xref: /linux/include/linux/sched.h (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT		0x1000
101 #define TASK_STATE_MAX			0x2000
102 
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
107 
108 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109 
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112 
113 /* get_task_state(): */
114 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 					 TASK_PARKED)
118 
119 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120 
121 #define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122 
123 #define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124 
125 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126 
127 /*
128  * Special states are those that do not use the normal wait-loop pattern. See
129  * the comment with set_special_state().
130  */
131 #define is_special_task_state(state)				\
132 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133 
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value)				\
136 	do {								\
137 		WARN_ON_ONCE(is_special_task_state(state_value));	\
138 		current->task_state_change = _THIS_IP_;			\
139 	} while (0)
140 
141 # define debug_special_state_change(state_value)			\
142 	do {								\
143 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
144 		current->task_state_change = _THIS_IP_;			\
145 	} while (0)
146 
147 # define debug_rtlock_wait_set_state()					\
148 	do {								 \
149 		current->saved_state_change = current->task_state_change;\
150 		current->task_state_change = _THIS_IP_;			 \
151 	} while (0)
152 
153 # define debug_rtlock_wait_restore_state()				\
154 	do {								 \
155 		current->task_state_change = current->saved_state_change;\
156 	} while (0)
157 
158 #else
159 # define debug_normal_state_change(cond)	do { } while (0)
160 # define debug_special_state_change(cond)	do { } while (0)
161 # define debug_rtlock_wait_set_state()		do { } while (0)
162 # define debug_rtlock_wait_restore_state()	do { } while (0)
163 #endif
164 
165 /*
166  * set_current_state() includes a barrier so that the write of current->state
167  * is correctly serialised wrt the caller's subsequent test of whether to
168  * actually sleep:
169  *
170  *   for (;;) {
171  *	set_current_state(TASK_UNINTERRUPTIBLE);
172  *	if (CONDITION)
173  *	   break;
174  *
175  *	schedule();
176  *   }
177  *   __set_current_state(TASK_RUNNING);
178  *
179  * If the caller does not need such serialisation (because, for instance, the
180  * CONDITION test and condition change and wakeup are under the same lock) then
181  * use __set_current_state().
182  *
183  * The above is typically ordered against the wakeup, which does:
184  *
185  *   CONDITION = 1;
186  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187  *
188  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189  * accessing p->state.
190  *
191  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194  *
195  * However, with slightly different timing the wakeup TASK_RUNNING store can
196  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197  * a problem either because that will result in one extra go around the loop
198  * and our @cond test will save the day.
199  *
200  * Also see the comments of try_to_wake_up().
201  */
202 #define __set_current_state(state_value)				\
203 	do {								\
204 		debug_normal_state_change((state_value));		\
205 		WRITE_ONCE(current->__state, (state_value));		\
206 	} while (0)
207 
208 #define set_current_state(state_value)					\
209 	do {								\
210 		debug_normal_state_change((state_value));		\
211 		smp_store_mb(current->__state, (state_value));		\
212 	} while (0)
213 
214 /*
215  * set_special_state() should be used for those states when the blocking task
216  * can not use the regular condition based wait-loop. In that case we must
217  * serialize against wakeups such that any possible in-flight TASK_RUNNING
218  * stores will not collide with our state change.
219  */
220 #define set_special_state(state_value)					\
221 	do {								\
222 		unsigned long flags; /* may shadow */			\
223 									\
224 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225 		debug_special_state_change((state_value));		\
226 		WRITE_ONCE(current->__state, (state_value));		\
227 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
228 	} while (0)
229 
230 /*
231  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232  *
233  * RT's spin/rwlock substitutions are state preserving. The state of the
234  * task when blocking on the lock is saved in task_struct::saved_state and
235  * restored after the lock has been acquired.  These operations are
236  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237  * lock related wakeups while the task is blocked on the lock are
238  * redirected to operate on task_struct::saved_state to ensure that these
239  * are not dropped. On restore task_struct::saved_state is set to
240  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241  *
242  * The lock operation looks like this:
243  *
244  *	current_save_and_set_rtlock_wait_state();
245  *	for (;;) {
246  *		if (try_lock())
247  *			break;
248  *		raw_spin_unlock_irq(&lock->wait_lock);
249  *		schedule_rtlock();
250  *		raw_spin_lock_irq(&lock->wait_lock);
251  *		set_current_state(TASK_RTLOCK_WAIT);
252  *	}
253  *	current_restore_rtlock_saved_state();
254  */
255 #define current_save_and_set_rtlock_wait_state()			\
256 	do {								\
257 		lockdep_assert_irqs_disabled();				\
258 		raw_spin_lock(&current->pi_lock);			\
259 		current->saved_state = current->__state;		\
260 		debug_rtlock_wait_set_state();				\
261 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
262 		raw_spin_unlock(&current->pi_lock);			\
263 	} while (0);
264 
265 #define current_restore_rtlock_saved_state()				\
266 	do {								\
267 		lockdep_assert_irqs_disabled();				\
268 		raw_spin_lock(&current->pi_lock);			\
269 		debug_rtlock_wait_restore_state();			\
270 		WRITE_ONCE(current->__state, current->saved_state);	\
271 		current->saved_state = TASK_RUNNING;			\
272 		raw_spin_unlock(&current->pi_lock);			\
273 	} while (0);
274 
275 #define get_current_state()	READ_ONCE(current->__state)
276 
277 /*
278  * Define the task command name length as enum, then it can be visible to
279  * BPF programs.
280  */
281 enum {
282 	TASK_COMM_LEN = 16,
283 };
284 
285 extern void scheduler_tick(void);
286 
287 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
288 
289 extern long schedule_timeout(long timeout);
290 extern long schedule_timeout_interruptible(long timeout);
291 extern long schedule_timeout_killable(long timeout);
292 extern long schedule_timeout_uninterruptible(long timeout);
293 extern long schedule_timeout_idle(long timeout);
294 asmlinkage void schedule(void);
295 extern void schedule_preempt_disabled(void);
296 asmlinkage void preempt_schedule_irq(void);
297 #ifdef CONFIG_PREEMPT_RT
298  extern void schedule_rtlock(void);
299 #endif
300 
301 extern int __must_check io_schedule_prepare(void);
302 extern void io_schedule_finish(int token);
303 extern long io_schedule_timeout(long timeout);
304 extern void io_schedule(void);
305 
306 /**
307  * struct prev_cputime - snapshot of system and user cputime
308  * @utime: time spent in user mode
309  * @stime: time spent in system mode
310  * @lock: protects the above two fields
311  *
312  * Stores previous user/system time values such that we can guarantee
313  * monotonicity.
314  */
315 struct prev_cputime {
316 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
317 	u64				utime;
318 	u64				stime;
319 	raw_spinlock_t			lock;
320 #endif
321 };
322 
323 enum vtime_state {
324 	/* Task is sleeping or running in a CPU with VTIME inactive: */
325 	VTIME_INACTIVE = 0,
326 	/* Task is idle */
327 	VTIME_IDLE,
328 	/* Task runs in kernelspace in a CPU with VTIME active: */
329 	VTIME_SYS,
330 	/* Task runs in userspace in a CPU with VTIME active: */
331 	VTIME_USER,
332 	/* Task runs as guests in a CPU with VTIME active: */
333 	VTIME_GUEST,
334 };
335 
336 struct vtime {
337 	seqcount_t		seqcount;
338 	unsigned long long	starttime;
339 	enum vtime_state	state;
340 	unsigned int		cpu;
341 	u64			utime;
342 	u64			stime;
343 	u64			gtime;
344 };
345 
346 /*
347  * Utilization clamp constraints.
348  * @UCLAMP_MIN:	Minimum utilization
349  * @UCLAMP_MAX:	Maximum utilization
350  * @UCLAMP_CNT:	Utilization clamp constraints count
351  */
352 enum uclamp_id {
353 	UCLAMP_MIN = 0,
354 	UCLAMP_MAX,
355 	UCLAMP_CNT
356 };
357 
358 #ifdef CONFIG_SMP
359 extern struct root_domain def_root_domain;
360 extern struct mutex sched_domains_mutex;
361 #endif
362 
363 struct sched_info {
364 #ifdef CONFIG_SCHED_INFO
365 	/* Cumulative counters: */
366 
367 	/* # of times we have run on this CPU: */
368 	unsigned long			pcount;
369 
370 	/* Time spent waiting on a runqueue: */
371 	unsigned long long		run_delay;
372 
373 	/* Timestamps: */
374 
375 	/* When did we last run on a CPU? */
376 	unsigned long long		last_arrival;
377 
378 	/* When were we last queued to run? */
379 	unsigned long long		last_queued;
380 
381 #endif /* CONFIG_SCHED_INFO */
382 };
383 
384 /*
385  * Integer metrics need fixed point arithmetic, e.g., sched/fair
386  * has a few: load, load_avg, util_avg, freq, and capacity.
387  *
388  * We define a basic fixed point arithmetic range, and then formalize
389  * all these metrics based on that basic range.
390  */
391 # define SCHED_FIXEDPOINT_SHIFT		10
392 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
393 
394 /* Increase resolution of cpu_capacity calculations */
395 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
396 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
397 
398 struct load_weight {
399 	unsigned long			weight;
400 	u32				inv_weight;
401 };
402 
403 /**
404  * struct util_est - Estimation utilization of FAIR tasks
405  * @enqueued: instantaneous estimated utilization of a task/cpu
406  * @ewma:     the Exponential Weighted Moving Average (EWMA)
407  *            utilization of a task
408  *
409  * Support data structure to track an Exponential Weighted Moving Average
410  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
411  * average each time a task completes an activation. Sample's weight is chosen
412  * so that the EWMA will be relatively insensitive to transient changes to the
413  * task's workload.
414  *
415  * The enqueued attribute has a slightly different meaning for tasks and cpus:
416  * - task:   the task's util_avg at last task dequeue time
417  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
418  * Thus, the util_est.enqueued of a task represents the contribution on the
419  * estimated utilization of the CPU where that task is currently enqueued.
420  *
421  * Only for tasks we track a moving average of the past instantaneous
422  * estimated utilization. This allows to absorb sporadic drops in utilization
423  * of an otherwise almost periodic task.
424  *
425  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
426  * updates. When a task is dequeued, its util_est should not be updated if its
427  * util_avg has not been updated in the meantime.
428  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
429  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
430  * for a task) it is safe to use MSB.
431  */
432 struct util_est {
433 	unsigned int			enqueued;
434 	unsigned int			ewma;
435 #define UTIL_EST_WEIGHT_SHIFT		2
436 #define UTIL_AVG_UNCHANGED		0x80000000
437 } __attribute__((__aligned__(sizeof(u64))));
438 
439 /*
440  * The load/runnable/util_avg accumulates an infinite geometric series
441  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
442  *
443  * [load_avg definition]
444  *
445  *   load_avg = runnable% * scale_load_down(load)
446  *
447  * [runnable_avg definition]
448  *
449  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
450  *
451  * [util_avg definition]
452  *
453  *   util_avg = running% * SCHED_CAPACITY_SCALE
454  *
455  * where runnable% is the time ratio that a sched_entity is runnable and
456  * running% the time ratio that a sched_entity is running.
457  *
458  * For cfs_rq, they are the aggregated values of all runnable and blocked
459  * sched_entities.
460  *
461  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
462  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
463  * for computing those signals (see update_rq_clock_pelt())
464  *
465  * N.B., the above ratios (runnable% and running%) themselves are in the
466  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
467  * to as large a range as necessary. This is for example reflected by
468  * util_avg's SCHED_CAPACITY_SCALE.
469  *
470  * [Overflow issue]
471  *
472  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
473  * with the highest load (=88761), always runnable on a single cfs_rq,
474  * and should not overflow as the number already hits PID_MAX_LIMIT.
475  *
476  * For all other cases (including 32-bit kernels), struct load_weight's
477  * weight will overflow first before we do, because:
478  *
479  *    Max(load_avg) <= Max(load.weight)
480  *
481  * Then it is the load_weight's responsibility to consider overflow
482  * issues.
483  */
484 struct sched_avg {
485 	u64				last_update_time;
486 	u64				load_sum;
487 	u64				runnable_sum;
488 	u32				util_sum;
489 	u32				period_contrib;
490 	unsigned long			load_avg;
491 	unsigned long			runnable_avg;
492 	unsigned long			util_avg;
493 	struct util_est			util_est;
494 } ____cacheline_aligned;
495 
496 struct sched_statistics {
497 #ifdef CONFIG_SCHEDSTATS
498 	u64				wait_start;
499 	u64				wait_max;
500 	u64				wait_count;
501 	u64				wait_sum;
502 	u64				iowait_count;
503 	u64				iowait_sum;
504 
505 	u64				sleep_start;
506 	u64				sleep_max;
507 	s64				sum_sleep_runtime;
508 
509 	u64				block_start;
510 	u64				block_max;
511 	s64				sum_block_runtime;
512 
513 	u64				exec_max;
514 	u64				slice_max;
515 
516 	u64				nr_migrations_cold;
517 	u64				nr_failed_migrations_affine;
518 	u64				nr_failed_migrations_running;
519 	u64				nr_failed_migrations_hot;
520 	u64				nr_forced_migrations;
521 
522 	u64				nr_wakeups;
523 	u64				nr_wakeups_sync;
524 	u64				nr_wakeups_migrate;
525 	u64				nr_wakeups_local;
526 	u64				nr_wakeups_remote;
527 	u64				nr_wakeups_affine;
528 	u64				nr_wakeups_affine_attempts;
529 	u64				nr_wakeups_passive;
530 	u64				nr_wakeups_idle;
531 
532 #ifdef CONFIG_SCHED_CORE
533 	u64				core_forceidle_sum;
534 #endif
535 #endif /* CONFIG_SCHEDSTATS */
536 } ____cacheline_aligned;
537 
538 struct sched_entity {
539 	/* For load-balancing: */
540 	struct load_weight		load;
541 	struct rb_node			run_node;
542 	struct list_head		group_node;
543 	unsigned int			on_rq;
544 
545 	u64				exec_start;
546 	u64				sum_exec_runtime;
547 	u64				vruntime;
548 	u64				prev_sum_exec_runtime;
549 
550 	u64				nr_migrations;
551 
552 #ifdef CONFIG_FAIR_GROUP_SCHED
553 	int				depth;
554 	struct sched_entity		*parent;
555 	/* rq on which this entity is (to be) queued: */
556 	struct cfs_rq			*cfs_rq;
557 	/* rq "owned" by this entity/group: */
558 	struct cfs_rq			*my_q;
559 	/* cached value of my_q->h_nr_running */
560 	unsigned long			runnable_weight;
561 #endif
562 
563 #ifdef CONFIG_SMP
564 	/*
565 	 * Per entity load average tracking.
566 	 *
567 	 * Put into separate cache line so it does not
568 	 * collide with read-mostly values above.
569 	 */
570 	struct sched_avg		avg;
571 #endif
572 };
573 
574 struct sched_rt_entity {
575 	struct list_head		run_list;
576 	unsigned long			timeout;
577 	unsigned long			watchdog_stamp;
578 	unsigned int			time_slice;
579 	unsigned short			on_rq;
580 	unsigned short			on_list;
581 
582 	struct sched_rt_entity		*back;
583 #ifdef CONFIG_RT_GROUP_SCHED
584 	struct sched_rt_entity		*parent;
585 	/* rq on which this entity is (to be) queued: */
586 	struct rt_rq			*rt_rq;
587 	/* rq "owned" by this entity/group: */
588 	struct rt_rq			*my_q;
589 #endif
590 } __randomize_layout;
591 
592 struct sched_dl_entity {
593 	struct rb_node			rb_node;
594 
595 	/*
596 	 * Original scheduling parameters. Copied here from sched_attr
597 	 * during sched_setattr(), they will remain the same until
598 	 * the next sched_setattr().
599 	 */
600 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
601 	u64				dl_deadline;	/* Relative deadline of each instance	*/
602 	u64				dl_period;	/* Separation of two instances (period) */
603 	u64				dl_bw;		/* dl_runtime / dl_period		*/
604 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
605 
606 	/*
607 	 * Actual scheduling parameters. Initialized with the values above,
608 	 * they are continuously updated during task execution. Note that
609 	 * the remaining runtime could be < 0 in case we are in overrun.
610 	 */
611 	s64				runtime;	/* Remaining runtime for this instance	*/
612 	u64				deadline;	/* Absolute deadline for this instance	*/
613 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
614 
615 	/*
616 	 * Some bool flags:
617 	 *
618 	 * @dl_throttled tells if we exhausted the runtime. If so, the
619 	 * task has to wait for a replenishment to be performed at the
620 	 * next firing of dl_timer.
621 	 *
622 	 * @dl_yielded tells if task gave up the CPU before consuming
623 	 * all its available runtime during the last job.
624 	 *
625 	 * @dl_non_contending tells if the task is inactive while still
626 	 * contributing to the active utilization. In other words, it
627 	 * indicates if the inactive timer has been armed and its handler
628 	 * has not been executed yet. This flag is useful to avoid race
629 	 * conditions between the inactive timer handler and the wakeup
630 	 * code.
631 	 *
632 	 * @dl_overrun tells if the task asked to be informed about runtime
633 	 * overruns.
634 	 */
635 	unsigned int			dl_throttled      : 1;
636 	unsigned int			dl_yielded        : 1;
637 	unsigned int			dl_non_contending : 1;
638 	unsigned int			dl_overrun	  : 1;
639 
640 	/*
641 	 * Bandwidth enforcement timer. Each -deadline task has its
642 	 * own bandwidth to be enforced, thus we need one timer per task.
643 	 */
644 	struct hrtimer			dl_timer;
645 
646 	/*
647 	 * Inactive timer, responsible for decreasing the active utilization
648 	 * at the "0-lag time". When a -deadline task blocks, it contributes
649 	 * to GRUB's active utilization until the "0-lag time", hence a
650 	 * timer is needed to decrease the active utilization at the correct
651 	 * time.
652 	 */
653 	struct hrtimer inactive_timer;
654 
655 #ifdef CONFIG_RT_MUTEXES
656 	/*
657 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
658 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
659 	 * to (the original one/itself).
660 	 */
661 	struct sched_dl_entity *pi_se;
662 #endif
663 };
664 
665 #ifdef CONFIG_UCLAMP_TASK
666 /* Number of utilization clamp buckets (shorter alias) */
667 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
668 
669 /*
670  * Utilization clamp for a scheduling entity
671  * @value:		clamp value "assigned" to a se
672  * @bucket_id:		bucket index corresponding to the "assigned" value
673  * @active:		the se is currently refcounted in a rq's bucket
674  * @user_defined:	the requested clamp value comes from user-space
675  *
676  * The bucket_id is the index of the clamp bucket matching the clamp value
677  * which is pre-computed and stored to avoid expensive integer divisions from
678  * the fast path.
679  *
680  * The active bit is set whenever a task has got an "effective" value assigned,
681  * which can be different from the clamp value "requested" from user-space.
682  * This allows to know a task is refcounted in the rq's bucket corresponding
683  * to the "effective" bucket_id.
684  *
685  * The user_defined bit is set whenever a task has got a task-specific clamp
686  * value requested from userspace, i.e. the system defaults apply to this task
687  * just as a restriction. This allows to relax default clamps when a less
688  * restrictive task-specific value has been requested, thus allowing to
689  * implement a "nice" semantic. For example, a task running with a 20%
690  * default boost can still drop its own boosting to 0%.
691  */
692 struct uclamp_se {
693 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
694 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
695 	unsigned int active		: 1;
696 	unsigned int user_defined	: 1;
697 };
698 #endif /* CONFIG_UCLAMP_TASK */
699 
700 union rcu_special {
701 	struct {
702 		u8			blocked;
703 		u8			need_qs;
704 		u8			exp_hint; /* Hint for performance. */
705 		u8			need_mb; /* Readers need smp_mb(). */
706 	} b; /* Bits. */
707 	u32 s; /* Set of bits. */
708 };
709 
710 enum perf_event_task_context {
711 	perf_invalid_context = -1,
712 	perf_hw_context = 0,
713 	perf_sw_context,
714 	perf_nr_task_contexts,
715 };
716 
717 struct wake_q_node {
718 	struct wake_q_node *next;
719 };
720 
721 struct kmap_ctrl {
722 #ifdef CONFIG_KMAP_LOCAL
723 	int				idx;
724 	pte_t				pteval[KM_MAX_IDX];
725 #endif
726 };
727 
728 struct task_struct {
729 #ifdef CONFIG_THREAD_INFO_IN_TASK
730 	/*
731 	 * For reasons of header soup (see current_thread_info()), this
732 	 * must be the first element of task_struct.
733 	 */
734 	struct thread_info		thread_info;
735 #endif
736 	unsigned int			__state;
737 
738 #ifdef CONFIG_PREEMPT_RT
739 	/* saved state for "spinlock sleepers" */
740 	unsigned int			saved_state;
741 #endif
742 
743 	/*
744 	 * This begins the randomizable portion of task_struct. Only
745 	 * scheduling-critical items should be added above here.
746 	 */
747 	randomized_struct_fields_start
748 
749 	void				*stack;
750 	refcount_t			usage;
751 	/* Per task flags (PF_*), defined further below: */
752 	unsigned int			flags;
753 	unsigned int			ptrace;
754 
755 #ifdef CONFIG_SMP
756 	int				on_cpu;
757 	struct __call_single_node	wake_entry;
758 	unsigned int			wakee_flips;
759 	unsigned long			wakee_flip_decay_ts;
760 	struct task_struct		*last_wakee;
761 
762 	/*
763 	 * recent_used_cpu is initially set as the last CPU used by a task
764 	 * that wakes affine another task. Waker/wakee relationships can
765 	 * push tasks around a CPU where each wakeup moves to the next one.
766 	 * Tracking a recently used CPU allows a quick search for a recently
767 	 * used CPU that may be idle.
768 	 */
769 	int				recent_used_cpu;
770 	int				wake_cpu;
771 #endif
772 	int				on_rq;
773 
774 	int				prio;
775 	int				static_prio;
776 	int				normal_prio;
777 	unsigned int			rt_priority;
778 
779 	struct sched_entity		se;
780 	struct sched_rt_entity		rt;
781 	struct sched_dl_entity		dl;
782 	const struct sched_class	*sched_class;
783 
784 #ifdef CONFIG_SCHED_CORE
785 	struct rb_node			core_node;
786 	unsigned long			core_cookie;
787 	unsigned int			core_occupation;
788 #endif
789 
790 #ifdef CONFIG_CGROUP_SCHED
791 	struct task_group		*sched_task_group;
792 #endif
793 
794 #ifdef CONFIG_UCLAMP_TASK
795 	/*
796 	 * Clamp values requested for a scheduling entity.
797 	 * Must be updated with task_rq_lock() held.
798 	 */
799 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
800 	/*
801 	 * Effective clamp values used for a scheduling entity.
802 	 * Must be updated with task_rq_lock() held.
803 	 */
804 	struct uclamp_se		uclamp[UCLAMP_CNT];
805 #endif
806 
807 	struct sched_statistics         stats;
808 
809 #ifdef CONFIG_PREEMPT_NOTIFIERS
810 	/* List of struct preempt_notifier: */
811 	struct hlist_head		preempt_notifiers;
812 #endif
813 
814 #ifdef CONFIG_BLK_DEV_IO_TRACE
815 	unsigned int			btrace_seq;
816 #endif
817 
818 	unsigned int			policy;
819 	int				nr_cpus_allowed;
820 	const cpumask_t			*cpus_ptr;
821 	cpumask_t			*user_cpus_ptr;
822 	cpumask_t			cpus_mask;
823 	void				*migration_pending;
824 #ifdef CONFIG_SMP
825 	unsigned short			migration_disabled;
826 #endif
827 	unsigned short			migration_flags;
828 
829 #ifdef CONFIG_PREEMPT_RCU
830 	int				rcu_read_lock_nesting;
831 	union rcu_special		rcu_read_unlock_special;
832 	struct list_head		rcu_node_entry;
833 	struct rcu_node			*rcu_blocked_node;
834 #endif /* #ifdef CONFIG_PREEMPT_RCU */
835 
836 #ifdef CONFIG_TASKS_RCU
837 	unsigned long			rcu_tasks_nvcsw;
838 	u8				rcu_tasks_holdout;
839 	u8				rcu_tasks_idx;
840 	int				rcu_tasks_idle_cpu;
841 	struct list_head		rcu_tasks_holdout_list;
842 #endif /* #ifdef CONFIG_TASKS_RCU */
843 
844 #ifdef CONFIG_TASKS_TRACE_RCU
845 	int				trc_reader_nesting;
846 	int				trc_ipi_to_cpu;
847 	union rcu_special		trc_reader_special;
848 	bool				trc_reader_checked;
849 	struct list_head		trc_holdout_list;
850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851 
852 	struct sched_info		sched_info;
853 
854 	struct list_head		tasks;
855 #ifdef CONFIG_SMP
856 	struct plist_node		pushable_tasks;
857 	struct rb_node			pushable_dl_tasks;
858 #endif
859 
860 	struct mm_struct		*mm;
861 	struct mm_struct		*active_mm;
862 
863 	/* Per-thread vma caching: */
864 	struct vmacache			vmacache;
865 
866 #ifdef SPLIT_RSS_COUNTING
867 	struct task_rss_stat		rss_stat;
868 #endif
869 	int				exit_state;
870 	int				exit_code;
871 	int				exit_signal;
872 	/* The signal sent when the parent dies: */
873 	int				pdeath_signal;
874 	/* JOBCTL_*, siglock protected: */
875 	unsigned long			jobctl;
876 
877 	/* Used for emulating ABI behavior of previous Linux versions: */
878 	unsigned int			personality;
879 
880 	/* Scheduler bits, serialized by scheduler locks: */
881 	unsigned			sched_reset_on_fork:1;
882 	unsigned			sched_contributes_to_load:1;
883 	unsigned			sched_migrated:1;
884 #ifdef CONFIG_PSI
885 	unsigned			sched_psi_wake_requeue:1;
886 #endif
887 
888 	/* Force alignment to the next boundary: */
889 	unsigned			:0;
890 
891 	/* Unserialized, strictly 'current' */
892 
893 	/*
894 	 * This field must not be in the scheduler word above due to wakelist
895 	 * queueing no longer being serialized by p->on_cpu. However:
896 	 *
897 	 * p->XXX = X;			ttwu()
898 	 * schedule()			  if (p->on_rq && ..) // false
899 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
900 	 *   deactivate_task()		      ttwu_queue_wakelist())
901 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
902 	 *
903 	 * guarantees all stores of 'current' are visible before
904 	 * ->sched_remote_wakeup gets used, so it can be in this word.
905 	 */
906 	unsigned			sched_remote_wakeup:1;
907 
908 	/* Bit to tell LSMs we're in execve(): */
909 	unsigned			in_execve:1;
910 	unsigned			in_iowait:1;
911 #ifndef TIF_RESTORE_SIGMASK
912 	unsigned			restore_sigmask:1;
913 #endif
914 #ifdef CONFIG_MEMCG
915 	unsigned			in_user_fault:1;
916 #endif
917 #ifdef CONFIG_COMPAT_BRK
918 	unsigned			brk_randomized:1;
919 #endif
920 #ifdef CONFIG_CGROUPS
921 	/* disallow userland-initiated cgroup migration */
922 	unsigned			no_cgroup_migration:1;
923 	/* task is frozen/stopped (used by the cgroup freezer) */
924 	unsigned			frozen:1;
925 #endif
926 #ifdef CONFIG_BLK_CGROUP
927 	unsigned			use_memdelay:1;
928 #endif
929 #ifdef CONFIG_PSI
930 	/* Stalled due to lack of memory */
931 	unsigned			in_memstall:1;
932 #endif
933 #ifdef CONFIG_PAGE_OWNER
934 	/* Used by page_owner=on to detect recursion in page tracking. */
935 	unsigned			in_page_owner:1;
936 #endif
937 #ifdef CONFIG_EVENTFD
938 	/* Recursion prevention for eventfd_signal() */
939 	unsigned			in_eventfd_signal:1;
940 #endif
941 
942 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
943 
944 	struct restart_block		restart_block;
945 
946 	pid_t				pid;
947 	pid_t				tgid;
948 
949 #ifdef CONFIG_STACKPROTECTOR
950 	/* Canary value for the -fstack-protector GCC feature: */
951 	unsigned long			stack_canary;
952 #endif
953 	/*
954 	 * Pointers to the (original) parent process, youngest child, younger sibling,
955 	 * older sibling, respectively.  (p->father can be replaced with
956 	 * p->real_parent->pid)
957 	 */
958 
959 	/* Real parent process: */
960 	struct task_struct __rcu	*real_parent;
961 
962 	/* Recipient of SIGCHLD, wait4() reports: */
963 	struct task_struct __rcu	*parent;
964 
965 	/*
966 	 * Children/sibling form the list of natural children:
967 	 */
968 	struct list_head		children;
969 	struct list_head		sibling;
970 	struct task_struct		*group_leader;
971 
972 	/*
973 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
974 	 *
975 	 * This includes both natural children and PTRACE_ATTACH targets.
976 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
977 	 */
978 	struct list_head		ptraced;
979 	struct list_head		ptrace_entry;
980 
981 	/* PID/PID hash table linkage. */
982 	struct pid			*thread_pid;
983 	struct hlist_node		pid_links[PIDTYPE_MAX];
984 	struct list_head		thread_group;
985 	struct list_head		thread_node;
986 
987 	struct completion		*vfork_done;
988 
989 	/* CLONE_CHILD_SETTID: */
990 	int __user			*set_child_tid;
991 
992 	/* CLONE_CHILD_CLEARTID: */
993 	int __user			*clear_child_tid;
994 
995 	/* PF_KTHREAD | PF_IO_WORKER */
996 	void				*worker_private;
997 
998 	u64				utime;
999 	u64				stime;
1000 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1001 	u64				utimescaled;
1002 	u64				stimescaled;
1003 #endif
1004 	u64				gtime;
1005 	struct prev_cputime		prev_cputime;
1006 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1007 	struct vtime			vtime;
1008 #endif
1009 
1010 #ifdef CONFIG_NO_HZ_FULL
1011 	atomic_t			tick_dep_mask;
1012 #endif
1013 	/* Context switch counts: */
1014 	unsigned long			nvcsw;
1015 	unsigned long			nivcsw;
1016 
1017 	/* Monotonic time in nsecs: */
1018 	u64				start_time;
1019 
1020 	/* Boot based time in nsecs: */
1021 	u64				start_boottime;
1022 
1023 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1024 	unsigned long			min_flt;
1025 	unsigned long			maj_flt;
1026 
1027 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1028 	struct posix_cputimers		posix_cputimers;
1029 
1030 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1031 	struct posix_cputimers_work	posix_cputimers_work;
1032 #endif
1033 
1034 	/* Process credentials: */
1035 
1036 	/* Tracer's credentials at attach: */
1037 	const struct cred __rcu		*ptracer_cred;
1038 
1039 	/* Objective and real subjective task credentials (COW): */
1040 	const struct cred __rcu		*real_cred;
1041 
1042 	/* Effective (overridable) subjective task credentials (COW): */
1043 	const struct cred __rcu		*cred;
1044 
1045 #ifdef CONFIG_KEYS
1046 	/* Cached requested key. */
1047 	struct key			*cached_requested_key;
1048 #endif
1049 
1050 	/*
1051 	 * executable name, excluding path.
1052 	 *
1053 	 * - normally initialized setup_new_exec()
1054 	 * - access it with [gs]et_task_comm()
1055 	 * - lock it with task_lock()
1056 	 */
1057 	char				comm[TASK_COMM_LEN];
1058 
1059 	struct nameidata		*nameidata;
1060 
1061 #ifdef CONFIG_SYSVIPC
1062 	struct sysv_sem			sysvsem;
1063 	struct sysv_shm			sysvshm;
1064 #endif
1065 #ifdef CONFIG_DETECT_HUNG_TASK
1066 	unsigned long			last_switch_count;
1067 	unsigned long			last_switch_time;
1068 #endif
1069 	/* Filesystem information: */
1070 	struct fs_struct		*fs;
1071 
1072 	/* Open file information: */
1073 	struct files_struct		*files;
1074 
1075 #ifdef CONFIG_IO_URING
1076 	struct io_uring_task		*io_uring;
1077 #endif
1078 
1079 	/* Namespaces: */
1080 	struct nsproxy			*nsproxy;
1081 
1082 	/* Signal handlers: */
1083 	struct signal_struct		*signal;
1084 	struct sighand_struct __rcu		*sighand;
1085 	sigset_t			blocked;
1086 	sigset_t			real_blocked;
1087 	/* Restored if set_restore_sigmask() was used: */
1088 	sigset_t			saved_sigmask;
1089 	struct sigpending		pending;
1090 	unsigned long			sas_ss_sp;
1091 	size_t				sas_ss_size;
1092 	unsigned int			sas_ss_flags;
1093 
1094 	struct callback_head		*task_works;
1095 
1096 #ifdef CONFIG_AUDIT
1097 #ifdef CONFIG_AUDITSYSCALL
1098 	struct audit_context		*audit_context;
1099 #endif
1100 	kuid_t				loginuid;
1101 	unsigned int			sessionid;
1102 #endif
1103 	struct seccomp			seccomp;
1104 	struct syscall_user_dispatch	syscall_dispatch;
1105 
1106 	/* Thread group tracking: */
1107 	u64				parent_exec_id;
1108 	u64				self_exec_id;
1109 
1110 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1111 	spinlock_t			alloc_lock;
1112 
1113 	/* Protection of the PI data structures: */
1114 	raw_spinlock_t			pi_lock;
1115 
1116 	struct wake_q_node		wake_q;
1117 
1118 #ifdef CONFIG_RT_MUTEXES
1119 	/* PI waiters blocked on a rt_mutex held by this task: */
1120 	struct rb_root_cached		pi_waiters;
1121 	/* Updated under owner's pi_lock and rq lock */
1122 	struct task_struct		*pi_top_task;
1123 	/* Deadlock detection and priority inheritance handling: */
1124 	struct rt_mutex_waiter		*pi_blocked_on;
1125 #endif
1126 
1127 #ifdef CONFIG_DEBUG_MUTEXES
1128 	/* Mutex deadlock detection: */
1129 	struct mutex_waiter		*blocked_on;
1130 #endif
1131 
1132 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1133 	int				non_block_count;
1134 #endif
1135 
1136 #ifdef CONFIG_TRACE_IRQFLAGS
1137 	struct irqtrace_events		irqtrace;
1138 	unsigned int			hardirq_threaded;
1139 	u64				hardirq_chain_key;
1140 	int				softirqs_enabled;
1141 	int				softirq_context;
1142 	int				irq_config;
1143 #endif
1144 #ifdef CONFIG_PREEMPT_RT
1145 	int				softirq_disable_cnt;
1146 #endif
1147 
1148 #ifdef CONFIG_LOCKDEP
1149 # define MAX_LOCK_DEPTH			48UL
1150 	u64				curr_chain_key;
1151 	int				lockdep_depth;
1152 	unsigned int			lockdep_recursion;
1153 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1154 #endif
1155 
1156 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1157 	unsigned int			in_ubsan;
1158 #endif
1159 
1160 	/* Journalling filesystem info: */
1161 	void				*journal_info;
1162 
1163 	/* Stacked block device info: */
1164 	struct bio_list			*bio_list;
1165 
1166 	/* Stack plugging: */
1167 	struct blk_plug			*plug;
1168 
1169 	/* VM state: */
1170 	struct reclaim_state		*reclaim_state;
1171 
1172 	struct backing_dev_info		*backing_dev_info;
1173 
1174 	struct io_context		*io_context;
1175 
1176 #ifdef CONFIG_COMPACTION
1177 	struct capture_control		*capture_control;
1178 #endif
1179 	/* Ptrace state: */
1180 	unsigned long			ptrace_message;
1181 	kernel_siginfo_t		*last_siginfo;
1182 
1183 	struct task_io_accounting	ioac;
1184 #ifdef CONFIG_PSI
1185 	/* Pressure stall state */
1186 	unsigned int			psi_flags;
1187 #endif
1188 #ifdef CONFIG_TASK_XACCT
1189 	/* Accumulated RSS usage: */
1190 	u64				acct_rss_mem1;
1191 	/* Accumulated virtual memory usage: */
1192 	u64				acct_vm_mem1;
1193 	/* stime + utime since last update: */
1194 	u64				acct_timexpd;
1195 #endif
1196 #ifdef CONFIG_CPUSETS
1197 	/* Protected by ->alloc_lock: */
1198 	nodemask_t			mems_allowed;
1199 	/* Sequence number to catch updates: */
1200 	seqcount_spinlock_t		mems_allowed_seq;
1201 	int				cpuset_mem_spread_rotor;
1202 	int				cpuset_slab_spread_rotor;
1203 #endif
1204 #ifdef CONFIG_CGROUPS
1205 	/* Control Group info protected by css_set_lock: */
1206 	struct css_set __rcu		*cgroups;
1207 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1208 	struct list_head		cg_list;
1209 #endif
1210 #ifdef CONFIG_X86_CPU_RESCTRL
1211 	u32				closid;
1212 	u32				rmid;
1213 #endif
1214 #ifdef CONFIG_FUTEX
1215 	struct robust_list_head __user	*robust_list;
1216 #ifdef CONFIG_COMPAT
1217 	struct compat_robust_list_head __user *compat_robust_list;
1218 #endif
1219 	struct list_head		pi_state_list;
1220 	struct futex_pi_state		*pi_state_cache;
1221 	struct mutex			futex_exit_mutex;
1222 	unsigned int			futex_state;
1223 #endif
1224 #ifdef CONFIG_PERF_EVENTS
1225 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1226 	struct mutex			perf_event_mutex;
1227 	struct list_head		perf_event_list;
1228 #endif
1229 #ifdef CONFIG_DEBUG_PREEMPT
1230 	unsigned long			preempt_disable_ip;
1231 #endif
1232 #ifdef CONFIG_NUMA
1233 	/* Protected by alloc_lock: */
1234 	struct mempolicy		*mempolicy;
1235 	short				il_prev;
1236 	short				pref_node_fork;
1237 #endif
1238 #ifdef CONFIG_NUMA_BALANCING
1239 	int				numa_scan_seq;
1240 	unsigned int			numa_scan_period;
1241 	unsigned int			numa_scan_period_max;
1242 	int				numa_preferred_nid;
1243 	unsigned long			numa_migrate_retry;
1244 	/* Migration stamp: */
1245 	u64				node_stamp;
1246 	u64				last_task_numa_placement;
1247 	u64				last_sum_exec_runtime;
1248 	struct callback_head		numa_work;
1249 
1250 	/*
1251 	 * This pointer is only modified for current in syscall and
1252 	 * pagefault context (and for tasks being destroyed), so it can be read
1253 	 * from any of the following contexts:
1254 	 *  - RCU read-side critical section
1255 	 *  - current->numa_group from everywhere
1256 	 *  - task's runqueue locked, task not running
1257 	 */
1258 	struct numa_group __rcu		*numa_group;
1259 
1260 	/*
1261 	 * numa_faults is an array split into four regions:
1262 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1263 	 * in this precise order.
1264 	 *
1265 	 * faults_memory: Exponential decaying average of faults on a per-node
1266 	 * basis. Scheduling placement decisions are made based on these
1267 	 * counts. The values remain static for the duration of a PTE scan.
1268 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1269 	 * hinting fault was incurred.
1270 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1271 	 * during the current scan window. When the scan completes, the counts
1272 	 * in faults_memory and faults_cpu decay and these values are copied.
1273 	 */
1274 	unsigned long			*numa_faults;
1275 	unsigned long			total_numa_faults;
1276 
1277 	/*
1278 	 * numa_faults_locality tracks if faults recorded during the last
1279 	 * scan window were remote/local or failed to migrate. The task scan
1280 	 * period is adapted based on the locality of the faults with different
1281 	 * weights depending on whether they were shared or private faults
1282 	 */
1283 	unsigned long			numa_faults_locality[3];
1284 
1285 	unsigned long			numa_pages_migrated;
1286 #endif /* CONFIG_NUMA_BALANCING */
1287 
1288 #ifdef CONFIG_RSEQ
1289 	struct rseq __user *rseq;
1290 	u32 rseq_sig;
1291 	/*
1292 	 * RmW on rseq_event_mask must be performed atomically
1293 	 * with respect to preemption.
1294 	 */
1295 	unsigned long rseq_event_mask;
1296 #endif
1297 
1298 	struct tlbflush_unmap_batch	tlb_ubc;
1299 
1300 	union {
1301 		refcount_t		rcu_users;
1302 		struct rcu_head		rcu;
1303 	};
1304 
1305 	/* Cache last used pipe for splice(): */
1306 	struct pipe_inode_info		*splice_pipe;
1307 
1308 	struct page_frag		task_frag;
1309 
1310 #ifdef CONFIG_TASK_DELAY_ACCT
1311 	struct task_delay_info		*delays;
1312 #endif
1313 
1314 #ifdef CONFIG_FAULT_INJECTION
1315 	int				make_it_fail;
1316 	unsigned int			fail_nth;
1317 #endif
1318 	/*
1319 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1320 	 * balance_dirty_pages() for a dirty throttling pause:
1321 	 */
1322 	int				nr_dirtied;
1323 	int				nr_dirtied_pause;
1324 	/* Start of a write-and-pause period: */
1325 	unsigned long			dirty_paused_when;
1326 
1327 #ifdef CONFIG_LATENCYTOP
1328 	int				latency_record_count;
1329 	struct latency_record		latency_record[LT_SAVECOUNT];
1330 #endif
1331 	/*
1332 	 * Time slack values; these are used to round up poll() and
1333 	 * select() etc timeout values. These are in nanoseconds.
1334 	 */
1335 	u64				timer_slack_ns;
1336 	u64				default_timer_slack_ns;
1337 
1338 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1339 	unsigned int			kasan_depth;
1340 #endif
1341 
1342 #ifdef CONFIG_KCSAN
1343 	struct kcsan_ctx		kcsan_ctx;
1344 #ifdef CONFIG_TRACE_IRQFLAGS
1345 	struct irqtrace_events		kcsan_save_irqtrace;
1346 #endif
1347 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1348 	int				kcsan_stack_depth;
1349 #endif
1350 #endif
1351 
1352 #if IS_ENABLED(CONFIG_KUNIT)
1353 	struct kunit			*kunit_test;
1354 #endif
1355 
1356 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1357 	/* Index of current stored address in ret_stack: */
1358 	int				curr_ret_stack;
1359 	int				curr_ret_depth;
1360 
1361 	/* Stack of return addresses for return function tracing: */
1362 	struct ftrace_ret_stack		*ret_stack;
1363 
1364 	/* Timestamp for last schedule: */
1365 	unsigned long long		ftrace_timestamp;
1366 
1367 	/*
1368 	 * Number of functions that haven't been traced
1369 	 * because of depth overrun:
1370 	 */
1371 	atomic_t			trace_overrun;
1372 
1373 	/* Pause tracing: */
1374 	atomic_t			tracing_graph_pause;
1375 #endif
1376 
1377 #ifdef CONFIG_TRACING
1378 	/* State flags for use by tracers: */
1379 	unsigned long			trace;
1380 
1381 	/* Bitmask and counter of trace recursion: */
1382 	unsigned long			trace_recursion;
1383 #endif /* CONFIG_TRACING */
1384 
1385 #ifdef CONFIG_KCOV
1386 	/* See kernel/kcov.c for more details. */
1387 
1388 	/* Coverage collection mode enabled for this task (0 if disabled): */
1389 	unsigned int			kcov_mode;
1390 
1391 	/* Size of the kcov_area: */
1392 	unsigned int			kcov_size;
1393 
1394 	/* Buffer for coverage collection: */
1395 	void				*kcov_area;
1396 
1397 	/* KCOV descriptor wired with this task or NULL: */
1398 	struct kcov			*kcov;
1399 
1400 	/* KCOV common handle for remote coverage collection: */
1401 	u64				kcov_handle;
1402 
1403 	/* KCOV sequence number: */
1404 	int				kcov_sequence;
1405 
1406 	/* Collect coverage from softirq context: */
1407 	unsigned int			kcov_softirq;
1408 #endif
1409 
1410 #ifdef CONFIG_MEMCG
1411 	struct mem_cgroup		*memcg_in_oom;
1412 	gfp_t				memcg_oom_gfp_mask;
1413 	int				memcg_oom_order;
1414 
1415 	/* Number of pages to reclaim on returning to userland: */
1416 	unsigned int			memcg_nr_pages_over_high;
1417 
1418 	/* Used by memcontrol for targeted memcg charge: */
1419 	struct mem_cgroup		*active_memcg;
1420 #endif
1421 
1422 #ifdef CONFIG_BLK_CGROUP
1423 	struct request_queue		*throttle_queue;
1424 #endif
1425 
1426 #ifdef CONFIG_UPROBES
1427 	struct uprobe_task		*utask;
1428 #endif
1429 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1430 	unsigned int			sequential_io;
1431 	unsigned int			sequential_io_avg;
1432 #endif
1433 	struct kmap_ctrl		kmap_ctrl;
1434 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1435 	unsigned long			task_state_change;
1436 # ifdef CONFIG_PREEMPT_RT
1437 	unsigned long			saved_state_change;
1438 # endif
1439 #endif
1440 	int				pagefault_disabled;
1441 #ifdef CONFIG_MMU
1442 	struct task_struct		*oom_reaper_list;
1443 #endif
1444 #ifdef CONFIG_VMAP_STACK
1445 	struct vm_struct		*stack_vm_area;
1446 #endif
1447 #ifdef CONFIG_THREAD_INFO_IN_TASK
1448 	/* A live task holds one reference: */
1449 	refcount_t			stack_refcount;
1450 #endif
1451 #ifdef CONFIG_LIVEPATCH
1452 	int patch_state;
1453 #endif
1454 #ifdef CONFIG_SECURITY
1455 	/* Used by LSM modules for access restriction: */
1456 	void				*security;
1457 #endif
1458 #ifdef CONFIG_BPF_SYSCALL
1459 	/* Used by BPF task local storage */
1460 	struct bpf_local_storage __rcu	*bpf_storage;
1461 	/* Used for BPF run context */
1462 	struct bpf_run_ctx		*bpf_ctx;
1463 #endif
1464 
1465 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1466 	unsigned long			lowest_stack;
1467 	unsigned long			prev_lowest_stack;
1468 #endif
1469 
1470 #ifdef CONFIG_X86_MCE
1471 	void __user			*mce_vaddr;
1472 	__u64				mce_kflags;
1473 	u64				mce_addr;
1474 	__u64				mce_ripv : 1,
1475 					mce_whole_page : 1,
1476 					__mce_reserved : 62;
1477 	struct callback_head		mce_kill_me;
1478 	int				mce_count;
1479 #endif
1480 
1481 #ifdef CONFIG_KRETPROBES
1482 	struct llist_head               kretprobe_instances;
1483 #endif
1484 
1485 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1486 	/*
1487 	 * If L1D flush is supported on mm context switch
1488 	 * then we use this callback head to queue kill work
1489 	 * to kill tasks that are not running on SMT disabled
1490 	 * cores
1491 	 */
1492 	struct callback_head		l1d_flush_kill;
1493 #endif
1494 
1495 	/*
1496 	 * New fields for task_struct should be added above here, so that
1497 	 * they are included in the randomized portion of task_struct.
1498 	 */
1499 	randomized_struct_fields_end
1500 
1501 	/* CPU-specific state of this task: */
1502 	struct thread_struct		thread;
1503 
1504 	/*
1505 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1506 	 * structure.  It *MUST* be at the end of 'task_struct'.
1507 	 *
1508 	 * Do not put anything below here!
1509 	 */
1510 };
1511 
1512 static inline struct pid *task_pid(struct task_struct *task)
1513 {
1514 	return task->thread_pid;
1515 }
1516 
1517 /*
1518  * the helpers to get the task's different pids as they are seen
1519  * from various namespaces
1520  *
1521  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1522  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1523  *                     current.
1524  * task_xid_nr_ns()  : id seen from the ns specified;
1525  *
1526  * see also pid_nr() etc in include/linux/pid.h
1527  */
1528 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1529 
1530 static inline pid_t task_pid_nr(struct task_struct *tsk)
1531 {
1532 	return tsk->pid;
1533 }
1534 
1535 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1536 {
1537 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1538 }
1539 
1540 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1541 {
1542 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1543 }
1544 
1545 
1546 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1547 {
1548 	return tsk->tgid;
1549 }
1550 
1551 /**
1552  * pid_alive - check that a task structure is not stale
1553  * @p: Task structure to be checked.
1554  *
1555  * Test if a process is not yet dead (at most zombie state)
1556  * If pid_alive fails, then pointers within the task structure
1557  * can be stale and must not be dereferenced.
1558  *
1559  * Return: 1 if the process is alive. 0 otherwise.
1560  */
1561 static inline int pid_alive(const struct task_struct *p)
1562 {
1563 	return p->thread_pid != NULL;
1564 }
1565 
1566 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1567 {
1568 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1569 }
1570 
1571 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1572 {
1573 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1574 }
1575 
1576 
1577 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1578 {
1579 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1580 }
1581 
1582 static inline pid_t task_session_vnr(struct task_struct *tsk)
1583 {
1584 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1585 }
1586 
1587 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1588 {
1589 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1590 }
1591 
1592 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1593 {
1594 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1595 }
1596 
1597 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1598 {
1599 	pid_t pid = 0;
1600 
1601 	rcu_read_lock();
1602 	if (pid_alive(tsk))
1603 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1604 	rcu_read_unlock();
1605 
1606 	return pid;
1607 }
1608 
1609 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1610 {
1611 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1612 }
1613 
1614 /* Obsolete, do not use: */
1615 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1616 {
1617 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1618 }
1619 
1620 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1621 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1622 
1623 static inline unsigned int task_state_index(struct task_struct *tsk)
1624 {
1625 	unsigned int tsk_state = READ_ONCE(tsk->__state);
1626 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1627 
1628 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1629 
1630 	if (tsk_state == TASK_IDLE)
1631 		state = TASK_REPORT_IDLE;
1632 
1633 	return fls(state);
1634 }
1635 
1636 static inline char task_index_to_char(unsigned int state)
1637 {
1638 	static const char state_char[] = "RSDTtXZPI";
1639 
1640 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1641 
1642 	return state_char[state];
1643 }
1644 
1645 static inline char task_state_to_char(struct task_struct *tsk)
1646 {
1647 	return task_index_to_char(task_state_index(tsk));
1648 }
1649 
1650 /**
1651  * is_global_init - check if a task structure is init. Since init
1652  * is free to have sub-threads we need to check tgid.
1653  * @tsk: Task structure to be checked.
1654  *
1655  * Check if a task structure is the first user space task the kernel created.
1656  *
1657  * Return: 1 if the task structure is init. 0 otherwise.
1658  */
1659 static inline int is_global_init(struct task_struct *tsk)
1660 {
1661 	return task_tgid_nr(tsk) == 1;
1662 }
1663 
1664 extern struct pid *cad_pid;
1665 
1666 /*
1667  * Per process flags
1668  */
1669 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1670 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1671 #define PF_EXITING		0x00000004	/* Getting shut down */
1672 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1673 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1674 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1675 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1676 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1677 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1678 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1679 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1680 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1681 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1682 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1683 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1684 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1685 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1686 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1687 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1688 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1689 						 * I am cleaning dirty pages from some other bdi. */
1690 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1691 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1692 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1693 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1694 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1695 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1696 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1697 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1698 
1699 /*
1700  * Only the _current_ task can read/write to tsk->flags, but other
1701  * tasks can access tsk->flags in readonly mode for example
1702  * with tsk_used_math (like during threaded core dumping).
1703  * There is however an exception to this rule during ptrace
1704  * or during fork: the ptracer task is allowed to write to the
1705  * child->flags of its traced child (same goes for fork, the parent
1706  * can write to the child->flags), because we're guaranteed the
1707  * child is not running and in turn not changing child->flags
1708  * at the same time the parent does it.
1709  */
1710 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1711 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1712 #define clear_used_math()			clear_stopped_child_used_math(current)
1713 #define set_used_math()				set_stopped_child_used_math(current)
1714 
1715 #define conditional_stopped_child_used_math(condition, child) \
1716 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1717 
1718 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1719 
1720 #define copy_to_stopped_child_used_math(child) \
1721 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1722 
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1725 #define used_math()				tsk_used_math(current)
1726 
1727 static __always_inline bool is_percpu_thread(void)
1728 {
1729 #ifdef CONFIG_SMP
1730 	return (current->flags & PF_NO_SETAFFINITY) &&
1731 		(current->nr_cpus_allowed  == 1);
1732 #else
1733 	return true;
1734 #endif
1735 }
1736 
1737 /* Per-process atomic flags. */
1738 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1739 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1740 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1741 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1742 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1743 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1744 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1745 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1746 
1747 #define TASK_PFA_TEST(name, func)					\
1748 	static inline bool task_##func(struct task_struct *p)		\
1749 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1750 
1751 #define TASK_PFA_SET(name, func)					\
1752 	static inline void task_set_##func(struct task_struct *p)	\
1753 	{ set_bit(PFA_##name, &p->atomic_flags); }
1754 
1755 #define TASK_PFA_CLEAR(name, func)					\
1756 	static inline void task_clear_##func(struct task_struct *p)	\
1757 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1758 
1759 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1760 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1761 
1762 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1763 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1764 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1765 
1766 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1767 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1768 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1769 
1770 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1771 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1772 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1773 
1774 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1775 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1776 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1777 
1778 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1779 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1780 
1781 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1782 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1783 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1784 
1785 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1786 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1787 
1788 static inline void
1789 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1790 {
1791 	current->flags &= ~flags;
1792 	current->flags |= orig_flags & flags;
1793 }
1794 
1795 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1796 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1797 #ifdef CONFIG_SMP
1798 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1799 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1800 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1801 extern void release_user_cpus_ptr(struct task_struct *p);
1802 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1803 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1804 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1805 #else
1806 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1807 {
1808 }
1809 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1810 {
1811 	if (!cpumask_test_cpu(0, new_mask))
1812 		return -EINVAL;
1813 	return 0;
1814 }
1815 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1816 {
1817 	if (src->user_cpus_ptr)
1818 		return -EINVAL;
1819 	return 0;
1820 }
1821 static inline void release_user_cpus_ptr(struct task_struct *p)
1822 {
1823 	WARN_ON(p->user_cpus_ptr);
1824 }
1825 
1826 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1827 {
1828 	return 0;
1829 }
1830 #endif
1831 
1832 extern int yield_to(struct task_struct *p, bool preempt);
1833 extern void set_user_nice(struct task_struct *p, long nice);
1834 extern int task_prio(const struct task_struct *p);
1835 
1836 /**
1837  * task_nice - return the nice value of a given task.
1838  * @p: the task in question.
1839  *
1840  * Return: The nice value [ -20 ... 0 ... 19 ].
1841  */
1842 static inline int task_nice(const struct task_struct *p)
1843 {
1844 	return PRIO_TO_NICE((p)->static_prio);
1845 }
1846 
1847 extern int can_nice(const struct task_struct *p, const int nice);
1848 extern int task_curr(const struct task_struct *p);
1849 extern int idle_cpu(int cpu);
1850 extern int available_idle_cpu(int cpu);
1851 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1852 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1853 extern void sched_set_fifo(struct task_struct *p);
1854 extern void sched_set_fifo_low(struct task_struct *p);
1855 extern void sched_set_normal(struct task_struct *p, int nice);
1856 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1857 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1858 extern struct task_struct *idle_task(int cpu);
1859 
1860 /**
1861  * is_idle_task - is the specified task an idle task?
1862  * @p: the task in question.
1863  *
1864  * Return: 1 if @p is an idle task. 0 otherwise.
1865  */
1866 static __always_inline bool is_idle_task(const struct task_struct *p)
1867 {
1868 	return !!(p->flags & PF_IDLE);
1869 }
1870 
1871 extern struct task_struct *curr_task(int cpu);
1872 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1873 
1874 void yield(void);
1875 
1876 union thread_union {
1877 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1878 	struct task_struct task;
1879 #endif
1880 #ifndef CONFIG_THREAD_INFO_IN_TASK
1881 	struct thread_info thread_info;
1882 #endif
1883 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1884 };
1885 
1886 #ifndef CONFIG_THREAD_INFO_IN_TASK
1887 extern struct thread_info init_thread_info;
1888 #endif
1889 
1890 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1891 
1892 #ifdef CONFIG_THREAD_INFO_IN_TASK
1893 # define task_thread_info(task)	(&(task)->thread_info)
1894 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1895 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1896 #endif
1897 
1898 /*
1899  * find a task by one of its numerical ids
1900  *
1901  * find_task_by_pid_ns():
1902  *      finds a task by its pid in the specified namespace
1903  * find_task_by_vpid():
1904  *      finds a task by its virtual pid
1905  *
1906  * see also find_vpid() etc in include/linux/pid.h
1907  */
1908 
1909 extern struct task_struct *find_task_by_vpid(pid_t nr);
1910 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1911 
1912 /*
1913  * find a task by its virtual pid and get the task struct
1914  */
1915 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1916 
1917 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1918 extern int wake_up_process(struct task_struct *tsk);
1919 extern void wake_up_new_task(struct task_struct *tsk);
1920 
1921 #ifdef CONFIG_SMP
1922 extern void kick_process(struct task_struct *tsk);
1923 #else
1924 static inline void kick_process(struct task_struct *tsk) { }
1925 #endif
1926 
1927 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1928 
1929 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1930 {
1931 	__set_task_comm(tsk, from, false);
1932 }
1933 
1934 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1935 #define get_task_comm(buf, tsk) ({			\
1936 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1937 	__get_task_comm(buf, sizeof(buf), tsk);		\
1938 })
1939 
1940 #ifdef CONFIG_SMP
1941 static __always_inline void scheduler_ipi(void)
1942 {
1943 	/*
1944 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1945 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1946 	 * this IPI.
1947 	 */
1948 	preempt_fold_need_resched();
1949 }
1950 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1951 #else
1952 static inline void scheduler_ipi(void) { }
1953 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1954 {
1955 	return 1;
1956 }
1957 #endif
1958 
1959 /*
1960  * Set thread flags in other task's structures.
1961  * See asm/thread_info.h for TIF_xxxx flags available:
1962  */
1963 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1964 {
1965 	set_ti_thread_flag(task_thread_info(tsk), flag);
1966 }
1967 
1968 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1969 {
1970 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1971 }
1972 
1973 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1974 					  bool value)
1975 {
1976 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1977 }
1978 
1979 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1980 {
1981 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1982 }
1983 
1984 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1985 {
1986 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1987 }
1988 
1989 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1990 {
1991 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1992 }
1993 
1994 static inline void set_tsk_need_resched(struct task_struct *tsk)
1995 {
1996 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1997 }
1998 
1999 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2000 {
2001 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2002 }
2003 
2004 static inline int test_tsk_need_resched(struct task_struct *tsk)
2005 {
2006 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2007 }
2008 
2009 /*
2010  * cond_resched() and cond_resched_lock(): latency reduction via
2011  * explicit rescheduling in places that are safe. The return
2012  * value indicates whether a reschedule was done in fact.
2013  * cond_resched_lock() will drop the spinlock before scheduling,
2014  */
2015 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2016 extern int __cond_resched(void);
2017 
2018 #ifdef CONFIG_PREEMPT_DYNAMIC
2019 
2020 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2021 
2022 static __always_inline int _cond_resched(void)
2023 {
2024 	return static_call_mod(cond_resched)();
2025 }
2026 
2027 #else
2028 
2029 static inline int _cond_resched(void)
2030 {
2031 	return __cond_resched();
2032 }
2033 
2034 #endif /* CONFIG_PREEMPT_DYNAMIC */
2035 
2036 #else
2037 
2038 static inline int _cond_resched(void) { return 0; }
2039 
2040 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2041 
2042 #define cond_resched() ({			\
2043 	__might_resched(__FILE__, __LINE__, 0);	\
2044 	_cond_resched();			\
2045 })
2046 
2047 extern int __cond_resched_lock(spinlock_t *lock);
2048 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2049 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2050 
2051 #define MIGHT_RESCHED_RCU_SHIFT		8
2052 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2053 
2054 #ifndef CONFIG_PREEMPT_RT
2055 /*
2056  * Non RT kernels have an elevated preempt count due to the held lock,
2057  * but are not allowed to be inside a RCU read side critical section
2058  */
2059 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2060 #else
2061 /*
2062  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2063  * cond_resched*lock() has to take that into account because it checks for
2064  * preempt_count() and rcu_preempt_depth().
2065  */
2066 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2067 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2068 #endif
2069 
2070 #define cond_resched_lock(lock) ({						\
2071 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2072 	__cond_resched_lock(lock);						\
2073 })
2074 
2075 #define cond_resched_rwlock_read(lock) ({					\
2076 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2077 	__cond_resched_rwlock_read(lock);					\
2078 })
2079 
2080 #define cond_resched_rwlock_write(lock) ({					\
2081 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2082 	__cond_resched_rwlock_write(lock);					\
2083 })
2084 
2085 static inline void cond_resched_rcu(void)
2086 {
2087 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2088 	rcu_read_unlock();
2089 	cond_resched();
2090 	rcu_read_lock();
2091 #endif
2092 }
2093 
2094 /*
2095  * Does a critical section need to be broken due to another
2096  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2097  * but a general need for low latency)
2098  */
2099 static inline int spin_needbreak(spinlock_t *lock)
2100 {
2101 #ifdef CONFIG_PREEMPTION
2102 	return spin_is_contended(lock);
2103 #else
2104 	return 0;
2105 #endif
2106 }
2107 
2108 /*
2109  * Check if a rwlock is contended.
2110  * Returns non-zero if there is another task waiting on the rwlock.
2111  * Returns zero if the lock is not contended or the system / underlying
2112  * rwlock implementation does not support contention detection.
2113  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2114  * for low latency.
2115  */
2116 static inline int rwlock_needbreak(rwlock_t *lock)
2117 {
2118 #ifdef CONFIG_PREEMPTION
2119 	return rwlock_is_contended(lock);
2120 #else
2121 	return 0;
2122 #endif
2123 }
2124 
2125 static __always_inline bool need_resched(void)
2126 {
2127 	return unlikely(tif_need_resched());
2128 }
2129 
2130 /*
2131  * Wrappers for p->thread_info->cpu access. No-op on UP.
2132  */
2133 #ifdef CONFIG_SMP
2134 
2135 static inline unsigned int task_cpu(const struct task_struct *p)
2136 {
2137 	return READ_ONCE(task_thread_info(p)->cpu);
2138 }
2139 
2140 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2141 
2142 #else
2143 
2144 static inline unsigned int task_cpu(const struct task_struct *p)
2145 {
2146 	return 0;
2147 }
2148 
2149 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2150 {
2151 }
2152 
2153 #endif /* CONFIG_SMP */
2154 
2155 extern bool sched_task_on_rq(struct task_struct *p);
2156 extern unsigned long get_wchan(struct task_struct *p);
2157 
2158 /*
2159  * In order to reduce various lock holder preemption latencies provide an
2160  * interface to see if a vCPU is currently running or not.
2161  *
2162  * This allows us to terminate optimistic spin loops and block, analogous to
2163  * the native optimistic spin heuristic of testing if the lock owner task is
2164  * running or not.
2165  */
2166 #ifndef vcpu_is_preempted
2167 static inline bool vcpu_is_preempted(int cpu)
2168 {
2169 	return false;
2170 }
2171 #endif
2172 
2173 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2174 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2175 
2176 #ifndef TASK_SIZE_OF
2177 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2178 #endif
2179 
2180 #ifdef CONFIG_SMP
2181 static inline bool owner_on_cpu(struct task_struct *owner)
2182 {
2183 	/*
2184 	 * As lock holder preemption issue, we both skip spinning if
2185 	 * task is not on cpu or its cpu is preempted
2186 	 */
2187 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2188 }
2189 
2190 /* Returns effective CPU energy utilization, as seen by the scheduler */
2191 unsigned long sched_cpu_util(int cpu, unsigned long max);
2192 #endif /* CONFIG_SMP */
2193 
2194 #ifdef CONFIG_RSEQ
2195 
2196 /*
2197  * Map the event mask on the user-space ABI enum rseq_cs_flags
2198  * for direct mask checks.
2199  */
2200 enum rseq_event_mask_bits {
2201 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2202 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2203 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2204 };
2205 
2206 enum rseq_event_mask {
2207 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2208 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2209 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2210 };
2211 
2212 static inline void rseq_set_notify_resume(struct task_struct *t)
2213 {
2214 	if (t->rseq)
2215 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2216 }
2217 
2218 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2219 
2220 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2221 					     struct pt_regs *regs)
2222 {
2223 	if (current->rseq)
2224 		__rseq_handle_notify_resume(ksig, regs);
2225 }
2226 
2227 static inline void rseq_signal_deliver(struct ksignal *ksig,
2228 				       struct pt_regs *regs)
2229 {
2230 	preempt_disable();
2231 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2232 	preempt_enable();
2233 	rseq_handle_notify_resume(ksig, regs);
2234 }
2235 
2236 /* rseq_preempt() requires preemption to be disabled. */
2237 static inline void rseq_preempt(struct task_struct *t)
2238 {
2239 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2240 	rseq_set_notify_resume(t);
2241 }
2242 
2243 /* rseq_migrate() requires preemption to be disabled. */
2244 static inline void rseq_migrate(struct task_struct *t)
2245 {
2246 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2247 	rseq_set_notify_resume(t);
2248 }
2249 
2250 /*
2251  * If parent process has a registered restartable sequences area, the
2252  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2253  */
2254 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2255 {
2256 	if (clone_flags & CLONE_VM) {
2257 		t->rseq = NULL;
2258 		t->rseq_sig = 0;
2259 		t->rseq_event_mask = 0;
2260 	} else {
2261 		t->rseq = current->rseq;
2262 		t->rseq_sig = current->rseq_sig;
2263 		t->rseq_event_mask = current->rseq_event_mask;
2264 	}
2265 }
2266 
2267 static inline void rseq_execve(struct task_struct *t)
2268 {
2269 	t->rseq = NULL;
2270 	t->rseq_sig = 0;
2271 	t->rseq_event_mask = 0;
2272 }
2273 
2274 #else
2275 
2276 static inline void rseq_set_notify_resume(struct task_struct *t)
2277 {
2278 }
2279 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2280 					     struct pt_regs *regs)
2281 {
2282 }
2283 static inline void rseq_signal_deliver(struct ksignal *ksig,
2284 				       struct pt_regs *regs)
2285 {
2286 }
2287 static inline void rseq_preempt(struct task_struct *t)
2288 {
2289 }
2290 static inline void rseq_migrate(struct task_struct *t)
2291 {
2292 }
2293 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2294 {
2295 }
2296 static inline void rseq_execve(struct task_struct *t)
2297 {
2298 }
2299 
2300 #endif
2301 
2302 #ifdef CONFIG_DEBUG_RSEQ
2303 
2304 void rseq_syscall(struct pt_regs *regs);
2305 
2306 #else
2307 
2308 static inline void rseq_syscall(struct pt_regs *regs)
2309 {
2310 }
2311 
2312 #endif
2313 
2314 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2315 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2316 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2317 
2318 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2319 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2320 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2321 
2322 int sched_trace_rq_cpu(struct rq *rq);
2323 int sched_trace_rq_cpu_capacity(struct rq *rq);
2324 int sched_trace_rq_nr_running(struct rq *rq);
2325 
2326 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2327 
2328 #ifdef CONFIG_SCHED_CORE
2329 extern void sched_core_free(struct task_struct *tsk);
2330 extern void sched_core_fork(struct task_struct *p);
2331 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2332 				unsigned long uaddr);
2333 #else
2334 static inline void sched_core_free(struct task_struct *tsk) { }
2335 static inline void sched_core_fork(struct task_struct *p) { }
2336 #endif
2337 
2338 #endif
2339