 1245 unsigned sched_reset_on_fork:1; 1246 1247 pid_t pid; 1248 pid_t tgid; 1249 1250 #ifdef CONFIG_CC_STACKPROTECTOR 1251 /* Canary value for the -fstack-protector gcc feature */ 1252 unsigned long stack_canary; 1253 #endif 1254 1255 /* 1256 * pointers to (original) parent process, youngest child, younger sibling, 1257 * older sibling, respectively. (p->father can be replaced with 1258 * p->real_parent->pid) 1259 */ 1260 struct task_struct *real_parent; /* real parent process */ 1261 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1262 /* 1263 * children/sibling forms the list of my natural children 1264 */ 1265 struct list_head children; /* list of my children */ 1266 struct list_head sibling; /* linkage in my parent's children list */ 1267 struct task_struct *group_leader; /* threadgroup leader */ 1268 1269 /* 1270 * ptraced is the list of tasks this task is using ptrace on. 1271 * This includes both natural children and PTRACE_ATTACH targets. 1272 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1273 */ 1274 struct list_head ptraced; 1275 struct list_head ptrace_entry; 1276 1277 /* PID/PID hash table linkage. */ 1278 struct pid_link pids[PIDTYPE_MAX]; 1279 struct list_head thread_group; 1280 1281 struct completion *vfork_done; /* for vfork() */ 1282 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1283 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1284 1285 cputime_t utime, stime, utimescaled, stimescaled; 1286 cputime_t gtime; 1287 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1288 cputime_t prev_utime, prev_stime; 1289 #endif 1290 unsigned long nvcsw, nivcsw; /* context switch counts */ 1291 struct timespec start_time; /* monotonic time */ 1292 struct timespec real_start_time; /* boot based time */ 1293 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1294 unsigned long min_flt, maj_flt; 1295 1296 struct task_cputime cputime_expires; 1297 struct list_head cpu_timers[3]; 1298 1299 /* process credentials */ 1300 const struct cred *real_cred; /* objective and real subjective task 1301 * credentials (COW) */ 1302 const struct cred *cred; /* effective (overridable) subjective task 1303 * credentials (COW) */ 1304 struct mutex cred_guard_mutex; /* guard against foreign influences on 1305 * credential calculations 1306 * (notably. ptrace) */ 1307 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1308 1309 char comm[TASK_COMM_LEN]; /* executable name excluding path 1310 - access with [gs]et_task_comm (which lock 1311 it with task_lock()) 1312 - initialized normally by setup_new_exec */ 1313 /* file system info */ 1314 int link_count, total_link_count; 1315 #ifdef CONFIG_SYSVIPC 1316 /* ipc stuff */ 1317 struct sysv_sem sysvsem; 1318 #endif 1319 #ifdef CONFIG_DETECT_HUNG_TASK 1320 /* hung task detection */ 1321 unsigned long last_switch_count; 1322 #endif 1323 /* CPU-specific state of this task */ 1324 struct thread_struct thread; 1325 /* filesystem information */ 1326 struct fs_struct *fs; 1327 /* open file information */ 1328 struct files_struct *files; 1329 /* namespaces */ 1330 struct nsproxy *nsproxy; 1331 /* signal handlers */ 1332 struct signal_struct *signal; 1333 struct sighand_struct *sighand; 1334 1335 sigset_t blocked, real_blocked; 1336 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1337 struct sigpending pending; 1338 1339 unsigned long sas_ss_sp; 1340 size_t sas_ss_size; 1341 int (*notifier)(void *priv); 1342 void *notifier_data; 1343 sigset_t *notifier_mask; 1344 struct audit_context *audit_context; 1345 #ifdef CONFIG_AUDITSYSCALL 1346 uid_t loginuid; 1347 unsigned int sessionid; 1348 #endif 1349 seccomp_t seccomp; 1350 1351 /* Thread group tracking */ 1352 u32 parent_exec_id; 1353 u32 self_exec_id; 1354 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1355 * mempolicy */ 1356 spinlock_t alloc_lock; 1357 1358 #ifdef CONFIG_GENERIC_HARDIRQS 1359 /* IRQ handler threads */ 1360 struct irqaction *irqaction; 1361 #endif 1362 1363 /* Protection of the PI data structures: */ 1364 raw_spinlock_t pi_lock; 1365 1366 #ifdef CONFIG_RT_MUTEXES 1367 /* PI waiters blocked on a rt_mutex held by this task */ 1368 struct plist_head pi_waiters; 1369 /* Deadlock detection and priority inheritance handling */ 1370 struct rt_mutex_waiter *pi_blocked_on; 1371 #endif 1372 1373 #ifdef CONFIG_DEBUG_MUTEXES 1374 /* mutex deadlock detection */ 1375 struct mutex_waiter *blocked_on; 1376 #endif 1377 #ifdef CONFIG_TRACE_IRQFLAGS 1378 unsigned int irq_events; 1379 unsigned long hardirq_enable_ip; 1380 unsigned long hardirq_disable_ip; 1381 unsigned int hardirq_enable_event; 1382 unsigned int hardirq_disable_event; 1383 int hardirqs_enabled; 1384 int hardirq_context; 1385 unsigned long softirq_disable_ip; 1386 unsigned long softirq_enable_ip; 1387 unsigned int softirq_disable_event; 1388 unsigned int softirq_enable_event; 1389 int softirqs_enabled; 1390 int softirq_context; 1391 #endif 1392 #ifdef CONFIG_LOCKDEP 1393 # define MAX_LOCK_DEPTH 48UL 1394 u64 curr_chain_key; 1395 int lockdep_depth; 1396 unsigned int lockdep_recursion; 1397 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1398 gfp_t lockdep_reclaim_gfp; 1399 #endif 1400 1401 /* journalling filesystem info */ 1402 void *journal_info; 1403 1404 /* stacked block device info */ 1405 struct bio_list *bio_list; 1406 1407 /* VM state */ 1408 struct reclaim_state *reclaim_state; 1409 1410 struct backing_dev_info *backing_dev_info; 1411 1412 struct io_context *io_context; 1413 1414 unsigned long ptrace_message; 1415 siginfo_t *last_siginfo; /* For ptrace use. */ 1416 struct task_io_accounting ioac; 1417 #if defined(CONFIG_TASK_XACCT) 1418 u64 acct_rss_mem1; /* accumulated rss usage */ 1419 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1420 cputime_t acct_timexpd; /* stime + utime since last update */ 1421 #endif 1422 #ifdef CONFIG_CPUSETS 1423 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1424 int cpuset_mem_spread_rotor; 1425 #endif 1426 #ifdef CONFIG_CGROUPS 1427 /* Control Group info protected by css_set_lock */ 1428 struct css_set *cgroups; 1429 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1430 struct list_head cg_list; 1431 #endif 1432 #ifdef CONFIG_FUTEX 1433 struct robust_list_head __user *robust_list; 1434 #ifdef CONFIG_COMPAT 1435 struct compat_robust_list_head __user *compat_robust_list; 1436 #endif 1437 struct list_head pi_state_list; 1438 struct futex_pi_state *pi_state_cache; 1439 #endif 1440 #ifdef CONFIG_PERF_EVENTS 1441 struct perf_event_context *perf_event_ctxp; 1442 struct mutex perf_event_mutex; 1443 struct list_head perf_event_list; 1444 #endif 1445 #ifdef CONFIG_NUMA 1446 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1447 short il_next; 1448 #endif 1449 atomic_t fs_excl; /* holding fs exclusive resources */ 1450 struct rcu_head rcu; 1451 1452 /* 1453 * cache last used pipe for splice 1454 */ 1455 struct pipe_inode_info *splice_pipe; 1456 #ifdef CONFIG_TASK_DELAY_ACCT 1457 struct task_delay_info *delays; 1458 #endif 1459 #ifdef CONFIG_FAULT_INJECTION 1460 int make_it_fail; 1461 #endif 1462 struct prop_local_single dirties; 1463 #ifdef CONFIG_LATENCYTOP 1464 int latency_record_count; 1465 struct latency_record latency_record[LT_SAVECOUNT]; 1466 #endif 1467 /* 1468 * time slack values; these are used to round up poll() and 1469 * select() etc timeout values. These are in nanoseconds. 1470 */ 1471 unsigned long timer_slack_ns; 1472 unsigned long default_timer_slack_ns; 1473 1474 struct list_head *scm_work_list; 1475 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1476 /* Index of current stored address in ret_stack */ 1477 int curr_ret_stack; 1478 /* Stack of return addresses for return function tracing */ 1479 struct ftrace_ret_stack *ret_stack; 1480 /* time stamp for last schedule */ 1481 unsigned long long ftrace_timestamp; 1482 /* 1483 * Number of functions that haven't been traced 1484 * because of depth overrun. 1485 */ 1486 atomic_t trace_overrun; 1487 /* Pause for the tracing */ 1488 atomic_t tracing_graph_pause; 1489 #endif 1490 #ifdef CONFIG_TRACING 1491 /* state flags for use by tracers */ 1492 unsigned long trace; 1493 /* bitmask of trace recursion */ 1494 unsigned long trace_recursion; 1495 #endif /* CONFIG_TRACING */ 1496 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1497 struct memcg_batch_info { 1498 int do_batch; /* incremented when batch uncharge started */ 1499 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1500 unsigned long bytes; /* uncharged usage */ 1501 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1502 } memcg_batch; 1503 #endif 1504 }; 1505 1506 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1507 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1508 1509 /* 1510 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1511 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1512 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1513 * values are inverted: lower p->prio value means higher priority. 1514 * 1515 * The MAX_USER_RT_PRIO value allows the actual maximum 1516 * RT priority to be separate from the value exported to 1517 * user-space. This allows kernel threads to set their 1518 * priority to a value higher than any user task. Note: 1519 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1520 */ 1521 1522 #define MAX_USER_RT_PRIO 100 1523 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1524 1525 #define MAX_PRIO (MAX_RT_PRIO + 40) 1526 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1527 1528 static inline int rt_prio(int prio) 1529 { 1530 if (unlikely(prio < MAX_RT_PRIO)) 1531 return 1; 1532 return 0; 1533 } 1534 1535 static inline int rt_task(struct task_struct *p) 1536 { 1537 return rt_prio(p->prio); 1538 } 1539 1540 static inline struct pid *task_pid(struct task_struct *task) 1541 { 1542 return task->pids[PIDTYPE_PID].pid; 1543 } 1544 1545 static inline struct pid *task_tgid(struct task_struct *task) 1546 { 1547 return task->group_leader->pids[PIDTYPE_PID].pid; 1548 } 1549 1550 /* 1551 * Without tasklist or rcu lock it is not safe to dereference 1552 * the result of task_pgrp/task_session even if task == current, 1553 * we can race with another thread doing sys_setsid/sys_setpgid. 1554 */ 1555 static inline struct pid *task_pgrp(struct task_struct *task) 1556 { 1557 return task->group_leader->pids[PIDTYPE_PGID].pid; 1558 } 1559 1560 static inline struct pid *task_session(struct task_struct *task) 1561 { 1562 return task->group_leader->pids[PIDTYPE_SID].pid; 1563 } 1564 1565 struct pid_namespace; 1566 1567 /* 1568 * the helpers to get the task's different pids as they are seen 1569 * from various namespaces 1570 * 1571 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1572 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1573 * current. 1574 * task_xid_nr_ns() : id seen from the ns specified; 1575 * 1576 * set_task_vxid() : assigns a virtual id to a task; 1577 * 1578 * see also pid_nr() etc in include/linux/pid.h 1579 */ 1580 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1581 struct pid_namespace *ns); 1582 1583 static inline pid_t task_pid_nr(struct task_struct *tsk) 1584 { 1585 return tsk->pid; 1586 } 1587 1588 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1589 struct pid_namespace *ns) 1590 { 1591 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1592 } 1593 1594 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1595 { 1596 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1597 } 1598 1599 1600 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1601 { 1602 return tsk->tgid; 1603 } 1604 1605 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1606 1607 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1608 { 1609 return pid_vnr(task_tgid(tsk)); 1610 } 1611 1612 1613 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1614 struct pid_namespace *ns) 1615 { 1616 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1617 } 1618 1619 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1620 { 1621 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1622 } 1623 1624 1625 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1626 struct pid_namespace *ns) 1627 { 1628 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1629 } 1630 1631 static inline pid_t task_session_vnr(struct task_struct *tsk) 1632 { 1633 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1634 } 1635 1636 /* obsolete, do not use */ 1637 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1638 { 1639 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1640 } 1641 1642 /** 1643 * pid_alive - check that a task structure is not stale 1644 * @p: Task structure to be checked. 1645 * 1646 * Test if a process is not yet dead (at most zombie state) 1647 * If pid_alive fails, then pointers within the task structure 1648 * can be stale and must not be dereferenced. 1649 */ 1650 static inline int pid_alive(struct task_struct *p) 1651 { 1652 return p->pids[PIDTYPE_PID].pid != NULL; 1653 } 1654 1655 /** 1656 * is_global_init - check if a task structure is init 1657 * @tsk: Task structure to be checked. 1658 * 1659 * Check if a task structure is the first user space task the kernel created. 1660 */ 1661 static inline int is_global_init(struct task_struct *tsk) 1662 { 1663 return tsk->pid == 1; 1664 } 1665 1666 /* 1667 * is_container_init: 1668 * check whether in the task is init in its own pid namespace. 1669 */ 1670 extern int is_container_init(struct task_struct *tsk); 1671 1672 extern struct pid *cad_pid; 1673 1674 extern void free_task(struct task_struct *tsk); 1675 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1676 1677 extern void __put_task_struct(struct task_struct *t); 1678 1679 static inline void put_task_struct(struct task_struct *t) 1680 { 1681 if (atomic_dec_and_test(&t->usage)) 1682 __put_task_struct(t); 1683 } 1684 1685 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1686 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1687 1688 /* 1689 * Per process flags 1690 */ 1691 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1692 /* Not implemented yet, only for 486*/ 1693 #define PF_STARTING 0x00000002 /* being created */ 1694 #define PF_EXITING 0x00000004 /* getting shut down */ 1695 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1696 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1697 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1698 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1699 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1700 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1701 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1702 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1703 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1704 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1705 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1706 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1707 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1708 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1709 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1710 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1711 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1712 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1713 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1714 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1715 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1716 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1717 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1718 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1719 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1720 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1721 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1722 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1723 1724 /* 1725 * Only the _current_ task can read/write to tsk->flags, but other 1726 * tasks can access tsk->flags in readonly mode for example 1727 * with tsk_used_math (like during threaded core dumping). 1728 * There is however an exception to this rule during ptrace 1729 * or during fork: the ptracer task is allowed to write to the 1730 * child->flags of its traced child (same goes for fork, the parent 1731 * can write to the child->flags), because we're guaranteed the 1732 * child is not running and in turn not changing child->flags 1733 * at the same time the parent does it. 1734 */ 1735 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1736 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1737 #define clear_used_math() clear_stopped_child_used_math(current) 1738 #define set_used_math() set_stopped_child_used_math(current) 1739 #define conditional_stopped_child_used_math(condition, child) \ 1740 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1741 #define conditional_used_math(condition) \ 1742 conditional_stopped_child_used_math(condition, current) 1743 #define copy_to_stopped_child_used_math(child) \ 1744 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1745 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1746 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1747 #define used_math() tsk_used_math(current) 1748 1749 #ifdef CONFIG_TREE_PREEMPT_RCU 1750 1751 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1752 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1753 1754 static inline void rcu_copy_process(struct task_struct *p) 1755 { 1756 p->rcu_read_lock_nesting = 0; 1757 p->rcu_read_unlock_special = 0; 1758 p->rcu_blocked_node = NULL; 1759 INIT_LIST_HEAD(&p->rcu_node_entry); 1760 } 1761 1762 #else 1763 1764 static inline void rcu_copy_process(struct task_struct *p) 1765 { 1766 } 1767 1768 #endif 1769 1770 #ifdef CONFIG_SMP 1771 extern int set_cpus_allowed_ptr(struct task_struct *p, 1772 const struct cpumask *new_mask); 1773 #else 1774 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1775 const struct cpumask *new_mask) 1776 { 1777 if (!cpumask_test_cpu(0, new_mask)) 1778 return -EINVAL; 1779 return 0; 1780 } 1781 #endif 1782 1783 #ifndef CONFIG_CPUMASK_OFFSTACK 1784 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1785 { 1786 return set_cpus_allowed_ptr(p, &new_mask); 1787 } 1788 #endif 1789 1790 /* 1791 * Architectures can set this to 1 if they have specified 1792 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1793 * but then during bootup it turns out that sched_clock() 1794 * is reliable after all: 1795 */ 1796 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1797 extern int sched_clock_stable; 1798 #endif 1799 1800 /* ftrace calls sched_clock() directly */ 1801 extern unsigned long long notrace sched_clock(void); 1802 1803 extern void sched_clock_init(void); 1804 extern u64 sched_clock_cpu(int cpu); 1805 1806 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1807 static inline void sched_clock_tick(void) 1808 { 1809 } 1810 1811 static inline void sched_clock_idle_sleep_event(void) 1812 { 1813 } 1814 1815 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1816 { 1817 } 1818 #else 1819 extern void sched_clock_tick(void); 1820 extern void sched_clock_idle_sleep_event(void); 1821 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1822 #endif 1823 1824 /* 1825 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1826 * clock constructed from sched_clock(): 1827 */ 1828 extern unsigned long long cpu_clock(int cpu); 1829 1830 extern unsigned long long 1831 task_sched_runtime(struct task_struct *task); 1832 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1833 1834 /* sched_exec is called by processes performing an exec */ 1835 #ifdef CONFIG_SMP 1836 extern void sched_exec(void); 1837 #else 1838 #define sched_exec() {} 1839 #endif 1840 1841 extern void sched_clock_idle_sleep_event(void); 1842 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1843 1844 #ifdef CONFIG_HOTPLUG_CPU 1845 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p); 1846 extern void idle_task_exit(void); 1847 #else 1848 static inline void idle_task_exit(void) {} 1849 #endif 1850 1851 extern void sched_idle_next(void); 1852 1853 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1854 extern void wake_up_idle_cpu(int cpu); 1855 #else 1856 static inline void wake_up_idle_cpu(int cpu) { } 1857 #endif 1858 1859 extern unsigned int sysctl_sched_latency; 1860 extern unsigned int sysctl_sched_min_granularity; 1861 extern unsigned int sysctl_sched_wakeup_granularity; 1862 extern unsigned int sysctl_sched_shares_ratelimit; 1863 extern unsigned int sysctl_sched_shares_thresh; 1864 extern unsigned int sysctl_sched_child_runs_first; 1865 1866 enum sched_tunable_scaling { 1867 SCHED_TUNABLESCALING_NONE, 1868 SCHED_TUNABLESCALING_LOG, 1869 SCHED_TUNABLESCALING_LINEAR, 1870 SCHED_TUNABLESCALING_END, 1871 }; 1872 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1873 1874 #ifdef CONFIG_SCHED_DEBUG 1875 extern unsigned int sysctl_sched_migration_cost; 1876 extern unsigned int sysctl_sched_nr_migrate; 1877 extern unsigned int sysctl_sched_time_avg; 1878 extern unsigned int sysctl_timer_migration; 1879 1880 int sched_proc_update_handler(struct ctl_table *table, int write, 1881 void __user *buffer, size_t *length, 1882 loff_t *ppos); 1883 #endif 1884 #ifdef CONFIG_SCHED_DEBUG 1885 static inline unsigned int get_sysctl_timer_migration(void) 1886 { 1887 return sysctl_timer_migration; 1888 } 1889 #else 1890 static inline unsigned int get_sysctl_timer_migration(void) 1891 { 1892 return 1; 1893 } 1894 #endif 1895 extern unsigned int sysctl_sched_rt_period; 1896 extern int sysctl_sched_rt_runtime; 1897 1898 int sched_rt_handler(struct ctl_table *table, int write, 1899 void __user *buffer, size_t *lenp, 1900 loff_t *ppos); 1901 1902 extern unsigned int sysctl_sched_compat_yield; 1903 1904 #ifdef CONFIG_RT_MUTEXES 1905 extern int rt_mutex_getprio(struct task_struct *p); 1906 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1907 extern void rt_mutex_adjust_pi(struct task_struct *p); 1908 #else 1909 static inline int rt_mutex_getprio(struct task_struct *p) 1910 { 1911 return p->normal_prio; 1912 } 1913 # define rt_mutex_adjust_pi(p) do { } while (0) 1914 #endif 1915 1916 extern void set_user_nice(struct task_struct *p, long nice); 1917 extern int task_prio(const struct task_struct *p); 1918 extern int task_nice(const struct task_struct *p); 1919 extern int can_nice(const struct task_struct *p, const int nice); 1920 extern int task_curr(const struct task_struct *p); 1921 extern int idle_cpu(int cpu); 1922 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1923 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1924 struct sched_param *); 1925 extern struct task_struct *idle_task(int cpu); 1926 extern struct task_struct *curr_task(int cpu); 1927 extern void set_curr_task(int cpu, struct task_struct *p); 1928 1929 void yield(void); 1930 1931 /* 1932 * The default (Linux) execution domain. 1933 */ 1934 extern struct exec_domain default_exec_domain; 1935 1936 union thread_union { 1937 struct thread_info thread_info; 1938 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1939 }; 1940 1941 #ifndef __HAVE_ARCH_KSTACK_END 1942 static inline int kstack_end(void *addr) 1943 { 1944 /* Reliable end of stack detection: 1945 * Some APM bios versions misalign the stack 1946 */ 1947 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1948 } 1949 #endif 1950 1951 extern union thread_union init_thread_union; 1952 extern struct task_struct init_task; 1953 1954 extern struct mm_struct init_mm; 1955 1956 extern struct pid_namespace init_pid_ns; 1957 1958 /* 1959 * find a task by one of its numerical ids 1960 * 1961 * find_task_by_pid_ns(): 1962 * finds a task by its pid in the specified namespace 1963 * find_task_by_vpid(): 1964 * finds a task by its virtual pid 1965 * 1966 * see also find_vpid() etc in include/linux/pid.h 1967 */ 1968 1969 extern struct task_struct *find_task_by_vpid(pid_t nr); 1970 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1971 struct pid_namespace *ns); 1972 1973 extern void __set_special_pids(struct pid *pid); 1974 1975 /* per-UID process charging. */ 1976 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1977 static inline struct user_struct *get_uid(struct user_struct *u) 1978 { 1979 atomic_inc(&u->__count); 1980 return u; 1981 } 1982 extern void free_uid(struct user_struct *); 1983 extern void release_uids(struct user_namespace *ns); 1984 1985 #include <asm/current.h> 1986 1987 extern void do_timer(unsigned long ticks); 1988 1989 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1990 extern int wake_up_process(struct task_struct *tsk); 1991 extern void wake_up_new_task(struct task_struct *tsk, 1992 unsigned long clone_flags); 1993 #ifdef CONFIG_SMP 1994 extern void kick_process(struct task_struct *tsk); 1995 #else 1996 static inline void kick_process(struct task_struct *tsk) { } 1997 #endif 1998 extern void sched_fork(struct task_struct *p, int clone_flags); 1999 extern void sched_dead(struct task_struct *p); 2000 2001 extern void proc_caches_init(void); 2002 extern void flush_signals(struct task_struct *); 2003 extern void __flush_signals(struct task_struct *); 2004 extern void ignore_signals(struct task_struct *); 2005 extern void flush_signal_handlers(struct task_struct *, int force_default); 2006 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2007 2008 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2009 { 2010 unsigned long flags; 2011 int ret; 2012 2013 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2014 ret = dequeue_signal(tsk, mask, info); 2015 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2016 2017 return ret; 2018 } 2019 2020 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2021 sigset_t *mask); 2022 extern void unblock_all_signals(void); 2023 extern void release_task(struct task_struct * p); 2024 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2025 extern int force_sigsegv(int, struct task_struct *); 2026 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2027 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2028 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2029 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2030 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2031 extern int kill_pid(struct pid *pid, int sig, int priv); 2032 extern int kill_proc_info(int, struct siginfo *, pid_t); 2033 extern int do_notify_parent(struct task_struct *, int); 2034 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2035 extern void force_sig(int, struct task_struct *); 2036 extern int send_sig(int, struct task_struct *, int); 2037 extern void zap_other_threads(struct task_struct *p); 2038 extern struct sigqueue *sigqueue_alloc(void); 2039 extern void sigqueue_free(struct sigqueue *); 2040 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2041 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2042 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2043 2044 static inline int kill_cad_pid(int sig, int priv) 2045 { 2046 return kill_pid(cad_pid, sig, priv); 2047 } 2048 2049 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2050 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2051 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2052 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2053 2054 /* 2055 * True if we are on the alternate signal stack. 2056 */ 2057 static inline int on_sig_stack(unsigned long sp) 2058 { 2059 #ifdef CONFIG_STACK_GROWSUP 2060 return sp >= current->sas_ss_sp && 2061 sp - current->sas_ss_sp < current->sas_ss_size; 2062 #else 2063 return sp > current->sas_ss_sp && 2064 sp - current->sas_ss_sp <= current->sas_ss_size; 2065 #endif 2066 } 2067 2068 static inline int sas_ss_flags(unsigned long sp) 2069 { 2070 return (current->sas_ss_size == 0 ? SS_DISABLE 2071 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2072 } 2073 2074 /* 2075 * Routines for handling mm_structs 2076 */ 2077 extern struct mm_struct * mm_alloc(void); 2078 2079 /* mmdrop drops the mm and the page tables */ 2080 extern void __mmdrop(struct mm_struct *); 2081 static inline void mmdrop(struct mm_struct * mm) 2082 { 2083 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2084 __mmdrop(mm); 2085 } 2086 2087 /* mmput gets rid of the mappings and all user-space */ 2088 extern void mmput(struct mm_struct *); 2089 /* Grab a reference to a task's mm, if it is not already going away */ 2090 extern struct mm_struct *get_task_mm(struct task_struct *task); 2091 /* Remove the current tasks stale references to the old mm_struct */ 2092 extern void mm_release(struct task_struct *, struct mm_struct *); 2093 /* Allocate a new mm structure and copy contents from tsk->mm */ 2094 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2095 2096 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2097 struct task_struct *, struct pt_regs *); 2098 extern void flush_thread(void); 2099 extern void exit_thread(void); 2100 2101 extern void exit_files(struct task_struct *); 2102 extern void __cleanup_signal(struct signal_struct *); 2103 extern void __cleanup_sighand(struct sighand_struct *); 2104 2105 extern void exit_itimers(struct signal_struct *); 2106 extern void flush_itimer_signals(void); 2107 2108 extern NORET_TYPE void do_group_exit(int); 2109 2110 extern void daemonize(const char *, ...); 2111 extern int allow_signal(int); 2112 extern int disallow_signal(int); 2113 2114 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 2115 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2116 struct task_struct *fork_idle(int); 2117 2118 extern void set_task_comm(struct task_struct *tsk, char *from); 2119 extern char *get_task_comm(char *to, struct task_struct *tsk); 2120 2121 #ifdef CONFIG_SMP 2122 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2123 #else 2124 static inline unsigned long wait_task_inactive(struct task_struct *p, 2125 long match_state) 2126 { 2127 return 1; 2128 } 2129 #endif 2130 2131 #define next_task(p) \ 2132 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2133 2134 #define for_each_process(p) \ 2135 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2136 2137 extern bool current_is_single_threaded(void); 2138 2139 /* 2140 * Careful: do_each_thread/while_each_thread is a double loop so 2141 * 'break' will not work as expected - use goto instead. 2142 */ 2143 #define do_each_thread(g, t) \ 2144 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2145 2146 #define while_each_thread(g, t) \ 2147 while ((t = next_thread(t)) != g) 2148 2149 /* de_thread depends on thread_group_leader not being a pid based check */ 2150 #define thread_group_leader(p) (p == p->group_leader) 2151 2152 /* Do to the insanities of de_thread it is possible for a process 2153 * to have the pid of the thread group leader without actually being 2154 * the thread group leader. For iteration through the pids in proc 2155 * all we care about is that we have a task with the appropriate 2156 * pid, we don't actually care if we have the right task. 2157 */ 2158 static inline int has_group_leader_pid(struct task_struct *p) 2159 { 2160 return p->pid == p->tgid; 2161 } 2162 2163 static inline 2164 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2165 { 2166 return p1->tgid == p2->tgid; 2167 } 2168 2169 static inline struct task_struct *next_thread(const struct task_struct *p) 2170 { 2171 return list_entry_rcu(p->thread_group.next, 2172 struct task_struct, thread_group); 2173 } 2174 2175 static inline int thread_group_empty(struct task_struct *p) 2176 { 2177 return list_empty(&p->thread_group); 2178 } 2179 2180 #define delay_group_leader(p) \ 2181 (thread_group_leader(p) && !thread_group_empty(p)) 2182 2183 static inline int task_detached(struct task_struct *p) 2184 { 2185 return p->exit_signal == -1; 2186 } 2187 2188 /* 2189 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2190 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2191 * pins the final release of task.io_context. Also protects ->cpuset and 2192 * ->cgroup.subsys[]. 2193 * 2194 * Nests both inside and outside of read_lock(&tasklist_lock). 2195 * It must not be nested with write_lock_irq(&tasklist_lock), 2196 * neither inside nor outside. 2197 */ 2198 static inline void task_lock(struct task_struct *p) 2199 { 2200 spin_lock(&p->alloc_lock); 2201 } 2202 2203 static inline void task_unlock(struct task_struct *p) 2204 { 2205 spin_unlock(&p->alloc_lock); 2206 } 2207 2208 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2209 unsigned long *flags); 2210 2211 static inline void unlock_task_sighand(struct task_struct *tsk, 2212 unsigned long *flags) 2213 { 2214 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2215 } 2216 2217 #ifndef __HAVE_THREAD_FUNCTIONS 2218 2219 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2220 #define task_stack_page(task) ((task)->stack) 2221 2222 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2223 { 2224 *task_thread_info(p) = *task_thread_info(org); 2225 task_thread_info(p)->task = p; 2226 } 2227 2228 static inline unsigned long *end_of_stack(struct task_struct *p) 2229 { 2230 return (unsigned long *)(task_thread_info(p) + 1); 2231 } 2232 2233 #endif 2234 2235 static inline int object_is_on_stack(void *obj) 2236 { 2237 void *stack = task_stack_page(current); 2238 2239 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2240 } 2241 2242 extern void thread_info_cache_init(void); 2243 2244 #ifdef CONFIG_DEBUG_STACK_USAGE 2245 static inline unsigned long stack_not_used(struct task_struct *p) 2246 { 2247 unsigned long *n = end_of_stack(p); 2248 2249 do { /* Skip over canary */ 2250 n++; 2251 } while (!*n); 2252 2253 return (unsigned long)n - (unsigned long)end_of_stack(p); 2254 } 2255 #endif 2256 2257 /* set thread flags in other task's structures 2258 * - see asm/thread_info.h for TIF_xxxx flags available 2259 */ 2260 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2261 { 2262 set_ti_thread_flag(task_thread_info(tsk), flag); 2263 } 2264 2265 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2266 { 2267 clear_ti_thread_flag(task_thread_info(tsk), flag); 2268 } 2269 2270 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2271 { 2272 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2273 } 2274 2275 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2276 { 2277 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2278 } 2279 2280 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2281 { 2282 return test_ti_thread_flag(task_thread_info(tsk), flag); 2283 } 2284 2285 static inline void set_tsk_need_resched(struct task_struct *tsk) 2286 { 2287 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2288 } 2289 2290 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2291 { 2292 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2293 } 2294 2295 static inline int test_tsk_need_resched(struct task_struct *tsk) 2296 { 2297 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2298 } 2299 2300 static inline int restart_syscall(void) 2301 { 2302 set_tsk_thread_flag(current, TIF_SIGPENDING); 2303 return -ERESTARTNOINTR; 2304 } 2305 2306 static inline int signal_pending(struct task_struct *p) 2307 { 2308 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2309 } 2310 2311 static inline int __fatal_signal_pending(struct task_struct *p) 2312 { 2313 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2314 } 2315 2316 static inline int fatal_signal_pending(struct task_struct *p) 2317 { 2318 return signal_pending(p) && __fatal_signal_pending(p); 2319 } 2320 2321 static inline int signal_pending_state(long state, struct task_struct *p) 2322 { 2323 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2324 return 0; 2325 if (!signal_pending(p)) 2326 return 0; 2327 2328 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2329 } 2330 2331 static inline int need_resched(void) 2332 { 2333 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2334 } 2335 2336 /* 2337 * cond_resched() and cond_resched_lock(): latency reduction via 2338 * explicit rescheduling in places that are safe. The return 2339 * value indicates whether a reschedule was done in fact. 2340 * cond_resched_lock() will drop the spinlock before scheduling, 2341 * cond_resched_softirq() will enable bhs before scheduling. 2342 */ 2343 extern int _cond_resched(void); 2344 2345 #define cond_resched() ({ \ 2346 __might_sleep(__FILE__, __LINE__, 0); \ 2347 _cond_resched(); \ 2348 }) 2349 2350 extern int __cond_resched_lock(spinlock_t *lock); 2351 2352 #ifdef CONFIG_PREEMPT 2353 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2354 #else 2355 #define PREEMPT_LOCK_OFFSET 0 2356 #endif 2357 2358 #define cond_resched_lock(lock) ({ \ 2359 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2360 __cond_resched_lock(lock); \ 2361 }) 2362 2363 extern int __cond_resched_softirq(void); 2364 2365 #define cond_resched_softirq() ({ \ 2366 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2367 __cond_resched_softirq(); \ 2368 }) 2369 2370 /* 2371 * Does a critical section need to be broken due to another 2372 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2373 * but a general need for low latency) 2374 */ 2375 static inline int spin_needbreak(spinlock_t *lock) 2376 { 2377 #ifdef CONFIG_PREEMPT 2378 return spin_is_contended(lock); 2379 #else 2380 return 0; 2381 #endif 2382 } 2383 2384 /* 2385 * Thread group CPU time accounting. 2386 */ 2387 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2388 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2389 2390 static inline void thread_group_cputime_init(struct signal_struct *sig) 2391 { 2392 spin_lock_init(&sig->cputimer.lock); 2393 } 2394 2395 static inline void thread_group_cputime_free(struct signal_struct *sig) 2396 { 2397 } 2398 2399 /* 2400 * Reevaluate whether the task has signals pending delivery. 2401 * Wake the task if so. 2402 * This is required every time the blocked sigset_t changes. 2403 * callers must hold sighand->siglock. 2404 */ 2405 extern void recalc_sigpending_and_wake(struct task_struct *t); 2406 extern void recalc_sigpending(void); 2407 2408 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2409 2410 /* 2411 * Wrappers for p->thread_info->cpu access. No-op on UP. 2412 */ 2413 #ifdef CONFIG_SMP 2414 2415 static inline unsigned int task_cpu(const struct task_struct *p) 2416 { 2417 return task_thread_info(p)->cpu; 2418 } 2419 2420 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2421 2422 #else 2423 2424 static inline unsigned int task_cpu(const struct task_struct *p) 2425 { 2426 return 0; 2427 } 2428 2429 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2430 { 2431 } 2432 2433 #endif /* CONFIG_SMP */ 2434 2435 #ifdef CONFIG_TRACING 2436 extern void 2437 __trace_special(void *__tr, void *__data, 2438 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2439 #else 2440 static inline void 2441 __trace_special(void *__tr, void *__data, 2442 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2443 { 2444 } 2445 #endif 2446 2447 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2448 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2449 2450 extern void normalize_rt_tasks(void); 2451 2452 #ifdef CONFIG_CGROUP_SCHED 2453 2454 extern struct task_group init_task_group; 2455 2456 extern struct task_group *sched_create_group(struct task_group *parent); 2457 extern void sched_destroy_group(struct task_group *tg); 2458 extern void sched_move_task(struct task_struct *tsk); 2459 #ifdef CONFIG_FAIR_GROUP_SCHED 2460 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2461 extern unsigned long sched_group_shares(struct task_group *tg); 2462 #endif 2463 #ifdef CONFIG_RT_GROUP_SCHED 2464 extern int sched_group_set_rt_runtime(struct task_group *tg, 2465 long rt_runtime_us); 2466 extern long sched_group_rt_runtime(struct task_group *tg); 2467 extern int sched_group_set_rt_period(struct task_group *tg, 2468 long rt_period_us); 2469 extern long sched_group_rt_period(struct task_group *tg); 2470 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2471 #endif 2472 #endif 2473 2474 extern int task_can_switch_user(struct user_struct *up, 2475 struct task_struct *tsk); 2476 2477 #ifdef CONFIG_TASK_XACCT 2478 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2479 { 2480 tsk->ioac.rchar += amt; 2481 } 2482 2483 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2484 { 2485 tsk->ioac.wchar += amt; 2486 } 2487 2488 static inline void inc_syscr(struct task_struct *tsk) 2489 { 2490 tsk->ioac.syscr++; 2491 } 2492 2493 static inline void inc_syscw(struct task_struct *tsk) 2494 { 2495 tsk->ioac.syscw++; 2496 } 2497 #else 2498 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2499 { 2500 } 2501 2502 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2503 { 2504 } 2505 2506 static inline void inc_syscr(struct task_struct *tsk) 2507 { 2508 } 2509 2510 static inline void inc_syscw(struct task_struct *tsk) 2511 { 2512 } 2513 #endif 2514 2515 #ifndef TASK_SIZE_OF 2516 #define TASK_SIZE_OF(tsk) TASK_SIZE 2517 #endif 2518 2519 /* 2520 * Call the function if the target task is executing on a CPU right now: 2521 */ 2522 extern void task_oncpu_function_call(struct task_struct *p, 2523 void (*func) (void *info), void *info); 2524 2525 2526 #ifdef CONFIG_MM_OWNER 2527 extern void mm_update_next_owner(struct mm_struct *mm); 2528 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2529 #else 2530 static inline void mm_update_next_owner(struct mm_struct *mm) 2531 { 2532 } 2533 2534 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2535 { 2536 } 2537 #endif /* CONFIG_MM_OWNER */ 2538 2539 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2540 unsigned int limit) 2541 { 2542 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2543 } 2544 2545 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2546 unsigned int limit) 2547 { 2548 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2549 } 2550 2551 static inline unsigned long rlimit(unsigned int limit) 2552 { 2553 return task_rlimit(current, limit); 2554 } 2555 2556 static inline unsigned long rlimit_max(unsigned int limit) 2557 { 2558 return task_rlimit_max(current, limit); 2559 } 2560 2561 #endif /* __KERNEL__ */ 2562 2563 #endif 2564