1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/system.h> 67 #include <asm/page.h> 68 #include <asm/ptrace.h> 69 #include <asm/cputime.h> 70 71 #include <linux/smp.h> 72 #include <linux/sem.h> 73 #include <linux/signal.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/latencytop.h> 92 #include <linux/cred.h> 93 94 #include <asm/processor.h> 95 96 struct exec_domain; 97 struct futex_pi_state; 98 struct robust_list_head; 99 struct bio_list; 100 struct fs_struct; 101 struct perf_event_context; 102 103 /* 104 * List of flags we want to share for kernel threads, 105 * if only because they are not used by them anyway. 106 */ 107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 108 109 /* 110 * These are the constant used to fake the fixed-point load-average 111 * counting. Some notes: 112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 113 * a load-average precision of 10 bits integer + 11 bits fractional 114 * - if you want to count load-averages more often, you need more 115 * precision, or rounding will get you. With 2-second counting freq, 116 * the EXP_n values would be 1981, 2034 and 2043 if still using only 117 * 11 bit fractions. 118 */ 119 extern unsigned long avenrun[]; /* Load averages */ 120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 121 122 #define FSHIFT 11 /* nr of bits of precision */ 123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 126 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 127 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 128 129 #define CALC_LOAD(load,exp,n) \ 130 load *= exp; \ 131 load += n*(FIXED_1-exp); \ 132 load >>= FSHIFT; 133 134 extern unsigned long total_forks; 135 extern int nr_threads; 136 DECLARE_PER_CPU(unsigned long, process_counts); 137 extern int nr_processes(void); 138 extern unsigned long nr_running(void); 139 extern unsigned long nr_uninterruptible(void); 140 extern unsigned long nr_iowait(void); 141 extern unsigned long nr_iowait_cpu(int cpu); 142 extern unsigned long this_cpu_load(void); 143 144 145 extern void calc_global_load(unsigned long ticks); 146 147 extern unsigned long get_parent_ip(unsigned long addr); 148 149 struct seq_file; 150 struct cfs_rq; 151 struct task_group; 152 #ifdef CONFIG_SCHED_DEBUG 153 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 154 extern void proc_sched_set_task(struct task_struct *p); 155 extern void 156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 157 #else 158 static inline void 159 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 160 { 161 } 162 static inline void proc_sched_set_task(struct task_struct *p) 163 { 164 } 165 static inline void 166 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 167 { 168 } 169 #endif 170 171 /* 172 * Task state bitmask. NOTE! These bits are also 173 * encoded in fs/proc/array.c: get_task_state(). 174 * 175 * We have two separate sets of flags: task->state 176 * is about runnability, while task->exit_state are 177 * about the task exiting. Confusing, but this way 178 * modifying one set can't modify the other one by 179 * mistake. 180 */ 181 #define TASK_RUNNING 0 182 #define TASK_INTERRUPTIBLE 1 183 #define TASK_UNINTERRUPTIBLE 2 184 #define __TASK_STOPPED 4 185 #define __TASK_TRACED 8 186 /* in tsk->exit_state */ 187 #define EXIT_ZOMBIE 16 188 #define EXIT_DEAD 32 189 /* in tsk->state again */ 190 #define TASK_DEAD 64 191 #define TASK_WAKEKILL 128 192 #define TASK_WAKING 256 193 #define TASK_STATE_MAX 512 194 195 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 196 197 extern char ___assert_task_state[1 - 2*!!( 198 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 199 200 /* Convenience macros for the sake of set_task_state */ 201 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 202 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 203 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 204 205 /* Convenience macros for the sake of wake_up */ 206 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 207 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 208 209 /* get_task_state() */ 210 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 211 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 212 __TASK_TRACED) 213 214 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 215 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 216 #define task_is_dead(task) ((task)->exit_state != 0) 217 #define task_is_stopped_or_traced(task) \ 218 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 219 #define task_contributes_to_load(task) \ 220 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 221 (task->flags & PF_FREEZING) == 0) 222 223 #define __set_task_state(tsk, state_value) \ 224 do { (tsk)->state = (state_value); } while (0) 225 #define set_task_state(tsk, state_value) \ 226 set_mb((tsk)->state, (state_value)) 227 228 /* 229 * set_current_state() includes a barrier so that the write of current->state 230 * is correctly serialised wrt the caller's subsequent test of whether to 231 * actually sleep: 232 * 233 * set_current_state(TASK_UNINTERRUPTIBLE); 234 * if (do_i_need_to_sleep()) 235 * schedule(); 236 * 237 * If the caller does not need such serialisation then use __set_current_state() 238 */ 239 #define __set_current_state(state_value) \ 240 do { current->state = (state_value); } while (0) 241 #define set_current_state(state_value) \ 242 set_mb(current->state, (state_value)) 243 244 /* Task command name length */ 245 #define TASK_COMM_LEN 16 246 247 #include <linux/spinlock.h> 248 249 /* 250 * This serializes "schedule()" and also protects 251 * the run-queue from deletions/modifications (but 252 * _adding_ to the beginning of the run-queue has 253 * a separate lock). 254 */ 255 extern rwlock_t tasklist_lock; 256 extern spinlock_t mmlist_lock; 257 258 struct task_struct; 259 260 #ifdef CONFIG_PROVE_RCU 261 extern int lockdep_tasklist_lock_is_held(void); 262 #endif /* #ifdef CONFIG_PROVE_RCU */ 263 264 extern void sched_init(void); 265 extern void sched_init_smp(void); 266 extern asmlinkage void schedule_tail(struct task_struct *prev); 267 extern void init_idle(struct task_struct *idle, int cpu); 268 extern void init_idle_bootup_task(struct task_struct *idle); 269 270 extern int runqueue_is_locked(int cpu); 271 272 extern cpumask_var_t nohz_cpu_mask; 273 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 274 extern void select_nohz_load_balancer(int stop_tick); 275 extern int get_nohz_timer_target(void); 276 #else 277 static inline void select_nohz_load_balancer(int stop_tick) { } 278 #endif 279 280 /* 281 * Only dump TASK_* tasks. (0 for all tasks) 282 */ 283 extern void show_state_filter(unsigned long state_filter); 284 285 static inline void show_state(void) 286 { 287 show_state_filter(0); 288 } 289 290 extern void show_regs(struct pt_regs *); 291 292 /* 293 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 294 * task), SP is the stack pointer of the first frame that should be shown in the back 295 * trace (or NULL if the entire call-chain of the task should be shown). 296 */ 297 extern void show_stack(struct task_struct *task, unsigned long *sp); 298 299 void io_schedule(void); 300 long io_schedule_timeout(long timeout); 301 302 extern void cpu_init (void); 303 extern void trap_init(void); 304 extern void update_process_times(int user); 305 extern void scheduler_tick(void); 306 307 extern void sched_show_task(struct task_struct *p); 308 309 #ifdef CONFIG_LOCKUP_DETECTOR 310 extern void touch_softlockup_watchdog(void); 311 extern void touch_softlockup_watchdog_sync(void); 312 extern void touch_all_softlockup_watchdogs(void); 313 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 314 void __user *buffer, 315 size_t *lenp, loff_t *ppos); 316 extern unsigned int softlockup_panic; 317 extern int softlockup_thresh; 318 void lockup_detector_init(void); 319 #else 320 static inline void touch_softlockup_watchdog(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog_sync(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 static inline void lockup_detector_init(void) 330 { 331 } 332 #endif 333 334 #ifdef CONFIG_DETECT_HUNG_TASK 335 extern unsigned int sysctl_hung_task_panic; 336 extern unsigned long sysctl_hung_task_check_count; 337 extern unsigned long sysctl_hung_task_timeout_secs; 338 extern unsigned long sysctl_hung_task_warnings; 339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 340 void __user *buffer, 341 size_t *lenp, loff_t *ppos); 342 #else 343 /* Avoid need for ifdefs elsewhere in the code */ 344 enum { sysctl_hung_task_timeout_secs = 0 }; 345 #endif 346 347 /* Attach to any functions which should be ignored in wchan output. */ 348 #define __sched __attribute__((__section__(".sched.text"))) 349 350 /* Linker adds these: start and end of __sched functions */ 351 extern char __sched_text_start[], __sched_text_end[]; 352 353 /* Is this address in the __sched functions? */ 354 extern int in_sched_functions(unsigned long addr); 355 356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 357 extern signed long schedule_timeout(signed long timeout); 358 extern signed long schedule_timeout_interruptible(signed long timeout); 359 extern signed long schedule_timeout_killable(signed long timeout); 360 extern signed long schedule_timeout_uninterruptible(signed long timeout); 361 asmlinkage void schedule(void); 362 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 363 364 struct nsproxy; 365 struct user_namespace; 366 367 /* 368 * Default maximum number of active map areas, this limits the number of vmas 369 * per mm struct. Users can overwrite this number by sysctl but there is a 370 * problem. 371 * 372 * When a program's coredump is generated as ELF format, a section is created 373 * per a vma. In ELF, the number of sections is represented in unsigned short. 374 * This means the number of sections should be smaller than 65535 at coredump. 375 * Because the kernel adds some informative sections to a image of program at 376 * generating coredump, we need some margin. The number of extra sections is 377 * 1-3 now and depends on arch. We use "5" as safe margin, here. 378 */ 379 #define MAPCOUNT_ELF_CORE_MARGIN (5) 380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 381 382 extern int sysctl_max_map_count; 383 384 #include <linux/aio.h> 385 386 #ifdef CONFIG_MMU 387 extern void arch_pick_mmap_layout(struct mm_struct *mm); 388 extern unsigned long 389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 390 unsigned long, unsigned long); 391 extern unsigned long 392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 393 unsigned long len, unsigned long pgoff, 394 unsigned long flags); 395 extern void arch_unmap_area(struct mm_struct *, unsigned long); 396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 397 #else 398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 399 #endif 400 401 402 extern void set_dumpable(struct mm_struct *mm, int value); 403 extern int get_dumpable(struct mm_struct *mm); 404 405 /* mm flags */ 406 /* dumpable bits */ 407 #define MMF_DUMPABLE 0 /* core dump is permitted */ 408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 409 410 #define MMF_DUMPABLE_BITS 2 411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 412 413 /* coredump filter bits */ 414 #define MMF_DUMP_ANON_PRIVATE 2 415 #define MMF_DUMP_ANON_SHARED 3 416 #define MMF_DUMP_MAPPED_PRIVATE 4 417 #define MMF_DUMP_MAPPED_SHARED 5 418 #define MMF_DUMP_ELF_HEADERS 6 419 #define MMF_DUMP_HUGETLB_PRIVATE 7 420 #define MMF_DUMP_HUGETLB_SHARED 8 421 422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 423 #define MMF_DUMP_FILTER_BITS 7 424 #define MMF_DUMP_FILTER_MASK \ 425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 426 #define MMF_DUMP_FILTER_DEFAULT \ 427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 429 430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 432 #else 433 # define MMF_DUMP_MASK_DEFAULT_ELF 0 434 #endif 435 /* leave room for more dump flags */ 436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 437 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 438 439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 440 441 struct sighand_struct { 442 atomic_t count; 443 struct k_sigaction action[_NSIG]; 444 spinlock_t siglock; 445 wait_queue_head_t signalfd_wqh; 446 }; 447 448 struct pacct_struct { 449 int ac_flag; 450 long ac_exitcode; 451 unsigned long ac_mem; 452 cputime_t ac_utime, ac_stime; 453 unsigned long ac_minflt, ac_majflt; 454 }; 455 456 struct cpu_itimer { 457 cputime_t expires; 458 cputime_t incr; 459 u32 error; 460 u32 incr_error; 461 }; 462 463 /** 464 * struct task_cputime - collected CPU time counts 465 * @utime: time spent in user mode, in &cputime_t units 466 * @stime: time spent in kernel mode, in &cputime_t units 467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 468 * 469 * This structure groups together three kinds of CPU time that are 470 * tracked for threads and thread groups. Most things considering 471 * CPU time want to group these counts together and treat all three 472 * of them in parallel. 473 */ 474 struct task_cputime { 475 cputime_t utime; 476 cputime_t stime; 477 unsigned long long sum_exec_runtime; 478 }; 479 /* Alternate field names when used to cache expirations. */ 480 #define prof_exp stime 481 #define virt_exp utime 482 #define sched_exp sum_exec_runtime 483 484 #define INIT_CPUTIME \ 485 (struct task_cputime) { \ 486 .utime = cputime_zero, \ 487 .stime = cputime_zero, \ 488 .sum_exec_runtime = 0, \ 489 } 490 491 /* 492 * Disable preemption until the scheduler is running. 493 * Reset by start_kernel()->sched_init()->init_idle(). 494 * 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 496 * before the scheduler is active -- see should_resched(). 497 */ 498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 499 500 /** 501 * struct thread_group_cputimer - thread group interval timer counts 502 * @cputime: thread group interval timers. 503 * @running: non-zero when there are timers running and 504 * @cputime receives updates. 505 * @lock: lock for fields in this struct. 506 * 507 * This structure contains the version of task_cputime, above, that is 508 * used for thread group CPU timer calculations. 509 */ 510 struct thread_group_cputimer { 511 struct task_cputime cputime; 512 int running; 513 spinlock_t lock; 514 }; 515 516 struct autogroup; 517 518 /* 519 * NOTE! "signal_struct" does not have it's own 520 * locking, because a shared signal_struct always 521 * implies a shared sighand_struct, so locking 522 * sighand_struct is always a proper superset of 523 * the locking of signal_struct. 524 */ 525 struct signal_struct { 526 atomic_t sigcnt; 527 atomic_t live; 528 int nr_threads; 529 530 wait_queue_head_t wait_chldexit; /* for wait4() */ 531 532 /* current thread group signal load-balancing target: */ 533 struct task_struct *curr_target; 534 535 /* shared signal handling: */ 536 struct sigpending shared_pending; 537 538 /* thread group exit support */ 539 int group_exit_code; 540 /* overloaded: 541 * - notify group_exit_task when ->count is equal to notify_count 542 * - everyone except group_exit_task is stopped during signal delivery 543 * of fatal signals, group_exit_task processes the signal. 544 */ 545 int notify_count; 546 struct task_struct *group_exit_task; 547 548 /* thread group stop support, overloads group_exit_code too */ 549 int group_stop_count; 550 unsigned int flags; /* see SIGNAL_* flags below */ 551 552 /* POSIX.1b Interval Timers */ 553 struct list_head posix_timers; 554 555 /* ITIMER_REAL timer for the process */ 556 struct hrtimer real_timer; 557 struct pid *leader_pid; 558 ktime_t it_real_incr; 559 560 /* 561 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 562 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 563 * values are defined to 0 and 1 respectively 564 */ 565 struct cpu_itimer it[2]; 566 567 /* 568 * Thread group totals for process CPU timers. 569 * See thread_group_cputimer(), et al, for details. 570 */ 571 struct thread_group_cputimer cputimer; 572 573 /* Earliest-expiration cache. */ 574 struct task_cputime cputime_expires; 575 576 struct list_head cpu_timers[3]; 577 578 struct pid *tty_old_pgrp; 579 580 /* boolean value for session group leader */ 581 int leader; 582 583 struct tty_struct *tty; /* NULL if no tty */ 584 585 #ifdef CONFIG_SCHED_AUTOGROUP 586 struct autogroup *autogroup; 587 #endif 588 /* 589 * Cumulative resource counters for dead threads in the group, 590 * and for reaped dead child processes forked by this group. 591 * Live threads maintain their own counters and add to these 592 * in __exit_signal, except for the group leader. 593 */ 594 cputime_t utime, stime, cutime, cstime; 595 cputime_t gtime; 596 cputime_t cgtime; 597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 598 cputime_t prev_utime, prev_stime; 599 #endif 600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 602 unsigned long inblock, oublock, cinblock, coublock; 603 unsigned long maxrss, cmaxrss; 604 struct task_io_accounting ioac; 605 606 /* 607 * Cumulative ns of schedule CPU time fo dead threads in the 608 * group, not including a zombie group leader, (This only differs 609 * from jiffies_to_ns(utime + stime) if sched_clock uses something 610 * other than jiffies.) 611 */ 612 unsigned long long sum_sched_runtime; 613 614 /* 615 * We don't bother to synchronize most readers of this at all, 616 * because there is no reader checking a limit that actually needs 617 * to get both rlim_cur and rlim_max atomically, and either one 618 * alone is a single word that can safely be read normally. 619 * getrlimit/setrlimit use task_lock(current->group_leader) to 620 * protect this instead of the siglock, because they really 621 * have no need to disable irqs. 622 */ 623 struct rlimit rlim[RLIM_NLIMITS]; 624 625 #ifdef CONFIG_BSD_PROCESS_ACCT 626 struct pacct_struct pacct; /* per-process accounting information */ 627 #endif 628 #ifdef CONFIG_TASKSTATS 629 struct taskstats *stats; 630 #endif 631 #ifdef CONFIG_AUDIT 632 unsigned audit_tty; 633 struct tty_audit_buf *tty_audit_buf; 634 #endif 635 636 int oom_adj; /* OOM kill score adjustment (bit shift) */ 637 int oom_score_adj; /* OOM kill score adjustment */ 638 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 639 * Only settable by CAP_SYS_RESOURCE. */ 640 641 struct mutex cred_guard_mutex; /* guard against foreign influences on 642 * credential calculations 643 * (notably. ptrace) */ 644 }; 645 646 /* Context switch must be unlocked if interrupts are to be enabled */ 647 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 648 # define __ARCH_WANT_UNLOCKED_CTXSW 649 #endif 650 651 /* 652 * Bits in flags field of signal_struct. 653 */ 654 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 655 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 656 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 657 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 658 /* 659 * Pending notifications to parent. 660 */ 661 #define SIGNAL_CLD_STOPPED 0x00000010 662 #define SIGNAL_CLD_CONTINUED 0x00000020 663 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 664 665 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 666 667 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 668 static inline int signal_group_exit(const struct signal_struct *sig) 669 { 670 return (sig->flags & SIGNAL_GROUP_EXIT) || 671 (sig->group_exit_task != NULL); 672 } 673 674 /* 675 * Some day this will be a full-fledged user tracking system.. 676 */ 677 struct user_struct { 678 atomic_t __count; /* reference count */ 679 atomic_t processes; /* How many processes does this user have? */ 680 atomic_t files; /* How many open files does this user have? */ 681 atomic_t sigpending; /* How many pending signals does this user have? */ 682 #ifdef CONFIG_INOTIFY_USER 683 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 684 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 685 #endif 686 #ifdef CONFIG_FANOTIFY 687 atomic_t fanotify_listeners; 688 #endif 689 #ifdef CONFIG_EPOLL 690 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 691 #endif 692 #ifdef CONFIG_POSIX_MQUEUE 693 /* protected by mq_lock */ 694 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 695 #endif 696 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 697 698 #ifdef CONFIG_KEYS 699 struct key *uid_keyring; /* UID specific keyring */ 700 struct key *session_keyring; /* UID's default session keyring */ 701 #endif 702 703 /* Hash table maintenance information */ 704 struct hlist_node uidhash_node; 705 uid_t uid; 706 struct user_namespace *user_ns; 707 708 #ifdef CONFIG_PERF_EVENTS 709 atomic_long_t locked_vm; 710 #endif 711 }; 712 713 extern int uids_sysfs_init(void); 714 715 extern struct user_struct *find_user(uid_t); 716 717 extern struct user_struct root_user; 718 #define INIT_USER (&root_user) 719 720 721 struct backing_dev_info; 722 struct reclaim_state; 723 724 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 725 struct sched_info { 726 /* cumulative counters */ 727 unsigned long pcount; /* # of times run on this cpu */ 728 unsigned long long run_delay; /* time spent waiting on a runqueue */ 729 730 /* timestamps */ 731 unsigned long long last_arrival,/* when we last ran on a cpu */ 732 last_queued; /* when we were last queued to run */ 733 #ifdef CONFIG_SCHEDSTATS 734 /* BKL stats */ 735 unsigned int bkl_count; 736 #endif 737 }; 738 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 739 740 #ifdef CONFIG_TASK_DELAY_ACCT 741 struct task_delay_info { 742 spinlock_t lock; 743 unsigned int flags; /* Private per-task flags */ 744 745 /* For each stat XXX, add following, aligned appropriately 746 * 747 * struct timespec XXX_start, XXX_end; 748 * u64 XXX_delay; 749 * u32 XXX_count; 750 * 751 * Atomicity of updates to XXX_delay, XXX_count protected by 752 * single lock above (split into XXX_lock if contention is an issue). 753 */ 754 755 /* 756 * XXX_count is incremented on every XXX operation, the delay 757 * associated with the operation is added to XXX_delay. 758 * XXX_delay contains the accumulated delay time in nanoseconds. 759 */ 760 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 761 u64 blkio_delay; /* wait for sync block io completion */ 762 u64 swapin_delay; /* wait for swapin block io completion */ 763 u32 blkio_count; /* total count of the number of sync block */ 764 /* io operations performed */ 765 u32 swapin_count; /* total count of the number of swapin block */ 766 /* io operations performed */ 767 768 struct timespec freepages_start, freepages_end; 769 u64 freepages_delay; /* wait for memory reclaim */ 770 u32 freepages_count; /* total count of memory reclaim */ 771 }; 772 #endif /* CONFIG_TASK_DELAY_ACCT */ 773 774 static inline int sched_info_on(void) 775 { 776 #ifdef CONFIG_SCHEDSTATS 777 return 1; 778 #elif defined(CONFIG_TASK_DELAY_ACCT) 779 extern int delayacct_on; 780 return delayacct_on; 781 #else 782 return 0; 783 #endif 784 } 785 786 enum cpu_idle_type { 787 CPU_IDLE, 788 CPU_NOT_IDLE, 789 CPU_NEWLY_IDLE, 790 CPU_MAX_IDLE_TYPES 791 }; 792 793 /* 794 * sched-domains (multiprocessor balancing) declarations: 795 */ 796 797 /* 798 * Increase resolution of nice-level calculations: 799 */ 800 #define SCHED_LOAD_SHIFT 10 801 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 802 803 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 804 805 #ifdef CONFIG_SMP 806 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 807 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 808 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 809 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 810 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 811 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 812 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 813 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 814 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 815 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 816 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 817 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 818 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 819 820 enum powersavings_balance_level { 821 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 822 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 823 * first for long running threads 824 */ 825 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 826 * cpu package for power savings 827 */ 828 MAX_POWERSAVINGS_BALANCE_LEVELS 829 }; 830 831 extern int sched_mc_power_savings, sched_smt_power_savings; 832 833 static inline int sd_balance_for_mc_power(void) 834 { 835 if (sched_smt_power_savings) 836 return SD_POWERSAVINGS_BALANCE; 837 838 if (!sched_mc_power_savings) 839 return SD_PREFER_SIBLING; 840 841 return 0; 842 } 843 844 static inline int sd_balance_for_package_power(void) 845 { 846 if (sched_mc_power_savings | sched_smt_power_savings) 847 return SD_POWERSAVINGS_BALANCE; 848 849 return SD_PREFER_SIBLING; 850 } 851 852 extern int __weak arch_sd_sibiling_asym_packing(void); 853 854 /* 855 * Optimise SD flags for power savings: 856 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 857 * Keep default SD flags if sched_{smt,mc}_power_saving=0 858 */ 859 860 static inline int sd_power_saving_flags(void) 861 { 862 if (sched_mc_power_savings | sched_smt_power_savings) 863 return SD_BALANCE_NEWIDLE; 864 865 return 0; 866 } 867 868 struct sched_group { 869 struct sched_group *next; /* Must be a circular list */ 870 871 /* 872 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 873 * single CPU. 874 */ 875 unsigned int cpu_power, cpu_power_orig; 876 unsigned int group_weight; 877 878 /* 879 * The CPUs this group covers. 880 * 881 * NOTE: this field is variable length. (Allocated dynamically 882 * by attaching extra space to the end of the structure, 883 * depending on how many CPUs the kernel has booted up with) 884 * 885 * It is also be embedded into static data structures at build 886 * time. (See 'struct static_sched_group' in kernel/sched.c) 887 */ 888 unsigned long cpumask[0]; 889 }; 890 891 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 892 { 893 return to_cpumask(sg->cpumask); 894 } 895 896 enum sched_domain_level { 897 SD_LV_NONE = 0, 898 SD_LV_SIBLING, 899 SD_LV_MC, 900 SD_LV_BOOK, 901 SD_LV_CPU, 902 SD_LV_NODE, 903 SD_LV_ALLNODES, 904 SD_LV_MAX 905 }; 906 907 struct sched_domain_attr { 908 int relax_domain_level; 909 }; 910 911 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 912 .relax_domain_level = -1, \ 913 } 914 915 struct sched_domain { 916 /* These fields must be setup */ 917 struct sched_domain *parent; /* top domain must be null terminated */ 918 struct sched_domain *child; /* bottom domain must be null terminated */ 919 struct sched_group *groups; /* the balancing groups of the domain */ 920 unsigned long min_interval; /* Minimum balance interval ms */ 921 unsigned long max_interval; /* Maximum balance interval ms */ 922 unsigned int busy_factor; /* less balancing by factor if busy */ 923 unsigned int imbalance_pct; /* No balance until over watermark */ 924 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 925 unsigned int busy_idx; 926 unsigned int idle_idx; 927 unsigned int newidle_idx; 928 unsigned int wake_idx; 929 unsigned int forkexec_idx; 930 unsigned int smt_gain; 931 int flags; /* See SD_* */ 932 enum sched_domain_level level; 933 934 /* Runtime fields. */ 935 unsigned long last_balance; /* init to jiffies. units in jiffies */ 936 unsigned int balance_interval; /* initialise to 1. units in ms. */ 937 unsigned int nr_balance_failed; /* initialise to 0 */ 938 939 u64 last_update; 940 941 #ifdef CONFIG_SCHEDSTATS 942 /* load_balance() stats */ 943 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 944 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 945 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 946 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 947 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 948 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 949 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 950 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 951 952 /* Active load balancing */ 953 unsigned int alb_count; 954 unsigned int alb_failed; 955 unsigned int alb_pushed; 956 957 /* SD_BALANCE_EXEC stats */ 958 unsigned int sbe_count; 959 unsigned int sbe_balanced; 960 unsigned int sbe_pushed; 961 962 /* SD_BALANCE_FORK stats */ 963 unsigned int sbf_count; 964 unsigned int sbf_balanced; 965 unsigned int sbf_pushed; 966 967 /* try_to_wake_up() stats */ 968 unsigned int ttwu_wake_remote; 969 unsigned int ttwu_move_affine; 970 unsigned int ttwu_move_balance; 971 #endif 972 #ifdef CONFIG_SCHED_DEBUG 973 char *name; 974 #endif 975 976 unsigned int span_weight; 977 /* 978 * Span of all CPUs in this domain. 979 * 980 * NOTE: this field is variable length. (Allocated dynamically 981 * by attaching extra space to the end of the structure, 982 * depending on how many CPUs the kernel has booted up with) 983 * 984 * It is also be embedded into static data structures at build 985 * time. (See 'struct static_sched_domain' in kernel/sched.c) 986 */ 987 unsigned long span[0]; 988 }; 989 990 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 991 { 992 return to_cpumask(sd->span); 993 } 994 995 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 996 struct sched_domain_attr *dattr_new); 997 998 /* Allocate an array of sched domains, for partition_sched_domains(). */ 999 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1000 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1001 1002 /* Test a flag in parent sched domain */ 1003 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1004 { 1005 if (sd->parent && (sd->parent->flags & flag)) 1006 return 1; 1007 1008 return 0; 1009 } 1010 1011 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1012 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1013 1014 #else /* CONFIG_SMP */ 1015 1016 struct sched_domain_attr; 1017 1018 static inline void 1019 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1020 struct sched_domain_attr *dattr_new) 1021 { 1022 } 1023 #endif /* !CONFIG_SMP */ 1024 1025 1026 struct io_context; /* See blkdev.h */ 1027 1028 1029 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1030 extern void prefetch_stack(struct task_struct *t); 1031 #else 1032 static inline void prefetch_stack(struct task_struct *t) { } 1033 #endif 1034 1035 struct audit_context; /* See audit.c */ 1036 struct mempolicy; 1037 struct pipe_inode_info; 1038 struct uts_namespace; 1039 1040 struct rq; 1041 struct sched_domain; 1042 1043 /* 1044 * wake flags 1045 */ 1046 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1047 #define WF_FORK 0x02 /* child wakeup after fork */ 1048 1049 #define ENQUEUE_WAKEUP 1 1050 #define ENQUEUE_WAKING 2 1051 #define ENQUEUE_HEAD 4 1052 1053 #define DEQUEUE_SLEEP 1 1054 1055 struct sched_class { 1056 const struct sched_class *next; 1057 1058 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1059 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1060 void (*yield_task) (struct rq *rq); 1061 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1062 1063 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1064 1065 struct task_struct * (*pick_next_task) (struct rq *rq); 1066 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1067 1068 #ifdef CONFIG_SMP 1069 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1070 int sd_flag, int flags); 1071 1072 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1073 void (*post_schedule) (struct rq *this_rq); 1074 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1075 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1076 1077 void (*set_cpus_allowed)(struct task_struct *p, 1078 const struct cpumask *newmask); 1079 1080 void (*rq_online)(struct rq *rq); 1081 void (*rq_offline)(struct rq *rq); 1082 #endif 1083 1084 void (*set_curr_task) (struct rq *rq); 1085 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1086 void (*task_fork) (struct task_struct *p); 1087 1088 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1089 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1090 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1091 int oldprio); 1092 1093 unsigned int (*get_rr_interval) (struct rq *rq, 1094 struct task_struct *task); 1095 1096 #ifdef CONFIG_FAIR_GROUP_SCHED 1097 void (*task_move_group) (struct task_struct *p, int on_rq); 1098 #endif 1099 }; 1100 1101 struct load_weight { 1102 unsigned long weight, inv_weight; 1103 }; 1104 1105 #ifdef CONFIG_SCHEDSTATS 1106 struct sched_statistics { 1107 u64 wait_start; 1108 u64 wait_max; 1109 u64 wait_count; 1110 u64 wait_sum; 1111 u64 iowait_count; 1112 u64 iowait_sum; 1113 1114 u64 sleep_start; 1115 u64 sleep_max; 1116 s64 sum_sleep_runtime; 1117 1118 u64 block_start; 1119 u64 block_max; 1120 u64 exec_max; 1121 u64 slice_max; 1122 1123 u64 nr_migrations_cold; 1124 u64 nr_failed_migrations_affine; 1125 u64 nr_failed_migrations_running; 1126 u64 nr_failed_migrations_hot; 1127 u64 nr_forced_migrations; 1128 1129 u64 nr_wakeups; 1130 u64 nr_wakeups_sync; 1131 u64 nr_wakeups_migrate; 1132 u64 nr_wakeups_local; 1133 u64 nr_wakeups_remote; 1134 u64 nr_wakeups_affine; 1135 u64 nr_wakeups_affine_attempts; 1136 u64 nr_wakeups_passive; 1137 u64 nr_wakeups_idle; 1138 }; 1139 #endif 1140 1141 struct sched_entity { 1142 struct load_weight load; /* for load-balancing */ 1143 struct rb_node run_node; 1144 struct list_head group_node; 1145 unsigned int on_rq; 1146 1147 u64 exec_start; 1148 u64 sum_exec_runtime; 1149 u64 vruntime; 1150 u64 prev_sum_exec_runtime; 1151 1152 u64 nr_migrations; 1153 1154 #ifdef CONFIG_SCHEDSTATS 1155 struct sched_statistics statistics; 1156 #endif 1157 1158 #ifdef CONFIG_FAIR_GROUP_SCHED 1159 struct sched_entity *parent; 1160 /* rq on which this entity is (to be) queued: */ 1161 struct cfs_rq *cfs_rq; 1162 /* rq "owned" by this entity/group: */ 1163 struct cfs_rq *my_q; 1164 #endif 1165 }; 1166 1167 struct sched_rt_entity { 1168 struct list_head run_list; 1169 unsigned long timeout; 1170 unsigned int time_slice; 1171 int nr_cpus_allowed; 1172 1173 struct sched_rt_entity *back; 1174 #ifdef CONFIG_RT_GROUP_SCHED 1175 struct sched_rt_entity *parent; 1176 /* rq on which this entity is (to be) queued: */ 1177 struct rt_rq *rt_rq; 1178 /* rq "owned" by this entity/group: */ 1179 struct rt_rq *my_q; 1180 #endif 1181 }; 1182 1183 struct rcu_node; 1184 1185 enum perf_event_task_context { 1186 perf_invalid_context = -1, 1187 perf_hw_context = 0, 1188 perf_sw_context, 1189 perf_nr_task_contexts, 1190 }; 1191 1192 struct task_struct { 1193 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1194 void *stack; 1195 atomic_t usage; 1196 unsigned int flags; /* per process flags, defined below */ 1197 unsigned int ptrace; 1198 1199 int lock_depth; /* BKL lock depth */ 1200 1201 #ifdef CONFIG_SMP 1202 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1203 int oncpu; 1204 #endif 1205 #endif 1206 1207 int prio, static_prio, normal_prio; 1208 unsigned int rt_priority; 1209 const struct sched_class *sched_class; 1210 struct sched_entity se; 1211 struct sched_rt_entity rt; 1212 1213 #ifdef CONFIG_PREEMPT_NOTIFIERS 1214 /* list of struct preempt_notifier: */ 1215 struct hlist_head preempt_notifiers; 1216 #endif 1217 1218 /* 1219 * fpu_counter contains the number of consecutive context switches 1220 * that the FPU is used. If this is over a threshold, the lazy fpu 1221 * saving becomes unlazy to save the trap. This is an unsigned char 1222 * so that after 256 times the counter wraps and the behavior turns 1223 * lazy again; this to deal with bursty apps that only use FPU for 1224 * a short time 1225 */ 1226 unsigned char fpu_counter; 1227 #ifdef CONFIG_BLK_DEV_IO_TRACE 1228 unsigned int btrace_seq; 1229 #endif 1230 1231 unsigned int policy; 1232 cpumask_t cpus_allowed; 1233 1234 #ifdef CONFIG_PREEMPT_RCU 1235 int rcu_read_lock_nesting; 1236 char rcu_read_unlock_special; 1237 struct list_head rcu_node_entry; 1238 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1239 #ifdef CONFIG_TREE_PREEMPT_RCU 1240 struct rcu_node *rcu_blocked_node; 1241 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1242 #ifdef CONFIG_RCU_BOOST 1243 struct rt_mutex *rcu_boost_mutex; 1244 #endif /* #ifdef CONFIG_RCU_BOOST */ 1245 1246 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1247 struct sched_info sched_info; 1248 #endif 1249 1250 struct list_head tasks; 1251 #ifdef CONFIG_SMP 1252 struct plist_node pushable_tasks; 1253 #endif 1254 1255 struct mm_struct *mm, *active_mm; 1256 #if defined(SPLIT_RSS_COUNTING) 1257 struct task_rss_stat rss_stat; 1258 #endif 1259 /* task state */ 1260 int exit_state; 1261 int exit_code, exit_signal; 1262 int pdeath_signal; /* The signal sent when the parent dies */ 1263 /* ??? */ 1264 unsigned int personality; 1265 unsigned did_exec:1; 1266 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1267 * execve */ 1268 unsigned in_iowait:1; 1269 1270 1271 /* Revert to default priority/policy when forking */ 1272 unsigned sched_reset_on_fork:1; 1273 1274 pid_t pid; 1275 pid_t tgid; 1276 1277 #ifdef CONFIG_CC_STACKPROTECTOR 1278 /* Canary value for the -fstack-protector gcc feature */ 1279 unsigned long stack_canary; 1280 #endif 1281 1282 /* 1283 * pointers to (original) parent process, youngest child, younger sibling, 1284 * older sibling, respectively. (p->father can be replaced with 1285 * p->real_parent->pid) 1286 */ 1287 struct task_struct *real_parent; /* real parent process */ 1288 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1289 /* 1290 * children/sibling forms the list of my natural children 1291 */ 1292 struct list_head children; /* list of my children */ 1293 struct list_head sibling; /* linkage in my parent's children list */ 1294 struct task_struct *group_leader; /* threadgroup leader */ 1295 1296 /* 1297 * ptraced is the list of tasks this task is using ptrace on. 1298 * This includes both natural children and PTRACE_ATTACH targets. 1299 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1300 */ 1301 struct list_head ptraced; 1302 struct list_head ptrace_entry; 1303 1304 /* PID/PID hash table linkage. */ 1305 struct pid_link pids[PIDTYPE_MAX]; 1306 struct list_head thread_group; 1307 1308 struct completion *vfork_done; /* for vfork() */ 1309 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1310 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1311 1312 cputime_t utime, stime, utimescaled, stimescaled; 1313 cputime_t gtime; 1314 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1315 cputime_t prev_utime, prev_stime; 1316 #endif 1317 unsigned long nvcsw, nivcsw; /* context switch counts */ 1318 struct timespec start_time; /* monotonic time */ 1319 struct timespec real_start_time; /* boot based time */ 1320 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1321 unsigned long min_flt, maj_flt; 1322 1323 struct task_cputime cputime_expires; 1324 struct list_head cpu_timers[3]; 1325 1326 /* process credentials */ 1327 const struct cred __rcu *real_cred; /* objective and real subjective task 1328 * credentials (COW) */ 1329 const struct cred __rcu *cred; /* effective (overridable) subjective task 1330 * credentials (COW) */ 1331 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1332 1333 char comm[TASK_COMM_LEN]; /* executable name excluding path 1334 - access with [gs]et_task_comm (which lock 1335 it with task_lock()) 1336 - initialized normally by setup_new_exec */ 1337 /* file system info */ 1338 int link_count, total_link_count; 1339 #ifdef CONFIG_SYSVIPC 1340 /* ipc stuff */ 1341 struct sysv_sem sysvsem; 1342 #endif 1343 #ifdef CONFIG_DETECT_HUNG_TASK 1344 /* hung task detection */ 1345 unsigned long last_switch_count; 1346 #endif 1347 /* CPU-specific state of this task */ 1348 struct thread_struct thread; 1349 /* filesystem information */ 1350 struct fs_struct *fs; 1351 /* open file information */ 1352 struct files_struct *files; 1353 /* namespaces */ 1354 struct nsproxy *nsproxy; 1355 /* signal handlers */ 1356 struct signal_struct *signal; 1357 struct sighand_struct *sighand; 1358 1359 sigset_t blocked, real_blocked; 1360 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1361 struct sigpending pending; 1362 1363 unsigned long sas_ss_sp; 1364 size_t sas_ss_size; 1365 int (*notifier)(void *priv); 1366 void *notifier_data; 1367 sigset_t *notifier_mask; 1368 struct audit_context *audit_context; 1369 #ifdef CONFIG_AUDITSYSCALL 1370 uid_t loginuid; 1371 unsigned int sessionid; 1372 #endif 1373 seccomp_t seccomp; 1374 1375 /* Thread group tracking */ 1376 u32 parent_exec_id; 1377 u32 self_exec_id; 1378 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1379 * mempolicy */ 1380 spinlock_t alloc_lock; 1381 1382 #ifdef CONFIG_GENERIC_HARDIRQS 1383 /* IRQ handler threads */ 1384 struct irqaction *irqaction; 1385 #endif 1386 1387 /* Protection of the PI data structures: */ 1388 raw_spinlock_t pi_lock; 1389 1390 #ifdef CONFIG_RT_MUTEXES 1391 /* PI waiters blocked on a rt_mutex held by this task */ 1392 struct plist_head pi_waiters; 1393 /* Deadlock detection and priority inheritance handling */ 1394 struct rt_mutex_waiter *pi_blocked_on; 1395 #endif 1396 1397 #ifdef CONFIG_DEBUG_MUTEXES 1398 /* mutex deadlock detection */ 1399 struct mutex_waiter *blocked_on; 1400 #endif 1401 #ifdef CONFIG_TRACE_IRQFLAGS 1402 unsigned int irq_events; 1403 unsigned long hardirq_enable_ip; 1404 unsigned long hardirq_disable_ip; 1405 unsigned int hardirq_enable_event; 1406 unsigned int hardirq_disable_event; 1407 int hardirqs_enabled; 1408 int hardirq_context; 1409 unsigned long softirq_disable_ip; 1410 unsigned long softirq_enable_ip; 1411 unsigned int softirq_disable_event; 1412 unsigned int softirq_enable_event; 1413 int softirqs_enabled; 1414 int softirq_context; 1415 #endif 1416 #ifdef CONFIG_LOCKDEP 1417 # define MAX_LOCK_DEPTH 48UL 1418 u64 curr_chain_key; 1419 int lockdep_depth; 1420 unsigned int lockdep_recursion; 1421 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1422 gfp_t lockdep_reclaim_gfp; 1423 #endif 1424 1425 /* journalling filesystem info */ 1426 void *journal_info; 1427 1428 /* stacked block device info */ 1429 struct bio_list *bio_list; 1430 1431 /* VM state */ 1432 struct reclaim_state *reclaim_state; 1433 1434 struct backing_dev_info *backing_dev_info; 1435 1436 struct io_context *io_context; 1437 1438 unsigned long ptrace_message; 1439 siginfo_t *last_siginfo; /* For ptrace use. */ 1440 struct task_io_accounting ioac; 1441 #if defined(CONFIG_TASK_XACCT) 1442 u64 acct_rss_mem1; /* accumulated rss usage */ 1443 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1444 cputime_t acct_timexpd; /* stime + utime since last update */ 1445 #endif 1446 #ifdef CONFIG_CPUSETS 1447 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1448 int mems_allowed_change_disable; 1449 int cpuset_mem_spread_rotor; 1450 int cpuset_slab_spread_rotor; 1451 #endif 1452 #ifdef CONFIG_CGROUPS 1453 /* Control Group info protected by css_set_lock */ 1454 struct css_set __rcu *cgroups; 1455 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1456 struct list_head cg_list; 1457 #endif 1458 #ifdef CONFIG_FUTEX 1459 struct robust_list_head __user *robust_list; 1460 #ifdef CONFIG_COMPAT 1461 struct compat_robust_list_head __user *compat_robust_list; 1462 #endif 1463 struct list_head pi_state_list; 1464 struct futex_pi_state *pi_state_cache; 1465 #endif 1466 #ifdef CONFIG_PERF_EVENTS 1467 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1468 struct mutex perf_event_mutex; 1469 struct list_head perf_event_list; 1470 #endif 1471 #ifdef CONFIG_NUMA 1472 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1473 short il_next; 1474 short pref_node_fork; 1475 #endif 1476 atomic_t fs_excl; /* holding fs exclusive resources */ 1477 struct rcu_head rcu; 1478 1479 /* 1480 * cache last used pipe for splice 1481 */ 1482 struct pipe_inode_info *splice_pipe; 1483 #ifdef CONFIG_TASK_DELAY_ACCT 1484 struct task_delay_info *delays; 1485 #endif 1486 #ifdef CONFIG_FAULT_INJECTION 1487 int make_it_fail; 1488 #endif 1489 struct prop_local_single dirties; 1490 #ifdef CONFIG_LATENCYTOP 1491 int latency_record_count; 1492 struct latency_record latency_record[LT_SAVECOUNT]; 1493 #endif 1494 /* 1495 * time slack values; these are used to round up poll() and 1496 * select() etc timeout values. These are in nanoseconds. 1497 */ 1498 unsigned long timer_slack_ns; 1499 unsigned long default_timer_slack_ns; 1500 1501 struct list_head *scm_work_list; 1502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1503 /* Index of current stored address in ret_stack */ 1504 int curr_ret_stack; 1505 /* Stack of return addresses for return function tracing */ 1506 struct ftrace_ret_stack *ret_stack; 1507 /* time stamp for last schedule */ 1508 unsigned long long ftrace_timestamp; 1509 /* 1510 * Number of functions that haven't been traced 1511 * because of depth overrun. 1512 */ 1513 atomic_t trace_overrun; 1514 /* Pause for the tracing */ 1515 atomic_t tracing_graph_pause; 1516 #endif 1517 #ifdef CONFIG_TRACING 1518 /* state flags for use by tracers */ 1519 unsigned long trace; 1520 /* bitmask of trace recursion */ 1521 unsigned long trace_recursion; 1522 #endif /* CONFIG_TRACING */ 1523 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1524 struct memcg_batch_info { 1525 int do_batch; /* incremented when batch uncharge started */ 1526 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1527 unsigned long bytes; /* uncharged usage */ 1528 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1529 } memcg_batch; 1530 #endif 1531 }; 1532 1533 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1534 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1535 1536 /* 1537 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1538 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1539 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1540 * values are inverted: lower p->prio value means higher priority. 1541 * 1542 * The MAX_USER_RT_PRIO value allows the actual maximum 1543 * RT priority to be separate from the value exported to 1544 * user-space. This allows kernel threads to set their 1545 * priority to a value higher than any user task. Note: 1546 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1547 */ 1548 1549 #define MAX_USER_RT_PRIO 100 1550 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1551 1552 #define MAX_PRIO (MAX_RT_PRIO + 40) 1553 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1554 1555 static inline int rt_prio(int prio) 1556 { 1557 if (unlikely(prio < MAX_RT_PRIO)) 1558 return 1; 1559 return 0; 1560 } 1561 1562 static inline int rt_task(struct task_struct *p) 1563 { 1564 return rt_prio(p->prio); 1565 } 1566 1567 static inline struct pid *task_pid(struct task_struct *task) 1568 { 1569 return task->pids[PIDTYPE_PID].pid; 1570 } 1571 1572 static inline struct pid *task_tgid(struct task_struct *task) 1573 { 1574 return task->group_leader->pids[PIDTYPE_PID].pid; 1575 } 1576 1577 /* 1578 * Without tasklist or rcu lock it is not safe to dereference 1579 * the result of task_pgrp/task_session even if task == current, 1580 * we can race with another thread doing sys_setsid/sys_setpgid. 1581 */ 1582 static inline struct pid *task_pgrp(struct task_struct *task) 1583 { 1584 return task->group_leader->pids[PIDTYPE_PGID].pid; 1585 } 1586 1587 static inline struct pid *task_session(struct task_struct *task) 1588 { 1589 return task->group_leader->pids[PIDTYPE_SID].pid; 1590 } 1591 1592 struct pid_namespace; 1593 1594 /* 1595 * the helpers to get the task's different pids as they are seen 1596 * from various namespaces 1597 * 1598 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1599 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1600 * current. 1601 * task_xid_nr_ns() : id seen from the ns specified; 1602 * 1603 * set_task_vxid() : assigns a virtual id to a task; 1604 * 1605 * see also pid_nr() etc in include/linux/pid.h 1606 */ 1607 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1608 struct pid_namespace *ns); 1609 1610 static inline pid_t task_pid_nr(struct task_struct *tsk) 1611 { 1612 return tsk->pid; 1613 } 1614 1615 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1616 struct pid_namespace *ns) 1617 { 1618 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1619 } 1620 1621 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1622 { 1623 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1624 } 1625 1626 1627 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1628 { 1629 return tsk->tgid; 1630 } 1631 1632 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1633 1634 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1635 { 1636 return pid_vnr(task_tgid(tsk)); 1637 } 1638 1639 1640 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1641 struct pid_namespace *ns) 1642 { 1643 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1644 } 1645 1646 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1647 { 1648 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1649 } 1650 1651 1652 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1653 struct pid_namespace *ns) 1654 { 1655 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1656 } 1657 1658 static inline pid_t task_session_vnr(struct task_struct *tsk) 1659 { 1660 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1661 } 1662 1663 /* obsolete, do not use */ 1664 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1665 { 1666 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1667 } 1668 1669 /** 1670 * pid_alive - check that a task structure is not stale 1671 * @p: Task structure to be checked. 1672 * 1673 * Test if a process is not yet dead (at most zombie state) 1674 * If pid_alive fails, then pointers within the task structure 1675 * can be stale and must not be dereferenced. 1676 */ 1677 static inline int pid_alive(struct task_struct *p) 1678 { 1679 return p->pids[PIDTYPE_PID].pid != NULL; 1680 } 1681 1682 /** 1683 * is_global_init - check if a task structure is init 1684 * @tsk: Task structure to be checked. 1685 * 1686 * Check if a task structure is the first user space task the kernel created. 1687 */ 1688 static inline int is_global_init(struct task_struct *tsk) 1689 { 1690 return tsk->pid == 1; 1691 } 1692 1693 /* 1694 * is_container_init: 1695 * check whether in the task is init in its own pid namespace. 1696 */ 1697 extern int is_container_init(struct task_struct *tsk); 1698 1699 extern struct pid *cad_pid; 1700 1701 extern void free_task(struct task_struct *tsk); 1702 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1703 1704 extern void __put_task_struct(struct task_struct *t); 1705 1706 static inline void put_task_struct(struct task_struct *t) 1707 { 1708 if (atomic_dec_and_test(&t->usage)) 1709 __put_task_struct(t); 1710 } 1711 1712 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1713 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1714 1715 /* 1716 * Per process flags 1717 */ 1718 #define PF_STARTING 0x00000002 /* being created */ 1719 #define PF_EXITING 0x00000004 /* getting shut down */ 1720 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1721 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1722 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1723 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1724 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1725 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1726 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1727 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1728 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1729 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1730 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1731 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1732 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1733 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1734 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1735 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1736 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1737 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1738 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1739 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1740 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1741 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1742 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1743 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1744 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1745 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1746 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1747 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1748 1749 /* 1750 * Only the _current_ task can read/write to tsk->flags, but other 1751 * tasks can access tsk->flags in readonly mode for example 1752 * with tsk_used_math (like during threaded core dumping). 1753 * There is however an exception to this rule during ptrace 1754 * or during fork: the ptracer task is allowed to write to the 1755 * child->flags of its traced child (same goes for fork, the parent 1756 * can write to the child->flags), because we're guaranteed the 1757 * child is not running and in turn not changing child->flags 1758 * at the same time the parent does it. 1759 */ 1760 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1761 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1762 #define clear_used_math() clear_stopped_child_used_math(current) 1763 #define set_used_math() set_stopped_child_used_math(current) 1764 #define conditional_stopped_child_used_math(condition, child) \ 1765 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1766 #define conditional_used_math(condition) \ 1767 conditional_stopped_child_used_math(condition, current) 1768 #define copy_to_stopped_child_used_math(child) \ 1769 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1770 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1771 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1772 #define used_math() tsk_used_math(current) 1773 1774 #ifdef CONFIG_PREEMPT_RCU 1775 1776 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1777 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1778 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1779 1780 static inline void rcu_copy_process(struct task_struct *p) 1781 { 1782 p->rcu_read_lock_nesting = 0; 1783 p->rcu_read_unlock_special = 0; 1784 #ifdef CONFIG_TREE_PREEMPT_RCU 1785 p->rcu_blocked_node = NULL; 1786 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1787 #ifdef CONFIG_RCU_BOOST 1788 p->rcu_boost_mutex = NULL; 1789 #endif /* #ifdef CONFIG_RCU_BOOST */ 1790 INIT_LIST_HEAD(&p->rcu_node_entry); 1791 } 1792 1793 #else 1794 1795 static inline void rcu_copy_process(struct task_struct *p) 1796 { 1797 } 1798 1799 #endif 1800 1801 #ifdef CONFIG_SMP 1802 extern int set_cpus_allowed_ptr(struct task_struct *p, 1803 const struct cpumask *new_mask); 1804 #else 1805 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1806 const struct cpumask *new_mask) 1807 { 1808 if (!cpumask_test_cpu(0, new_mask)) 1809 return -EINVAL; 1810 return 0; 1811 } 1812 #endif 1813 1814 #ifndef CONFIG_CPUMASK_OFFSTACK 1815 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1816 { 1817 return set_cpus_allowed_ptr(p, &new_mask); 1818 } 1819 #endif 1820 1821 /* 1822 * Do not use outside of architecture code which knows its limitations. 1823 * 1824 * sched_clock() has no promise of monotonicity or bounded drift between 1825 * CPUs, use (which you should not) requires disabling IRQs. 1826 * 1827 * Please use one of the three interfaces below. 1828 */ 1829 extern unsigned long long notrace sched_clock(void); 1830 /* 1831 * See the comment in kernel/sched_clock.c 1832 */ 1833 extern u64 cpu_clock(int cpu); 1834 extern u64 local_clock(void); 1835 extern u64 sched_clock_cpu(int cpu); 1836 1837 1838 extern void sched_clock_init(void); 1839 1840 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1841 static inline void sched_clock_tick(void) 1842 { 1843 } 1844 1845 static inline void sched_clock_idle_sleep_event(void) 1846 { 1847 } 1848 1849 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1850 { 1851 } 1852 #else 1853 /* 1854 * Architectures can set this to 1 if they have specified 1855 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1856 * but then during bootup it turns out that sched_clock() 1857 * is reliable after all: 1858 */ 1859 extern int sched_clock_stable; 1860 1861 extern void sched_clock_tick(void); 1862 extern void sched_clock_idle_sleep_event(void); 1863 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1864 #endif 1865 1866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1867 /* 1868 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1869 * The reason for this explicit opt-in is not to have perf penalty with 1870 * slow sched_clocks. 1871 */ 1872 extern void enable_sched_clock_irqtime(void); 1873 extern void disable_sched_clock_irqtime(void); 1874 #else 1875 static inline void enable_sched_clock_irqtime(void) {} 1876 static inline void disable_sched_clock_irqtime(void) {} 1877 #endif 1878 1879 extern unsigned long long 1880 task_sched_runtime(struct task_struct *task); 1881 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1882 1883 /* sched_exec is called by processes performing an exec */ 1884 #ifdef CONFIG_SMP 1885 extern void sched_exec(void); 1886 #else 1887 #define sched_exec() {} 1888 #endif 1889 1890 extern void sched_clock_idle_sleep_event(void); 1891 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1892 1893 #ifdef CONFIG_HOTPLUG_CPU 1894 extern void idle_task_exit(void); 1895 #else 1896 static inline void idle_task_exit(void) {} 1897 #endif 1898 1899 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1900 extern void wake_up_idle_cpu(int cpu); 1901 #else 1902 static inline void wake_up_idle_cpu(int cpu) { } 1903 #endif 1904 1905 extern unsigned int sysctl_sched_latency; 1906 extern unsigned int sysctl_sched_min_granularity; 1907 extern unsigned int sysctl_sched_wakeup_granularity; 1908 extern unsigned int sysctl_sched_child_runs_first; 1909 1910 enum sched_tunable_scaling { 1911 SCHED_TUNABLESCALING_NONE, 1912 SCHED_TUNABLESCALING_LOG, 1913 SCHED_TUNABLESCALING_LINEAR, 1914 SCHED_TUNABLESCALING_END, 1915 }; 1916 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1917 1918 #ifdef CONFIG_SCHED_DEBUG 1919 extern unsigned int sysctl_sched_migration_cost; 1920 extern unsigned int sysctl_sched_nr_migrate; 1921 extern unsigned int sysctl_sched_time_avg; 1922 extern unsigned int sysctl_timer_migration; 1923 extern unsigned int sysctl_sched_shares_window; 1924 1925 int sched_proc_update_handler(struct ctl_table *table, int write, 1926 void __user *buffer, size_t *length, 1927 loff_t *ppos); 1928 #endif 1929 #ifdef CONFIG_SCHED_DEBUG 1930 static inline unsigned int get_sysctl_timer_migration(void) 1931 { 1932 return sysctl_timer_migration; 1933 } 1934 #else 1935 static inline unsigned int get_sysctl_timer_migration(void) 1936 { 1937 return 1; 1938 } 1939 #endif 1940 extern unsigned int sysctl_sched_rt_period; 1941 extern int sysctl_sched_rt_runtime; 1942 1943 int sched_rt_handler(struct ctl_table *table, int write, 1944 void __user *buffer, size_t *lenp, 1945 loff_t *ppos); 1946 1947 #ifdef CONFIG_SCHED_AUTOGROUP 1948 extern unsigned int sysctl_sched_autogroup_enabled; 1949 1950 extern void sched_autogroup_create_attach(struct task_struct *p); 1951 extern void sched_autogroup_detach(struct task_struct *p); 1952 extern void sched_autogroup_fork(struct signal_struct *sig); 1953 extern void sched_autogroup_exit(struct signal_struct *sig); 1954 #ifdef CONFIG_PROC_FS 1955 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1956 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 1957 #endif 1958 #else 1959 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1960 static inline void sched_autogroup_detach(struct task_struct *p) { } 1961 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1962 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1963 #endif 1964 1965 #ifdef CONFIG_RT_MUTEXES 1966 extern int rt_mutex_getprio(struct task_struct *p); 1967 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1968 extern void rt_mutex_adjust_pi(struct task_struct *p); 1969 #else 1970 static inline int rt_mutex_getprio(struct task_struct *p) 1971 { 1972 return p->normal_prio; 1973 } 1974 # define rt_mutex_adjust_pi(p) do { } while (0) 1975 #endif 1976 1977 extern bool yield_to(struct task_struct *p, bool preempt); 1978 extern void set_user_nice(struct task_struct *p, long nice); 1979 extern int task_prio(const struct task_struct *p); 1980 extern int task_nice(const struct task_struct *p); 1981 extern int can_nice(const struct task_struct *p, const int nice); 1982 extern int task_curr(const struct task_struct *p); 1983 extern int idle_cpu(int cpu); 1984 extern int sched_setscheduler(struct task_struct *, int, 1985 const struct sched_param *); 1986 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1987 const struct sched_param *); 1988 extern struct task_struct *idle_task(int cpu); 1989 extern struct task_struct *curr_task(int cpu); 1990 extern void set_curr_task(int cpu, struct task_struct *p); 1991 1992 void yield(void); 1993 1994 /* 1995 * The default (Linux) execution domain. 1996 */ 1997 extern struct exec_domain default_exec_domain; 1998 1999 union thread_union { 2000 struct thread_info thread_info; 2001 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2002 }; 2003 2004 #ifndef __HAVE_ARCH_KSTACK_END 2005 static inline int kstack_end(void *addr) 2006 { 2007 /* Reliable end of stack detection: 2008 * Some APM bios versions misalign the stack 2009 */ 2010 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2011 } 2012 #endif 2013 2014 extern union thread_union init_thread_union; 2015 extern struct task_struct init_task; 2016 2017 extern struct mm_struct init_mm; 2018 2019 extern struct pid_namespace init_pid_ns; 2020 2021 /* 2022 * find a task by one of its numerical ids 2023 * 2024 * find_task_by_pid_ns(): 2025 * finds a task by its pid in the specified namespace 2026 * find_task_by_vpid(): 2027 * finds a task by its virtual pid 2028 * 2029 * see also find_vpid() etc in include/linux/pid.h 2030 */ 2031 2032 extern struct task_struct *find_task_by_vpid(pid_t nr); 2033 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2034 struct pid_namespace *ns); 2035 2036 extern void __set_special_pids(struct pid *pid); 2037 2038 /* per-UID process charging. */ 2039 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2040 static inline struct user_struct *get_uid(struct user_struct *u) 2041 { 2042 atomic_inc(&u->__count); 2043 return u; 2044 } 2045 extern void free_uid(struct user_struct *); 2046 extern void release_uids(struct user_namespace *ns); 2047 2048 #include <asm/current.h> 2049 2050 extern void xtime_update(unsigned long ticks); 2051 2052 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2053 extern int wake_up_process(struct task_struct *tsk); 2054 extern void wake_up_new_task(struct task_struct *tsk, 2055 unsigned long clone_flags); 2056 #ifdef CONFIG_SMP 2057 extern void kick_process(struct task_struct *tsk); 2058 #else 2059 static inline void kick_process(struct task_struct *tsk) { } 2060 #endif 2061 extern void sched_fork(struct task_struct *p, int clone_flags); 2062 extern void sched_dead(struct task_struct *p); 2063 2064 extern void proc_caches_init(void); 2065 extern void flush_signals(struct task_struct *); 2066 extern void __flush_signals(struct task_struct *); 2067 extern void ignore_signals(struct task_struct *); 2068 extern void flush_signal_handlers(struct task_struct *, int force_default); 2069 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2070 2071 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2072 { 2073 unsigned long flags; 2074 int ret; 2075 2076 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2077 ret = dequeue_signal(tsk, mask, info); 2078 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2079 2080 return ret; 2081 } 2082 2083 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2084 sigset_t *mask); 2085 extern void unblock_all_signals(void); 2086 extern void release_task(struct task_struct * p); 2087 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2088 extern int force_sigsegv(int, struct task_struct *); 2089 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2090 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2091 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2092 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2093 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2094 extern int kill_pid(struct pid *pid, int sig, int priv); 2095 extern int kill_proc_info(int, struct siginfo *, pid_t); 2096 extern int do_notify_parent(struct task_struct *, int); 2097 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2098 extern void force_sig(int, struct task_struct *); 2099 extern int send_sig(int, struct task_struct *, int); 2100 extern int zap_other_threads(struct task_struct *p); 2101 extern struct sigqueue *sigqueue_alloc(void); 2102 extern void sigqueue_free(struct sigqueue *); 2103 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2104 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2105 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2106 2107 static inline int kill_cad_pid(int sig, int priv) 2108 { 2109 return kill_pid(cad_pid, sig, priv); 2110 } 2111 2112 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2113 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2114 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2115 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2116 2117 /* 2118 * True if we are on the alternate signal stack. 2119 */ 2120 static inline int on_sig_stack(unsigned long sp) 2121 { 2122 #ifdef CONFIG_STACK_GROWSUP 2123 return sp >= current->sas_ss_sp && 2124 sp - current->sas_ss_sp < current->sas_ss_size; 2125 #else 2126 return sp > current->sas_ss_sp && 2127 sp - current->sas_ss_sp <= current->sas_ss_size; 2128 #endif 2129 } 2130 2131 static inline int sas_ss_flags(unsigned long sp) 2132 { 2133 return (current->sas_ss_size == 0 ? SS_DISABLE 2134 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2135 } 2136 2137 /* 2138 * Routines for handling mm_structs 2139 */ 2140 extern struct mm_struct * mm_alloc(void); 2141 2142 /* mmdrop drops the mm and the page tables */ 2143 extern void __mmdrop(struct mm_struct *); 2144 static inline void mmdrop(struct mm_struct * mm) 2145 { 2146 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2147 __mmdrop(mm); 2148 } 2149 2150 /* mmput gets rid of the mappings and all user-space */ 2151 extern void mmput(struct mm_struct *); 2152 /* Grab a reference to a task's mm, if it is not already going away */ 2153 extern struct mm_struct *get_task_mm(struct task_struct *task); 2154 /* Remove the current tasks stale references to the old mm_struct */ 2155 extern void mm_release(struct task_struct *, struct mm_struct *); 2156 /* Allocate a new mm structure and copy contents from tsk->mm */ 2157 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2158 2159 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2160 struct task_struct *, struct pt_regs *); 2161 extern void flush_thread(void); 2162 extern void exit_thread(void); 2163 2164 extern void exit_files(struct task_struct *); 2165 extern void __cleanup_sighand(struct sighand_struct *); 2166 2167 extern void exit_itimers(struct signal_struct *); 2168 extern void flush_itimer_signals(void); 2169 2170 extern NORET_TYPE void do_group_exit(int); 2171 2172 extern void daemonize(const char *, ...); 2173 extern int allow_signal(int); 2174 extern int disallow_signal(int); 2175 2176 extern int do_execve(const char *, 2177 const char __user * const __user *, 2178 const char __user * const __user *, struct pt_regs *); 2179 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2180 struct task_struct *fork_idle(int); 2181 2182 extern void set_task_comm(struct task_struct *tsk, char *from); 2183 extern char *get_task_comm(char *to, struct task_struct *tsk); 2184 2185 #ifdef CONFIG_SMP 2186 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2187 #else 2188 static inline unsigned long wait_task_inactive(struct task_struct *p, 2189 long match_state) 2190 { 2191 return 1; 2192 } 2193 #endif 2194 2195 #define next_task(p) \ 2196 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2197 2198 #define for_each_process(p) \ 2199 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2200 2201 extern bool current_is_single_threaded(void); 2202 2203 /* 2204 * Careful: do_each_thread/while_each_thread is a double loop so 2205 * 'break' will not work as expected - use goto instead. 2206 */ 2207 #define do_each_thread(g, t) \ 2208 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2209 2210 #define while_each_thread(g, t) \ 2211 while ((t = next_thread(t)) != g) 2212 2213 static inline int get_nr_threads(struct task_struct *tsk) 2214 { 2215 return tsk->signal->nr_threads; 2216 } 2217 2218 /* de_thread depends on thread_group_leader not being a pid based check */ 2219 #define thread_group_leader(p) (p == p->group_leader) 2220 2221 /* Do to the insanities of de_thread it is possible for a process 2222 * to have the pid of the thread group leader without actually being 2223 * the thread group leader. For iteration through the pids in proc 2224 * all we care about is that we have a task with the appropriate 2225 * pid, we don't actually care if we have the right task. 2226 */ 2227 static inline int has_group_leader_pid(struct task_struct *p) 2228 { 2229 return p->pid == p->tgid; 2230 } 2231 2232 static inline 2233 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2234 { 2235 return p1->tgid == p2->tgid; 2236 } 2237 2238 static inline struct task_struct *next_thread(const struct task_struct *p) 2239 { 2240 return list_entry_rcu(p->thread_group.next, 2241 struct task_struct, thread_group); 2242 } 2243 2244 static inline int thread_group_empty(struct task_struct *p) 2245 { 2246 return list_empty(&p->thread_group); 2247 } 2248 2249 #define delay_group_leader(p) \ 2250 (thread_group_leader(p) && !thread_group_empty(p)) 2251 2252 static inline int task_detached(struct task_struct *p) 2253 { 2254 return p->exit_signal == -1; 2255 } 2256 2257 /* 2258 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2259 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2260 * pins the final release of task.io_context. Also protects ->cpuset and 2261 * ->cgroup.subsys[]. 2262 * 2263 * Nests both inside and outside of read_lock(&tasklist_lock). 2264 * It must not be nested with write_lock_irq(&tasklist_lock), 2265 * neither inside nor outside. 2266 */ 2267 static inline void task_lock(struct task_struct *p) 2268 { 2269 spin_lock(&p->alloc_lock); 2270 } 2271 2272 static inline void task_unlock(struct task_struct *p) 2273 { 2274 spin_unlock(&p->alloc_lock); 2275 } 2276 2277 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2278 unsigned long *flags); 2279 2280 #define lock_task_sighand(tsk, flags) \ 2281 ({ struct sighand_struct *__ss; \ 2282 __cond_lock(&(tsk)->sighand->siglock, \ 2283 (__ss = __lock_task_sighand(tsk, flags))); \ 2284 __ss; \ 2285 }) \ 2286 2287 static inline void unlock_task_sighand(struct task_struct *tsk, 2288 unsigned long *flags) 2289 { 2290 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2291 } 2292 2293 #ifndef __HAVE_THREAD_FUNCTIONS 2294 2295 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2296 #define task_stack_page(task) ((task)->stack) 2297 2298 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2299 { 2300 *task_thread_info(p) = *task_thread_info(org); 2301 task_thread_info(p)->task = p; 2302 } 2303 2304 static inline unsigned long *end_of_stack(struct task_struct *p) 2305 { 2306 return (unsigned long *)(task_thread_info(p) + 1); 2307 } 2308 2309 #endif 2310 2311 static inline int object_is_on_stack(void *obj) 2312 { 2313 void *stack = task_stack_page(current); 2314 2315 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2316 } 2317 2318 extern void thread_info_cache_init(void); 2319 2320 #ifdef CONFIG_DEBUG_STACK_USAGE 2321 static inline unsigned long stack_not_used(struct task_struct *p) 2322 { 2323 unsigned long *n = end_of_stack(p); 2324 2325 do { /* Skip over canary */ 2326 n++; 2327 } while (!*n); 2328 2329 return (unsigned long)n - (unsigned long)end_of_stack(p); 2330 } 2331 #endif 2332 2333 /* set thread flags in other task's structures 2334 * - see asm/thread_info.h for TIF_xxxx flags available 2335 */ 2336 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2337 { 2338 set_ti_thread_flag(task_thread_info(tsk), flag); 2339 } 2340 2341 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2342 { 2343 clear_ti_thread_flag(task_thread_info(tsk), flag); 2344 } 2345 2346 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2347 { 2348 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2349 } 2350 2351 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2352 { 2353 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2354 } 2355 2356 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2357 { 2358 return test_ti_thread_flag(task_thread_info(tsk), flag); 2359 } 2360 2361 static inline void set_tsk_need_resched(struct task_struct *tsk) 2362 { 2363 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2364 } 2365 2366 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2367 { 2368 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2369 } 2370 2371 static inline int test_tsk_need_resched(struct task_struct *tsk) 2372 { 2373 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2374 } 2375 2376 static inline int restart_syscall(void) 2377 { 2378 set_tsk_thread_flag(current, TIF_SIGPENDING); 2379 return -ERESTARTNOINTR; 2380 } 2381 2382 static inline int signal_pending(struct task_struct *p) 2383 { 2384 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2385 } 2386 2387 static inline int __fatal_signal_pending(struct task_struct *p) 2388 { 2389 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2390 } 2391 2392 static inline int fatal_signal_pending(struct task_struct *p) 2393 { 2394 return signal_pending(p) && __fatal_signal_pending(p); 2395 } 2396 2397 static inline int signal_pending_state(long state, struct task_struct *p) 2398 { 2399 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2400 return 0; 2401 if (!signal_pending(p)) 2402 return 0; 2403 2404 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2405 } 2406 2407 static inline int need_resched(void) 2408 { 2409 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2410 } 2411 2412 /* 2413 * cond_resched() and cond_resched_lock(): latency reduction via 2414 * explicit rescheduling in places that are safe. The return 2415 * value indicates whether a reschedule was done in fact. 2416 * cond_resched_lock() will drop the spinlock before scheduling, 2417 * cond_resched_softirq() will enable bhs before scheduling. 2418 */ 2419 extern int _cond_resched(void); 2420 2421 #define cond_resched() ({ \ 2422 __might_sleep(__FILE__, __LINE__, 0); \ 2423 _cond_resched(); \ 2424 }) 2425 2426 extern int __cond_resched_lock(spinlock_t *lock); 2427 2428 #ifdef CONFIG_PREEMPT 2429 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2430 #else 2431 #define PREEMPT_LOCK_OFFSET 0 2432 #endif 2433 2434 #define cond_resched_lock(lock) ({ \ 2435 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2436 __cond_resched_lock(lock); \ 2437 }) 2438 2439 extern int __cond_resched_softirq(void); 2440 2441 #define cond_resched_softirq() ({ \ 2442 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2443 __cond_resched_softirq(); \ 2444 }) 2445 2446 /* 2447 * Does a critical section need to be broken due to another 2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2449 * but a general need for low latency) 2450 */ 2451 static inline int spin_needbreak(spinlock_t *lock) 2452 { 2453 #ifdef CONFIG_PREEMPT 2454 return spin_is_contended(lock); 2455 #else 2456 return 0; 2457 #endif 2458 } 2459 2460 /* 2461 * Thread group CPU time accounting. 2462 */ 2463 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2464 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2465 2466 static inline void thread_group_cputime_init(struct signal_struct *sig) 2467 { 2468 spin_lock_init(&sig->cputimer.lock); 2469 } 2470 2471 /* 2472 * Reevaluate whether the task has signals pending delivery. 2473 * Wake the task if so. 2474 * This is required every time the blocked sigset_t changes. 2475 * callers must hold sighand->siglock. 2476 */ 2477 extern void recalc_sigpending_and_wake(struct task_struct *t); 2478 extern void recalc_sigpending(void); 2479 2480 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2481 2482 /* 2483 * Wrappers for p->thread_info->cpu access. No-op on UP. 2484 */ 2485 #ifdef CONFIG_SMP 2486 2487 static inline unsigned int task_cpu(const struct task_struct *p) 2488 { 2489 return task_thread_info(p)->cpu; 2490 } 2491 2492 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2493 2494 #else 2495 2496 static inline unsigned int task_cpu(const struct task_struct *p) 2497 { 2498 return 0; 2499 } 2500 2501 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2502 { 2503 } 2504 2505 #endif /* CONFIG_SMP */ 2506 2507 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2508 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2509 2510 extern void normalize_rt_tasks(void); 2511 2512 #ifdef CONFIG_CGROUP_SCHED 2513 2514 extern struct task_group root_task_group; 2515 2516 extern struct task_group *sched_create_group(struct task_group *parent); 2517 extern void sched_destroy_group(struct task_group *tg); 2518 extern void sched_move_task(struct task_struct *tsk); 2519 #ifdef CONFIG_FAIR_GROUP_SCHED 2520 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2521 extern unsigned long sched_group_shares(struct task_group *tg); 2522 #endif 2523 #ifdef CONFIG_RT_GROUP_SCHED 2524 extern int sched_group_set_rt_runtime(struct task_group *tg, 2525 long rt_runtime_us); 2526 extern long sched_group_rt_runtime(struct task_group *tg); 2527 extern int sched_group_set_rt_period(struct task_group *tg, 2528 long rt_period_us); 2529 extern long sched_group_rt_period(struct task_group *tg); 2530 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2531 #endif 2532 #endif 2533 2534 extern int task_can_switch_user(struct user_struct *up, 2535 struct task_struct *tsk); 2536 2537 #ifdef CONFIG_TASK_XACCT 2538 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2539 { 2540 tsk->ioac.rchar += amt; 2541 } 2542 2543 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2544 { 2545 tsk->ioac.wchar += amt; 2546 } 2547 2548 static inline void inc_syscr(struct task_struct *tsk) 2549 { 2550 tsk->ioac.syscr++; 2551 } 2552 2553 static inline void inc_syscw(struct task_struct *tsk) 2554 { 2555 tsk->ioac.syscw++; 2556 } 2557 #else 2558 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2559 { 2560 } 2561 2562 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2563 { 2564 } 2565 2566 static inline void inc_syscr(struct task_struct *tsk) 2567 { 2568 } 2569 2570 static inline void inc_syscw(struct task_struct *tsk) 2571 { 2572 } 2573 #endif 2574 2575 #ifndef TASK_SIZE_OF 2576 #define TASK_SIZE_OF(tsk) TASK_SIZE 2577 #endif 2578 2579 #ifdef CONFIG_MM_OWNER 2580 extern void mm_update_next_owner(struct mm_struct *mm); 2581 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2582 #else 2583 static inline void mm_update_next_owner(struct mm_struct *mm) 2584 { 2585 } 2586 2587 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2588 { 2589 } 2590 #endif /* CONFIG_MM_OWNER */ 2591 2592 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2593 unsigned int limit) 2594 { 2595 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2596 } 2597 2598 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2599 unsigned int limit) 2600 { 2601 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2602 } 2603 2604 static inline unsigned long rlimit(unsigned int limit) 2605 { 2606 return task_rlimit(current, limit); 2607 } 2608 2609 static inline unsigned long rlimit_max(unsigned int limit) 2610 { 2611 return task_rlimit_max(current, limit); 2612 } 2613 2614 #endif /* __KERNEL__ */ 2615 2616 #endif 2617