xref: /linux/include/linux/sched.h (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48 
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 
62 #include <asm/processor.h>
63 
64 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
65 
66 /*
67  * Extended scheduling parameters data structure.
68  *
69  * This is needed because the original struct sched_param can not be
70  * altered without introducing ABI issues with legacy applications
71  * (e.g., in sched_getparam()).
72  *
73  * However, the possibility of specifying more than just a priority for
74  * the tasks may be useful for a wide variety of application fields, e.g.,
75  * multimedia, streaming, automation and control, and many others.
76  *
77  * This variant (sched_attr) is meant at describing a so-called
78  * sporadic time-constrained task. In such model a task is specified by:
79  *  - the activation period or minimum instance inter-arrival time;
80  *  - the maximum (or average, depending on the actual scheduling
81  *    discipline) computation time of all instances, a.k.a. runtime;
82  *  - the deadline (relative to the actual activation time) of each
83  *    instance.
84  * Very briefly, a periodic (sporadic) task asks for the execution of
85  * some specific computation --which is typically called an instance--
86  * (at most) every period. Moreover, each instance typically lasts no more
87  * than the runtime and must be completed by time instant t equal to
88  * the instance activation time + the deadline.
89  *
90  * This is reflected by the actual fields of the sched_attr structure:
91  *
92  *  @size		size of the structure, for fwd/bwd compat.
93  *
94  *  @sched_policy	task's scheduling policy
95  *  @sched_flags	for customizing the scheduler behaviour
96  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
97  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
98  *  @sched_deadline	representative of the task's deadline
99  *  @sched_runtime	representative of the task's runtime
100  *  @sched_period	representative of the task's period
101  *
102  * Given this task model, there are a multiplicity of scheduling algorithms
103  * and policies, that can be used to ensure all the tasks will make their
104  * timing constraints.
105  *
106  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107  * only user of this new interface. More information about the algorithm
108  * available in the scheduling class file or in Documentation/.
109  */
110 struct sched_attr {
111 	u32 size;
112 
113 	u32 sched_policy;
114 	u64 sched_flags;
115 
116 	/* SCHED_NORMAL, SCHED_BATCH */
117 	s32 sched_nice;
118 
119 	/* SCHED_FIFO, SCHED_RR */
120 	u32 sched_priority;
121 
122 	/* SCHED_DEADLINE */
123 	u64 sched_runtime;
124 	u64 sched_deadline;
125 	u64 sched_period;
126 };
127 
128 struct futex_pi_state;
129 struct robust_list_head;
130 struct bio_list;
131 struct fs_struct;
132 struct perf_event_context;
133 struct blk_plug;
134 struct filename;
135 
136 #define VMACACHE_BITS 2
137 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
138 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
139 
140 /*
141  * These are the constant used to fake the fixed-point load-average
142  * counting. Some notes:
143  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
144  *    a load-average precision of 10 bits integer + 11 bits fractional
145  *  - if you want to count load-averages more often, you need more
146  *    precision, or rounding will get you. With 2-second counting freq,
147  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
148  *    11 bit fractions.
149  */
150 extern unsigned long avenrun[];		/* Load averages */
151 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
152 
153 #define FSHIFT		11		/* nr of bits of precision */
154 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
155 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
156 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
157 #define EXP_5		2014		/* 1/exp(5sec/5min) */
158 #define EXP_15		2037		/* 1/exp(5sec/15min) */
159 
160 #define CALC_LOAD(load,exp,n) \
161 	load *= exp; \
162 	load += n*(FIXED_1-exp); \
163 	load >>= FSHIFT;
164 
165 extern unsigned long total_forks;
166 extern int nr_threads;
167 DECLARE_PER_CPU(unsigned long, process_counts);
168 extern int nr_processes(void);
169 extern unsigned long nr_running(void);
170 extern bool single_task_running(void);
171 extern unsigned long nr_iowait(void);
172 extern unsigned long nr_iowait_cpu(int cpu);
173 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
174 
175 extern void calc_global_load(unsigned long ticks);
176 extern void update_cpu_load_nohz(void);
177 
178 /* Notifier for when a task gets migrated to a new CPU */
179 struct task_migration_notifier {
180 	struct task_struct *task;
181 	int from_cpu;
182 	int to_cpu;
183 };
184 extern void register_task_migration_notifier(struct notifier_block *n);
185 
186 extern unsigned long get_parent_ip(unsigned long addr);
187 
188 extern void dump_cpu_task(int cpu);
189 
190 struct seq_file;
191 struct cfs_rq;
192 struct task_group;
193 #ifdef CONFIG_SCHED_DEBUG
194 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
195 extern void proc_sched_set_task(struct task_struct *p);
196 extern void
197 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
198 #endif
199 
200 /*
201  * Task state bitmask. NOTE! These bits are also
202  * encoded in fs/proc/array.c: get_task_state().
203  *
204  * We have two separate sets of flags: task->state
205  * is about runnability, while task->exit_state are
206  * about the task exiting. Confusing, but this way
207  * modifying one set can't modify the other one by
208  * mistake.
209  */
210 #define TASK_RUNNING		0
211 #define TASK_INTERRUPTIBLE	1
212 #define TASK_UNINTERRUPTIBLE	2
213 #define __TASK_STOPPED		4
214 #define __TASK_TRACED		8
215 /* in tsk->exit_state */
216 #define EXIT_DEAD		16
217 #define EXIT_ZOMBIE		32
218 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
219 /* in tsk->state again */
220 #define TASK_DEAD		64
221 #define TASK_WAKEKILL		128
222 #define TASK_WAKING		256
223 #define TASK_PARKED		512
224 #define TASK_STATE_MAX		1024
225 
226 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
227 
228 extern char ___assert_task_state[1 - 2*!!(
229 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
230 
231 /* Convenience macros for the sake of set_task_state */
232 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
233 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
234 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
235 
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239 
240 /* get_task_state() */
241 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244 
245 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task)	\
248 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task)	\
250 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 				 (task->flags & PF_FROZEN) == 0)
252 
253 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254 
255 #define __set_task_state(tsk, state_value)			\
256 	do {							\
257 		(tsk)->task_state_change = _THIS_IP_;		\
258 		(tsk)->state = (state_value);			\
259 	} while (0)
260 #define set_task_state(tsk, state_value)			\
261 	do {							\
262 		(tsk)->task_state_change = _THIS_IP_;		\
263 		set_mb((tsk)->state, (state_value));		\
264 	} while (0)
265 
266 /*
267  * set_current_state() includes a barrier so that the write of current->state
268  * is correctly serialised wrt the caller's subsequent test of whether to
269  * actually sleep:
270  *
271  *	set_current_state(TASK_UNINTERRUPTIBLE);
272  *	if (do_i_need_to_sleep())
273  *		schedule();
274  *
275  * If the caller does not need such serialisation then use __set_current_state()
276  */
277 #define __set_current_state(state_value)			\
278 	do {							\
279 		current->task_state_change = _THIS_IP_;		\
280 		current->state = (state_value);			\
281 	} while (0)
282 #define set_current_state(state_value)				\
283 	do {							\
284 		current->task_state_change = _THIS_IP_;		\
285 		set_mb(current->state, (state_value));		\
286 	} while (0)
287 
288 #else
289 
290 #define __set_task_state(tsk, state_value)		\
291 	do { (tsk)->state = (state_value); } while (0)
292 #define set_task_state(tsk, state_value)		\
293 	set_mb((tsk)->state, (state_value))
294 
295 /*
296  * set_current_state() includes a barrier so that the write of current->state
297  * is correctly serialised wrt the caller's subsequent test of whether to
298  * actually sleep:
299  *
300  *	set_current_state(TASK_UNINTERRUPTIBLE);
301  *	if (do_i_need_to_sleep())
302  *		schedule();
303  *
304  * If the caller does not need such serialisation then use __set_current_state()
305  */
306 #define __set_current_state(state_value)		\
307 	do { current->state = (state_value); } while (0)
308 #define set_current_state(state_value)			\
309 	set_mb(current->state, (state_value))
310 
311 #endif
312 
313 /* Task command name length */
314 #define TASK_COMM_LEN 16
315 
316 #include <linux/spinlock.h>
317 
318 /*
319  * This serializes "schedule()" and also protects
320  * the run-queue from deletions/modifications (but
321  * _adding_ to the beginning of the run-queue has
322  * a separate lock).
323  */
324 extern rwlock_t tasklist_lock;
325 extern spinlock_t mmlist_lock;
326 
327 struct task_struct;
328 
329 #ifdef CONFIG_PROVE_RCU
330 extern int lockdep_tasklist_lock_is_held(void);
331 #endif /* #ifdef CONFIG_PROVE_RCU */
332 
333 extern void sched_init(void);
334 extern void sched_init_smp(void);
335 extern asmlinkage void schedule_tail(struct task_struct *prev);
336 extern void init_idle(struct task_struct *idle, int cpu);
337 extern void init_idle_bootup_task(struct task_struct *idle);
338 
339 extern cpumask_var_t cpu_isolated_map;
340 
341 extern int runqueue_is_locked(int cpu);
342 
343 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
344 extern void nohz_balance_enter_idle(int cpu);
345 extern void set_cpu_sd_state_idle(void);
346 extern int get_nohz_timer_target(int pinned);
347 #else
348 static inline void nohz_balance_enter_idle(int cpu) { }
349 static inline void set_cpu_sd_state_idle(void) { }
350 static inline int get_nohz_timer_target(int pinned)
351 {
352 	return smp_processor_id();
353 }
354 #endif
355 
356 /*
357  * Only dump TASK_* tasks. (0 for all tasks)
358  */
359 extern void show_state_filter(unsigned long state_filter);
360 
361 static inline void show_state(void)
362 {
363 	show_state_filter(0);
364 }
365 
366 extern void show_regs(struct pt_regs *);
367 
368 /*
369  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
370  * task), SP is the stack pointer of the first frame that should be shown in the back
371  * trace (or NULL if the entire call-chain of the task should be shown).
372  */
373 extern void show_stack(struct task_struct *task, unsigned long *sp);
374 
375 extern void cpu_init (void);
376 extern void trap_init(void);
377 extern void update_process_times(int user);
378 extern void scheduler_tick(void);
379 
380 extern void sched_show_task(struct task_struct *p);
381 
382 #ifdef CONFIG_LOCKUP_DETECTOR
383 extern void touch_softlockup_watchdog(void);
384 extern void touch_softlockup_watchdog_sync(void);
385 extern void touch_all_softlockup_watchdogs(void);
386 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
387 				  void __user *buffer,
388 				  size_t *lenp, loff_t *ppos);
389 extern unsigned int  softlockup_panic;
390 void lockup_detector_init(void);
391 #else
392 static inline void touch_softlockup_watchdog(void)
393 {
394 }
395 static inline void touch_softlockup_watchdog_sync(void)
396 {
397 }
398 static inline void touch_all_softlockup_watchdogs(void)
399 {
400 }
401 static inline void lockup_detector_init(void)
402 {
403 }
404 #endif
405 
406 #ifdef CONFIG_DETECT_HUNG_TASK
407 void reset_hung_task_detector(void);
408 #else
409 static inline void reset_hung_task_detector(void)
410 {
411 }
412 #endif
413 
414 /* Attach to any functions which should be ignored in wchan output. */
415 #define __sched		__attribute__((__section__(".sched.text")))
416 
417 /* Linker adds these: start and end of __sched functions */
418 extern char __sched_text_start[], __sched_text_end[];
419 
420 /* Is this address in the __sched functions? */
421 extern int in_sched_functions(unsigned long addr);
422 
423 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
424 extern signed long schedule_timeout(signed long timeout);
425 extern signed long schedule_timeout_interruptible(signed long timeout);
426 extern signed long schedule_timeout_killable(signed long timeout);
427 extern signed long schedule_timeout_uninterruptible(signed long timeout);
428 asmlinkage void schedule(void);
429 extern void schedule_preempt_disabled(void);
430 
431 extern long io_schedule_timeout(long timeout);
432 
433 static inline void io_schedule(void)
434 {
435 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
436 }
437 
438 struct nsproxy;
439 struct user_namespace;
440 
441 #ifdef CONFIG_MMU
442 extern void arch_pick_mmap_layout(struct mm_struct *mm);
443 extern unsigned long
444 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
445 		       unsigned long, unsigned long);
446 extern unsigned long
447 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
448 			  unsigned long len, unsigned long pgoff,
449 			  unsigned long flags);
450 #else
451 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
452 #endif
453 
454 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
455 #define SUID_DUMP_USER		1	/* Dump as user of process */
456 #define SUID_DUMP_ROOT		2	/* Dump as root */
457 
458 /* mm flags */
459 
460 /* for SUID_DUMP_* above */
461 #define MMF_DUMPABLE_BITS 2
462 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
463 
464 extern void set_dumpable(struct mm_struct *mm, int value);
465 /*
466  * This returns the actual value of the suid_dumpable flag. For things
467  * that are using this for checking for privilege transitions, it must
468  * test against SUID_DUMP_USER rather than treating it as a boolean
469  * value.
470  */
471 static inline int __get_dumpable(unsigned long mm_flags)
472 {
473 	return mm_flags & MMF_DUMPABLE_MASK;
474 }
475 
476 static inline int get_dumpable(struct mm_struct *mm)
477 {
478 	return __get_dumpable(mm->flags);
479 }
480 
481 /* coredump filter bits */
482 #define MMF_DUMP_ANON_PRIVATE	2
483 #define MMF_DUMP_ANON_SHARED	3
484 #define MMF_DUMP_MAPPED_PRIVATE	4
485 #define MMF_DUMP_MAPPED_SHARED	5
486 #define MMF_DUMP_ELF_HEADERS	6
487 #define MMF_DUMP_HUGETLB_PRIVATE 7
488 #define MMF_DUMP_HUGETLB_SHARED  8
489 
490 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
491 #define MMF_DUMP_FILTER_BITS	7
492 #define MMF_DUMP_FILTER_MASK \
493 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
494 #define MMF_DUMP_FILTER_DEFAULT \
495 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
496 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
497 
498 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
499 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
500 #else
501 # define MMF_DUMP_MASK_DEFAULT_ELF	0
502 #endif
503 					/* leave room for more dump flags */
504 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
505 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
506 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
507 
508 #define MMF_HAS_UPROBES		19	/* has uprobes */
509 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
510 
511 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
512 
513 struct sighand_struct {
514 	atomic_t		count;
515 	struct k_sigaction	action[_NSIG];
516 	spinlock_t		siglock;
517 	wait_queue_head_t	signalfd_wqh;
518 };
519 
520 struct pacct_struct {
521 	int			ac_flag;
522 	long			ac_exitcode;
523 	unsigned long		ac_mem;
524 	cputime_t		ac_utime, ac_stime;
525 	unsigned long		ac_minflt, ac_majflt;
526 };
527 
528 struct cpu_itimer {
529 	cputime_t expires;
530 	cputime_t incr;
531 	u32 error;
532 	u32 incr_error;
533 };
534 
535 /**
536  * struct cputime - snaphsot of system and user cputime
537  * @utime: time spent in user mode
538  * @stime: time spent in system mode
539  *
540  * Gathers a generic snapshot of user and system time.
541  */
542 struct cputime {
543 	cputime_t utime;
544 	cputime_t stime;
545 };
546 
547 /**
548  * struct task_cputime - collected CPU time counts
549  * @utime:		time spent in user mode, in &cputime_t units
550  * @stime:		time spent in kernel mode, in &cputime_t units
551  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
552  *
553  * This is an extension of struct cputime that includes the total runtime
554  * spent by the task from the scheduler point of view.
555  *
556  * As a result, this structure groups together three kinds of CPU time
557  * that are tracked for threads and thread groups.  Most things considering
558  * CPU time want to group these counts together and treat all three
559  * of them in parallel.
560  */
561 struct task_cputime {
562 	cputime_t utime;
563 	cputime_t stime;
564 	unsigned long long sum_exec_runtime;
565 };
566 /* Alternate field names when used to cache expirations. */
567 #define prof_exp	stime
568 #define virt_exp	utime
569 #define sched_exp	sum_exec_runtime
570 
571 #define INIT_CPUTIME	\
572 	(struct task_cputime) {					\
573 		.utime = 0,					\
574 		.stime = 0,					\
575 		.sum_exec_runtime = 0,				\
576 	}
577 
578 #ifdef CONFIG_PREEMPT_COUNT
579 #define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
580 #else
581 #define PREEMPT_DISABLED	PREEMPT_ENABLED
582 #endif
583 
584 /*
585  * Disable preemption until the scheduler is running.
586  * Reset by start_kernel()->sched_init()->init_idle().
587  *
588  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
589  * before the scheduler is active -- see should_resched().
590  */
591 #define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
592 
593 /**
594  * struct thread_group_cputimer - thread group interval timer counts
595  * @cputime:		thread group interval timers.
596  * @running:		non-zero when there are timers running and
597  * 			@cputime receives updates.
598  * @lock:		lock for fields in this struct.
599  *
600  * This structure contains the version of task_cputime, above, that is
601  * used for thread group CPU timer calculations.
602  */
603 struct thread_group_cputimer {
604 	struct task_cputime cputime;
605 	int running;
606 	raw_spinlock_t lock;
607 };
608 
609 #include <linux/rwsem.h>
610 struct autogroup;
611 
612 /*
613  * NOTE! "signal_struct" does not have its own
614  * locking, because a shared signal_struct always
615  * implies a shared sighand_struct, so locking
616  * sighand_struct is always a proper superset of
617  * the locking of signal_struct.
618  */
619 struct signal_struct {
620 	atomic_t		sigcnt;
621 	atomic_t		live;
622 	int			nr_threads;
623 	struct list_head	thread_head;
624 
625 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
626 
627 	/* current thread group signal load-balancing target: */
628 	struct task_struct	*curr_target;
629 
630 	/* shared signal handling: */
631 	struct sigpending	shared_pending;
632 
633 	/* thread group exit support */
634 	int			group_exit_code;
635 	/* overloaded:
636 	 * - notify group_exit_task when ->count is equal to notify_count
637 	 * - everyone except group_exit_task is stopped during signal delivery
638 	 *   of fatal signals, group_exit_task processes the signal.
639 	 */
640 	int			notify_count;
641 	struct task_struct	*group_exit_task;
642 
643 	/* thread group stop support, overloads group_exit_code too */
644 	int			group_stop_count;
645 	unsigned int		flags; /* see SIGNAL_* flags below */
646 
647 	/*
648 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
649 	 * manager, to re-parent orphan (double-forking) child processes
650 	 * to this process instead of 'init'. The service manager is
651 	 * able to receive SIGCHLD signals and is able to investigate
652 	 * the process until it calls wait(). All children of this
653 	 * process will inherit a flag if they should look for a
654 	 * child_subreaper process at exit.
655 	 */
656 	unsigned int		is_child_subreaper:1;
657 	unsigned int		has_child_subreaper:1;
658 
659 	/* POSIX.1b Interval Timers */
660 	int			posix_timer_id;
661 	struct list_head	posix_timers;
662 
663 	/* ITIMER_REAL timer for the process */
664 	struct hrtimer real_timer;
665 	struct pid *leader_pid;
666 	ktime_t it_real_incr;
667 
668 	/*
669 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
670 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
671 	 * values are defined to 0 and 1 respectively
672 	 */
673 	struct cpu_itimer it[2];
674 
675 	/*
676 	 * Thread group totals for process CPU timers.
677 	 * See thread_group_cputimer(), et al, for details.
678 	 */
679 	struct thread_group_cputimer cputimer;
680 
681 	/* Earliest-expiration cache. */
682 	struct task_cputime cputime_expires;
683 
684 	struct list_head cpu_timers[3];
685 
686 	struct pid *tty_old_pgrp;
687 
688 	/* boolean value for session group leader */
689 	int leader;
690 
691 	struct tty_struct *tty; /* NULL if no tty */
692 
693 #ifdef CONFIG_SCHED_AUTOGROUP
694 	struct autogroup *autogroup;
695 #endif
696 	/*
697 	 * Cumulative resource counters for dead threads in the group,
698 	 * and for reaped dead child processes forked by this group.
699 	 * Live threads maintain their own counters and add to these
700 	 * in __exit_signal, except for the group leader.
701 	 */
702 	seqlock_t stats_lock;
703 	cputime_t utime, stime, cutime, cstime;
704 	cputime_t gtime;
705 	cputime_t cgtime;
706 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
707 	struct cputime prev_cputime;
708 #endif
709 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
710 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
711 	unsigned long inblock, oublock, cinblock, coublock;
712 	unsigned long maxrss, cmaxrss;
713 	struct task_io_accounting ioac;
714 
715 	/*
716 	 * Cumulative ns of schedule CPU time fo dead threads in the
717 	 * group, not including a zombie group leader, (This only differs
718 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
719 	 * other than jiffies.)
720 	 */
721 	unsigned long long sum_sched_runtime;
722 
723 	/*
724 	 * We don't bother to synchronize most readers of this at all,
725 	 * because there is no reader checking a limit that actually needs
726 	 * to get both rlim_cur and rlim_max atomically, and either one
727 	 * alone is a single word that can safely be read normally.
728 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
729 	 * protect this instead of the siglock, because they really
730 	 * have no need to disable irqs.
731 	 */
732 	struct rlimit rlim[RLIM_NLIMITS];
733 
734 #ifdef CONFIG_BSD_PROCESS_ACCT
735 	struct pacct_struct pacct;	/* per-process accounting information */
736 #endif
737 #ifdef CONFIG_TASKSTATS
738 	struct taskstats *stats;
739 #endif
740 #ifdef CONFIG_AUDIT
741 	unsigned audit_tty;
742 	unsigned audit_tty_log_passwd;
743 	struct tty_audit_buf *tty_audit_buf;
744 #endif
745 #ifdef CONFIG_CGROUPS
746 	/*
747 	 * group_rwsem prevents new tasks from entering the threadgroup and
748 	 * member tasks from exiting,a more specifically, setting of
749 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
750 	 * using threadgroup_change_begin/end().  Users which require
751 	 * threadgroup to remain stable should use threadgroup_[un]lock()
752 	 * which also takes care of exec path.  Currently, cgroup is the
753 	 * only user.
754 	 */
755 	struct rw_semaphore group_rwsem;
756 #endif
757 
758 	oom_flags_t oom_flags;
759 	short oom_score_adj;		/* OOM kill score adjustment */
760 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
761 					 * Only settable by CAP_SYS_RESOURCE. */
762 
763 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
764 					 * credential calculations
765 					 * (notably. ptrace) */
766 };
767 
768 /*
769  * Bits in flags field of signal_struct.
770  */
771 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
772 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
773 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
774 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
775 /*
776  * Pending notifications to parent.
777  */
778 #define SIGNAL_CLD_STOPPED	0x00000010
779 #define SIGNAL_CLD_CONTINUED	0x00000020
780 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
781 
782 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
783 
784 /* If true, all threads except ->group_exit_task have pending SIGKILL */
785 static inline int signal_group_exit(const struct signal_struct *sig)
786 {
787 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
788 		(sig->group_exit_task != NULL);
789 }
790 
791 /*
792  * Some day this will be a full-fledged user tracking system..
793  */
794 struct user_struct {
795 	atomic_t __count;	/* reference count */
796 	atomic_t processes;	/* How many processes does this user have? */
797 	atomic_t sigpending;	/* How many pending signals does this user have? */
798 #ifdef CONFIG_INOTIFY_USER
799 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
800 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
801 #endif
802 #ifdef CONFIG_FANOTIFY
803 	atomic_t fanotify_listeners;
804 #endif
805 #ifdef CONFIG_EPOLL
806 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
807 #endif
808 #ifdef CONFIG_POSIX_MQUEUE
809 	/* protected by mq_lock	*/
810 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
811 #endif
812 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
813 
814 #ifdef CONFIG_KEYS
815 	struct key *uid_keyring;	/* UID specific keyring */
816 	struct key *session_keyring;	/* UID's default session keyring */
817 #endif
818 
819 	/* Hash table maintenance information */
820 	struct hlist_node uidhash_node;
821 	kuid_t uid;
822 
823 #ifdef CONFIG_PERF_EVENTS
824 	atomic_long_t locked_vm;
825 #endif
826 };
827 
828 extern int uids_sysfs_init(void);
829 
830 extern struct user_struct *find_user(kuid_t);
831 
832 extern struct user_struct root_user;
833 #define INIT_USER (&root_user)
834 
835 
836 struct backing_dev_info;
837 struct reclaim_state;
838 
839 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
840 struct sched_info {
841 	/* cumulative counters */
842 	unsigned long pcount;	      /* # of times run on this cpu */
843 	unsigned long long run_delay; /* time spent waiting on a runqueue */
844 
845 	/* timestamps */
846 	unsigned long long last_arrival,/* when we last ran on a cpu */
847 			   last_queued;	/* when we were last queued to run */
848 };
849 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
850 
851 #ifdef CONFIG_TASK_DELAY_ACCT
852 struct task_delay_info {
853 	spinlock_t	lock;
854 	unsigned int	flags;	/* Private per-task flags */
855 
856 	/* For each stat XXX, add following, aligned appropriately
857 	 *
858 	 * struct timespec XXX_start, XXX_end;
859 	 * u64 XXX_delay;
860 	 * u32 XXX_count;
861 	 *
862 	 * Atomicity of updates to XXX_delay, XXX_count protected by
863 	 * single lock above (split into XXX_lock if contention is an issue).
864 	 */
865 
866 	/*
867 	 * XXX_count is incremented on every XXX operation, the delay
868 	 * associated with the operation is added to XXX_delay.
869 	 * XXX_delay contains the accumulated delay time in nanoseconds.
870 	 */
871 	u64 blkio_start;	/* Shared by blkio, swapin */
872 	u64 blkio_delay;	/* wait for sync block io completion */
873 	u64 swapin_delay;	/* wait for swapin block io completion */
874 	u32 blkio_count;	/* total count of the number of sync block */
875 				/* io operations performed */
876 	u32 swapin_count;	/* total count of the number of swapin block */
877 				/* io operations performed */
878 
879 	u64 freepages_start;
880 	u64 freepages_delay;	/* wait for memory reclaim */
881 	u32 freepages_count;	/* total count of memory reclaim */
882 };
883 #endif	/* CONFIG_TASK_DELAY_ACCT */
884 
885 static inline int sched_info_on(void)
886 {
887 #ifdef CONFIG_SCHEDSTATS
888 	return 1;
889 #elif defined(CONFIG_TASK_DELAY_ACCT)
890 	extern int delayacct_on;
891 	return delayacct_on;
892 #else
893 	return 0;
894 #endif
895 }
896 
897 enum cpu_idle_type {
898 	CPU_IDLE,
899 	CPU_NOT_IDLE,
900 	CPU_NEWLY_IDLE,
901 	CPU_MAX_IDLE_TYPES
902 };
903 
904 /*
905  * Increase resolution of cpu_capacity calculations
906  */
907 #define SCHED_CAPACITY_SHIFT	10
908 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
909 
910 /*
911  * sched-domains (multiprocessor balancing) declarations:
912  */
913 #ifdef CONFIG_SMP
914 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
915 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
916 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
917 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
918 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
919 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
920 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu power */
921 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
922 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
923 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
924 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
925 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
926 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
927 #define SD_NUMA			0x4000	/* cross-node balancing */
928 
929 #ifdef CONFIG_SCHED_SMT
930 static inline int cpu_smt_flags(void)
931 {
932 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
933 }
934 #endif
935 
936 #ifdef CONFIG_SCHED_MC
937 static inline int cpu_core_flags(void)
938 {
939 	return SD_SHARE_PKG_RESOURCES;
940 }
941 #endif
942 
943 #ifdef CONFIG_NUMA
944 static inline int cpu_numa_flags(void)
945 {
946 	return SD_NUMA;
947 }
948 #endif
949 
950 struct sched_domain_attr {
951 	int relax_domain_level;
952 };
953 
954 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
955 	.relax_domain_level = -1,			\
956 }
957 
958 extern int sched_domain_level_max;
959 
960 struct sched_group;
961 
962 struct sched_domain {
963 	/* These fields must be setup */
964 	struct sched_domain *parent;	/* top domain must be null terminated */
965 	struct sched_domain *child;	/* bottom domain must be null terminated */
966 	struct sched_group *groups;	/* the balancing groups of the domain */
967 	unsigned long min_interval;	/* Minimum balance interval ms */
968 	unsigned long max_interval;	/* Maximum balance interval ms */
969 	unsigned int busy_factor;	/* less balancing by factor if busy */
970 	unsigned int imbalance_pct;	/* No balance until over watermark */
971 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
972 	unsigned int busy_idx;
973 	unsigned int idle_idx;
974 	unsigned int newidle_idx;
975 	unsigned int wake_idx;
976 	unsigned int forkexec_idx;
977 	unsigned int smt_gain;
978 
979 	int nohz_idle;			/* NOHZ IDLE status */
980 	int flags;			/* See SD_* */
981 	int level;
982 
983 	/* Runtime fields. */
984 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
985 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
986 	unsigned int nr_balance_failed; /* initialise to 0 */
987 
988 	/* idle_balance() stats */
989 	u64 max_newidle_lb_cost;
990 	unsigned long next_decay_max_lb_cost;
991 
992 #ifdef CONFIG_SCHEDSTATS
993 	/* load_balance() stats */
994 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
995 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
996 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
997 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
998 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
999 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1000 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1001 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1002 
1003 	/* Active load balancing */
1004 	unsigned int alb_count;
1005 	unsigned int alb_failed;
1006 	unsigned int alb_pushed;
1007 
1008 	/* SD_BALANCE_EXEC stats */
1009 	unsigned int sbe_count;
1010 	unsigned int sbe_balanced;
1011 	unsigned int sbe_pushed;
1012 
1013 	/* SD_BALANCE_FORK stats */
1014 	unsigned int sbf_count;
1015 	unsigned int sbf_balanced;
1016 	unsigned int sbf_pushed;
1017 
1018 	/* try_to_wake_up() stats */
1019 	unsigned int ttwu_wake_remote;
1020 	unsigned int ttwu_move_affine;
1021 	unsigned int ttwu_move_balance;
1022 #endif
1023 #ifdef CONFIG_SCHED_DEBUG
1024 	char *name;
1025 #endif
1026 	union {
1027 		void *private;		/* used during construction */
1028 		struct rcu_head rcu;	/* used during destruction */
1029 	};
1030 
1031 	unsigned int span_weight;
1032 	/*
1033 	 * Span of all CPUs in this domain.
1034 	 *
1035 	 * NOTE: this field is variable length. (Allocated dynamically
1036 	 * by attaching extra space to the end of the structure,
1037 	 * depending on how many CPUs the kernel has booted up with)
1038 	 */
1039 	unsigned long span[0];
1040 };
1041 
1042 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1043 {
1044 	return to_cpumask(sd->span);
1045 }
1046 
1047 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1048 				    struct sched_domain_attr *dattr_new);
1049 
1050 /* Allocate an array of sched domains, for partition_sched_domains(). */
1051 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1052 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1053 
1054 bool cpus_share_cache(int this_cpu, int that_cpu);
1055 
1056 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1057 typedef int (*sched_domain_flags_f)(void);
1058 
1059 #define SDTL_OVERLAP	0x01
1060 
1061 struct sd_data {
1062 	struct sched_domain **__percpu sd;
1063 	struct sched_group **__percpu sg;
1064 	struct sched_group_capacity **__percpu sgc;
1065 };
1066 
1067 struct sched_domain_topology_level {
1068 	sched_domain_mask_f mask;
1069 	sched_domain_flags_f sd_flags;
1070 	int		    flags;
1071 	int		    numa_level;
1072 	struct sd_data      data;
1073 #ifdef CONFIG_SCHED_DEBUG
1074 	char                *name;
1075 #endif
1076 };
1077 
1078 extern struct sched_domain_topology_level *sched_domain_topology;
1079 
1080 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1081 extern void wake_up_if_idle(int cpu);
1082 
1083 #ifdef CONFIG_SCHED_DEBUG
1084 # define SD_INIT_NAME(type)		.name = #type
1085 #else
1086 # define SD_INIT_NAME(type)
1087 #endif
1088 
1089 #else /* CONFIG_SMP */
1090 
1091 struct sched_domain_attr;
1092 
1093 static inline void
1094 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1095 			struct sched_domain_attr *dattr_new)
1096 {
1097 }
1098 
1099 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1100 {
1101 	return true;
1102 }
1103 
1104 #endif	/* !CONFIG_SMP */
1105 
1106 
1107 struct io_context;			/* See blkdev.h */
1108 
1109 
1110 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1111 extern void prefetch_stack(struct task_struct *t);
1112 #else
1113 static inline void prefetch_stack(struct task_struct *t) { }
1114 #endif
1115 
1116 struct audit_context;		/* See audit.c */
1117 struct mempolicy;
1118 struct pipe_inode_info;
1119 struct uts_namespace;
1120 
1121 struct load_weight {
1122 	unsigned long weight;
1123 	u32 inv_weight;
1124 };
1125 
1126 struct sched_avg {
1127 	u64 last_runnable_update;
1128 	s64 decay_count;
1129 	/*
1130 	 * utilization_avg_contrib describes the amount of time that a
1131 	 * sched_entity is running on a CPU. It is based on running_avg_sum
1132 	 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1133 	 * load_avg_contrib described the amount of time that a sched_entity
1134 	 * is runnable on a rq. It is based on both runnable_avg_sum and the
1135 	 * weight of the task.
1136 	 */
1137 	unsigned long load_avg_contrib, utilization_avg_contrib;
1138 	/*
1139 	 * These sums represent an infinite geometric series and so are bound
1140 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1141 	 * choices of y < 1-2^(-32)*1024.
1142 	 * running_avg_sum reflects the time that the sched_entity is
1143 	 * effectively running on the CPU.
1144 	 * runnable_avg_sum represents the amount of time a sched_entity is on
1145 	 * a runqueue which includes the running time that is monitored by
1146 	 * running_avg_sum.
1147 	 */
1148 	u32 runnable_avg_sum, avg_period, running_avg_sum;
1149 };
1150 
1151 #ifdef CONFIG_SCHEDSTATS
1152 struct sched_statistics {
1153 	u64			wait_start;
1154 	u64			wait_max;
1155 	u64			wait_count;
1156 	u64			wait_sum;
1157 	u64			iowait_count;
1158 	u64			iowait_sum;
1159 
1160 	u64			sleep_start;
1161 	u64			sleep_max;
1162 	s64			sum_sleep_runtime;
1163 
1164 	u64			block_start;
1165 	u64			block_max;
1166 	u64			exec_max;
1167 	u64			slice_max;
1168 
1169 	u64			nr_migrations_cold;
1170 	u64			nr_failed_migrations_affine;
1171 	u64			nr_failed_migrations_running;
1172 	u64			nr_failed_migrations_hot;
1173 	u64			nr_forced_migrations;
1174 
1175 	u64			nr_wakeups;
1176 	u64			nr_wakeups_sync;
1177 	u64			nr_wakeups_migrate;
1178 	u64			nr_wakeups_local;
1179 	u64			nr_wakeups_remote;
1180 	u64			nr_wakeups_affine;
1181 	u64			nr_wakeups_affine_attempts;
1182 	u64			nr_wakeups_passive;
1183 	u64			nr_wakeups_idle;
1184 };
1185 #endif
1186 
1187 struct sched_entity {
1188 	struct load_weight	load;		/* for load-balancing */
1189 	struct rb_node		run_node;
1190 	struct list_head	group_node;
1191 	unsigned int		on_rq;
1192 
1193 	u64			exec_start;
1194 	u64			sum_exec_runtime;
1195 	u64			vruntime;
1196 	u64			prev_sum_exec_runtime;
1197 
1198 	u64			nr_migrations;
1199 
1200 #ifdef CONFIG_SCHEDSTATS
1201 	struct sched_statistics statistics;
1202 #endif
1203 
1204 #ifdef CONFIG_FAIR_GROUP_SCHED
1205 	int			depth;
1206 	struct sched_entity	*parent;
1207 	/* rq on which this entity is (to be) queued: */
1208 	struct cfs_rq		*cfs_rq;
1209 	/* rq "owned" by this entity/group: */
1210 	struct cfs_rq		*my_q;
1211 #endif
1212 
1213 #ifdef CONFIG_SMP
1214 	/* Per-entity load-tracking */
1215 	struct sched_avg	avg;
1216 #endif
1217 };
1218 
1219 struct sched_rt_entity {
1220 	struct list_head run_list;
1221 	unsigned long timeout;
1222 	unsigned long watchdog_stamp;
1223 	unsigned int time_slice;
1224 
1225 	struct sched_rt_entity *back;
1226 #ifdef CONFIG_RT_GROUP_SCHED
1227 	struct sched_rt_entity	*parent;
1228 	/* rq on which this entity is (to be) queued: */
1229 	struct rt_rq		*rt_rq;
1230 	/* rq "owned" by this entity/group: */
1231 	struct rt_rq		*my_q;
1232 #endif
1233 };
1234 
1235 struct sched_dl_entity {
1236 	struct rb_node	rb_node;
1237 
1238 	/*
1239 	 * Original scheduling parameters. Copied here from sched_attr
1240 	 * during sched_setattr(), they will remain the same until
1241 	 * the next sched_setattr().
1242 	 */
1243 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1244 	u64 dl_deadline;	/* relative deadline of each instance	*/
1245 	u64 dl_period;		/* separation of two instances (period) */
1246 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1247 
1248 	/*
1249 	 * Actual scheduling parameters. Initialized with the values above,
1250 	 * they are continously updated during task execution. Note that
1251 	 * the remaining runtime could be < 0 in case we are in overrun.
1252 	 */
1253 	s64 runtime;		/* remaining runtime for this instance	*/
1254 	u64 deadline;		/* absolute deadline for this instance	*/
1255 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1256 
1257 	/*
1258 	 * Some bool flags:
1259 	 *
1260 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1261 	 * task has to wait for a replenishment to be performed at the
1262 	 * next firing of dl_timer.
1263 	 *
1264 	 * @dl_new tells if a new instance arrived. If so we must
1265 	 * start executing it with full runtime and reset its absolute
1266 	 * deadline;
1267 	 *
1268 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1269 	 * outside bandwidth enforcement mechanism (but only until we
1270 	 * exit the critical section);
1271 	 *
1272 	 * @dl_yielded tells if task gave up the cpu before consuming
1273 	 * all its available runtime during the last job.
1274 	 */
1275 	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1276 
1277 	/*
1278 	 * Bandwidth enforcement timer. Each -deadline task has its
1279 	 * own bandwidth to be enforced, thus we need one timer per task.
1280 	 */
1281 	struct hrtimer dl_timer;
1282 };
1283 
1284 union rcu_special {
1285 	struct {
1286 		bool blocked;
1287 		bool need_qs;
1288 	} b;
1289 	short s;
1290 };
1291 struct rcu_node;
1292 
1293 enum perf_event_task_context {
1294 	perf_invalid_context = -1,
1295 	perf_hw_context = 0,
1296 	perf_sw_context,
1297 	perf_nr_task_contexts,
1298 };
1299 
1300 struct task_struct {
1301 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1302 	void *stack;
1303 	atomic_t usage;
1304 	unsigned int flags;	/* per process flags, defined below */
1305 	unsigned int ptrace;
1306 
1307 #ifdef CONFIG_SMP
1308 	struct llist_node wake_entry;
1309 	int on_cpu;
1310 	struct task_struct *last_wakee;
1311 	unsigned long wakee_flips;
1312 	unsigned long wakee_flip_decay_ts;
1313 
1314 	int wake_cpu;
1315 #endif
1316 	int on_rq;
1317 
1318 	int prio, static_prio, normal_prio;
1319 	unsigned int rt_priority;
1320 	const struct sched_class *sched_class;
1321 	struct sched_entity se;
1322 	struct sched_rt_entity rt;
1323 #ifdef CONFIG_CGROUP_SCHED
1324 	struct task_group *sched_task_group;
1325 #endif
1326 	struct sched_dl_entity dl;
1327 
1328 #ifdef CONFIG_PREEMPT_NOTIFIERS
1329 	/* list of struct preempt_notifier: */
1330 	struct hlist_head preempt_notifiers;
1331 #endif
1332 
1333 #ifdef CONFIG_BLK_DEV_IO_TRACE
1334 	unsigned int btrace_seq;
1335 #endif
1336 
1337 	unsigned int policy;
1338 	int nr_cpus_allowed;
1339 	cpumask_t cpus_allowed;
1340 
1341 #ifdef CONFIG_PREEMPT_RCU
1342 	int rcu_read_lock_nesting;
1343 	union rcu_special rcu_read_unlock_special;
1344 	struct list_head rcu_node_entry;
1345 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1346 #ifdef CONFIG_PREEMPT_RCU
1347 	struct rcu_node *rcu_blocked_node;
1348 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1349 #ifdef CONFIG_TASKS_RCU
1350 	unsigned long rcu_tasks_nvcsw;
1351 	bool rcu_tasks_holdout;
1352 	struct list_head rcu_tasks_holdout_list;
1353 	int rcu_tasks_idle_cpu;
1354 #endif /* #ifdef CONFIG_TASKS_RCU */
1355 
1356 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1357 	struct sched_info sched_info;
1358 #endif
1359 
1360 	struct list_head tasks;
1361 #ifdef CONFIG_SMP
1362 	struct plist_node pushable_tasks;
1363 	struct rb_node pushable_dl_tasks;
1364 #endif
1365 
1366 	struct mm_struct *mm, *active_mm;
1367 #ifdef CONFIG_COMPAT_BRK
1368 	unsigned brk_randomized:1;
1369 #endif
1370 	/* per-thread vma caching */
1371 	u32 vmacache_seqnum;
1372 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1373 #if defined(SPLIT_RSS_COUNTING)
1374 	struct task_rss_stat	rss_stat;
1375 #endif
1376 /* task state */
1377 	int exit_state;
1378 	int exit_code, exit_signal;
1379 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1380 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1381 
1382 	/* Used for emulating ABI behavior of previous Linux versions */
1383 	unsigned int personality;
1384 
1385 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1386 				 * execve */
1387 	unsigned in_iowait:1;
1388 
1389 	/* Revert to default priority/policy when forking */
1390 	unsigned sched_reset_on_fork:1;
1391 	unsigned sched_contributes_to_load:1;
1392 
1393 #ifdef CONFIG_MEMCG_KMEM
1394 	unsigned memcg_kmem_skip_account:1;
1395 #endif
1396 
1397 	unsigned long atomic_flags; /* Flags needing atomic access. */
1398 
1399 	struct restart_block restart_block;
1400 
1401 	pid_t pid;
1402 	pid_t tgid;
1403 
1404 #ifdef CONFIG_CC_STACKPROTECTOR
1405 	/* Canary value for the -fstack-protector gcc feature */
1406 	unsigned long stack_canary;
1407 #endif
1408 	/*
1409 	 * pointers to (original) parent process, youngest child, younger sibling,
1410 	 * older sibling, respectively.  (p->father can be replaced with
1411 	 * p->real_parent->pid)
1412 	 */
1413 	struct task_struct __rcu *real_parent; /* real parent process */
1414 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1415 	/*
1416 	 * children/sibling forms the list of my natural children
1417 	 */
1418 	struct list_head children;	/* list of my children */
1419 	struct list_head sibling;	/* linkage in my parent's children list */
1420 	struct task_struct *group_leader;	/* threadgroup leader */
1421 
1422 	/*
1423 	 * ptraced is the list of tasks this task is using ptrace on.
1424 	 * This includes both natural children and PTRACE_ATTACH targets.
1425 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1426 	 */
1427 	struct list_head ptraced;
1428 	struct list_head ptrace_entry;
1429 
1430 	/* PID/PID hash table linkage. */
1431 	struct pid_link pids[PIDTYPE_MAX];
1432 	struct list_head thread_group;
1433 	struct list_head thread_node;
1434 
1435 	struct completion *vfork_done;		/* for vfork() */
1436 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1437 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1438 
1439 	cputime_t utime, stime, utimescaled, stimescaled;
1440 	cputime_t gtime;
1441 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1442 	struct cputime prev_cputime;
1443 #endif
1444 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1445 	seqlock_t vtime_seqlock;
1446 	unsigned long long vtime_snap;
1447 	enum {
1448 		VTIME_SLEEPING = 0,
1449 		VTIME_USER,
1450 		VTIME_SYS,
1451 	} vtime_snap_whence;
1452 #endif
1453 	unsigned long nvcsw, nivcsw; /* context switch counts */
1454 	u64 start_time;		/* monotonic time in nsec */
1455 	u64 real_start_time;	/* boot based time in nsec */
1456 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1457 	unsigned long min_flt, maj_flt;
1458 
1459 	struct task_cputime cputime_expires;
1460 	struct list_head cpu_timers[3];
1461 
1462 /* process credentials */
1463 	const struct cred __rcu *real_cred; /* objective and real subjective task
1464 					 * credentials (COW) */
1465 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1466 					 * credentials (COW) */
1467 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1468 				     - access with [gs]et_task_comm (which lock
1469 				       it with task_lock())
1470 				     - initialized normally by setup_new_exec */
1471 /* file system info */
1472 	int link_count, total_link_count;
1473 #ifdef CONFIG_SYSVIPC
1474 /* ipc stuff */
1475 	struct sysv_sem sysvsem;
1476 	struct sysv_shm sysvshm;
1477 #endif
1478 #ifdef CONFIG_DETECT_HUNG_TASK
1479 /* hung task detection */
1480 	unsigned long last_switch_count;
1481 #endif
1482 /* CPU-specific state of this task */
1483 	struct thread_struct thread;
1484 /* filesystem information */
1485 	struct fs_struct *fs;
1486 /* open file information */
1487 	struct files_struct *files;
1488 /* namespaces */
1489 	struct nsproxy *nsproxy;
1490 /* signal handlers */
1491 	struct signal_struct *signal;
1492 	struct sighand_struct *sighand;
1493 
1494 	sigset_t blocked, real_blocked;
1495 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1496 	struct sigpending pending;
1497 
1498 	unsigned long sas_ss_sp;
1499 	size_t sas_ss_size;
1500 	int (*notifier)(void *priv);
1501 	void *notifier_data;
1502 	sigset_t *notifier_mask;
1503 	struct callback_head *task_works;
1504 
1505 	struct audit_context *audit_context;
1506 #ifdef CONFIG_AUDITSYSCALL
1507 	kuid_t loginuid;
1508 	unsigned int sessionid;
1509 #endif
1510 	struct seccomp seccomp;
1511 
1512 /* Thread group tracking */
1513    	u32 parent_exec_id;
1514    	u32 self_exec_id;
1515 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1516  * mempolicy */
1517 	spinlock_t alloc_lock;
1518 
1519 	/* Protection of the PI data structures: */
1520 	raw_spinlock_t pi_lock;
1521 
1522 #ifdef CONFIG_RT_MUTEXES
1523 	/* PI waiters blocked on a rt_mutex held by this task */
1524 	struct rb_root pi_waiters;
1525 	struct rb_node *pi_waiters_leftmost;
1526 	/* Deadlock detection and priority inheritance handling */
1527 	struct rt_mutex_waiter *pi_blocked_on;
1528 #endif
1529 
1530 #ifdef CONFIG_DEBUG_MUTEXES
1531 	/* mutex deadlock detection */
1532 	struct mutex_waiter *blocked_on;
1533 #endif
1534 #ifdef CONFIG_TRACE_IRQFLAGS
1535 	unsigned int irq_events;
1536 	unsigned long hardirq_enable_ip;
1537 	unsigned long hardirq_disable_ip;
1538 	unsigned int hardirq_enable_event;
1539 	unsigned int hardirq_disable_event;
1540 	int hardirqs_enabled;
1541 	int hardirq_context;
1542 	unsigned long softirq_disable_ip;
1543 	unsigned long softirq_enable_ip;
1544 	unsigned int softirq_disable_event;
1545 	unsigned int softirq_enable_event;
1546 	int softirqs_enabled;
1547 	int softirq_context;
1548 #endif
1549 #ifdef CONFIG_LOCKDEP
1550 # define MAX_LOCK_DEPTH 48UL
1551 	u64 curr_chain_key;
1552 	int lockdep_depth;
1553 	unsigned int lockdep_recursion;
1554 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1555 	gfp_t lockdep_reclaim_gfp;
1556 #endif
1557 
1558 /* journalling filesystem info */
1559 	void *journal_info;
1560 
1561 /* stacked block device info */
1562 	struct bio_list *bio_list;
1563 
1564 #ifdef CONFIG_BLOCK
1565 /* stack plugging */
1566 	struct blk_plug *plug;
1567 #endif
1568 
1569 /* VM state */
1570 	struct reclaim_state *reclaim_state;
1571 
1572 	struct backing_dev_info *backing_dev_info;
1573 
1574 	struct io_context *io_context;
1575 
1576 	unsigned long ptrace_message;
1577 	siginfo_t *last_siginfo; /* For ptrace use.  */
1578 	struct task_io_accounting ioac;
1579 #if defined(CONFIG_TASK_XACCT)
1580 	u64 acct_rss_mem1;	/* accumulated rss usage */
1581 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1582 	cputime_t acct_timexpd;	/* stime + utime since last update */
1583 #endif
1584 #ifdef CONFIG_CPUSETS
1585 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1586 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1587 	int cpuset_mem_spread_rotor;
1588 	int cpuset_slab_spread_rotor;
1589 #endif
1590 #ifdef CONFIG_CGROUPS
1591 	/* Control Group info protected by css_set_lock */
1592 	struct css_set __rcu *cgroups;
1593 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1594 	struct list_head cg_list;
1595 #endif
1596 #ifdef CONFIG_FUTEX
1597 	struct robust_list_head __user *robust_list;
1598 #ifdef CONFIG_COMPAT
1599 	struct compat_robust_list_head __user *compat_robust_list;
1600 #endif
1601 	struct list_head pi_state_list;
1602 	struct futex_pi_state *pi_state_cache;
1603 #endif
1604 #ifdef CONFIG_PERF_EVENTS
1605 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1606 	struct mutex perf_event_mutex;
1607 	struct list_head perf_event_list;
1608 #endif
1609 #ifdef CONFIG_DEBUG_PREEMPT
1610 	unsigned long preempt_disable_ip;
1611 #endif
1612 #ifdef CONFIG_NUMA
1613 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1614 	short il_next;
1615 	short pref_node_fork;
1616 #endif
1617 #ifdef CONFIG_NUMA_BALANCING
1618 	int numa_scan_seq;
1619 	unsigned int numa_scan_period;
1620 	unsigned int numa_scan_period_max;
1621 	int numa_preferred_nid;
1622 	unsigned long numa_migrate_retry;
1623 	u64 node_stamp;			/* migration stamp  */
1624 	u64 last_task_numa_placement;
1625 	u64 last_sum_exec_runtime;
1626 	struct callback_head numa_work;
1627 
1628 	struct list_head numa_entry;
1629 	struct numa_group *numa_group;
1630 
1631 	/*
1632 	 * numa_faults is an array split into four regions:
1633 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1634 	 * in this precise order.
1635 	 *
1636 	 * faults_memory: Exponential decaying average of faults on a per-node
1637 	 * basis. Scheduling placement decisions are made based on these
1638 	 * counts. The values remain static for the duration of a PTE scan.
1639 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1640 	 * hinting fault was incurred.
1641 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1642 	 * during the current scan window. When the scan completes, the counts
1643 	 * in faults_memory and faults_cpu decay and these values are copied.
1644 	 */
1645 	unsigned long *numa_faults;
1646 	unsigned long total_numa_faults;
1647 
1648 	/*
1649 	 * numa_faults_locality tracks if faults recorded during the last
1650 	 * scan window were remote/local or failed to migrate. The task scan
1651 	 * period is adapted based on the locality of the faults with different
1652 	 * weights depending on whether they were shared or private faults
1653 	 */
1654 	unsigned long numa_faults_locality[3];
1655 
1656 	unsigned long numa_pages_migrated;
1657 #endif /* CONFIG_NUMA_BALANCING */
1658 
1659 	struct rcu_head rcu;
1660 
1661 	/*
1662 	 * cache last used pipe for splice
1663 	 */
1664 	struct pipe_inode_info *splice_pipe;
1665 
1666 	struct page_frag task_frag;
1667 
1668 #ifdef	CONFIG_TASK_DELAY_ACCT
1669 	struct task_delay_info *delays;
1670 #endif
1671 #ifdef CONFIG_FAULT_INJECTION
1672 	int make_it_fail;
1673 #endif
1674 	/*
1675 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1676 	 * balance_dirty_pages() for some dirty throttling pause
1677 	 */
1678 	int nr_dirtied;
1679 	int nr_dirtied_pause;
1680 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1681 
1682 #ifdef CONFIG_LATENCYTOP
1683 	int latency_record_count;
1684 	struct latency_record latency_record[LT_SAVECOUNT];
1685 #endif
1686 	/*
1687 	 * time slack values; these are used to round up poll() and
1688 	 * select() etc timeout values. These are in nanoseconds.
1689 	 */
1690 	unsigned long timer_slack_ns;
1691 	unsigned long default_timer_slack_ns;
1692 
1693 #ifdef CONFIG_KASAN
1694 	unsigned int kasan_depth;
1695 #endif
1696 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1697 	/* Index of current stored address in ret_stack */
1698 	int curr_ret_stack;
1699 	/* Stack of return addresses for return function tracing */
1700 	struct ftrace_ret_stack	*ret_stack;
1701 	/* time stamp for last schedule */
1702 	unsigned long long ftrace_timestamp;
1703 	/*
1704 	 * Number of functions that haven't been traced
1705 	 * because of depth overrun.
1706 	 */
1707 	atomic_t trace_overrun;
1708 	/* Pause for the tracing */
1709 	atomic_t tracing_graph_pause;
1710 #endif
1711 #ifdef CONFIG_TRACING
1712 	/* state flags for use by tracers */
1713 	unsigned long trace;
1714 	/* bitmask and counter of trace recursion */
1715 	unsigned long trace_recursion;
1716 #endif /* CONFIG_TRACING */
1717 #ifdef CONFIG_MEMCG
1718 	struct memcg_oom_info {
1719 		struct mem_cgroup *memcg;
1720 		gfp_t gfp_mask;
1721 		int order;
1722 		unsigned int may_oom:1;
1723 	} memcg_oom;
1724 #endif
1725 #ifdef CONFIG_UPROBES
1726 	struct uprobe_task *utask;
1727 #endif
1728 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1729 	unsigned int	sequential_io;
1730 	unsigned int	sequential_io_avg;
1731 #endif
1732 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1733 	unsigned long	task_state_change;
1734 #endif
1735 };
1736 
1737 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1738 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1739 
1740 #define TNF_MIGRATED	0x01
1741 #define TNF_NO_GROUP	0x02
1742 #define TNF_SHARED	0x04
1743 #define TNF_FAULT_LOCAL	0x08
1744 #define TNF_MIGRATE_FAIL 0x10
1745 
1746 #ifdef CONFIG_NUMA_BALANCING
1747 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1748 extern pid_t task_numa_group_id(struct task_struct *p);
1749 extern void set_numabalancing_state(bool enabled);
1750 extern void task_numa_free(struct task_struct *p);
1751 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1752 					int src_nid, int dst_cpu);
1753 #else
1754 static inline void task_numa_fault(int last_node, int node, int pages,
1755 				   int flags)
1756 {
1757 }
1758 static inline pid_t task_numa_group_id(struct task_struct *p)
1759 {
1760 	return 0;
1761 }
1762 static inline void set_numabalancing_state(bool enabled)
1763 {
1764 }
1765 static inline void task_numa_free(struct task_struct *p)
1766 {
1767 }
1768 static inline bool should_numa_migrate_memory(struct task_struct *p,
1769 				struct page *page, int src_nid, int dst_cpu)
1770 {
1771 	return true;
1772 }
1773 #endif
1774 
1775 static inline struct pid *task_pid(struct task_struct *task)
1776 {
1777 	return task->pids[PIDTYPE_PID].pid;
1778 }
1779 
1780 static inline struct pid *task_tgid(struct task_struct *task)
1781 {
1782 	return task->group_leader->pids[PIDTYPE_PID].pid;
1783 }
1784 
1785 /*
1786  * Without tasklist or rcu lock it is not safe to dereference
1787  * the result of task_pgrp/task_session even if task == current,
1788  * we can race with another thread doing sys_setsid/sys_setpgid.
1789  */
1790 static inline struct pid *task_pgrp(struct task_struct *task)
1791 {
1792 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1793 }
1794 
1795 static inline struct pid *task_session(struct task_struct *task)
1796 {
1797 	return task->group_leader->pids[PIDTYPE_SID].pid;
1798 }
1799 
1800 struct pid_namespace;
1801 
1802 /*
1803  * the helpers to get the task's different pids as they are seen
1804  * from various namespaces
1805  *
1806  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1807  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1808  *                     current.
1809  * task_xid_nr_ns()  : id seen from the ns specified;
1810  *
1811  * set_task_vxid()   : assigns a virtual id to a task;
1812  *
1813  * see also pid_nr() etc in include/linux/pid.h
1814  */
1815 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1816 			struct pid_namespace *ns);
1817 
1818 static inline pid_t task_pid_nr(struct task_struct *tsk)
1819 {
1820 	return tsk->pid;
1821 }
1822 
1823 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1824 					struct pid_namespace *ns)
1825 {
1826 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1827 }
1828 
1829 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1830 {
1831 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1832 }
1833 
1834 
1835 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1836 {
1837 	return tsk->tgid;
1838 }
1839 
1840 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1841 
1842 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1843 {
1844 	return pid_vnr(task_tgid(tsk));
1845 }
1846 
1847 
1848 static inline int pid_alive(const struct task_struct *p);
1849 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1850 {
1851 	pid_t pid = 0;
1852 
1853 	rcu_read_lock();
1854 	if (pid_alive(tsk))
1855 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1856 	rcu_read_unlock();
1857 
1858 	return pid;
1859 }
1860 
1861 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1862 {
1863 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1864 }
1865 
1866 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1867 					struct pid_namespace *ns)
1868 {
1869 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1870 }
1871 
1872 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1873 {
1874 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1875 }
1876 
1877 
1878 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1879 					struct pid_namespace *ns)
1880 {
1881 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1882 }
1883 
1884 static inline pid_t task_session_vnr(struct task_struct *tsk)
1885 {
1886 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1887 }
1888 
1889 /* obsolete, do not use */
1890 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1891 {
1892 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1893 }
1894 
1895 /**
1896  * pid_alive - check that a task structure is not stale
1897  * @p: Task structure to be checked.
1898  *
1899  * Test if a process is not yet dead (at most zombie state)
1900  * If pid_alive fails, then pointers within the task structure
1901  * can be stale and must not be dereferenced.
1902  *
1903  * Return: 1 if the process is alive. 0 otherwise.
1904  */
1905 static inline int pid_alive(const struct task_struct *p)
1906 {
1907 	return p->pids[PIDTYPE_PID].pid != NULL;
1908 }
1909 
1910 /**
1911  * is_global_init - check if a task structure is init
1912  * @tsk: Task structure to be checked.
1913  *
1914  * Check if a task structure is the first user space task the kernel created.
1915  *
1916  * Return: 1 if the task structure is init. 0 otherwise.
1917  */
1918 static inline int is_global_init(struct task_struct *tsk)
1919 {
1920 	return tsk->pid == 1;
1921 }
1922 
1923 extern struct pid *cad_pid;
1924 
1925 extern void free_task(struct task_struct *tsk);
1926 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1927 
1928 extern void __put_task_struct(struct task_struct *t);
1929 
1930 static inline void put_task_struct(struct task_struct *t)
1931 {
1932 	if (atomic_dec_and_test(&t->usage))
1933 		__put_task_struct(t);
1934 }
1935 
1936 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1937 extern void task_cputime(struct task_struct *t,
1938 			 cputime_t *utime, cputime_t *stime);
1939 extern void task_cputime_scaled(struct task_struct *t,
1940 				cputime_t *utimescaled, cputime_t *stimescaled);
1941 extern cputime_t task_gtime(struct task_struct *t);
1942 #else
1943 static inline void task_cputime(struct task_struct *t,
1944 				cputime_t *utime, cputime_t *stime)
1945 {
1946 	if (utime)
1947 		*utime = t->utime;
1948 	if (stime)
1949 		*stime = t->stime;
1950 }
1951 
1952 static inline void task_cputime_scaled(struct task_struct *t,
1953 				       cputime_t *utimescaled,
1954 				       cputime_t *stimescaled)
1955 {
1956 	if (utimescaled)
1957 		*utimescaled = t->utimescaled;
1958 	if (stimescaled)
1959 		*stimescaled = t->stimescaled;
1960 }
1961 
1962 static inline cputime_t task_gtime(struct task_struct *t)
1963 {
1964 	return t->gtime;
1965 }
1966 #endif
1967 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1968 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1969 
1970 /*
1971  * Per process flags
1972  */
1973 #define PF_EXITING	0x00000004	/* getting shut down */
1974 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1975 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1976 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1977 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1978 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1979 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1980 #define PF_DUMPCORE	0x00000200	/* dumped core */
1981 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1982 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1983 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1984 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1985 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1986 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1987 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1988 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1989 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1990 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1991 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1992 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1993 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1994 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1995 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1996 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1997 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1998 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1999 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2000 
2001 /*
2002  * Only the _current_ task can read/write to tsk->flags, but other
2003  * tasks can access tsk->flags in readonly mode for example
2004  * with tsk_used_math (like during threaded core dumping).
2005  * There is however an exception to this rule during ptrace
2006  * or during fork: the ptracer task is allowed to write to the
2007  * child->flags of its traced child (same goes for fork, the parent
2008  * can write to the child->flags), because we're guaranteed the
2009  * child is not running and in turn not changing child->flags
2010  * at the same time the parent does it.
2011  */
2012 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2013 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2014 #define clear_used_math() clear_stopped_child_used_math(current)
2015 #define set_used_math() set_stopped_child_used_math(current)
2016 #define conditional_stopped_child_used_math(condition, child) \
2017 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2018 #define conditional_used_math(condition) \
2019 	conditional_stopped_child_used_math(condition, current)
2020 #define copy_to_stopped_child_used_math(child) \
2021 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2022 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2023 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2024 #define used_math() tsk_used_math(current)
2025 
2026 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2027  * __GFP_FS is also cleared as it implies __GFP_IO.
2028  */
2029 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2030 {
2031 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2032 		flags &= ~(__GFP_IO | __GFP_FS);
2033 	return flags;
2034 }
2035 
2036 static inline unsigned int memalloc_noio_save(void)
2037 {
2038 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2039 	current->flags |= PF_MEMALLOC_NOIO;
2040 	return flags;
2041 }
2042 
2043 static inline void memalloc_noio_restore(unsigned int flags)
2044 {
2045 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2046 }
2047 
2048 /* Per-process atomic flags. */
2049 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2050 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2051 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2052 
2053 
2054 #define TASK_PFA_TEST(name, func)					\
2055 	static inline bool task_##func(struct task_struct *p)		\
2056 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2057 #define TASK_PFA_SET(name, func)					\
2058 	static inline void task_set_##func(struct task_struct *p)	\
2059 	{ set_bit(PFA_##name, &p->atomic_flags); }
2060 #define TASK_PFA_CLEAR(name, func)					\
2061 	static inline void task_clear_##func(struct task_struct *p)	\
2062 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2063 
2064 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2065 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2066 
2067 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2068 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2069 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2070 
2071 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2072 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2073 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2074 
2075 /*
2076  * task->jobctl flags
2077  */
2078 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2079 
2080 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2081 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2082 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2083 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2084 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2085 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2086 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2087 
2088 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
2089 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
2090 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
2091 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
2092 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
2093 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
2094 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
2095 
2096 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2097 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2098 
2099 extern bool task_set_jobctl_pending(struct task_struct *task,
2100 				    unsigned int mask);
2101 extern void task_clear_jobctl_trapping(struct task_struct *task);
2102 extern void task_clear_jobctl_pending(struct task_struct *task,
2103 				      unsigned int mask);
2104 
2105 static inline void rcu_copy_process(struct task_struct *p)
2106 {
2107 #ifdef CONFIG_PREEMPT_RCU
2108 	p->rcu_read_lock_nesting = 0;
2109 	p->rcu_read_unlock_special.s = 0;
2110 	p->rcu_blocked_node = NULL;
2111 	INIT_LIST_HEAD(&p->rcu_node_entry);
2112 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2113 #ifdef CONFIG_TASKS_RCU
2114 	p->rcu_tasks_holdout = false;
2115 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2116 	p->rcu_tasks_idle_cpu = -1;
2117 #endif /* #ifdef CONFIG_TASKS_RCU */
2118 }
2119 
2120 static inline void tsk_restore_flags(struct task_struct *task,
2121 				unsigned long orig_flags, unsigned long flags)
2122 {
2123 	task->flags &= ~flags;
2124 	task->flags |= orig_flags & flags;
2125 }
2126 
2127 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2128 				     const struct cpumask *trial);
2129 extern int task_can_attach(struct task_struct *p,
2130 			   const struct cpumask *cs_cpus_allowed);
2131 #ifdef CONFIG_SMP
2132 extern void do_set_cpus_allowed(struct task_struct *p,
2133 			       const struct cpumask *new_mask);
2134 
2135 extern int set_cpus_allowed_ptr(struct task_struct *p,
2136 				const struct cpumask *new_mask);
2137 #else
2138 static inline void do_set_cpus_allowed(struct task_struct *p,
2139 				      const struct cpumask *new_mask)
2140 {
2141 }
2142 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2143 				       const struct cpumask *new_mask)
2144 {
2145 	if (!cpumask_test_cpu(0, new_mask))
2146 		return -EINVAL;
2147 	return 0;
2148 }
2149 #endif
2150 
2151 #ifdef CONFIG_NO_HZ_COMMON
2152 void calc_load_enter_idle(void);
2153 void calc_load_exit_idle(void);
2154 #else
2155 static inline void calc_load_enter_idle(void) { }
2156 static inline void calc_load_exit_idle(void) { }
2157 #endif /* CONFIG_NO_HZ_COMMON */
2158 
2159 #ifndef CONFIG_CPUMASK_OFFSTACK
2160 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2161 {
2162 	return set_cpus_allowed_ptr(p, &new_mask);
2163 }
2164 #endif
2165 
2166 /*
2167  * Do not use outside of architecture code which knows its limitations.
2168  *
2169  * sched_clock() has no promise of monotonicity or bounded drift between
2170  * CPUs, use (which you should not) requires disabling IRQs.
2171  *
2172  * Please use one of the three interfaces below.
2173  */
2174 extern unsigned long long notrace sched_clock(void);
2175 /*
2176  * See the comment in kernel/sched/clock.c
2177  */
2178 extern u64 cpu_clock(int cpu);
2179 extern u64 local_clock(void);
2180 extern u64 running_clock(void);
2181 extern u64 sched_clock_cpu(int cpu);
2182 
2183 
2184 extern void sched_clock_init(void);
2185 
2186 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2187 static inline void sched_clock_tick(void)
2188 {
2189 }
2190 
2191 static inline void sched_clock_idle_sleep_event(void)
2192 {
2193 }
2194 
2195 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2196 {
2197 }
2198 #else
2199 /*
2200  * Architectures can set this to 1 if they have specified
2201  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2202  * but then during bootup it turns out that sched_clock()
2203  * is reliable after all:
2204  */
2205 extern int sched_clock_stable(void);
2206 extern void set_sched_clock_stable(void);
2207 extern void clear_sched_clock_stable(void);
2208 
2209 extern void sched_clock_tick(void);
2210 extern void sched_clock_idle_sleep_event(void);
2211 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2212 #endif
2213 
2214 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2215 /*
2216  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2217  * The reason for this explicit opt-in is not to have perf penalty with
2218  * slow sched_clocks.
2219  */
2220 extern void enable_sched_clock_irqtime(void);
2221 extern void disable_sched_clock_irqtime(void);
2222 #else
2223 static inline void enable_sched_clock_irqtime(void) {}
2224 static inline void disable_sched_clock_irqtime(void) {}
2225 #endif
2226 
2227 extern unsigned long long
2228 task_sched_runtime(struct task_struct *task);
2229 
2230 /* sched_exec is called by processes performing an exec */
2231 #ifdef CONFIG_SMP
2232 extern void sched_exec(void);
2233 #else
2234 #define sched_exec()   {}
2235 #endif
2236 
2237 extern void sched_clock_idle_sleep_event(void);
2238 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2239 
2240 #ifdef CONFIG_HOTPLUG_CPU
2241 extern void idle_task_exit(void);
2242 #else
2243 static inline void idle_task_exit(void) {}
2244 #endif
2245 
2246 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2247 extern void wake_up_nohz_cpu(int cpu);
2248 #else
2249 static inline void wake_up_nohz_cpu(int cpu) { }
2250 #endif
2251 
2252 #ifdef CONFIG_NO_HZ_FULL
2253 extern bool sched_can_stop_tick(void);
2254 extern u64 scheduler_tick_max_deferment(void);
2255 #else
2256 static inline bool sched_can_stop_tick(void) { return false; }
2257 #endif
2258 
2259 #ifdef CONFIG_SCHED_AUTOGROUP
2260 extern void sched_autogroup_create_attach(struct task_struct *p);
2261 extern void sched_autogroup_detach(struct task_struct *p);
2262 extern void sched_autogroup_fork(struct signal_struct *sig);
2263 extern void sched_autogroup_exit(struct signal_struct *sig);
2264 #ifdef CONFIG_PROC_FS
2265 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2266 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2267 #endif
2268 #else
2269 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2270 static inline void sched_autogroup_detach(struct task_struct *p) { }
2271 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2272 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2273 #endif
2274 
2275 extern int yield_to(struct task_struct *p, bool preempt);
2276 extern void set_user_nice(struct task_struct *p, long nice);
2277 extern int task_prio(const struct task_struct *p);
2278 /**
2279  * task_nice - return the nice value of a given task.
2280  * @p: the task in question.
2281  *
2282  * Return: The nice value [ -20 ... 0 ... 19 ].
2283  */
2284 static inline int task_nice(const struct task_struct *p)
2285 {
2286 	return PRIO_TO_NICE((p)->static_prio);
2287 }
2288 extern int can_nice(const struct task_struct *p, const int nice);
2289 extern int task_curr(const struct task_struct *p);
2290 extern int idle_cpu(int cpu);
2291 extern int sched_setscheduler(struct task_struct *, int,
2292 			      const struct sched_param *);
2293 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2294 				      const struct sched_param *);
2295 extern int sched_setattr(struct task_struct *,
2296 			 const struct sched_attr *);
2297 extern struct task_struct *idle_task(int cpu);
2298 /**
2299  * is_idle_task - is the specified task an idle task?
2300  * @p: the task in question.
2301  *
2302  * Return: 1 if @p is an idle task. 0 otherwise.
2303  */
2304 static inline bool is_idle_task(const struct task_struct *p)
2305 {
2306 	return p->pid == 0;
2307 }
2308 extern struct task_struct *curr_task(int cpu);
2309 extern void set_curr_task(int cpu, struct task_struct *p);
2310 
2311 void yield(void);
2312 
2313 union thread_union {
2314 	struct thread_info thread_info;
2315 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2316 };
2317 
2318 #ifndef __HAVE_ARCH_KSTACK_END
2319 static inline int kstack_end(void *addr)
2320 {
2321 	/* Reliable end of stack detection:
2322 	 * Some APM bios versions misalign the stack
2323 	 */
2324 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2325 }
2326 #endif
2327 
2328 extern union thread_union init_thread_union;
2329 extern struct task_struct init_task;
2330 
2331 extern struct   mm_struct init_mm;
2332 
2333 extern struct pid_namespace init_pid_ns;
2334 
2335 /*
2336  * find a task by one of its numerical ids
2337  *
2338  * find_task_by_pid_ns():
2339  *      finds a task by its pid in the specified namespace
2340  * find_task_by_vpid():
2341  *      finds a task by its virtual pid
2342  *
2343  * see also find_vpid() etc in include/linux/pid.h
2344  */
2345 
2346 extern struct task_struct *find_task_by_vpid(pid_t nr);
2347 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2348 		struct pid_namespace *ns);
2349 
2350 /* per-UID process charging. */
2351 extern struct user_struct * alloc_uid(kuid_t);
2352 static inline struct user_struct *get_uid(struct user_struct *u)
2353 {
2354 	atomic_inc(&u->__count);
2355 	return u;
2356 }
2357 extern void free_uid(struct user_struct *);
2358 
2359 #include <asm/current.h>
2360 
2361 extern void xtime_update(unsigned long ticks);
2362 
2363 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2364 extern int wake_up_process(struct task_struct *tsk);
2365 extern void wake_up_new_task(struct task_struct *tsk);
2366 #ifdef CONFIG_SMP
2367  extern void kick_process(struct task_struct *tsk);
2368 #else
2369  static inline void kick_process(struct task_struct *tsk) { }
2370 #endif
2371 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2372 extern void sched_dead(struct task_struct *p);
2373 
2374 extern void proc_caches_init(void);
2375 extern void flush_signals(struct task_struct *);
2376 extern void __flush_signals(struct task_struct *);
2377 extern void ignore_signals(struct task_struct *);
2378 extern void flush_signal_handlers(struct task_struct *, int force_default);
2379 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2380 
2381 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2382 {
2383 	unsigned long flags;
2384 	int ret;
2385 
2386 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2387 	ret = dequeue_signal(tsk, mask, info);
2388 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2389 
2390 	return ret;
2391 }
2392 
2393 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2394 			      sigset_t *mask);
2395 extern void unblock_all_signals(void);
2396 extern void release_task(struct task_struct * p);
2397 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2398 extern int force_sigsegv(int, struct task_struct *);
2399 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2400 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2401 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2402 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2403 				const struct cred *, u32);
2404 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2405 extern int kill_pid(struct pid *pid, int sig, int priv);
2406 extern int kill_proc_info(int, struct siginfo *, pid_t);
2407 extern __must_check bool do_notify_parent(struct task_struct *, int);
2408 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2409 extern void force_sig(int, struct task_struct *);
2410 extern int send_sig(int, struct task_struct *, int);
2411 extern int zap_other_threads(struct task_struct *p);
2412 extern struct sigqueue *sigqueue_alloc(void);
2413 extern void sigqueue_free(struct sigqueue *);
2414 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2415 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2416 
2417 static inline void restore_saved_sigmask(void)
2418 {
2419 	if (test_and_clear_restore_sigmask())
2420 		__set_current_blocked(&current->saved_sigmask);
2421 }
2422 
2423 static inline sigset_t *sigmask_to_save(void)
2424 {
2425 	sigset_t *res = &current->blocked;
2426 	if (unlikely(test_restore_sigmask()))
2427 		res = &current->saved_sigmask;
2428 	return res;
2429 }
2430 
2431 static inline int kill_cad_pid(int sig, int priv)
2432 {
2433 	return kill_pid(cad_pid, sig, priv);
2434 }
2435 
2436 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2437 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2438 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2439 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2440 
2441 /*
2442  * True if we are on the alternate signal stack.
2443  */
2444 static inline int on_sig_stack(unsigned long sp)
2445 {
2446 #ifdef CONFIG_STACK_GROWSUP
2447 	return sp >= current->sas_ss_sp &&
2448 		sp - current->sas_ss_sp < current->sas_ss_size;
2449 #else
2450 	return sp > current->sas_ss_sp &&
2451 		sp - current->sas_ss_sp <= current->sas_ss_size;
2452 #endif
2453 }
2454 
2455 static inline int sas_ss_flags(unsigned long sp)
2456 {
2457 	if (!current->sas_ss_size)
2458 		return SS_DISABLE;
2459 
2460 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2461 }
2462 
2463 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2464 {
2465 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2466 #ifdef CONFIG_STACK_GROWSUP
2467 		return current->sas_ss_sp;
2468 #else
2469 		return current->sas_ss_sp + current->sas_ss_size;
2470 #endif
2471 	return sp;
2472 }
2473 
2474 /*
2475  * Routines for handling mm_structs
2476  */
2477 extern struct mm_struct * mm_alloc(void);
2478 
2479 /* mmdrop drops the mm and the page tables */
2480 extern void __mmdrop(struct mm_struct *);
2481 static inline void mmdrop(struct mm_struct * mm)
2482 {
2483 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2484 		__mmdrop(mm);
2485 }
2486 
2487 /* mmput gets rid of the mappings and all user-space */
2488 extern void mmput(struct mm_struct *);
2489 /* Grab a reference to a task's mm, if it is not already going away */
2490 extern struct mm_struct *get_task_mm(struct task_struct *task);
2491 /*
2492  * Grab a reference to a task's mm, if it is not already going away
2493  * and ptrace_may_access with the mode parameter passed to it
2494  * succeeds.
2495  */
2496 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2497 /* Remove the current tasks stale references to the old mm_struct */
2498 extern void mm_release(struct task_struct *, struct mm_struct *);
2499 
2500 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2501 			struct task_struct *);
2502 extern void flush_thread(void);
2503 extern void exit_thread(void);
2504 
2505 extern void exit_files(struct task_struct *);
2506 extern void __cleanup_sighand(struct sighand_struct *);
2507 
2508 extern void exit_itimers(struct signal_struct *);
2509 extern void flush_itimer_signals(void);
2510 
2511 extern void do_group_exit(int);
2512 
2513 extern int do_execve(struct filename *,
2514 		     const char __user * const __user *,
2515 		     const char __user * const __user *);
2516 extern int do_execveat(int, struct filename *,
2517 		       const char __user * const __user *,
2518 		       const char __user * const __user *,
2519 		       int);
2520 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2521 struct task_struct *fork_idle(int);
2522 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2523 
2524 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2525 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2526 {
2527 	__set_task_comm(tsk, from, false);
2528 }
2529 extern char *get_task_comm(char *to, struct task_struct *tsk);
2530 
2531 #ifdef CONFIG_SMP
2532 void scheduler_ipi(void);
2533 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2534 #else
2535 static inline void scheduler_ipi(void) { }
2536 static inline unsigned long wait_task_inactive(struct task_struct *p,
2537 					       long match_state)
2538 {
2539 	return 1;
2540 }
2541 #endif
2542 
2543 #define next_task(p) \
2544 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2545 
2546 #define for_each_process(p) \
2547 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2548 
2549 extern bool current_is_single_threaded(void);
2550 
2551 /*
2552  * Careful: do_each_thread/while_each_thread is a double loop so
2553  *          'break' will not work as expected - use goto instead.
2554  */
2555 #define do_each_thread(g, t) \
2556 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2557 
2558 #define while_each_thread(g, t) \
2559 	while ((t = next_thread(t)) != g)
2560 
2561 #define __for_each_thread(signal, t)	\
2562 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2563 
2564 #define for_each_thread(p, t)		\
2565 	__for_each_thread((p)->signal, t)
2566 
2567 /* Careful: this is a double loop, 'break' won't work as expected. */
2568 #define for_each_process_thread(p, t)	\
2569 	for_each_process(p) for_each_thread(p, t)
2570 
2571 static inline int get_nr_threads(struct task_struct *tsk)
2572 {
2573 	return tsk->signal->nr_threads;
2574 }
2575 
2576 static inline bool thread_group_leader(struct task_struct *p)
2577 {
2578 	return p->exit_signal >= 0;
2579 }
2580 
2581 /* Do to the insanities of de_thread it is possible for a process
2582  * to have the pid of the thread group leader without actually being
2583  * the thread group leader.  For iteration through the pids in proc
2584  * all we care about is that we have a task with the appropriate
2585  * pid, we don't actually care if we have the right task.
2586  */
2587 static inline bool has_group_leader_pid(struct task_struct *p)
2588 {
2589 	return task_pid(p) == p->signal->leader_pid;
2590 }
2591 
2592 static inline
2593 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2594 {
2595 	return p1->signal == p2->signal;
2596 }
2597 
2598 static inline struct task_struct *next_thread(const struct task_struct *p)
2599 {
2600 	return list_entry_rcu(p->thread_group.next,
2601 			      struct task_struct, thread_group);
2602 }
2603 
2604 static inline int thread_group_empty(struct task_struct *p)
2605 {
2606 	return list_empty(&p->thread_group);
2607 }
2608 
2609 #define delay_group_leader(p) \
2610 		(thread_group_leader(p) && !thread_group_empty(p))
2611 
2612 /*
2613  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2614  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2615  * pins the final release of task.io_context.  Also protects ->cpuset and
2616  * ->cgroup.subsys[]. And ->vfork_done.
2617  *
2618  * Nests both inside and outside of read_lock(&tasklist_lock).
2619  * It must not be nested with write_lock_irq(&tasklist_lock),
2620  * neither inside nor outside.
2621  */
2622 static inline void task_lock(struct task_struct *p)
2623 {
2624 	spin_lock(&p->alloc_lock);
2625 }
2626 
2627 static inline void task_unlock(struct task_struct *p)
2628 {
2629 	spin_unlock(&p->alloc_lock);
2630 }
2631 
2632 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2633 							unsigned long *flags);
2634 
2635 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2636 						       unsigned long *flags)
2637 {
2638 	struct sighand_struct *ret;
2639 
2640 	ret = __lock_task_sighand(tsk, flags);
2641 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2642 	return ret;
2643 }
2644 
2645 static inline void unlock_task_sighand(struct task_struct *tsk,
2646 						unsigned long *flags)
2647 {
2648 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2649 }
2650 
2651 #ifdef CONFIG_CGROUPS
2652 static inline void threadgroup_change_begin(struct task_struct *tsk)
2653 {
2654 	down_read(&tsk->signal->group_rwsem);
2655 }
2656 static inline void threadgroup_change_end(struct task_struct *tsk)
2657 {
2658 	up_read(&tsk->signal->group_rwsem);
2659 }
2660 
2661 /**
2662  * threadgroup_lock - lock threadgroup
2663  * @tsk: member task of the threadgroup to lock
2664  *
2665  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2666  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2667  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2668  * needs to stay stable across blockable operations.
2669  *
2670  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2671  * synchronization.  While held, no new task will be added to threadgroup
2672  * and no existing live task will have its PF_EXITING set.
2673  *
2674  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2675  * sub-thread becomes a new leader.
2676  */
2677 static inline void threadgroup_lock(struct task_struct *tsk)
2678 {
2679 	down_write(&tsk->signal->group_rwsem);
2680 }
2681 
2682 /**
2683  * threadgroup_unlock - unlock threadgroup
2684  * @tsk: member task of the threadgroup to unlock
2685  *
2686  * Reverse threadgroup_lock().
2687  */
2688 static inline void threadgroup_unlock(struct task_struct *tsk)
2689 {
2690 	up_write(&tsk->signal->group_rwsem);
2691 }
2692 #else
2693 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2694 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2695 static inline void threadgroup_lock(struct task_struct *tsk) {}
2696 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2697 #endif
2698 
2699 #ifndef __HAVE_THREAD_FUNCTIONS
2700 
2701 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2702 #define task_stack_page(task)	((task)->stack)
2703 
2704 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2705 {
2706 	*task_thread_info(p) = *task_thread_info(org);
2707 	task_thread_info(p)->task = p;
2708 }
2709 
2710 /*
2711  * Return the address of the last usable long on the stack.
2712  *
2713  * When the stack grows down, this is just above the thread
2714  * info struct. Going any lower will corrupt the threadinfo.
2715  *
2716  * When the stack grows up, this is the highest address.
2717  * Beyond that position, we corrupt data on the next page.
2718  */
2719 static inline unsigned long *end_of_stack(struct task_struct *p)
2720 {
2721 #ifdef CONFIG_STACK_GROWSUP
2722 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2723 #else
2724 	return (unsigned long *)(task_thread_info(p) + 1);
2725 #endif
2726 }
2727 
2728 #endif
2729 #define task_stack_end_corrupted(task) \
2730 		(*(end_of_stack(task)) != STACK_END_MAGIC)
2731 
2732 static inline int object_is_on_stack(void *obj)
2733 {
2734 	void *stack = task_stack_page(current);
2735 
2736 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2737 }
2738 
2739 extern void thread_info_cache_init(void);
2740 
2741 #ifdef CONFIG_DEBUG_STACK_USAGE
2742 static inline unsigned long stack_not_used(struct task_struct *p)
2743 {
2744 	unsigned long *n = end_of_stack(p);
2745 
2746 	do { 	/* Skip over canary */
2747 		n++;
2748 	} while (!*n);
2749 
2750 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2751 }
2752 #endif
2753 extern void set_task_stack_end_magic(struct task_struct *tsk);
2754 
2755 /* set thread flags in other task's structures
2756  * - see asm/thread_info.h for TIF_xxxx flags available
2757  */
2758 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2759 {
2760 	set_ti_thread_flag(task_thread_info(tsk), flag);
2761 }
2762 
2763 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2764 {
2765 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2766 }
2767 
2768 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2769 {
2770 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2771 }
2772 
2773 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2774 {
2775 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2776 }
2777 
2778 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2779 {
2780 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2781 }
2782 
2783 static inline void set_tsk_need_resched(struct task_struct *tsk)
2784 {
2785 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2786 }
2787 
2788 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2789 {
2790 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2791 }
2792 
2793 static inline int test_tsk_need_resched(struct task_struct *tsk)
2794 {
2795 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2796 }
2797 
2798 static inline int restart_syscall(void)
2799 {
2800 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2801 	return -ERESTARTNOINTR;
2802 }
2803 
2804 static inline int signal_pending(struct task_struct *p)
2805 {
2806 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2807 }
2808 
2809 static inline int __fatal_signal_pending(struct task_struct *p)
2810 {
2811 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2812 }
2813 
2814 static inline int fatal_signal_pending(struct task_struct *p)
2815 {
2816 	return signal_pending(p) && __fatal_signal_pending(p);
2817 }
2818 
2819 static inline int signal_pending_state(long state, struct task_struct *p)
2820 {
2821 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2822 		return 0;
2823 	if (!signal_pending(p))
2824 		return 0;
2825 
2826 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2827 }
2828 
2829 /*
2830  * cond_resched() and cond_resched_lock(): latency reduction via
2831  * explicit rescheduling in places that are safe. The return
2832  * value indicates whether a reschedule was done in fact.
2833  * cond_resched_lock() will drop the spinlock before scheduling,
2834  * cond_resched_softirq() will enable bhs before scheduling.
2835  */
2836 extern int _cond_resched(void);
2837 
2838 #define cond_resched() ({			\
2839 	___might_sleep(__FILE__, __LINE__, 0);	\
2840 	_cond_resched();			\
2841 })
2842 
2843 extern int __cond_resched_lock(spinlock_t *lock);
2844 
2845 #ifdef CONFIG_PREEMPT_COUNT
2846 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2847 #else
2848 #define PREEMPT_LOCK_OFFSET	0
2849 #endif
2850 
2851 #define cond_resched_lock(lock) ({				\
2852 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2853 	__cond_resched_lock(lock);				\
2854 })
2855 
2856 extern int __cond_resched_softirq(void);
2857 
2858 #define cond_resched_softirq() ({					\
2859 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2860 	__cond_resched_softirq();					\
2861 })
2862 
2863 static inline void cond_resched_rcu(void)
2864 {
2865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2866 	rcu_read_unlock();
2867 	cond_resched();
2868 	rcu_read_lock();
2869 #endif
2870 }
2871 
2872 /*
2873  * Does a critical section need to be broken due to another
2874  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2875  * but a general need for low latency)
2876  */
2877 static inline int spin_needbreak(spinlock_t *lock)
2878 {
2879 #ifdef CONFIG_PREEMPT
2880 	return spin_is_contended(lock);
2881 #else
2882 	return 0;
2883 #endif
2884 }
2885 
2886 /*
2887  * Idle thread specific functions to determine the need_resched
2888  * polling state.
2889  */
2890 #ifdef TIF_POLLING_NRFLAG
2891 static inline int tsk_is_polling(struct task_struct *p)
2892 {
2893 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2894 }
2895 
2896 static inline void __current_set_polling(void)
2897 {
2898 	set_thread_flag(TIF_POLLING_NRFLAG);
2899 }
2900 
2901 static inline bool __must_check current_set_polling_and_test(void)
2902 {
2903 	__current_set_polling();
2904 
2905 	/*
2906 	 * Polling state must be visible before we test NEED_RESCHED,
2907 	 * paired by resched_curr()
2908 	 */
2909 	smp_mb__after_atomic();
2910 
2911 	return unlikely(tif_need_resched());
2912 }
2913 
2914 static inline void __current_clr_polling(void)
2915 {
2916 	clear_thread_flag(TIF_POLLING_NRFLAG);
2917 }
2918 
2919 static inline bool __must_check current_clr_polling_and_test(void)
2920 {
2921 	__current_clr_polling();
2922 
2923 	/*
2924 	 * Polling state must be visible before we test NEED_RESCHED,
2925 	 * paired by resched_curr()
2926 	 */
2927 	smp_mb__after_atomic();
2928 
2929 	return unlikely(tif_need_resched());
2930 }
2931 
2932 #else
2933 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2934 static inline void __current_set_polling(void) { }
2935 static inline void __current_clr_polling(void) { }
2936 
2937 static inline bool __must_check current_set_polling_and_test(void)
2938 {
2939 	return unlikely(tif_need_resched());
2940 }
2941 static inline bool __must_check current_clr_polling_and_test(void)
2942 {
2943 	return unlikely(tif_need_resched());
2944 }
2945 #endif
2946 
2947 static inline void current_clr_polling(void)
2948 {
2949 	__current_clr_polling();
2950 
2951 	/*
2952 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2953 	 * Once the bit is cleared, we'll get IPIs with every new
2954 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2955 	 * fold.
2956 	 */
2957 	smp_mb(); /* paired with resched_curr() */
2958 
2959 	preempt_fold_need_resched();
2960 }
2961 
2962 static __always_inline bool need_resched(void)
2963 {
2964 	return unlikely(tif_need_resched());
2965 }
2966 
2967 /*
2968  * Thread group CPU time accounting.
2969  */
2970 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2971 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2972 
2973 static inline void thread_group_cputime_init(struct signal_struct *sig)
2974 {
2975 	raw_spin_lock_init(&sig->cputimer.lock);
2976 }
2977 
2978 /*
2979  * Reevaluate whether the task has signals pending delivery.
2980  * Wake the task if so.
2981  * This is required every time the blocked sigset_t changes.
2982  * callers must hold sighand->siglock.
2983  */
2984 extern void recalc_sigpending_and_wake(struct task_struct *t);
2985 extern void recalc_sigpending(void);
2986 
2987 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2988 
2989 static inline void signal_wake_up(struct task_struct *t, bool resume)
2990 {
2991 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2992 }
2993 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2994 {
2995 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2996 }
2997 
2998 /*
2999  * Wrappers for p->thread_info->cpu access. No-op on UP.
3000  */
3001 #ifdef CONFIG_SMP
3002 
3003 static inline unsigned int task_cpu(const struct task_struct *p)
3004 {
3005 	return task_thread_info(p)->cpu;
3006 }
3007 
3008 static inline int task_node(const struct task_struct *p)
3009 {
3010 	return cpu_to_node(task_cpu(p));
3011 }
3012 
3013 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3014 
3015 #else
3016 
3017 static inline unsigned int task_cpu(const struct task_struct *p)
3018 {
3019 	return 0;
3020 }
3021 
3022 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3023 {
3024 }
3025 
3026 #endif /* CONFIG_SMP */
3027 
3028 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3029 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3030 
3031 #ifdef CONFIG_CGROUP_SCHED
3032 extern struct task_group root_task_group;
3033 #endif /* CONFIG_CGROUP_SCHED */
3034 
3035 extern int task_can_switch_user(struct user_struct *up,
3036 					struct task_struct *tsk);
3037 
3038 #ifdef CONFIG_TASK_XACCT
3039 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3040 {
3041 	tsk->ioac.rchar += amt;
3042 }
3043 
3044 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3045 {
3046 	tsk->ioac.wchar += amt;
3047 }
3048 
3049 static inline void inc_syscr(struct task_struct *tsk)
3050 {
3051 	tsk->ioac.syscr++;
3052 }
3053 
3054 static inline void inc_syscw(struct task_struct *tsk)
3055 {
3056 	tsk->ioac.syscw++;
3057 }
3058 #else
3059 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3060 {
3061 }
3062 
3063 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3064 {
3065 }
3066 
3067 static inline void inc_syscr(struct task_struct *tsk)
3068 {
3069 }
3070 
3071 static inline void inc_syscw(struct task_struct *tsk)
3072 {
3073 }
3074 #endif
3075 
3076 #ifndef TASK_SIZE_OF
3077 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3078 #endif
3079 
3080 #ifdef CONFIG_MEMCG
3081 extern void mm_update_next_owner(struct mm_struct *mm);
3082 #else
3083 static inline void mm_update_next_owner(struct mm_struct *mm)
3084 {
3085 }
3086 #endif /* CONFIG_MEMCG */
3087 
3088 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3089 		unsigned int limit)
3090 {
3091 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3092 }
3093 
3094 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3095 		unsigned int limit)
3096 {
3097 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3098 }
3099 
3100 static inline unsigned long rlimit(unsigned int limit)
3101 {
3102 	return task_rlimit(current, limit);
3103 }
3104 
3105 static inline unsigned long rlimit_max(unsigned int limit)
3106 {
3107 	return task_rlimit_max(current, limit);
3108 }
3109 
3110 #endif
3111