xref: /linux/include/linux/sched.h (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25    and is now available for re-use. */
26 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
27 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
28 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
29 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
30 #define CLONE_NEWNET		0x40000000	/* New network namespace */
31 #define CLONE_IO		0x80000000	/* Clone io context */
32 
33 /*
34  * Scheduling policies
35  */
36 #define SCHED_NORMAL		0
37 #define SCHED_FIFO		1
38 #define SCHED_RR		2
39 #define SCHED_BATCH		3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE		5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK     0x40000000
44 
45 #ifdef __KERNEL__
46 
47 struct sched_param {
48 	int sched_priority;
49 };
50 
51 #include <asm/param.h>	/* for HZ */
52 
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65 
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70 
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84 
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93 
94 #include <asm/processor.h>
95 
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 
103 /*
104  * List of flags we want to share for kernel threads,
105  * if only because they are not used by them anyway.
106  */
107 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
108 
109 /*
110  * These are the constant used to fake the fixed-point load-average
111  * counting. Some notes:
112  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
113  *    a load-average precision of 10 bits integer + 11 bits fractional
114  *  - if you want to count load-averages more often, you need more
115  *    precision, or rounding will get you. With 2-second counting freq,
116  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
117  *    11 bit fractions.
118  */
119 extern unsigned long avenrun[];		/* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
121 
122 #define FSHIFT		11		/* nr of bits of precision */
123 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
124 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
125 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5		2014		/* 1/exp(5sec/5min) */
127 #define EXP_15		2037		/* 1/exp(5sec/15min) */
128 
129 #define CALC_LOAD(load,exp,n) \
130 	load *= exp; \
131 	load += n*(FIXED_1-exp); \
132 	load >>= FSHIFT;
133 
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern unsigned long nr_iowait_cpu(int cpu);
142 extern unsigned long this_cpu_load(void);
143 
144 
145 extern void calc_global_load(unsigned long ticks);
146 
147 extern unsigned long get_parent_ip(unsigned long addr);
148 
149 struct seq_file;
150 struct cfs_rq;
151 struct task_group;
152 #ifdef CONFIG_SCHED_DEBUG
153 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
154 extern void proc_sched_set_task(struct task_struct *p);
155 extern void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
157 #else
158 static inline void
159 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
160 {
161 }
162 static inline void proc_sched_set_task(struct task_struct *p)
163 {
164 }
165 static inline void
166 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
167 {
168 }
169 #endif
170 
171 /*
172  * Task state bitmask. NOTE! These bits are also
173  * encoded in fs/proc/array.c: get_task_state().
174  *
175  * We have two separate sets of flags: task->state
176  * is about runnability, while task->exit_state are
177  * about the task exiting. Confusing, but this way
178  * modifying one set can't modify the other one by
179  * mistake.
180  */
181 #define TASK_RUNNING		0
182 #define TASK_INTERRUPTIBLE	1
183 #define TASK_UNINTERRUPTIBLE	2
184 #define __TASK_STOPPED		4
185 #define __TASK_TRACED		8
186 /* in tsk->exit_state */
187 #define EXIT_ZOMBIE		16
188 #define EXIT_DEAD		32
189 /* in tsk->state again */
190 #define TASK_DEAD		64
191 #define TASK_WAKEKILL		128
192 #define TASK_WAKING		256
193 #define TASK_STATE_MAX		512
194 
195 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
196 
197 extern char ___assert_task_state[1 - 2*!!(
198 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
199 
200 /* Convenience macros for the sake of set_task_state */
201 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
202 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
203 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
204 
205 /* Convenience macros for the sake of wake_up */
206 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
207 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
208 
209 /* get_task_state() */
210 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
211 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
212 				 __TASK_TRACED)
213 
214 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
215 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
216 #define task_is_dead(task)	((task)->exit_state != 0)
217 #define task_is_stopped_or_traced(task)	\
218 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219 #define task_contributes_to_load(task)	\
220 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221 				 (task->flags & PF_FREEZING) == 0)
222 
223 #define __set_task_state(tsk, state_value)		\
224 	do { (tsk)->state = (state_value); } while (0)
225 #define set_task_state(tsk, state_value)		\
226 	set_mb((tsk)->state, (state_value))
227 
228 /*
229  * set_current_state() includes a barrier so that the write of current->state
230  * is correctly serialised wrt the caller's subsequent test of whether to
231  * actually sleep:
232  *
233  *	set_current_state(TASK_UNINTERRUPTIBLE);
234  *	if (do_i_need_to_sleep())
235  *		schedule();
236  *
237  * If the caller does not need such serialisation then use __set_current_state()
238  */
239 #define __set_current_state(state_value)			\
240 	do { current->state = (state_value); } while (0)
241 #define set_current_state(state_value)		\
242 	set_mb(current->state, (state_value))
243 
244 /* Task command name length */
245 #define TASK_COMM_LEN 16
246 
247 #include <linux/spinlock.h>
248 
249 /*
250  * This serializes "schedule()" and also protects
251  * the run-queue from deletions/modifications (but
252  * _adding_ to the beginning of the run-queue has
253  * a separate lock).
254  */
255 extern rwlock_t tasklist_lock;
256 extern spinlock_t mmlist_lock;
257 
258 struct task_struct;
259 
260 #ifdef CONFIG_PROVE_RCU
261 extern int lockdep_tasklist_lock_is_held(void);
262 #endif /* #ifdef CONFIG_PROVE_RCU */
263 
264 extern void sched_init(void);
265 extern void sched_init_smp(void);
266 extern asmlinkage void schedule_tail(struct task_struct *prev);
267 extern void init_idle(struct task_struct *idle, int cpu);
268 extern void init_idle_bootup_task(struct task_struct *idle);
269 
270 extern int runqueue_is_locked(int cpu);
271 
272 extern cpumask_var_t nohz_cpu_mask;
273 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
274 extern void select_nohz_load_balancer(int stop_tick);
275 extern int get_nohz_timer_target(void);
276 #else
277 static inline void select_nohz_load_balancer(int stop_tick) { }
278 #endif
279 
280 /*
281  * Only dump TASK_* tasks. (0 for all tasks)
282  */
283 extern void show_state_filter(unsigned long state_filter);
284 
285 static inline void show_state(void)
286 {
287 	show_state_filter(0);
288 }
289 
290 extern void show_regs(struct pt_regs *);
291 
292 /*
293  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
294  * task), SP is the stack pointer of the first frame that should be shown in the back
295  * trace (or NULL if the entire call-chain of the task should be shown).
296  */
297 extern void show_stack(struct task_struct *task, unsigned long *sp);
298 
299 void io_schedule(void);
300 long io_schedule_timeout(long timeout);
301 
302 extern void cpu_init (void);
303 extern void trap_init(void);
304 extern void update_process_times(int user);
305 extern void scheduler_tick(void);
306 
307 extern void sched_show_task(struct task_struct *p);
308 
309 #ifdef CONFIG_LOCKUP_DETECTOR
310 extern void touch_softlockup_watchdog(void);
311 extern void touch_softlockup_watchdog_sync(void);
312 extern void touch_all_softlockup_watchdogs(void);
313 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
314 				  void __user *buffer,
315 				  size_t *lenp, loff_t *ppos);
316 extern unsigned int  softlockup_panic;
317 extern int softlockup_thresh;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 static inline void lockup_detector_init(void)
330 {
331 }
332 #endif
333 
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int  sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 					 void __user *buffer,
341 					 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
346 
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched		__attribute__((__section__(".sched.text")))
349 
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
352 
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
355 
356 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
363 
364 struct nsproxy;
365 struct user_namespace;
366 
367 /*
368  * Default maximum number of active map areas, this limits the number of vmas
369  * per mm struct. Users can overwrite this number by sysctl but there is a
370  * problem.
371  *
372  * When a program's coredump is generated as ELF format, a section is created
373  * per a vma. In ELF, the number of sections is represented in unsigned short.
374  * This means the number of sections should be smaller than 65535 at coredump.
375  * Because the kernel adds some informative sections to a image of program at
376  * generating coredump, we need some margin. The number of extra sections is
377  * 1-3 now and depends on arch. We use "5" as safe margin, here.
378  */
379 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
380 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
381 
382 extern int sysctl_max_map_count;
383 
384 #include <linux/aio.h>
385 
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 		       unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 			  unsigned long len, unsigned long pgoff,
394 			  unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
400 
401 
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
404 
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE      0  /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
409 
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
412 
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE	2
415 #define MMF_DUMP_ANON_SHARED	3
416 #define MMF_DUMP_MAPPED_PRIVATE	4
417 #define MMF_DUMP_MAPPED_SHARED	5
418 #define MMF_DUMP_ELF_HEADERS	6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED  8
421 
422 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS	7
424 #define MMF_DUMP_FILTER_MASK \
425 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
428 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
429 
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF	0
434 #endif
435 					/* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
437 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
438 
439 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440 
441 struct sighand_struct {
442 	atomic_t		count;
443 	struct k_sigaction	action[_NSIG];
444 	spinlock_t		siglock;
445 	wait_queue_head_t	signalfd_wqh;
446 };
447 
448 struct pacct_struct {
449 	int			ac_flag;
450 	long			ac_exitcode;
451 	unsigned long		ac_mem;
452 	cputime_t		ac_utime, ac_stime;
453 	unsigned long		ac_minflt, ac_majflt;
454 };
455 
456 struct cpu_itimer {
457 	cputime_t expires;
458 	cputime_t incr;
459 	u32 error;
460 	u32 incr_error;
461 };
462 
463 /**
464  * struct task_cputime - collected CPU time counts
465  * @utime:		time spent in user mode, in &cputime_t units
466  * @stime:		time spent in kernel mode, in &cputime_t units
467  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
468  *
469  * This structure groups together three kinds of CPU time that are
470  * tracked for threads and thread groups.  Most things considering
471  * CPU time want to group these counts together and treat all three
472  * of them in parallel.
473  */
474 struct task_cputime {
475 	cputime_t utime;
476 	cputime_t stime;
477 	unsigned long long sum_exec_runtime;
478 };
479 /* Alternate field names when used to cache expirations. */
480 #define prof_exp	stime
481 #define virt_exp	utime
482 #define sched_exp	sum_exec_runtime
483 
484 #define INIT_CPUTIME	\
485 	(struct task_cputime) {					\
486 		.utime = cputime_zero,				\
487 		.stime = cputime_zero,				\
488 		.sum_exec_runtime = 0,				\
489 	}
490 
491 /*
492  * Disable preemption until the scheduler is running.
493  * Reset by start_kernel()->sched_init()->init_idle().
494  *
495  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496  * before the scheduler is active -- see should_resched().
497  */
498 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
499 
500 /**
501  * struct thread_group_cputimer - thread group interval timer counts
502  * @cputime:		thread group interval timers.
503  * @running:		non-zero when there are timers running and
504  * 			@cputime receives updates.
505  * @lock:		lock for fields in this struct.
506  *
507  * This structure contains the version of task_cputime, above, that is
508  * used for thread group CPU timer calculations.
509  */
510 struct thread_group_cputimer {
511 	struct task_cputime cputime;
512 	int running;
513 	spinlock_t lock;
514 };
515 
516 struct autogroup;
517 
518 /*
519  * NOTE! "signal_struct" does not have it's own
520  * locking, because a shared signal_struct always
521  * implies a shared sighand_struct, so locking
522  * sighand_struct is always a proper superset of
523  * the locking of signal_struct.
524  */
525 struct signal_struct {
526 	atomic_t		sigcnt;
527 	atomic_t		live;
528 	int			nr_threads;
529 
530 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
531 
532 	/* current thread group signal load-balancing target: */
533 	struct task_struct	*curr_target;
534 
535 	/* shared signal handling: */
536 	struct sigpending	shared_pending;
537 
538 	/* thread group exit support */
539 	int			group_exit_code;
540 	/* overloaded:
541 	 * - notify group_exit_task when ->count is equal to notify_count
542 	 * - everyone except group_exit_task is stopped during signal delivery
543 	 *   of fatal signals, group_exit_task processes the signal.
544 	 */
545 	int			notify_count;
546 	struct task_struct	*group_exit_task;
547 
548 	/* thread group stop support, overloads group_exit_code too */
549 	int			group_stop_count;
550 	unsigned int		flags; /* see SIGNAL_* flags below */
551 
552 	/* POSIX.1b Interval Timers */
553 	struct list_head posix_timers;
554 
555 	/* ITIMER_REAL timer for the process */
556 	struct hrtimer real_timer;
557 	struct pid *leader_pid;
558 	ktime_t it_real_incr;
559 
560 	/*
561 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
562 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
563 	 * values are defined to 0 and 1 respectively
564 	 */
565 	struct cpu_itimer it[2];
566 
567 	/*
568 	 * Thread group totals for process CPU timers.
569 	 * See thread_group_cputimer(), et al, for details.
570 	 */
571 	struct thread_group_cputimer cputimer;
572 
573 	/* Earliest-expiration cache. */
574 	struct task_cputime cputime_expires;
575 
576 	struct list_head cpu_timers[3];
577 
578 	struct pid *tty_old_pgrp;
579 
580 	/* boolean value for session group leader */
581 	int leader;
582 
583 	struct tty_struct *tty; /* NULL if no tty */
584 
585 #ifdef CONFIG_SCHED_AUTOGROUP
586 	struct autogroup *autogroup;
587 #endif
588 	/*
589 	 * Cumulative resource counters for dead threads in the group,
590 	 * and for reaped dead child processes forked by this group.
591 	 * Live threads maintain their own counters and add to these
592 	 * in __exit_signal, except for the group leader.
593 	 */
594 	cputime_t utime, stime, cutime, cstime;
595 	cputime_t gtime;
596 	cputime_t cgtime;
597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
598 	cputime_t prev_utime, prev_stime;
599 #endif
600 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 	unsigned long inblock, oublock, cinblock, coublock;
603 	unsigned long maxrss, cmaxrss;
604 	struct task_io_accounting ioac;
605 
606 	/*
607 	 * Cumulative ns of schedule CPU time fo dead threads in the
608 	 * group, not including a zombie group leader, (This only differs
609 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 	 * other than jiffies.)
611 	 */
612 	unsigned long long sum_sched_runtime;
613 
614 	/*
615 	 * We don't bother to synchronize most readers of this at all,
616 	 * because there is no reader checking a limit that actually needs
617 	 * to get both rlim_cur and rlim_max atomically, and either one
618 	 * alone is a single word that can safely be read normally.
619 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 	 * protect this instead of the siglock, because they really
621 	 * have no need to disable irqs.
622 	 */
623 	struct rlimit rlim[RLIM_NLIMITS];
624 
625 #ifdef CONFIG_BSD_PROCESS_ACCT
626 	struct pacct_struct pacct;	/* per-process accounting information */
627 #endif
628 #ifdef CONFIG_TASKSTATS
629 	struct taskstats *stats;
630 #endif
631 #ifdef CONFIG_AUDIT
632 	unsigned audit_tty;
633 	struct tty_audit_buf *tty_audit_buf;
634 #endif
635 
636 	int oom_adj;		/* OOM kill score adjustment (bit shift) */
637 	int oom_score_adj;	/* OOM kill score adjustment */
638 	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
639 				 * Only settable by CAP_SYS_RESOURCE. */
640 
641 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
642 					 * credential calculations
643 					 * (notably. ptrace) */
644 };
645 
646 /* Context switch must be unlocked if interrupts are to be enabled */
647 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
648 # define __ARCH_WANT_UNLOCKED_CTXSW
649 #endif
650 
651 /*
652  * Bits in flags field of signal_struct.
653  */
654 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
655 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
656 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
657 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
658 /*
659  * Pending notifications to parent.
660  */
661 #define SIGNAL_CLD_STOPPED	0x00000010
662 #define SIGNAL_CLD_CONTINUED	0x00000020
663 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
664 
665 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
666 
667 /* If true, all threads except ->group_exit_task have pending SIGKILL */
668 static inline int signal_group_exit(const struct signal_struct *sig)
669 {
670 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
671 		(sig->group_exit_task != NULL);
672 }
673 
674 /*
675  * Some day this will be a full-fledged user tracking system..
676  */
677 struct user_struct {
678 	atomic_t __count;	/* reference count */
679 	atomic_t processes;	/* How many processes does this user have? */
680 	atomic_t files;		/* How many open files does this user have? */
681 	atomic_t sigpending;	/* How many pending signals does this user have? */
682 #ifdef CONFIG_INOTIFY_USER
683 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
684 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
685 #endif
686 #ifdef CONFIG_FANOTIFY
687 	atomic_t fanotify_listeners;
688 #endif
689 #ifdef CONFIG_EPOLL
690 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
691 #endif
692 #ifdef CONFIG_POSIX_MQUEUE
693 	/* protected by mq_lock	*/
694 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
695 #endif
696 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
697 
698 #ifdef CONFIG_KEYS
699 	struct key *uid_keyring;	/* UID specific keyring */
700 	struct key *session_keyring;	/* UID's default session keyring */
701 #endif
702 
703 	/* Hash table maintenance information */
704 	struct hlist_node uidhash_node;
705 	uid_t uid;
706 	struct user_namespace *user_ns;
707 
708 #ifdef CONFIG_PERF_EVENTS
709 	atomic_long_t locked_vm;
710 #endif
711 };
712 
713 extern int uids_sysfs_init(void);
714 
715 extern struct user_struct *find_user(uid_t);
716 
717 extern struct user_struct root_user;
718 #define INIT_USER (&root_user)
719 
720 
721 struct backing_dev_info;
722 struct reclaim_state;
723 
724 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
725 struct sched_info {
726 	/* cumulative counters */
727 	unsigned long pcount;	      /* # of times run on this cpu */
728 	unsigned long long run_delay; /* time spent waiting on a runqueue */
729 
730 	/* timestamps */
731 	unsigned long long last_arrival,/* when we last ran on a cpu */
732 			   last_queued;	/* when we were last queued to run */
733 #ifdef CONFIG_SCHEDSTATS
734 	/* BKL stats */
735 	unsigned int bkl_count;
736 #endif
737 };
738 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
739 
740 #ifdef CONFIG_TASK_DELAY_ACCT
741 struct task_delay_info {
742 	spinlock_t	lock;
743 	unsigned int	flags;	/* Private per-task flags */
744 
745 	/* For each stat XXX, add following, aligned appropriately
746 	 *
747 	 * struct timespec XXX_start, XXX_end;
748 	 * u64 XXX_delay;
749 	 * u32 XXX_count;
750 	 *
751 	 * Atomicity of updates to XXX_delay, XXX_count protected by
752 	 * single lock above (split into XXX_lock if contention is an issue).
753 	 */
754 
755 	/*
756 	 * XXX_count is incremented on every XXX operation, the delay
757 	 * associated with the operation is added to XXX_delay.
758 	 * XXX_delay contains the accumulated delay time in nanoseconds.
759 	 */
760 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
761 	u64 blkio_delay;	/* wait for sync block io completion */
762 	u64 swapin_delay;	/* wait for swapin block io completion */
763 	u32 blkio_count;	/* total count of the number of sync block */
764 				/* io operations performed */
765 	u32 swapin_count;	/* total count of the number of swapin block */
766 				/* io operations performed */
767 
768 	struct timespec freepages_start, freepages_end;
769 	u64 freepages_delay;	/* wait for memory reclaim */
770 	u32 freepages_count;	/* total count of memory reclaim */
771 };
772 #endif	/* CONFIG_TASK_DELAY_ACCT */
773 
774 static inline int sched_info_on(void)
775 {
776 #ifdef CONFIG_SCHEDSTATS
777 	return 1;
778 #elif defined(CONFIG_TASK_DELAY_ACCT)
779 	extern int delayacct_on;
780 	return delayacct_on;
781 #else
782 	return 0;
783 #endif
784 }
785 
786 enum cpu_idle_type {
787 	CPU_IDLE,
788 	CPU_NOT_IDLE,
789 	CPU_NEWLY_IDLE,
790 	CPU_MAX_IDLE_TYPES
791 };
792 
793 /*
794  * sched-domains (multiprocessor balancing) declarations:
795  */
796 
797 /*
798  * Increase resolution of nice-level calculations:
799  */
800 #define SCHED_LOAD_SHIFT	10
801 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
802 
803 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
804 
805 #ifdef CONFIG_SMP
806 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
807 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
808 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
809 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
810 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
811 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
812 #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
813 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
814 #define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
815 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
816 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
817 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
818 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
819 
820 enum powersavings_balance_level {
821 	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
822 	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
823 					 * first for long running threads
824 					 */
825 	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
826 					 * cpu package for power savings
827 					 */
828 	MAX_POWERSAVINGS_BALANCE_LEVELS
829 };
830 
831 extern int sched_mc_power_savings, sched_smt_power_savings;
832 
833 static inline int sd_balance_for_mc_power(void)
834 {
835 	if (sched_smt_power_savings)
836 		return SD_POWERSAVINGS_BALANCE;
837 
838 	if (!sched_mc_power_savings)
839 		return SD_PREFER_SIBLING;
840 
841 	return 0;
842 }
843 
844 static inline int sd_balance_for_package_power(void)
845 {
846 	if (sched_mc_power_savings | sched_smt_power_savings)
847 		return SD_POWERSAVINGS_BALANCE;
848 
849 	return SD_PREFER_SIBLING;
850 }
851 
852 extern int __weak arch_sd_sibiling_asym_packing(void);
853 
854 /*
855  * Optimise SD flags for power savings:
856  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
857  * Keep default SD flags if sched_{smt,mc}_power_saving=0
858  */
859 
860 static inline int sd_power_saving_flags(void)
861 {
862 	if (sched_mc_power_savings | sched_smt_power_savings)
863 		return SD_BALANCE_NEWIDLE;
864 
865 	return 0;
866 }
867 
868 struct sched_group {
869 	struct sched_group *next;	/* Must be a circular list */
870 
871 	/*
872 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
873 	 * single CPU.
874 	 */
875 	unsigned int cpu_power, cpu_power_orig;
876 	unsigned int group_weight;
877 
878 	/*
879 	 * The CPUs this group covers.
880 	 *
881 	 * NOTE: this field is variable length. (Allocated dynamically
882 	 * by attaching extra space to the end of the structure,
883 	 * depending on how many CPUs the kernel has booted up with)
884 	 *
885 	 * It is also be embedded into static data structures at build
886 	 * time. (See 'struct static_sched_group' in kernel/sched.c)
887 	 */
888 	unsigned long cpumask[0];
889 };
890 
891 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
892 {
893 	return to_cpumask(sg->cpumask);
894 }
895 
896 enum sched_domain_level {
897 	SD_LV_NONE = 0,
898 	SD_LV_SIBLING,
899 	SD_LV_MC,
900 	SD_LV_BOOK,
901 	SD_LV_CPU,
902 	SD_LV_NODE,
903 	SD_LV_ALLNODES,
904 	SD_LV_MAX
905 };
906 
907 struct sched_domain_attr {
908 	int relax_domain_level;
909 };
910 
911 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
912 	.relax_domain_level = -1,			\
913 }
914 
915 struct sched_domain {
916 	/* These fields must be setup */
917 	struct sched_domain *parent;	/* top domain must be null terminated */
918 	struct sched_domain *child;	/* bottom domain must be null terminated */
919 	struct sched_group *groups;	/* the balancing groups of the domain */
920 	unsigned long min_interval;	/* Minimum balance interval ms */
921 	unsigned long max_interval;	/* Maximum balance interval ms */
922 	unsigned int busy_factor;	/* less balancing by factor if busy */
923 	unsigned int imbalance_pct;	/* No balance until over watermark */
924 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
925 	unsigned int busy_idx;
926 	unsigned int idle_idx;
927 	unsigned int newidle_idx;
928 	unsigned int wake_idx;
929 	unsigned int forkexec_idx;
930 	unsigned int smt_gain;
931 	int flags;			/* See SD_* */
932 	enum sched_domain_level level;
933 
934 	/* Runtime fields. */
935 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
936 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
937 	unsigned int nr_balance_failed; /* initialise to 0 */
938 
939 	u64 last_update;
940 
941 #ifdef CONFIG_SCHEDSTATS
942 	/* load_balance() stats */
943 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
944 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
945 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
946 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
947 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
948 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
949 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
950 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
951 
952 	/* Active load balancing */
953 	unsigned int alb_count;
954 	unsigned int alb_failed;
955 	unsigned int alb_pushed;
956 
957 	/* SD_BALANCE_EXEC stats */
958 	unsigned int sbe_count;
959 	unsigned int sbe_balanced;
960 	unsigned int sbe_pushed;
961 
962 	/* SD_BALANCE_FORK stats */
963 	unsigned int sbf_count;
964 	unsigned int sbf_balanced;
965 	unsigned int sbf_pushed;
966 
967 	/* try_to_wake_up() stats */
968 	unsigned int ttwu_wake_remote;
969 	unsigned int ttwu_move_affine;
970 	unsigned int ttwu_move_balance;
971 #endif
972 #ifdef CONFIG_SCHED_DEBUG
973 	char *name;
974 #endif
975 
976 	unsigned int span_weight;
977 	/*
978 	 * Span of all CPUs in this domain.
979 	 *
980 	 * NOTE: this field is variable length. (Allocated dynamically
981 	 * by attaching extra space to the end of the structure,
982 	 * depending on how many CPUs the kernel has booted up with)
983 	 *
984 	 * It is also be embedded into static data structures at build
985 	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
986 	 */
987 	unsigned long span[0];
988 };
989 
990 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
991 {
992 	return to_cpumask(sd->span);
993 }
994 
995 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
996 				    struct sched_domain_attr *dattr_new);
997 
998 /* Allocate an array of sched domains, for partition_sched_domains(). */
999 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1000 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1001 
1002 /* Test a flag in parent sched domain */
1003 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1004 {
1005 	if (sd->parent && (sd->parent->flags & flag))
1006 		return 1;
1007 
1008 	return 0;
1009 }
1010 
1011 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1012 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1013 
1014 #else /* CONFIG_SMP */
1015 
1016 struct sched_domain_attr;
1017 
1018 static inline void
1019 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1020 			struct sched_domain_attr *dattr_new)
1021 {
1022 }
1023 #endif	/* !CONFIG_SMP */
1024 
1025 
1026 struct io_context;			/* See blkdev.h */
1027 
1028 
1029 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1030 extern void prefetch_stack(struct task_struct *t);
1031 #else
1032 static inline void prefetch_stack(struct task_struct *t) { }
1033 #endif
1034 
1035 struct audit_context;		/* See audit.c */
1036 struct mempolicy;
1037 struct pipe_inode_info;
1038 struct uts_namespace;
1039 
1040 struct rq;
1041 struct sched_domain;
1042 
1043 /*
1044  * wake flags
1045  */
1046 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1047 #define WF_FORK		0x02		/* child wakeup after fork */
1048 
1049 #define ENQUEUE_WAKEUP		1
1050 #define ENQUEUE_WAKING		2
1051 #define ENQUEUE_HEAD		4
1052 
1053 #define DEQUEUE_SLEEP		1
1054 
1055 struct sched_class {
1056 	const struct sched_class *next;
1057 
1058 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1059 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1060 	void (*yield_task) (struct rq *rq);
1061 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1062 
1063 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1064 
1065 	struct task_struct * (*pick_next_task) (struct rq *rq);
1066 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1067 
1068 #ifdef CONFIG_SMP
1069 	int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1070 			       int sd_flag, int flags);
1071 
1072 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1073 	void (*post_schedule) (struct rq *this_rq);
1074 	void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1075 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1076 
1077 	void (*set_cpus_allowed)(struct task_struct *p,
1078 				 const struct cpumask *newmask);
1079 
1080 	void (*rq_online)(struct rq *rq);
1081 	void (*rq_offline)(struct rq *rq);
1082 #endif
1083 
1084 	void (*set_curr_task) (struct rq *rq);
1085 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1086 	void (*task_fork) (struct task_struct *p);
1087 
1088 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1089 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1090 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1091 			     int oldprio);
1092 
1093 	unsigned int (*get_rr_interval) (struct rq *rq,
1094 					 struct task_struct *task);
1095 
1096 #ifdef CONFIG_FAIR_GROUP_SCHED
1097 	void (*task_move_group) (struct task_struct *p, int on_rq);
1098 #endif
1099 };
1100 
1101 struct load_weight {
1102 	unsigned long weight, inv_weight;
1103 };
1104 
1105 #ifdef CONFIG_SCHEDSTATS
1106 struct sched_statistics {
1107 	u64			wait_start;
1108 	u64			wait_max;
1109 	u64			wait_count;
1110 	u64			wait_sum;
1111 	u64			iowait_count;
1112 	u64			iowait_sum;
1113 
1114 	u64			sleep_start;
1115 	u64			sleep_max;
1116 	s64			sum_sleep_runtime;
1117 
1118 	u64			block_start;
1119 	u64			block_max;
1120 	u64			exec_max;
1121 	u64			slice_max;
1122 
1123 	u64			nr_migrations_cold;
1124 	u64			nr_failed_migrations_affine;
1125 	u64			nr_failed_migrations_running;
1126 	u64			nr_failed_migrations_hot;
1127 	u64			nr_forced_migrations;
1128 
1129 	u64			nr_wakeups;
1130 	u64			nr_wakeups_sync;
1131 	u64			nr_wakeups_migrate;
1132 	u64			nr_wakeups_local;
1133 	u64			nr_wakeups_remote;
1134 	u64			nr_wakeups_affine;
1135 	u64			nr_wakeups_affine_attempts;
1136 	u64			nr_wakeups_passive;
1137 	u64			nr_wakeups_idle;
1138 };
1139 #endif
1140 
1141 struct sched_entity {
1142 	struct load_weight	load;		/* for load-balancing */
1143 	struct rb_node		run_node;
1144 	struct list_head	group_node;
1145 	unsigned int		on_rq;
1146 
1147 	u64			exec_start;
1148 	u64			sum_exec_runtime;
1149 	u64			vruntime;
1150 	u64			prev_sum_exec_runtime;
1151 
1152 	u64			nr_migrations;
1153 
1154 #ifdef CONFIG_SCHEDSTATS
1155 	struct sched_statistics statistics;
1156 #endif
1157 
1158 #ifdef CONFIG_FAIR_GROUP_SCHED
1159 	struct sched_entity	*parent;
1160 	/* rq on which this entity is (to be) queued: */
1161 	struct cfs_rq		*cfs_rq;
1162 	/* rq "owned" by this entity/group: */
1163 	struct cfs_rq		*my_q;
1164 #endif
1165 };
1166 
1167 struct sched_rt_entity {
1168 	struct list_head run_list;
1169 	unsigned long timeout;
1170 	unsigned int time_slice;
1171 	int nr_cpus_allowed;
1172 
1173 	struct sched_rt_entity *back;
1174 #ifdef CONFIG_RT_GROUP_SCHED
1175 	struct sched_rt_entity	*parent;
1176 	/* rq on which this entity is (to be) queued: */
1177 	struct rt_rq		*rt_rq;
1178 	/* rq "owned" by this entity/group: */
1179 	struct rt_rq		*my_q;
1180 #endif
1181 };
1182 
1183 struct rcu_node;
1184 
1185 enum perf_event_task_context {
1186 	perf_invalid_context = -1,
1187 	perf_hw_context = 0,
1188 	perf_sw_context,
1189 	perf_nr_task_contexts,
1190 };
1191 
1192 struct task_struct {
1193 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1194 	void *stack;
1195 	atomic_t usage;
1196 	unsigned int flags;	/* per process flags, defined below */
1197 	unsigned int ptrace;
1198 
1199 	int lock_depth;		/* BKL lock depth */
1200 
1201 #ifdef CONFIG_SMP
1202 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1203 	int oncpu;
1204 #endif
1205 #endif
1206 
1207 	int prio, static_prio, normal_prio;
1208 	unsigned int rt_priority;
1209 	const struct sched_class *sched_class;
1210 	struct sched_entity se;
1211 	struct sched_rt_entity rt;
1212 
1213 #ifdef CONFIG_PREEMPT_NOTIFIERS
1214 	/* list of struct preempt_notifier: */
1215 	struct hlist_head preempt_notifiers;
1216 #endif
1217 
1218 	/*
1219 	 * fpu_counter contains the number of consecutive context switches
1220 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1221 	 * saving becomes unlazy to save the trap. This is an unsigned char
1222 	 * so that after 256 times the counter wraps and the behavior turns
1223 	 * lazy again; this to deal with bursty apps that only use FPU for
1224 	 * a short time
1225 	 */
1226 	unsigned char fpu_counter;
1227 #ifdef CONFIG_BLK_DEV_IO_TRACE
1228 	unsigned int btrace_seq;
1229 #endif
1230 
1231 	unsigned int policy;
1232 	cpumask_t cpus_allowed;
1233 
1234 #ifdef CONFIG_PREEMPT_RCU
1235 	int rcu_read_lock_nesting;
1236 	char rcu_read_unlock_special;
1237 	struct list_head rcu_node_entry;
1238 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1239 #ifdef CONFIG_TREE_PREEMPT_RCU
1240 	struct rcu_node *rcu_blocked_node;
1241 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1242 #ifdef CONFIG_RCU_BOOST
1243 	struct rt_mutex *rcu_boost_mutex;
1244 #endif /* #ifdef CONFIG_RCU_BOOST */
1245 
1246 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1247 	struct sched_info sched_info;
1248 #endif
1249 
1250 	struct list_head tasks;
1251 #ifdef CONFIG_SMP
1252 	struct plist_node pushable_tasks;
1253 #endif
1254 
1255 	struct mm_struct *mm, *active_mm;
1256 #if defined(SPLIT_RSS_COUNTING)
1257 	struct task_rss_stat	rss_stat;
1258 #endif
1259 /* task state */
1260 	int exit_state;
1261 	int exit_code, exit_signal;
1262 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1263 	/* ??? */
1264 	unsigned int personality;
1265 	unsigned did_exec:1;
1266 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1267 				 * execve */
1268 	unsigned in_iowait:1;
1269 
1270 
1271 	/* Revert to default priority/policy when forking */
1272 	unsigned sched_reset_on_fork:1;
1273 
1274 	pid_t pid;
1275 	pid_t tgid;
1276 
1277 #ifdef CONFIG_CC_STACKPROTECTOR
1278 	/* Canary value for the -fstack-protector gcc feature */
1279 	unsigned long stack_canary;
1280 #endif
1281 
1282 	/*
1283 	 * pointers to (original) parent process, youngest child, younger sibling,
1284 	 * older sibling, respectively.  (p->father can be replaced with
1285 	 * p->real_parent->pid)
1286 	 */
1287 	struct task_struct *real_parent; /* real parent process */
1288 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1289 	/*
1290 	 * children/sibling forms the list of my natural children
1291 	 */
1292 	struct list_head children;	/* list of my children */
1293 	struct list_head sibling;	/* linkage in my parent's children list */
1294 	struct task_struct *group_leader;	/* threadgroup leader */
1295 
1296 	/*
1297 	 * ptraced is the list of tasks this task is using ptrace on.
1298 	 * This includes both natural children and PTRACE_ATTACH targets.
1299 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1300 	 */
1301 	struct list_head ptraced;
1302 	struct list_head ptrace_entry;
1303 
1304 	/* PID/PID hash table linkage. */
1305 	struct pid_link pids[PIDTYPE_MAX];
1306 	struct list_head thread_group;
1307 
1308 	struct completion *vfork_done;		/* for vfork() */
1309 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1310 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1311 
1312 	cputime_t utime, stime, utimescaled, stimescaled;
1313 	cputime_t gtime;
1314 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1315 	cputime_t prev_utime, prev_stime;
1316 #endif
1317 	unsigned long nvcsw, nivcsw; /* context switch counts */
1318 	struct timespec start_time; 		/* monotonic time */
1319 	struct timespec real_start_time;	/* boot based time */
1320 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1321 	unsigned long min_flt, maj_flt;
1322 
1323 	struct task_cputime cputime_expires;
1324 	struct list_head cpu_timers[3];
1325 
1326 /* process credentials */
1327 	const struct cred __rcu *real_cred; /* objective and real subjective task
1328 					 * credentials (COW) */
1329 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1330 					 * credentials (COW) */
1331 	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1332 
1333 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1334 				     - access with [gs]et_task_comm (which lock
1335 				       it with task_lock())
1336 				     - initialized normally by setup_new_exec */
1337 /* file system info */
1338 	int link_count, total_link_count;
1339 #ifdef CONFIG_SYSVIPC
1340 /* ipc stuff */
1341 	struct sysv_sem sysvsem;
1342 #endif
1343 #ifdef CONFIG_DETECT_HUNG_TASK
1344 /* hung task detection */
1345 	unsigned long last_switch_count;
1346 #endif
1347 /* CPU-specific state of this task */
1348 	struct thread_struct thread;
1349 /* filesystem information */
1350 	struct fs_struct *fs;
1351 /* open file information */
1352 	struct files_struct *files;
1353 /* namespaces */
1354 	struct nsproxy *nsproxy;
1355 /* signal handlers */
1356 	struct signal_struct *signal;
1357 	struct sighand_struct *sighand;
1358 
1359 	sigset_t blocked, real_blocked;
1360 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1361 	struct sigpending pending;
1362 
1363 	unsigned long sas_ss_sp;
1364 	size_t sas_ss_size;
1365 	int (*notifier)(void *priv);
1366 	void *notifier_data;
1367 	sigset_t *notifier_mask;
1368 	struct audit_context *audit_context;
1369 #ifdef CONFIG_AUDITSYSCALL
1370 	uid_t loginuid;
1371 	unsigned int sessionid;
1372 #endif
1373 	seccomp_t seccomp;
1374 
1375 /* Thread group tracking */
1376    	u32 parent_exec_id;
1377    	u32 self_exec_id;
1378 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1379  * mempolicy */
1380 	spinlock_t alloc_lock;
1381 
1382 #ifdef CONFIG_GENERIC_HARDIRQS
1383 	/* IRQ handler threads */
1384 	struct irqaction *irqaction;
1385 #endif
1386 
1387 	/* Protection of the PI data structures: */
1388 	raw_spinlock_t pi_lock;
1389 
1390 #ifdef CONFIG_RT_MUTEXES
1391 	/* PI waiters blocked on a rt_mutex held by this task */
1392 	struct plist_head pi_waiters;
1393 	/* Deadlock detection and priority inheritance handling */
1394 	struct rt_mutex_waiter *pi_blocked_on;
1395 #endif
1396 
1397 #ifdef CONFIG_DEBUG_MUTEXES
1398 	/* mutex deadlock detection */
1399 	struct mutex_waiter *blocked_on;
1400 #endif
1401 #ifdef CONFIG_TRACE_IRQFLAGS
1402 	unsigned int irq_events;
1403 	unsigned long hardirq_enable_ip;
1404 	unsigned long hardirq_disable_ip;
1405 	unsigned int hardirq_enable_event;
1406 	unsigned int hardirq_disable_event;
1407 	int hardirqs_enabled;
1408 	int hardirq_context;
1409 	unsigned long softirq_disable_ip;
1410 	unsigned long softirq_enable_ip;
1411 	unsigned int softirq_disable_event;
1412 	unsigned int softirq_enable_event;
1413 	int softirqs_enabled;
1414 	int softirq_context;
1415 #endif
1416 #ifdef CONFIG_LOCKDEP
1417 # define MAX_LOCK_DEPTH 48UL
1418 	u64 curr_chain_key;
1419 	int lockdep_depth;
1420 	unsigned int lockdep_recursion;
1421 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1422 	gfp_t lockdep_reclaim_gfp;
1423 #endif
1424 
1425 /* journalling filesystem info */
1426 	void *journal_info;
1427 
1428 /* stacked block device info */
1429 	struct bio_list *bio_list;
1430 
1431 /* VM state */
1432 	struct reclaim_state *reclaim_state;
1433 
1434 	struct backing_dev_info *backing_dev_info;
1435 
1436 	struct io_context *io_context;
1437 
1438 	unsigned long ptrace_message;
1439 	siginfo_t *last_siginfo; /* For ptrace use.  */
1440 	struct task_io_accounting ioac;
1441 #if defined(CONFIG_TASK_XACCT)
1442 	u64 acct_rss_mem1;	/* accumulated rss usage */
1443 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1444 	cputime_t acct_timexpd;	/* stime + utime since last update */
1445 #endif
1446 #ifdef CONFIG_CPUSETS
1447 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1448 	int mems_allowed_change_disable;
1449 	int cpuset_mem_spread_rotor;
1450 	int cpuset_slab_spread_rotor;
1451 #endif
1452 #ifdef CONFIG_CGROUPS
1453 	/* Control Group info protected by css_set_lock */
1454 	struct css_set __rcu *cgroups;
1455 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1456 	struct list_head cg_list;
1457 #endif
1458 #ifdef CONFIG_FUTEX
1459 	struct robust_list_head __user *robust_list;
1460 #ifdef CONFIG_COMPAT
1461 	struct compat_robust_list_head __user *compat_robust_list;
1462 #endif
1463 	struct list_head pi_state_list;
1464 	struct futex_pi_state *pi_state_cache;
1465 #endif
1466 #ifdef CONFIG_PERF_EVENTS
1467 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1468 	struct mutex perf_event_mutex;
1469 	struct list_head perf_event_list;
1470 #endif
1471 #ifdef CONFIG_NUMA
1472 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1473 	short il_next;
1474 	short pref_node_fork;
1475 #endif
1476 	atomic_t fs_excl;	/* holding fs exclusive resources */
1477 	struct rcu_head rcu;
1478 
1479 	/*
1480 	 * cache last used pipe for splice
1481 	 */
1482 	struct pipe_inode_info *splice_pipe;
1483 #ifdef	CONFIG_TASK_DELAY_ACCT
1484 	struct task_delay_info *delays;
1485 #endif
1486 #ifdef CONFIG_FAULT_INJECTION
1487 	int make_it_fail;
1488 #endif
1489 	struct prop_local_single dirties;
1490 #ifdef CONFIG_LATENCYTOP
1491 	int latency_record_count;
1492 	struct latency_record latency_record[LT_SAVECOUNT];
1493 #endif
1494 	/*
1495 	 * time slack values; these are used to round up poll() and
1496 	 * select() etc timeout values. These are in nanoseconds.
1497 	 */
1498 	unsigned long timer_slack_ns;
1499 	unsigned long default_timer_slack_ns;
1500 
1501 	struct list_head	*scm_work_list;
1502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1503 	/* Index of current stored address in ret_stack */
1504 	int curr_ret_stack;
1505 	/* Stack of return addresses for return function tracing */
1506 	struct ftrace_ret_stack	*ret_stack;
1507 	/* time stamp for last schedule */
1508 	unsigned long long ftrace_timestamp;
1509 	/*
1510 	 * Number of functions that haven't been traced
1511 	 * because of depth overrun.
1512 	 */
1513 	atomic_t trace_overrun;
1514 	/* Pause for the tracing */
1515 	atomic_t tracing_graph_pause;
1516 #endif
1517 #ifdef CONFIG_TRACING
1518 	/* state flags for use by tracers */
1519 	unsigned long trace;
1520 	/* bitmask of trace recursion */
1521 	unsigned long trace_recursion;
1522 #endif /* CONFIG_TRACING */
1523 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1524 	struct memcg_batch_info {
1525 		int do_batch;	/* incremented when batch uncharge started */
1526 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1527 		unsigned long bytes; 		/* uncharged usage */
1528 		unsigned long memsw_bytes; /* uncharged mem+swap usage */
1529 	} memcg_batch;
1530 #endif
1531 };
1532 
1533 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1534 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1535 
1536 /*
1537  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1538  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1539  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1540  * values are inverted: lower p->prio value means higher priority.
1541  *
1542  * The MAX_USER_RT_PRIO value allows the actual maximum
1543  * RT priority to be separate from the value exported to
1544  * user-space.  This allows kernel threads to set their
1545  * priority to a value higher than any user task. Note:
1546  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1547  */
1548 
1549 #define MAX_USER_RT_PRIO	100
1550 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1551 
1552 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1553 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1554 
1555 static inline int rt_prio(int prio)
1556 {
1557 	if (unlikely(prio < MAX_RT_PRIO))
1558 		return 1;
1559 	return 0;
1560 }
1561 
1562 static inline int rt_task(struct task_struct *p)
1563 {
1564 	return rt_prio(p->prio);
1565 }
1566 
1567 static inline struct pid *task_pid(struct task_struct *task)
1568 {
1569 	return task->pids[PIDTYPE_PID].pid;
1570 }
1571 
1572 static inline struct pid *task_tgid(struct task_struct *task)
1573 {
1574 	return task->group_leader->pids[PIDTYPE_PID].pid;
1575 }
1576 
1577 /*
1578  * Without tasklist or rcu lock it is not safe to dereference
1579  * the result of task_pgrp/task_session even if task == current,
1580  * we can race with another thread doing sys_setsid/sys_setpgid.
1581  */
1582 static inline struct pid *task_pgrp(struct task_struct *task)
1583 {
1584 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1585 }
1586 
1587 static inline struct pid *task_session(struct task_struct *task)
1588 {
1589 	return task->group_leader->pids[PIDTYPE_SID].pid;
1590 }
1591 
1592 struct pid_namespace;
1593 
1594 /*
1595  * the helpers to get the task's different pids as they are seen
1596  * from various namespaces
1597  *
1598  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1599  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1600  *                     current.
1601  * task_xid_nr_ns()  : id seen from the ns specified;
1602  *
1603  * set_task_vxid()   : assigns a virtual id to a task;
1604  *
1605  * see also pid_nr() etc in include/linux/pid.h
1606  */
1607 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1608 			struct pid_namespace *ns);
1609 
1610 static inline pid_t task_pid_nr(struct task_struct *tsk)
1611 {
1612 	return tsk->pid;
1613 }
1614 
1615 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1616 					struct pid_namespace *ns)
1617 {
1618 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1619 }
1620 
1621 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1622 {
1623 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1624 }
1625 
1626 
1627 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1628 {
1629 	return tsk->tgid;
1630 }
1631 
1632 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1633 
1634 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1635 {
1636 	return pid_vnr(task_tgid(tsk));
1637 }
1638 
1639 
1640 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1641 					struct pid_namespace *ns)
1642 {
1643 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1644 }
1645 
1646 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1647 {
1648 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1649 }
1650 
1651 
1652 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1653 					struct pid_namespace *ns)
1654 {
1655 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1656 }
1657 
1658 static inline pid_t task_session_vnr(struct task_struct *tsk)
1659 {
1660 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1661 }
1662 
1663 /* obsolete, do not use */
1664 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1665 {
1666 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1667 }
1668 
1669 /**
1670  * pid_alive - check that a task structure is not stale
1671  * @p: Task structure to be checked.
1672  *
1673  * Test if a process is not yet dead (at most zombie state)
1674  * If pid_alive fails, then pointers within the task structure
1675  * can be stale and must not be dereferenced.
1676  */
1677 static inline int pid_alive(struct task_struct *p)
1678 {
1679 	return p->pids[PIDTYPE_PID].pid != NULL;
1680 }
1681 
1682 /**
1683  * is_global_init - check if a task structure is init
1684  * @tsk: Task structure to be checked.
1685  *
1686  * Check if a task structure is the first user space task the kernel created.
1687  */
1688 static inline int is_global_init(struct task_struct *tsk)
1689 {
1690 	return tsk->pid == 1;
1691 }
1692 
1693 /*
1694  * is_container_init:
1695  * check whether in the task is init in its own pid namespace.
1696  */
1697 extern int is_container_init(struct task_struct *tsk);
1698 
1699 extern struct pid *cad_pid;
1700 
1701 extern void free_task(struct task_struct *tsk);
1702 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1703 
1704 extern void __put_task_struct(struct task_struct *t);
1705 
1706 static inline void put_task_struct(struct task_struct *t)
1707 {
1708 	if (atomic_dec_and_test(&t->usage))
1709 		__put_task_struct(t);
1710 }
1711 
1712 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1713 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1714 
1715 /*
1716  * Per process flags
1717  */
1718 #define PF_STARTING	0x00000002	/* being created */
1719 #define PF_EXITING	0x00000004	/* getting shut down */
1720 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1721 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1722 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1723 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1724 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1725 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1726 #define PF_DUMPCORE	0x00000200	/* dumped core */
1727 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1728 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1729 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1730 #define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1731 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1732 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1733 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1734 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1735 #define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1736 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1737 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1738 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1739 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1740 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1741 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1742 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1743 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1744 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1745 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1746 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1747 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1748 
1749 /*
1750  * Only the _current_ task can read/write to tsk->flags, but other
1751  * tasks can access tsk->flags in readonly mode for example
1752  * with tsk_used_math (like during threaded core dumping).
1753  * There is however an exception to this rule during ptrace
1754  * or during fork: the ptracer task is allowed to write to the
1755  * child->flags of its traced child (same goes for fork, the parent
1756  * can write to the child->flags), because we're guaranteed the
1757  * child is not running and in turn not changing child->flags
1758  * at the same time the parent does it.
1759  */
1760 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1761 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1762 #define clear_used_math() clear_stopped_child_used_math(current)
1763 #define set_used_math() set_stopped_child_used_math(current)
1764 #define conditional_stopped_child_used_math(condition, child) \
1765 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1766 #define conditional_used_math(condition) \
1767 	conditional_stopped_child_used_math(condition, current)
1768 #define copy_to_stopped_child_used_math(child) \
1769 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1770 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1771 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1772 #define used_math() tsk_used_math(current)
1773 
1774 #ifdef CONFIG_PREEMPT_RCU
1775 
1776 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1777 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1778 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1779 
1780 static inline void rcu_copy_process(struct task_struct *p)
1781 {
1782 	p->rcu_read_lock_nesting = 0;
1783 	p->rcu_read_unlock_special = 0;
1784 #ifdef CONFIG_TREE_PREEMPT_RCU
1785 	p->rcu_blocked_node = NULL;
1786 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1787 #ifdef CONFIG_RCU_BOOST
1788 	p->rcu_boost_mutex = NULL;
1789 #endif /* #ifdef CONFIG_RCU_BOOST */
1790 	INIT_LIST_HEAD(&p->rcu_node_entry);
1791 }
1792 
1793 #else
1794 
1795 static inline void rcu_copy_process(struct task_struct *p)
1796 {
1797 }
1798 
1799 #endif
1800 
1801 #ifdef CONFIG_SMP
1802 extern int set_cpus_allowed_ptr(struct task_struct *p,
1803 				const struct cpumask *new_mask);
1804 #else
1805 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1806 				       const struct cpumask *new_mask)
1807 {
1808 	if (!cpumask_test_cpu(0, new_mask))
1809 		return -EINVAL;
1810 	return 0;
1811 }
1812 #endif
1813 
1814 #ifndef CONFIG_CPUMASK_OFFSTACK
1815 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1816 {
1817 	return set_cpus_allowed_ptr(p, &new_mask);
1818 }
1819 #endif
1820 
1821 /*
1822  * Do not use outside of architecture code which knows its limitations.
1823  *
1824  * sched_clock() has no promise of monotonicity or bounded drift between
1825  * CPUs, use (which you should not) requires disabling IRQs.
1826  *
1827  * Please use one of the three interfaces below.
1828  */
1829 extern unsigned long long notrace sched_clock(void);
1830 /*
1831  * See the comment in kernel/sched_clock.c
1832  */
1833 extern u64 cpu_clock(int cpu);
1834 extern u64 local_clock(void);
1835 extern u64 sched_clock_cpu(int cpu);
1836 
1837 
1838 extern void sched_clock_init(void);
1839 
1840 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1841 static inline void sched_clock_tick(void)
1842 {
1843 }
1844 
1845 static inline void sched_clock_idle_sleep_event(void)
1846 {
1847 }
1848 
1849 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1850 {
1851 }
1852 #else
1853 /*
1854  * Architectures can set this to 1 if they have specified
1855  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1856  * but then during bootup it turns out that sched_clock()
1857  * is reliable after all:
1858  */
1859 extern int sched_clock_stable;
1860 
1861 extern void sched_clock_tick(void);
1862 extern void sched_clock_idle_sleep_event(void);
1863 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1864 #endif
1865 
1866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1867 /*
1868  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1869  * The reason for this explicit opt-in is not to have perf penalty with
1870  * slow sched_clocks.
1871  */
1872 extern void enable_sched_clock_irqtime(void);
1873 extern void disable_sched_clock_irqtime(void);
1874 #else
1875 static inline void enable_sched_clock_irqtime(void) {}
1876 static inline void disable_sched_clock_irqtime(void) {}
1877 #endif
1878 
1879 extern unsigned long long
1880 task_sched_runtime(struct task_struct *task);
1881 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1882 
1883 /* sched_exec is called by processes performing an exec */
1884 #ifdef CONFIG_SMP
1885 extern void sched_exec(void);
1886 #else
1887 #define sched_exec()   {}
1888 #endif
1889 
1890 extern void sched_clock_idle_sleep_event(void);
1891 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1892 
1893 #ifdef CONFIG_HOTPLUG_CPU
1894 extern void idle_task_exit(void);
1895 #else
1896 static inline void idle_task_exit(void) {}
1897 #endif
1898 
1899 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1900 extern void wake_up_idle_cpu(int cpu);
1901 #else
1902 static inline void wake_up_idle_cpu(int cpu) { }
1903 #endif
1904 
1905 extern unsigned int sysctl_sched_latency;
1906 extern unsigned int sysctl_sched_min_granularity;
1907 extern unsigned int sysctl_sched_wakeup_granularity;
1908 extern unsigned int sysctl_sched_child_runs_first;
1909 
1910 enum sched_tunable_scaling {
1911 	SCHED_TUNABLESCALING_NONE,
1912 	SCHED_TUNABLESCALING_LOG,
1913 	SCHED_TUNABLESCALING_LINEAR,
1914 	SCHED_TUNABLESCALING_END,
1915 };
1916 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1917 
1918 #ifdef CONFIG_SCHED_DEBUG
1919 extern unsigned int sysctl_sched_migration_cost;
1920 extern unsigned int sysctl_sched_nr_migrate;
1921 extern unsigned int sysctl_sched_time_avg;
1922 extern unsigned int sysctl_timer_migration;
1923 extern unsigned int sysctl_sched_shares_window;
1924 
1925 int sched_proc_update_handler(struct ctl_table *table, int write,
1926 		void __user *buffer, size_t *length,
1927 		loff_t *ppos);
1928 #endif
1929 #ifdef CONFIG_SCHED_DEBUG
1930 static inline unsigned int get_sysctl_timer_migration(void)
1931 {
1932 	return sysctl_timer_migration;
1933 }
1934 #else
1935 static inline unsigned int get_sysctl_timer_migration(void)
1936 {
1937 	return 1;
1938 }
1939 #endif
1940 extern unsigned int sysctl_sched_rt_period;
1941 extern int sysctl_sched_rt_runtime;
1942 
1943 int sched_rt_handler(struct ctl_table *table, int write,
1944 		void __user *buffer, size_t *lenp,
1945 		loff_t *ppos);
1946 
1947 #ifdef CONFIG_SCHED_AUTOGROUP
1948 extern unsigned int sysctl_sched_autogroup_enabled;
1949 
1950 extern void sched_autogroup_create_attach(struct task_struct *p);
1951 extern void sched_autogroup_detach(struct task_struct *p);
1952 extern void sched_autogroup_fork(struct signal_struct *sig);
1953 extern void sched_autogroup_exit(struct signal_struct *sig);
1954 #ifdef CONFIG_PROC_FS
1955 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1956 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1957 #endif
1958 #else
1959 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1960 static inline void sched_autogroup_detach(struct task_struct *p) { }
1961 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1962 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1963 #endif
1964 
1965 #ifdef CONFIG_RT_MUTEXES
1966 extern int rt_mutex_getprio(struct task_struct *p);
1967 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1968 extern void rt_mutex_adjust_pi(struct task_struct *p);
1969 #else
1970 static inline int rt_mutex_getprio(struct task_struct *p)
1971 {
1972 	return p->normal_prio;
1973 }
1974 # define rt_mutex_adjust_pi(p)		do { } while (0)
1975 #endif
1976 
1977 extern bool yield_to(struct task_struct *p, bool preempt);
1978 extern void set_user_nice(struct task_struct *p, long nice);
1979 extern int task_prio(const struct task_struct *p);
1980 extern int task_nice(const struct task_struct *p);
1981 extern int can_nice(const struct task_struct *p, const int nice);
1982 extern int task_curr(const struct task_struct *p);
1983 extern int idle_cpu(int cpu);
1984 extern int sched_setscheduler(struct task_struct *, int,
1985 			      const struct sched_param *);
1986 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1987 				      const struct sched_param *);
1988 extern struct task_struct *idle_task(int cpu);
1989 extern struct task_struct *curr_task(int cpu);
1990 extern void set_curr_task(int cpu, struct task_struct *p);
1991 
1992 void yield(void);
1993 
1994 /*
1995  * The default (Linux) execution domain.
1996  */
1997 extern struct exec_domain	default_exec_domain;
1998 
1999 union thread_union {
2000 	struct thread_info thread_info;
2001 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2002 };
2003 
2004 #ifndef __HAVE_ARCH_KSTACK_END
2005 static inline int kstack_end(void *addr)
2006 {
2007 	/* Reliable end of stack detection:
2008 	 * Some APM bios versions misalign the stack
2009 	 */
2010 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2011 }
2012 #endif
2013 
2014 extern union thread_union init_thread_union;
2015 extern struct task_struct init_task;
2016 
2017 extern struct   mm_struct init_mm;
2018 
2019 extern struct pid_namespace init_pid_ns;
2020 
2021 /*
2022  * find a task by one of its numerical ids
2023  *
2024  * find_task_by_pid_ns():
2025  *      finds a task by its pid in the specified namespace
2026  * find_task_by_vpid():
2027  *      finds a task by its virtual pid
2028  *
2029  * see also find_vpid() etc in include/linux/pid.h
2030  */
2031 
2032 extern struct task_struct *find_task_by_vpid(pid_t nr);
2033 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2034 		struct pid_namespace *ns);
2035 
2036 extern void __set_special_pids(struct pid *pid);
2037 
2038 /* per-UID process charging. */
2039 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2040 static inline struct user_struct *get_uid(struct user_struct *u)
2041 {
2042 	atomic_inc(&u->__count);
2043 	return u;
2044 }
2045 extern void free_uid(struct user_struct *);
2046 extern void release_uids(struct user_namespace *ns);
2047 
2048 #include <asm/current.h>
2049 
2050 extern void xtime_update(unsigned long ticks);
2051 
2052 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2053 extern int wake_up_process(struct task_struct *tsk);
2054 extern void wake_up_new_task(struct task_struct *tsk,
2055 				unsigned long clone_flags);
2056 #ifdef CONFIG_SMP
2057  extern void kick_process(struct task_struct *tsk);
2058 #else
2059  static inline void kick_process(struct task_struct *tsk) { }
2060 #endif
2061 extern void sched_fork(struct task_struct *p, int clone_flags);
2062 extern void sched_dead(struct task_struct *p);
2063 
2064 extern void proc_caches_init(void);
2065 extern void flush_signals(struct task_struct *);
2066 extern void __flush_signals(struct task_struct *);
2067 extern void ignore_signals(struct task_struct *);
2068 extern void flush_signal_handlers(struct task_struct *, int force_default);
2069 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2070 
2071 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2072 {
2073 	unsigned long flags;
2074 	int ret;
2075 
2076 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2077 	ret = dequeue_signal(tsk, mask, info);
2078 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2079 
2080 	return ret;
2081 }
2082 
2083 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2084 			      sigset_t *mask);
2085 extern void unblock_all_signals(void);
2086 extern void release_task(struct task_struct * p);
2087 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2088 extern int force_sigsegv(int, struct task_struct *);
2089 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2090 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2091 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2092 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2093 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2094 extern int kill_pid(struct pid *pid, int sig, int priv);
2095 extern int kill_proc_info(int, struct siginfo *, pid_t);
2096 extern int do_notify_parent(struct task_struct *, int);
2097 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2098 extern void force_sig(int, struct task_struct *);
2099 extern int send_sig(int, struct task_struct *, int);
2100 extern int zap_other_threads(struct task_struct *p);
2101 extern struct sigqueue *sigqueue_alloc(void);
2102 extern void sigqueue_free(struct sigqueue *);
2103 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2104 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2105 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2106 
2107 static inline int kill_cad_pid(int sig, int priv)
2108 {
2109 	return kill_pid(cad_pid, sig, priv);
2110 }
2111 
2112 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2113 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2114 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2115 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2116 
2117 /*
2118  * True if we are on the alternate signal stack.
2119  */
2120 static inline int on_sig_stack(unsigned long sp)
2121 {
2122 #ifdef CONFIG_STACK_GROWSUP
2123 	return sp >= current->sas_ss_sp &&
2124 		sp - current->sas_ss_sp < current->sas_ss_size;
2125 #else
2126 	return sp > current->sas_ss_sp &&
2127 		sp - current->sas_ss_sp <= current->sas_ss_size;
2128 #endif
2129 }
2130 
2131 static inline int sas_ss_flags(unsigned long sp)
2132 {
2133 	return (current->sas_ss_size == 0 ? SS_DISABLE
2134 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2135 }
2136 
2137 /*
2138  * Routines for handling mm_structs
2139  */
2140 extern struct mm_struct * mm_alloc(void);
2141 
2142 /* mmdrop drops the mm and the page tables */
2143 extern void __mmdrop(struct mm_struct *);
2144 static inline void mmdrop(struct mm_struct * mm)
2145 {
2146 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2147 		__mmdrop(mm);
2148 }
2149 
2150 /* mmput gets rid of the mappings and all user-space */
2151 extern void mmput(struct mm_struct *);
2152 /* Grab a reference to a task's mm, if it is not already going away */
2153 extern struct mm_struct *get_task_mm(struct task_struct *task);
2154 /* Remove the current tasks stale references to the old mm_struct */
2155 extern void mm_release(struct task_struct *, struct mm_struct *);
2156 /* Allocate a new mm structure and copy contents from tsk->mm */
2157 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2158 
2159 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2160 			struct task_struct *, struct pt_regs *);
2161 extern void flush_thread(void);
2162 extern void exit_thread(void);
2163 
2164 extern void exit_files(struct task_struct *);
2165 extern void __cleanup_sighand(struct sighand_struct *);
2166 
2167 extern void exit_itimers(struct signal_struct *);
2168 extern void flush_itimer_signals(void);
2169 
2170 extern NORET_TYPE void do_group_exit(int);
2171 
2172 extern void daemonize(const char *, ...);
2173 extern int allow_signal(int);
2174 extern int disallow_signal(int);
2175 
2176 extern int do_execve(const char *,
2177 		     const char __user * const __user *,
2178 		     const char __user * const __user *, struct pt_regs *);
2179 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2180 struct task_struct *fork_idle(int);
2181 
2182 extern void set_task_comm(struct task_struct *tsk, char *from);
2183 extern char *get_task_comm(char *to, struct task_struct *tsk);
2184 
2185 #ifdef CONFIG_SMP
2186 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2187 #else
2188 static inline unsigned long wait_task_inactive(struct task_struct *p,
2189 					       long match_state)
2190 {
2191 	return 1;
2192 }
2193 #endif
2194 
2195 #define next_task(p) \
2196 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2197 
2198 #define for_each_process(p) \
2199 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2200 
2201 extern bool current_is_single_threaded(void);
2202 
2203 /*
2204  * Careful: do_each_thread/while_each_thread is a double loop so
2205  *          'break' will not work as expected - use goto instead.
2206  */
2207 #define do_each_thread(g, t) \
2208 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2209 
2210 #define while_each_thread(g, t) \
2211 	while ((t = next_thread(t)) != g)
2212 
2213 static inline int get_nr_threads(struct task_struct *tsk)
2214 {
2215 	return tsk->signal->nr_threads;
2216 }
2217 
2218 /* de_thread depends on thread_group_leader not being a pid based check */
2219 #define thread_group_leader(p)	(p == p->group_leader)
2220 
2221 /* Do to the insanities of de_thread it is possible for a process
2222  * to have the pid of the thread group leader without actually being
2223  * the thread group leader.  For iteration through the pids in proc
2224  * all we care about is that we have a task with the appropriate
2225  * pid, we don't actually care if we have the right task.
2226  */
2227 static inline int has_group_leader_pid(struct task_struct *p)
2228 {
2229 	return p->pid == p->tgid;
2230 }
2231 
2232 static inline
2233 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2234 {
2235 	return p1->tgid == p2->tgid;
2236 }
2237 
2238 static inline struct task_struct *next_thread(const struct task_struct *p)
2239 {
2240 	return list_entry_rcu(p->thread_group.next,
2241 			      struct task_struct, thread_group);
2242 }
2243 
2244 static inline int thread_group_empty(struct task_struct *p)
2245 {
2246 	return list_empty(&p->thread_group);
2247 }
2248 
2249 #define delay_group_leader(p) \
2250 		(thread_group_leader(p) && !thread_group_empty(p))
2251 
2252 static inline int task_detached(struct task_struct *p)
2253 {
2254 	return p->exit_signal == -1;
2255 }
2256 
2257 /*
2258  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2259  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2260  * pins the final release of task.io_context.  Also protects ->cpuset and
2261  * ->cgroup.subsys[].
2262  *
2263  * Nests both inside and outside of read_lock(&tasklist_lock).
2264  * It must not be nested with write_lock_irq(&tasklist_lock),
2265  * neither inside nor outside.
2266  */
2267 static inline void task_lock(struct task_struct *p)
2268 {
2269 	spin_lock(&p->alloc_lock);
2270 }
2271 
2272 static inline void task_unlock(struct task_struct *p)
2273 {
2274 	spin_unlock(&p->alloc_lock);
2275 }
2276 
2277 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2278 							unsigned long *flags);
2279 
2280 #define lock_task_sighand(tsk, flags)					\
2281 ({	struct sighand_struct *__ss;					\
2282 	__cond_lock(&(tsk)->sighand->siglock,				\
2283 		    (__ss = __lock_task_sighand(tsk, flags)));		\
2284 	__ss;								\
2285 })									\
2286 
2287 static inline void unlock_task_sighand(struct task_struct *tsk,
2288 						unsigned long *flags)
2289 {
2290 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2291 }
2292 
2293 #ifndef __HAVE_THREAD_FUNCTIONS
2294 
2295 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2296 #define task_stack_page(task)	((task)->stack)
2297 
2298 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2299 {
2300 	*task_thread_info(p) = *task_thread_info(org);
2301 	task_thread_info(p)->task = p;
2302 }
2303 
2304 static inline unsigned long *end_of_stack(struct task_struct *p)
2305 {
2306 	return (unsigned long *)(task_thread_info(p) + 1);
2307 }
2308 
2309 #endif
2310 
2311 static inline int object_is_on_stack(void *obj)
2312 {
2313 	void *stack = task_stack_page(current);
2314 
2315 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2316 }
2317 
2318 extern void thread_info_cache_init(void);
2319 
2320 #ifdef CONFIG_DEBUG_STACK_USAGE
2321 static inline unsigned long stack_not_used(struct task_struct *p)
2322 {
2323 	unsigned long *n = end_of_stack(p);
2324 
2325 	do { 	/* Skip over canary */
2326 		n++;
2327 	} while (!*n);
2328 
2329 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2330 }
2331 #endif
2332 
2333 /* set thread flags in other task's structures
2334  * - see asm/thread_info.h for TIF_xxxx flags available
2335  */
2336 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2337 {
2338 	set_ti_thread_flag(task_thread_info(tsk), flag);
2339 }
2340 
2341 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2342 {
2343 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2344 }
2345 
2346 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2347 {
2348 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2349 }
2350 
2351 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2352 {
2353 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2354 }
2355 
2356 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2357 {
2358 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2359 }
2360 
2361 static inline void set_tsk_need_resched(struct task_struct *tsk)
2362 {
2363 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2364 }
2365 
2366 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2367 {
2368 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2369 }
2370 
2371 static inline int test_tsk_need_resched(struct task_struct *tsk)
2372 {
2373 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2374 }
2375 
2376 static inline int restart_syscall(void)
2377 {
2378 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2379 	return -ERESTARTNOINTR;
2380 }
2381 
2382 static inline int signal_pending(struct task_struct *p)
2383 {
2384 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2385 }
2386 
2387 static inline int __fatal_signal_pending(struct task_struct *p)
2388 {
2389 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2390 }
2391 
2392 static inline int fatal_signal_pending(struct task_struct *p)
2393 {
2394 	return signal_pending(p) && __fatal_signal_pending(p);
2395 }
2396 
2397 static inline int signal_pending_state(long state, struct task_struct *p)
2398 {
2399 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2400 		return 0;
2401 	if (!signal_pending(p))
2402 		return 0;
2403 
2404 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2405 }
2406 
2407 static inline int need_resched(void)
2408 {
2409 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2410 }
2411 
2412 /*
2413  * cond_resched() and cond_resched_lock(): latency reduction via
2414  * explicit rescheduling in places that are safe. The return
2415  * value indicates whether a reschedule was done in fact.
2416  * cond_resched_lock() will drop the spinlock before scheduling,
2417  * cond_resched_softirq() will enable bhs before scheduling.
2418  */
2419 extern int _cond_resched(void);
2420 
2421 #define cond_resched() ({			\
2422 	__might_sleep(__FILE__, __LINE__, 0);	\
2423 	_cond_resched();			\
2424 })
2425 
2426 extern int __cond_resched_lock(spinlock_t *lock);
2427 
2428 #ifdef CONFIG_PREEMPT
2429 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2430 #else
2431 #define PREEMPT_LOCK_OFFSET	0
2432 #endif
2433 
2434 #define cond_resched_lock(lock) ({				\
2435 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2436 	__cond_resched_lock(lock);				\
2437 })
2438 
2439 extern int __cond_resched_softirq(void);
2440 
2441 #define cond_resched_softirq() ({					\
2442 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2443 	__cond_resched_softirq();					\
2444 })
2445 
2446 /*
2447  * Does a critical section need to be broken due to another
2448  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449  * but a general need for low latency)
2450  */
2451 static inline int spin_needbreak(spinlock_t *lock)
2452 {
2453 #ifdef CONFIG_PREEMPT
2454 	return spin_is_contended(lock);
2455 #else
2456 	return 0;
2457 #endif
2458 }
2459 
2460 /*
2461  * Thread group CPU time accounting.
2462  */
2463 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2464 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2465 
2466 static inline void thread_group_cputime_init(struct signal_struct *sig)
2467 {
2468 	spin_lock_init(&sig->cputimer.lock);
2469 }
2470 
2471 /*
2472  * Reevaluate whether the task has signals pending delivery.
2473  * Wake the task if so.
2474  * This is required every time the blocked sigset_t changes.
2475  * callers must hold sighand->siglock.
2476  */
2477 extern void recalc_sigpending_and_wake(struct task_struct *t);
2478 extern void recalc_sigpending(void);
2479 
2480 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2481 
2482 /*
2483  * Wrappers for p->thread_info->cpu access. No-op on UP.
2484  */
2485 #ifdef CONFIG_SMP
2486 
2487 static inline unsigned int task_cpu(const struct task_struct *p)
2488 {
2489 	return task_thread_info(p)->cpu;
2490 }
2491 
2492 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2493 
2494 #else
2495 
2496 static inline unsigned int task_cpu(const struct task_struct *p)
2497 {
2498 	return 0;
2499 }
2500 
2501 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2502 {
2503 }
2504 
2505 #endif /* CONFIG_SMP */
2506 
2507 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2508 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2509 
2510 extern void normalize_rt_tasks(void);
2511 
2512 #ifdef CONFIG_CGROUP_SCHED
2513 
2514 extern struct task_group root_task_group;
2515 
2516 extern struct task_group *sched_create_group(struct task_group *parent);
2517 extern void sched_destroy_group(struct task_group *tg);
2518 extern void sched_move_task(struct task_struct *tsk);
2519 #ifdef CONFIG_FAIR_GROUP_SCHED
2520 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2521 extern unsigned long sched_group_shares(struct task_group *tg);
2522 #endif
2523 #ifdef CONFIG_RT_GROUP_SCHED
2524 extern int sched_group_set_rt_runtime(struct task_group *tg,
2525 				      long rt_runtime_us);
2526 extern long sched_group_rt_runtime(struct task_group *tg);
2527 extern int sched_group_set_rt_period(struct task_group *tg,
2528 				      long rt_period_us);
2529 extern long sched_group_rt_period(struct task_group *tg);
2530 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2531 #endif
2532 #endif
2533 
2534 extern int task_can_switch_user(struct user_struct *up,
2535 					struct task_struct *tsk);
2536 
2537 #ifdef CONFIG_TASK_XACCT
2538 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2539 {
2540 	tsk->ioac.rchar += amt;
2541 }
2542 
2543 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2544 {
2545 	tsk->ioac.wchar += amt;
2546 }
2547 
2548 static inline void inc_syscr(struct task_struct *tsk)
2549 {
2550 	tsk->ioac.syscr++;
2551 }
2552 
2553 static inline void inc_syscw(struct task_struct *tsk)
2554 {
2555 	tsk->ioac.syscw++;
2556 }
2557 #else
2558 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2559 {
2560 }
2561 
2562 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2563 {
2564 }
2565 
2566 static inline void inc_syscr(struct task_struct *tsk)
2567 {
2568 }
2569 
2570 static inline void inc_syscw(struct task_struct *tsk)
2571 {
2572 }
2573 #endif
2574 
2575 #ifndef TASK_SIZE_OF
2576 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2577 #endif
2578 
2579 #ifdef CONFIG_MM_OWNER
2580 extern void mm_update_next_owner(struct mm_struct *mm);
2581 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2582 #else
2583 static inline void mm_update_next_owner(struct mm_struct *mm)
2584 {
2585 }
2586 
2587 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2588 {
2589 }
2590 #endif /* CONFIG_MM_OWNER */
2591 
2592 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2593 		unsigned int limit)
2594 {
2595 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2596 }
2597 
2598 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2599 		unsigned int limit)
2600 {
2601 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2602 }
2603 
2604 static inline unsigned long rlimit(unsigned int limit)
2605 {
2606 	return task_rlimit(current, limit);
2607 }
2608 
2609 static inline unsigned long rlimit_max(unsigned int limit)
2610 {
2611 	return task_rlimit_max(current, limit);
2612 }
2613 
2614 #endif /* __KERNEL__ */
2615 
2616 #endif
2617