1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt_mask.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 62 #include <asm/processor.h> 63 64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 65 66 /* 67 * Extended scheduling parameters data structure. 68 * 69 * This is needed because the original struct sched_param can not be 70 * altered without introducing ABI issues with legacy applications 71 * (e.g., in sched_getparam()). 72 * 73 * However, the possibility of specifying more than just a priority for 74 * the tasks may be useful for a wide variety of application fields, e.g., 75 * multimedia, streaming, automation and control, and many others. 76 * 77 * This variant (sched_attr) is meant at describing a so-called 78 * sporadic time-constrained task. In such model a task is specified by: 79 * - the activation period or minimum instance inter-arrival time; 80 * - the maximum (or average, depending on the actual scheduling 81 * discipline) computation time of all instances, a.k.a. runtime; 82 * - the deadline (relative to the actual activation time) of each 83 * instance. 84 * Very briefly, a periodic (sporadic) task asks for the execution of 85 * some specific computation --which is typically called an instance-- 86 * (at most) every period. Moreover, each instance typically lasts no more 87 * than the runtime and must be completed by time instant t equal to 88 * the instance activation time + the deadline. 89 * 90 * This is reflected by the actual fields of the sched_attr structure: 91 * 92 * @size size of the structure, for fwd/bwd compat. 93 * 94 * @sched_policy task's scheduling policy 95 * @sched_flags for customizing the scheduler behaviour 96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 97 * @sched_priority task's static priority (SCHED_FIFO/RR) 98 * @sched_deadline representative of the task's deadline 99 * @sched_runtime representative of the task's runtime 100 * @sched_period representative of the task's period 101 * 102 * Given this task model, there are a multiplicity of scheduling algorithms 103 * and policies, that can be used to ensure all the tasks will make their 104 * timing constraints. 105 * 106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 107 * only user of this new interface. More information about the algorithm 108 * available in the scheduling class file or in Documentation/. 109 */ 110 struct sched_attr { 111 u32 size; 112 113 u32 sched_policy; 114 u64 sched_flags; 115 116 /* SCHED_NORMAL, SCHED_BATCH */ 117 s32 sched_nice; 118 119 /* SCHED_FIFO, SCHED_RR */ 120 u32 sched_priority; 121 122 /* SCHED_DEADLINE */ 123 u64 sched_runtime; 124 u64 sched_deadline; 125 u64 sched_period; 126 }; 127 128 struct futex_pi_state; 129 struct robust_list_head; 130 struct bio_list; 131 struct fs_struct; 132 struct perf_event_context; 133 struct blk_plug; 134 struct filename; 135 136 #define VMACACHE_BITS 2 137 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 138 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 139 140 /* 141 * These are the constant used to fake the fixed-point load-average 142 * counting. Some notes: 143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 144 * a load-average precision of 10 bits integer + 11 bits fractional 145 * - if you want to count load-averages more often, you need more 146 * precision, or rounding will get you. With 2-second counting freq, 147 * the EXP_n values would be 1981, 2034 and 2043 if still using only 148 * 11 bit fractions. 149 */ 150 extern unsigned long avenrun[]; /* Load averages */ 151 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 152 153 #define FSHIFT 11 /* nr of bits of precision */ 154 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 155 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 156 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 157 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 158 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 159 160 #define CALC_LOAD(load,exp,n) \ 161 load *= exp; \ 162 load += n*(FIXED_1-exp); \ 163 load >>= FSHIFT; 164 165 extern unsigned long total_forks; 166 extern int nr_threads; 167 DECLARE_PER_CPU(unsigned long, process_counts); 168 extern int nr_processes(void); 169 extern unsigned long nr_running(void); 170 extern bool single_task_running(void); 171 extern unsigned long nr_iowait(void); 172 extern unsigned long nr_iowait_cpu(int cpu); 173 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 174 175 extern void calc_global_load(unsigned long ticks); 176 extern void update_cpu_load_nohz(void); 177 178 /* Notifier for when a task gets migrated to a new CPU */ 179 struct task_migration_notifier { 180 struct task_struct *task; 181 int from_cpu; 182 int to_cpu; 183 }; 184 extern void register_task_migration_notifier(struct notifier_block *n); 185 186 extern unsigned long get_parent_ip(unsigned long addr); 187 188 extern void dump_cpu_task(int cpu); 189 190 struct seq_file; 191 struct cfs_rq; 192 struct task_group; 193 #ifdef CONFIG_SCHED_DEBUG 194 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 195 extern void proc_sched_set_task(struct task_struct *p); 196 extern void 197 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 198 #endif 199 200 /* 201 * Task state bitmask. NOTE! These bits are also 202 * encoded in fs/proc/array.c: get_task_state(). 203 * 204 * We have two separate sets of flags: task->state 205 * is about runnability, while task->exit_state are 206 * about the task exiting. Confusing, but this way 207 * modifying one set can't modify the other one by 208 * mistake. 209 */ 210 #define TASK_RUNNING 0 211 #define TASK_INTERRUPTIBLE 1 212 #define TASK_UNINTERRUPTIBLE 2 213 #define __TASK_STOPPED 4 214 #define __TASK_TRACED 8 215 /* in tsk->exit_state */ 216 #define EXIT_DEAD 16 217 #define EXIT_ZOMBIE 32 218 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 219 /* in tsk->state again */ 220 #define TASK_DEAD 64 221 #define TASK_WAKEKILL 128 222 #define TASK_WAKING 256 223 #define TASK_PARKED 512 224 #define TASK_STATE_MAX 1024 225 226 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 227 228 extern char ___assert_task_state[1 - 2*!!( 229 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 230 231 /* Convenience macros for the sake of set_task_state */ 232 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 233 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 234 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0) 252 253 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 254 255 #define __set_task_state(tsk, state_value) \ 256 do { \ 257 (tsk)->task_state_change = _THIS_IP_; \ 258 (tsk)->state = (state_value); \ 259 } while (0) 260 #define set_task_state(tsk, state_value) \ 261 do { \ 262 (tsk)->task_state_change = _THIS_IP_; \ 263 set_mb((tsk)->state, (state_value)); \ 264 } while (0) 265 266 /* 267 * set_current_state() includes a barrier so that the write of current->state 268 * is correctly serialised wrt the caller's subsequent test of whether to 269 * actually sleep: 270 * 271 * set_current_state(TASK_UNINTERRUPTIBLE); 272 * if (do_i_need_to_sleep()) 273 * schedule(); 274 * 275 * If the caller does not need such serialisation then use __set_current_state() 276 */ 277 #define __set_current_state(state_value) \ 278 do { \ 279 current->task_state_change = _THIS_IP_; \ 280 current->state = (state_value); \ 281 } while (0) 282 #define set_current_state(state_value) \ 283 do { \ 284 current->task_state_change = _THIS_IP_; \ 285 set_mb(current->state, (state_value)); \ 286 } while (0) 287 288 #else 289 290 #define __set_task_state(tsk, state_value) \ 291 do { (tsk)->state = (state_value); } while (0) 292 #define set_task_state(tsk, state_value) \ 293 set_mb((tsk)->state, (state_value)) 294 295 /* 296 * set_current_state() includes a barrier so that the write of current->state 297 * is correctly serialised wrt the caller's subsequent test of whether to 298 * actually sleep: 299 * 300 * set_current_state(TASK_UNINTERRUPTIBLE); 301 * if (do_i_need_to_sleep()) 302 * schedule(); 303 * 304 * If the caller does not need such serialisation then use __set_current_state() 305 */ 306 #define __set_current_state(state_value) \ 307 do { current->state = (state_value); } while (0) 308 #define set_current_state(state_value) \ 309 set_mb(current->state, (state_value)) 310 311 #endif 312 313 /* Task command name length */ 314 #define TASK_COMM_LEN 16 315 316 #include <linux/spinlock.h> 317 318 /* 319 * This serializes "schedule()" and also protects 320 * the run-queue from deletions/modifications (but 321 * _adding_ to the beginning of the run-queue has 322 * a separate lock). 323 */ 324 extern rwlock_t tasklist_lock; 325 extern spinlock_t mmlist_lock; 326 327 struct task_struct; 328 329 #ifdef CONFIG_PROVE_RCU 330 extern int lockdep_tasklist_lock_is_held(void); 331 #endif /* #ifdef CONFIG_PROVE_RCU */ 332 333 extern void sched_init(void); 334 extern void sched_init_smp(void); 335 extern asmlinkage void schedule_tail(struct task_struct *prev); 336 extern void init_idle(struct task_struct *idle, int cpu); 337 extern void init_idle_bootup_task(struct task_struct *idle); 338 339 extern cpumask_var_t cpu_isolated_map; 340 341 extern int runqueue_is_locked(int cpu); 342 343 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 344 extern void nohz_balance_enter_idle(int cpu); 345 extern void set_cpu_sd_state_idle(void); 346 extern int get_nohz_timer_target(int pinned); 347 #else 348 static inline void nohz_balance_enter_idle(int cpu) { } 349 static inline void set_cpu_sd_state_idle(void) { } 350 static inline int get_nohz_timer_target(int pinned) 351 { 352 return smp_processor_id(); 353 } 354 #endif 355 356 /* 357 * Only dump TASK_* tasks. (0 for all tasks) 358 */ 359 extern void show_state_filter(unsigned long state_filter); 360 361 static inline void show_state(void) 362 { 363 show_state_filter(0); 364 } 365 366 extern void show_regs(struct pt_regs *); 367 368 /* 369 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 370 * task), SP is the stack pointer of the first frame that should be shown in the back 371 * trace (or NULL if the entire call-chain of the task should be shown). 372 */ 373 extern void show_stack(struct task_struct *task, unsigned long *sp); 374 375 extern void cpu_init (void); 376 extern void trap_init(void); 377 extern void update_process_times(int user); 378 extern void scheduler_tick(void); 379 380 extern void sched_show_task(struct task_struct *p); 381 382 #ifdef CONFIG_LOCKUP_DETECTOR 383 extern void touch_softlockup_watchdog(void); 384 extern void touch_softlockup_watchdog_sync(void); 385 extern void touch_all_softlockup_watchdogs(void); 386 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 387 void __user *buffer, 388 size_t *lenp, loff_t *ppos); 389 extern unsigned int softlockup_panic; 390 void lockup_detector_init(void); 391 #else 392 static inline void touch_softlockup_watchdog(void) 393 { 394 } 395 static inline void touch_softlockup_watchdog_sync(void) 396 { 397 } 398 static inline void touch_all_softlockup_watchdogs(void) 399 { 400 } 401 static inline void lockup_detector_init(void) 402 { 403 } 404 #endif 405 406 #ifdef CONFIG_DETECT_HUNG_TASK 407 void reset_hung_task_detector(void); 408 #else 409 static inline void reset_hung_task_detector(void) 410 { 411 } 412 #endif 413 414 /* Attach to any functions which should be ignored in wchan output. */ 415 #define __sched __attribute__((__section__(".sched.text"))) 416 417 /* Linker adds these: start and end of __sched functions */ 418 extern char __sched_text_start[], __sched_text_end[]; 419 420 /* Is this address in the __sched functions? */ 421 extern int in_sched_functions(unsigned long addr); 422 423 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 424 extern signed long schedule_timeout(signed long timeout); 425 extern signed long schedule_timeout_interruptible(signed long timeout); 426 extern signed long schedule_timeout_killable(signed long timeout); 427 extern signed long schedule_timeout_uninterruptible(signed long timeout); 428 asmlinkage void schedule(void); 429 extern void schedule_preempt_disabled(void); 430 431 extern long io_schedule_timeout(long timeout); 432 433 static inline void io_schedule(void) 434 { 435 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 436 } 437 438 struct nsproxy; 439 struct user_namespace; 440 441 #ifdef CONFIG_MMU 442 extern void arch_pick_mmap_layout(struct mm_struct *mm); 443 extern unsigned long 444 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 445 unsigned long, unsigned long); 446 extern unsigned long 447 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 448 unsigned long len, unsigned long pgoff, 449 unsigned long flags); 450 #else 451 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 452 #endif 453 454 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 455 #define SUID_DUMP_USER 1 /* Dump as user of process */ 456 #define SUID_DUMP_ROOT 2 /* Dump as root */ 457 458 /* mm flags */ 459 460 /* for SUID_DUMP_* above */ 461 #define MMF_DUMPABLE_BITS 2 462 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 463 464 extern void set_dumpable(struct mm_struct *mm, int value); 465 /* 466 * This returns the actual value of the suid_dumpable flag. For things 467 * that are using this for checking for privilege transitions, it must 468 * test against SUID_DUMP_USER rather than treating it as a boolean 469 * value. 470 */ 471 static inline int __get_dumpable(unsigned long mm_flags) 472 { 473 return mm_flags & MMF_DUMPABLE_MASK; 474 } 475 476 static inline int get_dumpable(struct mm_struct *mm) 477 { 478 return __get_dumpable(mm->flags); 479 } 480 481 /* coredump filter bits */ 482 #define MMF_DUMP_ANON_PRIVATE 2 483 #define MMF_DUMP_ANON_SHARED 3 484 #define MMF_DUMP_MAPPED_PRIVATE 4 485 #define MMF_DUMP_MAPPED_SHARED 5 486 #define MMF_DUMP_ELF_HEADERS 6 487 #define MMF_DUMP_HUGETLB_PRIVATE 7 488 #define MMF_DUMP_HUGETLB_SHARED 8 489 490 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 491 #define MMF_DUMP_FILTER_BITS 7 492 #define MMF_DUMP_FILTER_MASK \ 493 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 494 #define MMF_DUMP_FILTER_DEFAULT \ 495 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 496 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 497 498 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 499 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 500 #else 501 # define MMF_DUMP_MASK_DEFAULT_ELF 0 502 #endif 503 /* leave room for more dump flags */ 504 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 505 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 506 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 507 508 #define MMF_HAS_UPROBES 19 /* has uprobes */ 509 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 510 511 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 512 513 struct sighand_struct { 514 atomic_t count; 515 struct k_sigaction action[_NSIG]; 516 spinlock_t siglock; 517 wait_queue_head_t signalfd_wqh; 518 }; 519 520 struct pacct_struct { 521 int ac_flag; 522 long ac_exitcode; 523 unsigned long ac_mem; 524 cputime_t ac_utime, ac_stime; 525 unsigned long ac_minflt, ac_majflt; 526 }; 527 528 struct cpu_itimer { 529 cputime_t expires; 530 cputime_t incr; 531 u32 error; 532 u32 incr_error; 533 }; 534 535 /** 536 * struct cputime - snaphsot of system and user cputime 537 * @utime: time spent in user mode 538 * @stime: time spent in system mode 539 * 540 * Gathers a generic snapshot of user and system time. 541 */ 542 struct cputime { 543 cputime_t utime; 544 cputime_t stime; 545 }; 546 547 /** 548 * struct task_cputime - collected CPU time counts 549 * @utime: time spent in user mode, in &cputime_t units 550 * @stime: time spent in kernel mode, in &cputime_t units 551 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 552 * 553 * This is an extension of struct cputime that includes the total runtime 554 * spent by the task from the scheduler point of view. 555 * 556 * As a result, this structure groups together three kinds of CPU time 557 * that are tracked for threads and thread groups. Most things considering 558 * CPU time want to group these counts together and treat all three 559 * of them in parallel. 560 */ 561 struct task_cputime { 562 cputime_t utime; 563 cputime_t stime; 564 unsigned long long sum_exec_runtime; 565 }; 566 /* Alternate field names when used to cache expirations. */ 567 #define prof_exp stime 568 #define virt_exp utime 569 #define sched_exp sum_exec_runtime 570 571 #define INIT_CPUTIME \ 572 (struct task_cputime) { \ 573 .utime = 0, \ 574 .stime = 0, \ 575 .sum_exec_runtime = 0, \ 576 } 577 578 #ifdef CONFIG_PREEMPT_COUNT 579 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 580 #else 581 #define PREEMPT_DISABLED PREEMPT_ENABLED 582 #endif 583 584 /* 585 * Disable preemption until the scheduler is running. 586 * Reset by start_kernel()->sched_init()->init_idle(). 587 * 588 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 589 * before the scheduler is active -- see should_resched(). 590 */ 591 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 592 593 /** 594 * struct thread_group_cputimer - thread group interval timer counts 595 * @cputime: thread group interval timers. 596 * @running: non-zero when there are timers running and 597 * @cputime receives updates. 598 * @lock: lock for fields in this struct. 599 * 600 * This structure contains the version of task_cputime, above, that is 601 * used for thread group CPU timer calculations. 602 */ 603 struct thread_group_cputimer { 604 struct task_cputime cputime; 605 int running; 606 raw_spinlock_t lock; 607 }; 608 609 #include <linux/rwsem.h> 610 struct autogroup; 611 612 /* 613 * NOTE! "signal_struct" does not have its own 614 * locking, because a shared signal_struct always 615 * implies a shared sighand_struct, so locking 616 * sighand_struct is always a proper superset of 617 * the locking of signal_struct. 618 */ 619 struct signal_struct { 620 atomic_t sigcnt; 621 atomic_t live; 622 int nr_threads; 623 struct list_head thread_head; 624 625 wait_queue_head_t wait_chldexit; /* for wait4() */ 626 627 /* current thread group signal load-balancing target: */ 628 struct task_struct *curr_target; 629 630 /* shared signal handling: */ 631 struct sigpending shared_pending; 632 633 /* thread group exit support */ 634 int group_exit_code; 635 /* overloaded: 636 * - notify group_exit_task when ->count is equal to notify_count 637 * - everyone except group_exit_task is stopped during signal delivery 638 * of fatal signals, group_exit_task processes the signal. 639 */ 640 int notify_count; 641 struct task_struct *group_exit_task; 642 643 /* thread group stop support, overloads group_exit_code too */ 644 int group_stop_count; 645 unsigned int flags; /* see SIGNAL_* flags below */ 646 647 /* 648 * PR_SET_CHILD_SUBREAPER marks a process, like a service 649 * manager, to re-parent orphan (double-forking) child processes 650 * to this process instead of 'init'. The service manager is 651 * able to receive SIGCHLD signals and is able to investigate 652 * the process until it calls wait(). All children of this 653 * process will inherit a flag if they should look for a 654 * child_subreaper process at exit. 655 */ 656 unsigned int is_child_subreaper:1; 657 unsigned int has_child_subreaper:1; 658 659 /* POSIX.1b Interval Timers */ 660 int posix_timer_id; 661 struct list_head posix_timers; 662 663 /* ITIMER_REAL timer for the process */ 664 struct hrtimer real_timer; 665 struct pid *leader_pid; 666 ktime_t it_real_incr; 667 668 /* 669 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 670 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 671 * values are defined to 0 and 1 respectively 672 */ 673 struct cpu_itimer it[2]; 674 675 /* 676 * Thread group totals for process CPU timers. 677 * See thread_group_cputimer(), et al, for details. 678 */ 679 struct thread_group_cputimer cputimer; 680 681 /* Earliest-expiration cache. */ 682 struct task_cputime cputime_expires; 683 684 struct list_head cpu_timers[3]; 685 686 struct pid *tty_old_pgrp; 687 688 /* boolean value for session group leader */ 689 int leader; 690 691 struct tty_struct *tty; /* NULL if no tty */ 692 693 #ifdef CONFIG_SCHED_AUTOGROUP 694 struct autogroup *autogroup; 695 #endif 696 /* 697 * Cumulative resource counters for dead threads in the group, 698 * and for reaped dead child processes forked by this group. 699 * Live threads maintain their own counters and add to these 700 * in __exit_signal, except for the group leader. 701 */ 702 seqlock_t stats_lock; 703 cputime_t utime, stime, cutime, cstime; 704 cputime_t gtime; 705 cputime_t cgtime; 706 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 707 struct cputime prev_cputime; 708 #endif 709 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 710 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 711 unsigned long inblock, oublock, cinblock, coublock; 712 unsigned long maxrss, cmaxrss; 713 struct task_io_accounting ioac; 714 715 /* 716 * Cumulative ns of schedule CPU time fo dead threads in the 717 * group, not including a zombie group leader, (This only differs 718 * from jiffies_to_ns(utime + stime) if sched_clock uses something 719 * other than jiffies.) 720 */ 721 unsigned long long sum_sched_runtime; 722 723 /* 724 * We don't bother to synchronize most readers of this at all, 725 * because there is no reader checking a limit that actually needs 726 * to get both rlim_cur and rlim_max atomically, and either one 727 * alone is a single word that can safely be read normally. 728 * getrlimit/setrlimit use task_lock(current->group_leader) to 729 * protect this instead of the siglock, because they really 730 * have no need to disable irqs. 731 */ 732 struct rlimit rlim[RLIM_NLIMITS]; 733 734 #ifdef CONFIG_BSD_PROCESS_ACCT 735 struct pacct_struct pacct; /* per-process accounting information */ 736 #endif 737 #ifdef CONFIG_TASKSTATS 738 struct taskstats *stats; 739 #endif 740 #ifdef CONFIG_AUDIT 741 unsigned audit_tty; 742 unsigned audit_tty_log_passwd; 743 struct tty_audit_buf *tty_audit_buf; 744 #endif 745 #ifdef CONFIG_CGROUPS 746 /* 747 * group_rwsem prevents new tasks from entering the threadgroup and 748 * member tasks from exiting,a more specifically, setting of 749 * PF_EXITING. fork and exit paths are protected with this rwsem 750 * using threadgroup_change_begin/end(). Users which require 751 * threadgroup to remain stable should use threadgroup_[un]lock() 752 * which also takes care of exec path. Currently, cgroup is the 753 * only user. 754 */ 755 struct rw_semaphore group_rwsem; 756 #endif 757 758 oom_flags_t oom_flags; 759 short oom_score_adj; /* OOM kill score adjustment */ 760 short oom_score_adj_min; /* OOM kill score adjustment min value. 761 * Only settable by CAP_SYS_RESOURCE. */ 762 763 struct mutex cred_guard_mutex; /* guard against foreign influences on 764 * credential calculations 765 * (notably. ptrace) */ 766 }; 767 768 /* 769 * Bits in flags field of signal_struct. 770 */ 771 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 772 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 773 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 774 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 775 /* 776 * Pending notifications to parent. 777 */ 778 #define SIGNAL_CLD_STOPPED 0x00000010 779 #define SIGNAL_CLD_CONTINUED 0x00000020 780 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 781 782 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 783 784 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 785 static inline int signal_group_exit(const struct signal_struct *sig) 786 { 787 return (sig->flags & SIGNAL_GROUP_EXIT) || 788 (sig->group_exit_task != NULL); 789 } 790 791 /* 792 * Some day this will be a full-fledged user tracking system.. 793 */ 794 struct user_struct { 795 atomic_t __count; /* reference count */ 796 atomic_t processes; /* How many processes does this user have? */ 797 atomic_t sigpending; /* How many pending signals does this user have? */ 798 #ifdef CONFIG_INOTIFY_USER 799 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 800 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 801 #endif 802 #ifdef CONFIG_FANOTIFY 803 atomic_t fanotify_listeners; 804 #endif 805 #ifdef CONFIG_EPOLL 806 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 807 #endif 808 #ifdef CONFIG_POSIX_MQUEUE 809 /* protected by mq_lock */ 810 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 811 #endif 812 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 813 814 #ifdef CONFIG_KEYS 815 struct key *uid_keyring; /* UID specific keyring */ 816 struct key *session_keyring; /* UID's default session keyring */ 817 #endif 818 819 /* Hash table maintenance information */ 820 struct hlist_node uidhash_node; 821 kuid_t uid; 822 823 #ifdef CONFIG_PERF_EVENTS 824 atomic_long_t locked_vm; 825 #endif 826 }; 827 828 extern int uids_sysfs_init(void); 829 830 extern struct user_struct *find_user(kuid_t); 831 832 extern struct user_struct root_user; 833 #define INIT_USER (&root_user) 834 835 836 struct backing_dev_info; 837 struct reclaim_state; 838 839 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 840 struct sched_info { 841 /* cumulative counters */ 842 unsigned long pcount; /* # of times run on this cpu */ 843 unsigned long long run_delay; /* time spent waiting on a runqueue */ 844 845 /* timestamps */ 846 unsigned long long last_arrival,/* when we last ran on a cpu */ 847 last_queued; /* when we were last queued to run */ 848 }; 849 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 850 851 #ifdef CONFIG_TASK_DELAY_ACCT 852 struct task_delay_info { 853 spinlock_t lock; 854 unsigned int flags; /* Private per-task flags */ 855 856 /* For each stat XXX, add following, aligned appropriately 857 * 858 * struct timespec XXX_start, XXX_end; 859 * u64 XXX_delay; 860 * u32 XXX_count; 861 * 862 * Atomicity of updates to XXX_delay, XXX_count protected by 863 * single lock above (split into XXX_lock if contention is an issue). 864 */ 865 866 /* 867 * XXX_count is incremented on every XXX operation, the delay 868 * associated with the operation is added to XXX_delay. 869 * XXX_delay contains the accumulated delay time in nanoseconds. 870 */ 871 u64 blkio_start; /* Shared by blkio, swapin */ 872 u64 blkio_delay; /* wait for sync block io completion */ 873 u64 swapin_delay; /* wait for swapin block io completion */ 874 u32 blkio_count; /* total count of the number of sync block */ 875 /* io operations performed */ 876 u32 swapin_count; /* total count of the number of swapin block */ 877 /* io operations performed */ 878 879 u64 freepages_start; 880 u64 freepages_delay; /* wait for memory reclaim */ 881 u32 freepages_count; /* total count of memory reclaim */ 882 }; 883 #endif /* CONFIG_TASK_DELAY_ACCT */ 884 885 static inline int sched_info_on(void) 886 { 887 #ifdef CONFIG_SCHEDSTATS 888 return 1; 889 #elif defined(CONFIG_TASK_DELAY_ACCT) 890 extern int delayacct_on; 891 return delayacct_on; 892 #else 893 return 0; 894 #endif 895 } 896 897 enum cpu_idle_type { 898 CPU_IDLE, 899 CPU_NOT_IDLE, 900 CPU_NEWLY_IDLE, 901 CPU_MAX_IDLE_TYPES 902 }; 903 904 /* 905 * Increase resolution of cpu_capacity calculations 906 */ 907 #define SCHED_CAPACITY_SHIFT 10 908 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 909 910 /* 911 * sched-domains (multiprocessor balancing) declarations: 912 */ 913 #ifdef CONFIG_SMP 914 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 915 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 916 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 917 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 918 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 919 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 920 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 921 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 922 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 923 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 924 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 925 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 926 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 927 #define SD_NUMA 0x4000 /* cross-node balancing */ 928 929 #ifdef CONFIG_SCHED_SMT 930 static inline int cpu_smt_flags(void) 931 { 932 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 933 } 934 #endif 935 936 #ifdef CONFIG_SCHED_MC 937 static inline int cpu_core_flags(void) 938 { 939 return SD_SHARE_PKG_RESOURCES; 940 } 941 #endif 942 943 #ifdef CONFIG_NUMA 944 static inline int cpu_numa_flags(void) 945 { 946 return SD_NUMA; 947 } 948 #endif 949 950 struct sched_domain_attr { 951 int relax_domain_level; 952 }; 953 954 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 955 .relax_domain_level = -1, \ 956 } 957 958 extern int sched_domain_level_max; 959 960 struct sched_group; 961 962 struct sched_domain { 963 /* These fields must be setup */ 964 struct sched_domain *parent; /* top domain must be null terminated */ 965 struct sched_domain *child; /* bottom domain must be null terminated */ 966 struct sched_group *groups; /* the balancing groups of the domain */ 967 unsigned long min_interval; /* Minimum balance interval ms */ 968 unsigned long max_interval; /* Maximum balance interval ms */ 969 unsigned int busy_factor; /* less balancing by factor if busy */ 970 unsigned int imbalance_pct; /* No balance until over watermark */ 971 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 972 unsigned int busy_idx; 973 unsigned int idle_idx; 974 unsigned int newidle_idx; 975 unsigned int wake_idx; 976 unsigned int forkexec_idx; 977 unsigned int smt_gain; 978 979 int nohz_idle; /* NOHZ IDLE status */ 980 int flags; /* See SD_* */ 981 int level; 982 983 /* Runtime fields. */ 984 unsigned long last_balance; /* init to jiffies. units in jiffies */ 985 unsigned int balance_interval; /* initialise to 1. units in ms. */ 986 unsigned int nr_balance_failed; /* initialise to 0 */ 987 988 /* idle_balance() stats */ 989 u64 max_newidle_lb_cost; 990 unsigned long next_decay_max_lb_cost; 991 992 #ifdef CONFIG_SCHEDSTATS 993 /* load_balance() stats */ 994 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 995 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 996 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 997 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 998 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 999 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1000 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1001 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1002 1003 /* Active load balancing */ 1004 unsigned int alb_count; 1005 unsigned int alb_failed; 1006 unsigned int alb_pushed; 1007 1008 /* SD_BALANCE_EXEC stats */ 1009 unsigned int sbe_count; 1010 unsigned int sbe_balanced; 1011 unsigned int sbe_pushed; 1012 1013 /* SD_BALANCE_FORK stats */ 1014 unsigned int sbf_count; 1015 unsigned int sbf_balanced; 1016 unsigned int sbf_pushed; 1017 1018 /* try_to_wake_up() stats */ 1019 unsigned int ttwu_wake_remote; 1020 unsigned int ttwu_move_affine; 1021 unsigned int ttwu_move_balance; 1022 #endif 1023 #ifdef CONFIG_SCHED_DEBUG 1024 char *name; 1025 #endif 1026 union { 1027 void *private; /* used during construction */ 1028 struct rcu_head rcu; /* used during destruction */ 1029 }; 1030 1031 unsigned int span_weight; 1032 /* 1033 * Span of all CPUs in this domain. 1034 * 1035 * NOTE: this field is variable length. (Allocated dynamically 1036 * by attaching extra space to the end of the structure, 1037 * depending on how many CPUs the kernel has booted up with) 1038 */ 1039 unsigned long span[0]; 1040 }; 1041 1042 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1043 { 1044 return to_cpumask(sd->span); 1045 } 1046 1047 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1048 struct sched_domain_attr *dattr_new); 1049 1050 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1051 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1052 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1053 1054 bool cpus_share_cache(int this_cpu, int that_cpu); 1055 1056 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1057 typedef int (*sched_domain_flags_f)(void); 1058 1059 #define SDTL_OVERLAP 0x01 1060 1061 struct sd_data { 1062 struct sched_domain **__percpu sd; 1063 struct sched_group **__percpu sg; 1064 struct sched_group_capacity **__percpu sgc; 1065 }; 1066 1067 struct sched_domain_topology_level { 1068 sched_domain_mask_f mask; 1069 sched_domain_flags_f sd_flags; 1070 int flags; 1071 int numa_level; 1072 struct sd_data data; 1073 #ifdef CONFIG_SCHED_DEBUG 1074 char *name; 1075 #endif 1076 }; 1077 1078 extern struct sched_domain_topology_level *sched_domain_topology; 1079 1080 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1081 extern void wake_up_if_idle(int cpu); 1082 1083 #ifdef CONFIG_SCHED_DEBUG 1084 # define SD_INIT_NAME(type) .name = #type 1085 #else 1086 # define SD_INIT_NAME(type) 1087 #endif 1088 1089 #else /* CONFIG_SMP */ 1090 1091 struct sched_domain_attr; 1092 1093 static inline void 1094 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1095 struct sched_domain_attr *dattr_new) 1096 { 1097 } 1098 1099 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1100 { 1101 return true; 1102 } 1103 1104 #endif /* !CONFIG_SMP */ 1105 1106 1107 struct io_context; /* See blkdev.h */ 1108 1109 1110 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1111 extern void prefetch_stack(struct task_struct *t); 1112 #else 1113 static inline void prefetch_stack(struct task_struct *t) { } 1114 #endif 1115 1116 struct audit_context; /* See audit.c */ 1117 struct mempolicy; 1118 struct pipe_inode_info; 1119 struct uts_namespace; 1120 1121 struct load_weight { 1122 unsigned long weight; 1123 u32 inv_weight; 1124 }; 1125 1126 struct sched_avg { 1127 u64 last_runnable_update; 1128 s64 decay_count; 1129 /* 1130 * utilization_avg_contrib describes the amount of time that a 1131 * sched_entity is running on a CPU. It is based on running_avg_sum 1132 * and is scaled in the range [0..SCHED_LOAD_SCALE]. 1133 * load_avg_contrib described the amount of time that a sched_entity 1134 * is runnable on a rq. It is based on both runnable_avg_sum and the 1135 * weight of the task. 1136 */ 1137 unsigned long load_avg_contrib, utilization_avg_contrib; 1138 /* 1139 * These sums represent an infinite geometric series and so are bound 1140 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1141 * choices of y < 1-2^(-32)*1024. 1142 * running_avg_sum reflects the time that the sched_entity is 1143 * effectively running on the CPU. 1144 * runnable_avg_sum represents the amount of time a sched_entity is on 1145 * a runqueue which includes the running time that is monitored by 1146 * running_avg_sum. 1147 */ 1148 u32 runnable_avg_sum, avg_period, running_avg_sum; 1149 }; 1150 1151 #ifdef CONFIG_SCHEDSTATS 1152 struct sched_statistics { 1153 u64 wait_start; 1154 u64 wait_max; 1155 u64 wait_count; 1156 u64 wait_sum; 1157 u64 iowait_count; 1158 u64 iowait_sum; 1159 1160 u64 sleep_start; 1161 u64 sleep_max; 1162 s64 sum_sleep_runtime; 1163 1164 u64 block_start; 1165 u64 block_max; 1166 u64 exec_max; 1167 u64 slice_max; 1168 1169 u64 nr_migrations_cold; 1170 u64 nr_failed_migrations_affine; 1171 u64 nr_failed_migrations_running; 1172 u64 nr_failed_migrations_hot; 1173 u64 nr_forced_migrations; 1174 1175 u64 nr_wakeups; 1176 u64 nr_wakeups_sync; 1177 u64 nr_wakeups_migrate; 1178 u64 nr_wakeups_local; 1179 u64 nr_wakeups_remote; 1180 u64 nr_wakeups_affine; 1181 u64 nr_wakeups_affine_attempts; 1182 u64 nr_wakeups_passive; 1183 u64 nr_wakeups_idle; 1184 }; 1185 #endif 1186 1187 struct sched_entity { 1188 struct load_weight load; /* for load-balancing */ 1189 struct rb_node run_node; 1190 struct list_head group_node; 1191 unsigned int on_rq; 1192 1193 u64 exec_start; 1194 u64 sum_exec_runtime; 1195 u64 vruntime; 1196 u64 prev_sum_exec_runtime; 1197 1198 u64 nr_migrations; 1199 1200 #ifdef CONFIG_SCHEDSTATS 1201 struct sched_statistics statistics; 1202 #endif 1203 1204 #ifdef CONFIG_FAIR_GROUP_SCHED 1205 int depth; 1206 struct sched_entity *parent; 1207 /* rq on which this entity is (to be) queued: */ 1208 struct cfs_rq *cfs_rq; 1209 /* rq "owned" by this entity/group: */ 1210 struct cfs_rq *my_q; 1211 #endif 1212 1213 #ifdef CONFIG_SMP 1214 /* Per-entity load-tracking */ 1215 struct sched_avg avg; 1216 #endif 1217 }; 1218 1219 struct sched_rt_entity { 1220 struct list_head run_list; 1221 unsigned long timeout; 1222 unsigned long watchdog_stamp; 1223 unsigned int time_slice; 1224 1225 struct sched_rt_entity *back; 1226 #ifdef CONFIG_RT_GROUP_SCHED 1227 struct sched_rt_entity *parent; 1228 /* rq on which this entity is (to be) queued: */ 1229 struct rt_rq *rt_rq; 1230 /* rq "owned" by this entity/group: */ 1231 struct rt_rq *my_q; 1232 #endif 1233 }; 1234 1235 struct sched_dl_entity { 1236 struct rb_node rb_node; 1237 1238 /* 1239 * Original scheduling parameters. Copied here from sched_attr 1240 * during sched_setattr(), they will remain the same until 1241 * the next sched_setattr(). 1242 */ 1243 u64 dl_runtime; /* maximum runtime for each instance */ 1244 u64 dl_deadline; /* relative deadline of each instance */ 1245 u64 dl_period; /* separation of two instances (period) */ 1246 u64 dl_bw; /* dl_runtime / dl_deadline */ 1247 1248 /* 1249 * Actual scheduling parameters. Initialized with the values above, 1250 * they are continously updated during task execution. Note that 1251 * the remaining runtime could be < 0 in case we are in overrun. 1252 */ 1253 s64 runtime; /* remaining runtime for this instance */ 1254 u64 deadline; /* absolute deadline for this instance */ 1255 unsigned int flags; /* specifying the scheduler behaviour */ 1256 1257 /* 1258 * Some bool flags: 1259 * 1260 * @dl_throttled tells if we exhausted the runtime. If so, the 1261 * task has to wait for a replenishment to be performed at the 1262 * next firing of dl_timer. 1263 * 1264 * @dl_new tells if a new instance arrived. If so we must 1265 * start executing it with full runtime and reset its absolute 1266 * deadline; 1267 * 1268 * @dl_boosted tells if we are boosted due to DI. If so we are 1269 * outside bandwidth enforcement mechanism (but only until we 1270 * exit the critical section); 1271 * 1272 * @dl_yielded tells if task gave up the cpu before consuming 1273 * all its available runtime during the last job. 1274 */ 1275 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1276 1277 /* 1278 * Bandwidth enforcement timer. Each -deadline task has its 1279 * own bandwidth to be enforced, thus we need one timer per task. 1280 */ 1281 struct hrtimer dl_timer; 1282 }; 1283 1284 union rcu_special { 1285 struct { 1286 bool blocked; 1287 bool need_qs; 1288 } b; 1289 short s; 1290 }; 1291 struct rcu_node; 1292 1293 enum perf_event_task_context { 1294 perf_invalid_context = -1, 1295 perf_hw_context = 0, 1296 perf_sw_context, 1297 perf_nr_task_contexts, 1298 }; 1299 1300 struct task_struct { 1301 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1302 void *stack; 1303 atomic_t usage; 1304 unsigned int flags; /* per process flags, defined below */ 1305 unsigned int ptrace; 1306 1307 #ifdef CONFIG_SMP 1308 struct llist_node wake_entry; 1309 int on_cpu; 1310 struct task_struct *last_wakee; 1311 unsigned long wakee_flips; 1312 unsigned long wakee_flip_decay_ts; 1313 1314 int wake_cpu; 1315 #endif 1316 int on_rq; 1317 1318 int prio, static_prio, normal_prio; 1319 unsigned int rt_priority; 1320 const struct sched_class *sched_class; 1321 struct sched_entity se; 1322 struct sched_rt_entity rt; 1323 #ifdef CONFIG_CGROUP_SCHED 1324 struct task_group *sched_task_group; 1325 #endif 1326 struct sched_dl_entity dl; 1327 1328 #ifdef CONFIG_PREEMPT_NOTIFIERS 1329 /* list of struct preempt_notifier: */ 1330 struct hlist_head preempt_notifiers; 1331 #endif 1332 1333 #ifdef CONFIG_BLK_DEV_IO_TRACE 1334 unsigned int btrace_seq; 1335 #endif 1336 1337 unsigned int policy; 1338 int nr_cpus_allowed; 1339 cpumask_t cpus_allowed; 1340 1341 #ifdef CONFIG_PREEMPT_RCU 1342 int rcu_read_lock_nesting; 1343 union rcu_special rcu_read_unlock_special; 1344 struct list_head rcu_node_entry; 1345 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1346 #ifdef CONFIG_PREEMPT_RCU 1347 struct rcu_node *rcu_blocked_node; 1348 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1349 #ifdef CONFIG_TASKS_RCU 1350 unsigned long rcu_tasks_nvcsw; 1351 bool rcu_tasks_holdout; 1352 struct list_head rcu_tasks_holdout_list; 1353 int rcu_tasks_idle_cpu; 1354 #endif /* #ifdef CONFIG_TASKS_RCU */ 1355 1356 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1357 struct sched_info sched_info; 1358 #endif 1359 1360 struct list_head tasks; 1361 #ifdef CONFIG_SMP 1362 struct plist_node pushable_tasks; 1363 struct rb_node pushable_dl_tasks; 1364 #endif 1365 1366 struct mm_struct *mm, *active_mm; 1367 #ifdef CONFIG_COMPAT_BRK 1368 unsigned brk_randomized:1; 1369 #endif 1370 /* per-thread vma caching */ 1371 u32 vmacache_seqnum; 1372 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1373 #if defined(SPLIT_RSS_COUNTING) 1374 struct task_rss_stat rss_stat; 1375 #endif 1376 /* task state */ 1377 int exit_state; 1378 int exit_code, exit_signal; 1379 int pdeath_signal; /* The signal sent when the parent dies */ 1380 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1381 1382 /* Used for emulating ABI behavior of previous Linux versions */ 1383 unsigned int personality; 1384 1385 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1386 * execve */ 1387 unsigned in_iowait:1; 1388 1389 /* Revert to default priority/policy when forking */ 1390 unsigned sched_reset_on_fork:1; 1391 unsigned sched_contributes_to_load:1; 1392 1393 #ifdef CONFIG_MEMCG_KMEM 1394 unsigned memcg_kmem_skip_account:1; 1395 #endif 1396 1397 unsigned long atomic_flags; /* Flags needing atomic access. */ 1398 1399 struct restart_block restart_block; 1400 1401 pid_t pid; 1402 pid_t tgid; 1403 1404 #ifdef CONFIG_CC_STACKPROTECTOR 1405 /* Canary value for the -fstack-protector gcc feature */ 1406 unsigned long stack_canary; 1407 #endif 1408 /* 1409 * pointers to (original) parent process, youngest child, younger sibling, 1410 * older sibling, respectively. (p->father can be replaced with 1411 * p->real_parent->pid) 1412 */ 1413 struct task_struct __rcu *real_parent; /* real parent process */ 1414 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1415 /* 1416 * children/sibling forms the list of my natural children 1417 */ 1418 struct list_head children; /* list of my children */ 1419 struct list_head sibling; /* linkage in my parent's children list */ 1420 struct task_struct *group_leader; /* threadgroup leader */ 1421 1422 /* 1423 * ptraced is the list of tasks this task is using ptrace on. 1424 * This includes both natural children and PTRACE_ATTACH targets. 1425 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1426 */ 1427 struct list_head ptraced; 1428 struct list_head ptrace_entry; 1429 1430 /* PID/PID hash table linkage. */ 1431 struct pid_link pids[PIDTYPE_MAX]; 1432 struct list_head thread_group; 1433 struct list_head thread_node; 1434 1435 struct completion *vfork_done; /* for vfork() */ 1436 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1437 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1438 1439 cputime_t utime, stime, utimescaled, stimescaled; 1440 cputime_t gtime; 1441 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1442 struct cputime prev_cputime; 1443 #endif 1444 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1445 seqlock_t vtime_seqlock; 1446 unsigned long long vtime_snap; 1447 enum { 1448 VTIME_SLEEPING = 0, 1449 VTIME_USER, 1450 VTIME_SYS, 1451 } vtime_snap_whence; 1452 #endif 1453 unsigned long nvcsw, nivcsw; /* context switch counts */ 1454 u64 start_time; /* monotonic time in nsec */ 1455 u64 real_start_time; /* boot based time in nsec */ 1456 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1457 unsigned long min_flt, maj_flt; 1458 1459 struct task_cputime cputime_expires; 1460 struct list_head cpu_timers[3]; 1461 1462 /* process credentials */ 1463 const struct cred __rcu *real_cred; /* objective and real subjective task 1464 * credentials (COW) */ 1465 const struct cred __rcu *cred; /* effective (overridable) subjective task 1466 * credentials (COW) */ 1467 char comm[TASK_COMM_LEN]; /* executable name excluding path 1468 - access with [gs]et_task_comm (which lock 1469 it with task_lock()) 1470 - initialized normally by setup_new_exec */ 1471 /* file system info */ 1472 int link_count, total_link_count; 1473 #ifdef CONFIG_SYSVIPC 1474 /* ipc stuff */ 1475 struct sysv_sem sysvsem; 1476 struct sysv_shm sysvshm; 1477 #endif 1478 #ifdef CONFIG_DETECT_HUNG_TASK 1479 /* hung task detection */ 1480 unsigned long last_switch_count; 1481 #endif 1482 /* CPU-specific state of this task */ 1483 struct thread_struct thread; 1484 /* filesystem information */ 1485 struct fs_struct *fs; 1486 /* open file information */ 1487 struct files_struct *files; 1488 /* namespaces */ 1489 struct nsproxy *nsproxy; 1490 /* signal handlers */ 1491 struct signal_struct *signal; 1492 struct sighand_struct *sighand; 1493 1494 sigset_t blocked, real_blocked; 1495 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1496 struct sigpending pending; 1497 1498 unsigned long sas_ss_sp; 1499 size_t sas_ss_size; 1500 int (*notifier)(void *priv); 1501 void *notifier_data; 1502 sigset_t *notifier_mask; 1503 struct callback_head *task_works; 1504 1505 struct audit_context *audit_context; 1506 #ifdef CONFIG_AUDITSYSCALL 1507 kuid_t loginuid; 1508 unsigned int sessionid; 1509 #endif 1510 struct seccomp seccomp; 1511 1512 /* Thread group tracking */ 1513 u32 parent_exec_id; 1514 u32 self_exec_id; 1515 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1516 * mempolicy */ 1517 spinlock_t alloc_lock; 1518 1519 /* Protection of the PI data structures: */ 1520 raw_spinlock_t pi_lock; 1521 1522 #ifdef CONFIG_RT_MUTEXES 1523 /* PI waiters blocked on a rt_mutex held by this task */ 1524 struct rb_root pi_waiters; 1525 struct rb_node *pi_waiters_leftmost; 1526 /* Deadlock detection and priority inheritance handling */ 1527 struct rt_mutex_waiter *pi_blocked_on; 1528 #endif 1529 1530 #ifdef CONFIG_DEBUG_MUTEXES 1531 /* mutex deadlock detection */ 1532 struct mutex_waiter *blocked_on; 1533 #endif 1534 #ifdef CONFIG_TRACE_IRQFLAGS 1535 unsigned int irq_events; 1536 unsigned long hardirq_enable_ip; 1537 unsigned long hardirq_disable_ip; 1538 unsigned int hardirq_enable_event; 1539 unsigned int hardirq_disable_event; 1540 int hardirqs_enabled; 1541 int hardirq_context; 1542 unsigned long softirq_disable_ip; 1543 unsigned long softirq_enable_ip; 1544 unsigned int softirq_disable_event; 1545 unsigned int softirq_enable_event; 1546 int softirqs_enabled; 1547 int softirq_context; 1548 #endif 1549 #ifdef CONFIG_LOCKDEP 1550 # define MAX_LOCK_DEPTH 48UL 1551 u64 curr_chain_key; 1552 int lockdep_depth; 1553 unsigned int lockdep_recursion; 1554 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1555 gfp_t lockdep_reclaim_gfp; 1556 #endif 1557 1558 /* journalling filesystem info */ 1559 void *journal_info; 1560 1561 /* stacked block device info */ 1562 struct bio_list *bio_list; 1563 1564 #ifdef CONFIG_BLOCK 1565 /* stack plugging */ 1566 struct blk_plug *plug; 1567 #endif 1568 1569 /* VM state */ 1570 struct reclaim_state *reclaim_state; 1571 1572 struct backing_dev_info *backing_dev_info; 1573 1574 struct io_context *io_context; 1575 1576 unsigned long ptrace_message; 1577 siginfo_t *last_siginfo; /* For ptrace use. */ 1578 struct task_io_accounting ioac; 1579 #if defined(CONFIG_TASK_XACCT) 1580 u64 acct_rss_mem1; /* accumulated rss usage */ 1581 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1582 cputime_t acct_timexpd; /* stime + utime since last update */ 1583 #endif 1584 #ifdef CONFIG_CPUSETS 1585 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1586 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1587 int cpuset_mem_spread_rotor; 1588 int cpuset_slab_spread_rotor; 1589 #endif 1590 #ifdef CONFIG_CGROUPS 1591 /* Control Group info protected by css_set_lock */ 1592 struct css_set __rcu *cgroups; 1593 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1594 struct list_head cg_list; 1595 #endif 1596 #ifdef CONFIG_FUTEX 1597 struct robust_list_head __user *robust_list; 1598 #ifdef CONFIG_COMPAT 1599 struct compat_robust_list_head __user *compat_robust_list; 1600 #endif 1601 struct list_head pi_state_list; 1602 struct futex_pi_state *pi_state_cache; 1603 #endif 1604 #ifdef CONFIG_PERF_EVENTS 1605 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1606 struct mutex perf_event_mutex; 1607 struct list_head perf_event_list; 1608 #endif 1609 #ifdef CONFIG_DEBUG_PREEMPT 1610 unsigned long preempt_disable_ip; 1611 #endif 1612 #ifdef CONFIG_NUMA 1613 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1614 short il_next; 1615 short pref_node_fork; 1616 #endif 1617 #ifdef CONFIG_NUMA_BALANCING 1618 int numa_scan_seq; 1619 unsigned int numa_scan_period; 1620 unsigned int numa_scan_period_max; 1621 int numa_preferred_nid; 1622 unsigned long numa_migrate_retry; 1623 u64 node_stamp; /* migration stamp */ 1624 u64 last_task_numa_placement; 1625 u64 last_sum_exec_runtime; 1626 struct callback_head numa_work; 1627 1628 struct list_head numa_entry; 1629 struct numa_group *numa_group; 1630 1631 /* 1632 * numa_faults is an array split into four regions: 1633 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1634 * in this precise order. 1635 * 1636 * faults_memory: Exponential decaying average of faults on a per-node 1637 * basis. Scheduling placement decisions are made based on these 1638 * counts. The values remain static for the duration of a PTE scan. 1639 * faults_cpu: Track the nodes the process was running on when a NUMA 1640 * hinting fault was incurred. 1641 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1642 * during the current scan window. When the scan completes, the counts 1643 * in faults_memory and faults_cpu decay and these values are copied. 1644 */ 1645 unsigned long *numa_faults; 1646 unsigned long total_numa_faults; 1647 1648 /* 1649 * numa_faults_locality tracks if faults recorded during the last 1650 * scan window were remote/local or failed to migrate. The task scan 1651 * period is adapted based on the locality of the faults with different 1652 * weights depending on whether they were shared or private faults 1653 */ 1654 unsigned long numa_faults_locality[3]; 1655 1656 unsigned long numa_pages_migrated; 1657 #endif /* CONFIG_NUMA_BALANCING */ 1658 1659 struct rcu_head rcu; 1660 1661 /* 1662 * cache last used pipe for splice 1663 */ 1664 struct pipe_inode_info *splice_pipe; 1665 1666 struct page_frag task_frag; 1667 1668 #ifdef CONFIG_TASK_DELAY_ACCT 1669 struct task_delay_info *delays; 1670 #endif 1671 #ifdef CONFIG_FAULT_INJECTION 1672 int make_it_fail; 1673 #endif 1674 /* 1675 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1676 * balance_dirty_pages() for some dirty throttling pause 1677 */ 1678 int nr_dirtied; 1679 int nr_dirtied_pause; 1680 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1681 1682 #ifdef CONFIG_LATENCYTOP 1683 int latency_record_count; 1684 struct latency_record latency_record[LT_SAVECOUNT]; 1685 #endif 1686 /* 1687 * time slack values; these are used to round up poll() and 1688 * select() etc timeout values. These are in nanoseconds. 1689 */ 1690 unsigned long timer_slack_ns; 1691 unsigned long default_timer_slack_ns; 1692 1693 #ifdef CONFIG_KASAN 1694 unsigned int kasan_depth; 1695 #endif 1696 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1697 /* Index of current stored address in ret_stack */ 1698 int curr_ret_stack; 1699 /* Stack of return addresses for return function tracing */ 1700 struct ftrace_ret_stack *ret_stack; 1701 /* time stamp for last schedule */ 1702 unsigned long long ftrace_timestamp; 1703 /* 1704 * Number of functions that haven't been traced 1705 * because of depth overrun. 1706 */ 1707 atomic_t trace_overrun; 1708 /* Pause for the tracing */ 1709 atomic_t tracing_graph_pause; 1710 #endif 1711 #ifdef CONFIG_TRACING 1712 /* state flags for use by tracers */ 1713 unsigned long trace; 1714 /* bitmask and counter of trace recursion */ 1715 unsigned long trace_recursion; 1716 #endif /* CONFIG_TRACING */ 1717 #ifdef CONFIG_MEMCG 1718 struct memcg_oom_info { 1719 struct mem_cgroup *memcg; 1720 gfp_t gfp_mask; 1721 int order; 1722 unsigned int may_oom:1; 1723 } memcg_oom; 1724 #endif 1725 #ifdef CONFIG_UPROBES 1726 struct uprobe_task *utask; 1727 #endif 1728 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1729 unsigned int sequential_io; 1730 unsigned int sequential_io_avg; 1731 #endif 1732 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1733 unsigned long task_state_change; 1734 #endif 1735 }; 1736 1737 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1738 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1739 1740 #define TNF_MIGRATED 0x01 1741 #define TNF_NO_GROUP 0x02 1742 #define TNF_SHARED 0x04 1743 #define TNF_FAULT_LOCAL 0x08 1744 #define TNF_MIGRATE_FAIL 0x10 1745 1746 #ifdef CONFIG_NUMA_BALANCING 1747 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1748 extern pid_t task_numa_group_id(struct task_struct *p); 1749 extern void set_numabalancing_state(bool enabled); 1750 extern void task_numa_free(struct task_struct *p); 1751 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1752 int src_nid, int dst_cpu); 1753 #else 1754 static inline void task_numa_fault(int last_node, int node, int pages, 1755 int flags) 1756 { 1757 } 1758 static inline pid_t task_numa_group_id(struct task_struct *p) 1759 { 1760 return 0; 1761 } 1762 static inline void set_numabalancing_state(bool enabled) 1763 { 1764 } 1765 static inline void task_numa_free(struct task_struct *p) 1766 { 1767 } 1768 static inline bool should_numa_migrate_memory(struct task_struct *p, 1769 struct page *page, int src_nid, int dst_cpu) 1770 { 1771 return true; 1772 } 1773 #endif 1774 1775 static inline struct pid *task_pid(struct task_struct *task) 1776 { 1777 return task->pids[PIDTYPE_PID].pid; 1778 } 1779 1780 static inline struct pid *task_tgid(struct task_struct *task) 1781 { 1782 return task->group_leader->pids[PIDTYPE_PID].pid; 1783 } 1784 1785 /* 1786 * Without tasklist or rcu lock it is not safe to dereference 1787 * the result of task_pgrp/task_session even if task == current, 1788 * we can race with another thread doing sys_setsid/sys_setpgid. 1789 */ 1790 static inline struct pid *task_pgrp(struct task_struct *task) 1791 { 1792 return task->group_leader->pids[PIDTYPE_PGID].pid; 1793 } 1794 1795 static inline struct pid *task_session(struct task_struct *task) 1796 { 1797 return task->group_leader->pids[PIDTYPE_SID].pid; 1798 } 1799 1800 struct pid_namespace; 1801 1802 /* 1803 * the helpers to get the task's different pids as they are seen 1804 * from various namespaces 1805 * 1806 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1807 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1808 * current. 1809 * task_xid_nr_ns() : id seen from the ns specified; 1810 * 1811 * set_task_vxid() : assigns a virtual id to a task; 1812 * 1813 * see also pid_nr() etc in include/linux/pid.h 1814 */ 1815 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1816 struct pid_namespace *ns); 1817 1818 static inline pid_t task_pid_nr(struct task_struct *tsk) 1819 { 1820 return tsk->pid; 1821 } 1822 1823 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1824 struct pid_namespace *ns) 1825 { 1826 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1827 } 1828 1829 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1830 { 1831 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1832 } 1833 1834 1835 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1836 { 1837 return tsk->tgid; 1838 } 1839 1840 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1841 1842 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1843 { 1844 return pid_vnr(task_tgid(tsk)); 1845 } 1846 1847 1848 static inline int pid_alive(const struct task_struct *p); 1849 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1850 { 1851 pid_t pid = 0; 1852 1853 rcu_read_lock(); 1854 if (pid_alive(tsk)) 1855 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1856 rcu_read_unlock(); 1857 1858 return pid; 1859 } 1860 1861 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1862 { 1863 return task_ppid_nr_ns(tsk, &init_pid_ns); 1864 } 1865 1866 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1867 struct pid_namespace *ns) 1868 { 1869 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1870 } 1871 1872 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1873 { 1874 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1875 } 1876 1877 1878 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1879 struct pid_namespace *ns) 1880 { 1881 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1882 } 1883 1884 static inline pid_t task_session_vnr(struct task_struct *tsk) 1885 { 1886 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1887 } 1888 1889 /* obsolete, do not use */ 1890 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1891 { 1892 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1893 } 1894 1895 /** 1896 * pid_alive - check that a task structure is not stale 1897 * @p: Task structure to be checked. 1898 * 1899 * Test if a process is not yet dead (at most zombie state) 1900 * If pid_alive fails, then pointers within the task structure 1901 * can be stale and must not be dereferenced. 1902 * 1903 * Return: 1 if the process is alive. 0 otherwise. 1904 */ 1905 static inline int pid_alive(const struct task_struct *p) 1906 { 1907 return p->pids[PIDTYPE_PID].pid != NULL; 1908 } 1909 1910 /** 1911 * is_global_init - check if a task structure is init 1912 * @tsk: Task structure to be checked. 1913 * 1914 * Check if a task structure is the first user space task the kernel created. 1915 * 1916 * Return: 1 if the task structure is init. 0 otherwise. 1917 */ 1918 static inline int is_global_init(struct task_struct *tsk) 1919 { 1920 return tsk->pid == 1; 1921 } 1922 1923 extern struct pid *cad_pid; 1924 1925 extern void free_task(struct task_struct *tsk); 1926 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1927 1928 extern void __put_task_struct(struct task_struct *t); 1929 1930 static inline void put_task_struct(struct task_struct *t) 1931 { 1932 if (atomic_dec_and_test(&t->usage)) 1933 __put_task_struct(t); 1934 } 1935 1936 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1937 extern void task_cputime(struct task_struct *t, 1938 cputime_t *utime, cputime_t *stime); 1939 extern void task_cputime_scaled(struct task_struct *t, 1940 cputime_t *utimescaled, cputime_t *stimescaled); 1941 extern cputime_t task_gtime(struct task_struct *t); 1942 #else 1943 static inline void task_cputime(struct task_struct *t, 1944 cputime_t *utime, cputime_t *stime) 1945 { 1946 if (utime) 1947 *utime = t->utime; 1948 if (stime) 1949 *stime = t->stime; 1950 } 1951 1952 static inline void task_cputime_scaled(struct task_struct *t, 1953 cputime_t *utimescaled, 1954 cputime_t *stimescaled) 1955 { 1956 if (utimescaled) 1957 *utimescaled = t->utimescaled; 1958 if (stimescaled) 1959 *stimescaled = t->stimescaled; 1960 } 1961 1962 static inline cputime_t task_gtime(struct task_struct *t) 1963 { 1964 return t->gtime; 1965 } 1966 #endif 1967 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1968 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1969 1970 /* 1971 * Per process flags 1972 */ 1973 #define PF_EXITING 0x00000004 /* getting shut down */ 1974 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1975 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1976 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1977 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1978 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1979 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1980 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1981 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1982 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1983 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1984 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1985 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1986 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1987 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1988 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1989 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1990 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1991 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1992 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1993 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1994 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1995 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1996 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1997 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1998 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1999 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2000 2001 /* 2002 * Only the _current_ task can read/write to tsk->flags, but other 2003 * tasks can access tsk->flags in readonly mode for example 2004 * with tsk_used_math (like during threaded core dumping). 2005 * There is however an exception to this rule during ptrace 2006 * or during fork: the ptracer task is allowed to write to the 2007 * child->flags of its traced child (same goes for fork, the parent 2008 * can write to the child->flags), because we're guaranteed the 2009 * child is not running and in turn not changing child->flags 2010 * at the same time the parent does it. 2011 */ 2012 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2013 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2014 #define clear_used_math() clear_stopped_child_used_math(current) 2015 #define set_used_math() set_stopped_child_used_math(current) 2016 #define conditional_stopped_child_used_math(condition, child) \ 2017 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2018 #define conditional_used_math(condition) \ 2019 conditional_stopped_child_used_math(condition, current) 2020 #define copy_to_stopped_child_used_math(child) \ 2021 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2022 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2023 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2024 #define used_math() tsk_used_math(current) 2025 2026 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2027 * __GFP_FS is also cleared as it implies __GFP_IO. 2028 */ 2029 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2030 { 2031 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2032 flags &= ~(__GFP_IO | __GFP_FS); 2033 return flags; 2034 } 2035 2036 static inline unsigned int memalloc_noio_save(void) 2037 { 2038 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2039 current->flags |= PF_MEMALLOC_NOIO; 2040 return flags; 2041 } 2042 2043 static inline void memalloc_noio_restore(unsigned int flags) 2044 { 2045 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2046 } 2047 2048 /* Per-process atomic flags. */ 2049 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2050 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2051 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2052 2053 2054 #define TASK_PFA_TEST(name, func) \ 2055 static inline bool task_##func(struct task_struct *p) \ 2056 { return test_bit(PFA_##name, &p->atomic_flags); } 2057 #define TASK_PFA_SET(name, func) \ 2058 static inline void task_set_##func(struct task_struct *p) \ 2059 { set_bit(PFA_##name, &p->atomic_flags); } 2060 #define TASK_PFA_CLEAR(name, func) \ 2061 static inline void task_clear_##func(struct task_struct *p) \ 2062 { clear_bit(PFA_##name, &p->atomic_flags); } 2063 2064 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2065 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2066 2067 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2068 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2069 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2070 2071 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2072 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2073 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2074 2075 /* 2076 * task->jobctl flags 2077 */ 2078 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2079 2080 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2081 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2082 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2083 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2084 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2085 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2086 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2087 2088 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 2089 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 2090 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 2091 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 2092 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 2093 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 2094 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 2095 2096 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2097 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2098 2099 extern bool task_set_jobctl_pending(struct task_struct *task, 2100 unsigned int mask); 2101 extern void task_clear_jobctl_trapping(struct task_struct *task); 2102 extern void task_clear_jobctl_pending(struct task_struct *task, 2103 unsigned int mask); 2104 2105 static inline void rcu_copy_process(struct task_struct *p) 2106 { 2107 #ifdef CONFIG_PREEMPT_RCU 2108 p->rcu_read_lock_nesting = 0; 2109 p->rcu_read_unlock_special.s = 0; 2110 p->rcu_blocked_node = NULL; 2111 INIT_LIST_HEAD(&p->rcu_node_entry); 2112 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2113 #ifdef CONFIG_TASKS_RCU 2114 p->rcu_tasks_holdout = false; 2115 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2116 p->rcu_tasks_idle_cpu = -1; 2117 #endif /* #ifdef CONFIG_TASKS_RCU */ 2118 } 2119 2120 static inline void tsk_restore_flags(struct task_struct *task, 2121 unsigned long orig_flags, unsigned long flags) 2122 { 2123 task->flags &= ~flags; 2124 task->flags |= orig_flags & flags; 2125 } 2126 2127 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2128 const struct cpumask *trial); 2129 extern int task_can_attach(struct task_struct *p, 2130 const struct cpumask *cs_cpus_allowed); 2131 #ifdef CONFIG_SMP 2132 extern void do_set_cpus_allowed(struct task_struct *p, 2133 const struct cpumask *new_mask); 2134 2135 extern int set_cpus_allowed_ptr(struct task_struct *p, 2136 const struct cpumask *new_mask); 2137 #else 2138 static inline void do_set_cpus_allowed(struct task_struct *p, 2139 const struct cpumask *new_mask) 2140 { 2141 } 2142 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2143 const struct cpumask *new_mask) 2144 { 2145 if (!cpumask_test_cpu(0, new_mask)) 2146 return -EINVAL; 2147 return 0; 2148 } 2149 #endif 2150 2151 #ifdef CONFIG_NO_HZ_COMMON 2152 void calc_load_enter_idle(void); 2153 void calc_load_exit_idle(void); 2154 #else 2155 static inline void calc_load_enter_idle(void) { } 2156 static inline void calc_load_exit_idle(void) { } 2157 #endif /* CONFIG_NO_HZ_COMMON */ 2158 2159 #ifndef CONFIG_CPUMASK_OFFSTACK 2160 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2161 { 2162 return set_cpus_allowed_ptr(p, &new_mask); 2163 } 2164 #endif 2165 2166 /* 2167 * Do not use outside of architecture code which knows its limitations. 2168 * 2169 * sched_clock() has no promise of monotonicity or bounded drift between 2170 * CPUs, use (which you should not) requires disabling IRQs. 2171 * 2172 * Please use one of the three interfaces below. 2173 */ 2174 extern unsigned long long notrace sched_clock(void); 2175 /* 2176 * See the comment in kernel/sched/clock.c 2177 */ 2178 extern u64 cpu_clock(int cpu); 2179 extern u64 local_clock(void); 2180 extern u64 running_clock(void); 2181 extern u64 sched_clock_cpu(int cpu); 2182 2183 2184 extern void sched_clock_init(void); 2185 2186 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2187 static inline void sched_clock_tick(void) 2188 { 2189 } 2190 2191 static inline void sched_clock_idle_sleep_event(void) 2192 { 2193 } 2194 2195 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2196 { 2197 } 2198 #else 2199 /* 2200 * Architectures can set this to 1 if they have specified 2201 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2202 * but then during bootup it turns out that sched_clock() 2203 * is reliable after all: 2204 */ 2205 extern int sched_clock_stable(void); 2206 extern void set_sched_clock_stable(void); 2207 extern void clear_sched_clock_stable(void); 2208 2209 extern void sched_clock_tick(void); 2210 extern void sched_clock_idle_sleep_event(void); 2211 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2212 #endif 2213 2214 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2215 /* 2216 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2217 * The reason for this explicit opt-in is not to have perf penalty with 2218 * slow sched_clocks. 2219 */ 2220 extern void enable_sched_clock_irqtime(void); 2221 extern void disable_sched_clock_irqtime(void); 2222 #else 2223 static inline void enable_sched_clock_irqtime(void) {} 2224 static inline void disable_sched_clock_irqtime(void) {} 2225 #endif 2226 2227 extern unsigned long long 2228 task_sched_runtime(struct task_struct *task); 2229 2230 /* sched_exec is called by processes performing an exec */ 2231 #ifdef CONFIG_SMP 2232 extern void sched_exec(void); 2233 #else 2234 #define sched_exec() {} 2235 #endif 2236 2237 extern void sched_clock_idle_sleep_event(void); 2238 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2239 2240 #ifdef CONFIG_HOTPLUG_CPU 2241 extern void idle_task_exit(void); 2242 #else 2243 static inline void idle_task_exit(void) {} 2244 #endif 2245 2246 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2247 extern void wake_up_nohz_cpu(int cpu); 2248 #else 2249 static inline void wake_up_nohz_cpu(int cpu) { } 2250 #endif 2251 2252 #ifdef CONFIG_NO_HZ_FULL 2253 extern bool sched_can_stop_tick(void); 2254 extern u64 scheduler_tick_max_deferment(void); 2255 #else 2256 static inline bool sched_can_stop_tick(void) { return false; } 2257 #endif 2258 2259 #ifdef CONFIG_SCHED_AUTOGROUP 2260 extern void sched_autogroup_create_attach(struct task_struct *p); 2261 extern void sched_autogroup_detach(struct task_struct *p); 2262 extern void sched_autogroup_fork(struct signal_struct *sig); 2263 extern void sched_autogroup_exit(struct signal_struct *sig); 2264 #ifdef CONFIG_PROC_FS 2265 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2266 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2267 #endif 2268 #else 2269 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2270 static inline void sched_autogroup_detach(struct task_struct *p) { } 2271 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2272 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2273 #endif 2274 2275 extern int yield_to(struct task_struct *p, bool preempt); 2276 extern void set_user_nice(struct task_struct *p, long nice); 2277 extern int task_prio(const struct task_struct *p); 2278 /** 2279 * task_nice - return the nice value of a given task. 2280 * @p: the task in question. 2281 * 2282 * Return: The nice value [ -20 ... 0 ... 19 ]. 2283 */ 2284 static inline int task_nice(const struct task_struct *p) 2285 { 2286 return PRIO_TO_NICE((p)->static_prio); 2287 } 2288 extern int can_nice(const struct task_struct *p, const int nice); 2289 extern int task_curr(const struct task_struct *p); 2290 extern int idle_cpu(int cpu); 2291 extern int sched_setscheduler(struct task_struct *, int, 2292 const struct sched_param *); 2293 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2294 const struct sched_param *); 2295 extern int sched_setattr(struct task_struct *, 2296 const struct sched_attr *); 2297 extern struct task_struct *idle_task(int cpu); 2298 /** 2299 * is_idle_task - is the specified task an idle task? 2300 * @p: the task in question. 2301 * 2302 * Return: 1 if @p is an idle task. 0 otherwise. 2303 */ 2304 static inline bool is_idle_task(const struct task_struct *p) 2305 { 2306 return p->pid == 0; 2307 } 2308 extern struct task_struct *curr_task(int cpu); 2309 extern void set_curr_task(int cpu, struct task_struct *p); 2310 2311 void yield(void); 2312 2313 union thread_union { 2314 struct thread_info thread_info; 2315 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2316 }; 2317 2318 #ifndef __HAVE_ARCH_KSTACK_END 2319 static inline int kstack_end(void *addr) 2320 { 2321 /* Reliable end of stack detection: 2322 * Some APM bios versions misalign the stack 2323 */ 2324 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2325 } 2326 #endif 2327 2328 extern union thread_union init_thread_union; 2329 extern struct task_struct init_task; 2330 2331 extern struct mm_struct init_mm; 2332 2333 extern struct pid_namespace init_pid_ns; 2334 2335 /* 2336 * find a task by one of its numerical ids 2337 * 2338 * find_task_by_pid_ns(): 2339 * finds a task by its pid in the specified namespace 2340 * find_task_by_vpid(): 2341 * finds a task by its virtual pid 2342 * 2343 * see also find_vpid() etc in include/linux/pid.h 2344 */ 2345 2346 extern struct task_struct *find_task_by_vpid(pid_t nr); 2347 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2348 struct pid_namespace *ns); 2349 2350 /* per-UID process charging. */ 2351 extern struct user_struct * alloc_uid(kuid_t); 2352 static inline struct user_struct *get_uid(struct user_struct *u) 2353 { 2354 atomic_inc(&u->__count); 2355 return u; 2356 } 2357 extern void free_uid(struct user_struct *); 2358 2359 #include <asm/current.h> 2360 2361 extern void xtime_update(unsigned long ticks); 2362 2363 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2364 extern int wake_up_process(struct task_struct *tsk); 2365 extern void wake_up_new_task(struct task_struct *tsk); 2366 #ifdef CONFIG_SMP 2367 extern void kick_process(struct task_struct *tsk); 2368 #else 2369 static inline void kick_process(struct task_struct *tsk) { } 2370 #endif 2371 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2372 extern void sched_dead(struct task_struct *p); 2373 2374 extern void proc_caches_init(void); 2375 extern void flush_signals(struct task_struct *); 2376 extern void __flush_signals(struct task_struct *); 2377 extern void ignore_signals(struct task_struct *); 2378 extern void flush_signal_handlers(struct task_struct *, int force_default); 2379 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2380 2381 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2382 { 2383 unsigned long flags; 2384 int ret; 2385 2386 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2387 ret = dequeue_signal(tsk, mask, info); 2388 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2389 2390 return ret; 2391 } 2392 2393 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2394 sigset_t *mask); 2395 extern void unblock_all_signals(void); 2396 extern void release_task(struct task_struct * p); 2397 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2398 extern int force_sigsegv(int, struct task_struct *); 2399 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2400 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2401 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2402 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2403 const struct cred *, u32); 2404 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2405 extern int kill_pid(struct pid *pid, int sig, int priv); 2406 extern int kill_proc_info(int, struct siginfo *, pid_t); 2407 extern __must_check bool do_notify_parent(struct task_struct *, int); 2408 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2409 extern void force_sig(int, struct task_struct *); 2410 extern int send_sig(int, struct task_struct *, int); 2411 extern int zap_other_threads(struct task_struct *p); 2412 extern struct sigqueue *sigqueue_alloc(void); 2413 extern void sigqueue_free(struct sigqueue *); 2414 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2415 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2416 2417 static inline void restore_saved_sigmask(void) 2418 { 2419 if (test_and_clear_restore_sigmask()) 2420 __set_current_blocked(¤t->saved_sigmask); 2421 } 2422 2423 static inline sigset_t *sigmask_to_save(void) 2424 { 2425 sigset_t *res = ¤t->blocked; 2426 if (unlikely(test_restore_sigmask())) 2427 res = ¤t->saved_sigmask; 2428 return res; 2429 } 2430 2431 static inline int kill_cad_pid(int sig, int priv) 2432 { 2433 return kill_pid(cad_pid, sig, priv); 2434 } 2435 2436 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2437 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2438 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2439 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2440 2441 /* 2442 * True if we are on the alternate signal stack. 2443 */ 2444 static inline int on_sig_stack(unsigned long sp) 2445 { 2446 #ifdef CONFIG_STACK_GROWSUP 2447 return sp >= current->sas_ss_sp && 2448 sp - current->sas_ss_sp < current->sas_ss_size; 2449 #else 2450 return sp > current->sas_ss_sp && 2451 sp - current->sas_ss_sp <= current->sas_ss_size; 2452 #endif 2453 } 2454 2455 static inline int sas_ss_flags(unsigned long sp) 2456 { 2457 if (!current->sas_ss_size) 2458 return SS_DISABLE; 2459 2460 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2461 } 2462 2463 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2464 { 2465 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2466 #ifdef CONFIG_STACK_GROWSUP 2467 return current->sas_ss_sp; 2468 #else 2469 return current->sas_ss_sp + current->sas_ss_size; 2470 #endif 2471 return sp; 2472 } 2473 2474 /* 2475 * Routines for handling mm_structs 2476 */ 2477 extern struct mm_struct * mm_alloc(void); 2478 2479 /* mmdrop drops the mm and the page tables */ 2480 extern void __mmdrop(struct mm_struct *); 2481 static inline void mmdrop(struct mm_struct * mm) 2482 { 2483 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2484 __mmdrop(mm); 2485 } 2486 2487 /* mmput gets rid of the mappings and all user-space */ 2488 extern void mmput(struct mm_struct *); 2489 /* Grab a reference to a task's mm, if it is not already going away */ 2490 extern struct mm_struct *get_task_mm(struct task_struct *task); 2491 /* 2492 * Grab a reference to a task's mm, if it is not already going away 2493 * and ptrace_may_access with the mode parameter passed to it 2494 * succeeds. 2495 */ 2496 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2497 /* Remove the current tasks stale references to the old mm_struct */ 2498 extern void mm_release(struct task_struct *, struct mm_struct *); 2499 2500 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2501 struct task_struct *); 2502 extern void flush_thread(void); 2503 extern void exit_thread(void); 2504 2505 extern void exit_files(struct task_struct *); 2506 extern void __cleanup_sighand(struct sighand_struct *); 2507 2508 extern void exit_itimers(struct signal_struct *); 2509 extern void flush_itimer_signals(void); 2510 2511 extern void do_group_exit(int); 2512 2513 extern int do_execve(struct filename *, 2514 const char __user * const __user *, 2515 const char __user * const __user *); 2516 extern int do_execveat(int, struct filename *, 2517 const char __user * const __user *, 2518 const char __user * const __user *, 2519 int); 2520 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2521 struct task_struct *fork_idle(int); 2522 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2523 2524 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2525 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2526 { 2527 __set_task_comm(tsk, from, false); 2528 } 2529 extern char *get_task_comm(char *to, struct task_struct *tsk); 2530 2531 #ifdef CONFIG_SMP 2532 void scheduler_ipi(void); 2533 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2534 #else 2535 static inline void scheduler_ipi(void) { } 2536 static inline unsigned long wait_task_inactive(struct task_struct *p, 2537 long match_state) 2538 { 2539 return 1; 2540 } 2541 #endif 2542 2543 #define next_task(p) \ 2544 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2545 2546 #define for_each_process(p) \ 2547 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2548 2549 extern bool current_is_single_threaded(void); 2550 2551 /* 2552 * Careful: do_each_thread/while_each_thread is a double loop so 2553 * 'break' will not work as expected - use goto instead. 2554 */ 2555 #define do_each_thread(g, t) \ 2556 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2557 2558 #define while_each_thread(g, t) \ 2559 while ((t = next_thread(t)) != g) 2560 2561 #define __for_each_thread(signal, t) \ 2562 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2563 2564 #define for_each_thread(p, t) \ 2565 __for_each_thread((p)->signal, t) 2566 2567 /* Careful: this is a double loop, 'break' won't work as expected. */ 2568 #define for_each_process_thread(p, t) \ 2569 for_each_process(p) for_each_thread(p, t) 2570 2571 static inline int get_nr_threads(struct task_struct *tsk) 2572 { 2573 return tsk->signal->nr_threads; 2574 } 2575 2576 static inline bool thread_group_leader(struct task_struct *p) 2577 { 2578 return p->exit_signal >= 0; 2579 } 2580 2581 /* Do to the insanities of de_thread it is possible for a process 2582 * to have the pid of the thread group leader without actually being 2583 * the thread group leader. For iteration through the pids in proc 2584 * all we care about is that we have a task with the appropriate 2585 * pid, we don't actually care if we have the right task. 2586 */ 2587 static inline bool has_group_leader_pid(struct task_struct *p) 2588 { 2589 return task_pid(p) == p->signal->leader_pid; 2590 } 2591 2592 static inline 2593 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2594 { 2595 return p1->signal == p2->signal; 2596 } 2597 2598 static inline struct task_struct *next_thread(const struct task_struct *p) 2599 { 2600 return list_entry_rcu(p->thread_group.next, 2601 struct task_struct, thread_group); 2602 } 2603 2604 static inline int thread_group_empty(struct task_struct *p) 2605 { 2606 return list_empty(&p->thread_group); 2607 } 2608 2609 #define delay_group_leader(p) \ 2610 (thread_group_leader(p) && !thread_group_empty(p)) 2611 2612 /* 2613 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2614 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2615 * pins the final release of task.io_context. Also protects ->cpuset and 2616 * ->cgroup.subsys[]. And ->vfork_done. 2617 * 2618 * Nests both inside and outside of read_lock(&tasklist_lock). 2619 * It must not be nested with write_lock_irq(&tasklist_lock), 2620 * neither inside nor outside. 2621 */ 2622 static inline void task_lock(struct task_struct *p) 2623 { 2624 spin_lock(&p->alloc_lock); 2625 } 2626 2627 static inline void task_unlock(struct task_struct *p) 2628 { 2629 spin_unlock(&p->alloc_lock); 2630 } 2631 2632 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2633 unsigned long *flags); 2634 2635 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2636 unsigned long *flags) 2637 { 2638 struct sighand_struct *ret; 2639 2640 ret = __lock_task_sighand(tsk, flags); 2641 (void)__cond_lock(&tsk->sighand->siglock, ret); 2642 return ret; 2643 } 2644 2645 static inline void unlock_task_sighand(struct task_struct *tsk, 2646 unsigned long *flags) 2647 { 2648 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2649 } 2650 2651 #ifdef CONFIG_CGROUPS 2652 static inline void threadgroup_change_begin(struct task_struct *tsk) 2653 { 2654 down_read(&tsk->signal->group_rwsem); 2655 } 2656 static inline void threadgroup_change_end(struct task_struct *tsk) 2657 { 2658 up_read(&tsk->signal->group_rwsem); 2659 } 2660 2661 /** 2662 * threadgroup_lock - lock threadgroup 2663 * @tsk: member task of the threadgroup to lock 2664 * 2665 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2666 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2667 * change ->group_leader/pid. This is useful for cases where the threadgroup 2668 * needs to stay stable across blockable operations. 2669 * 2670 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2671 * synchronization. While held, no new task will be added to threadgroup 2672 * and no existing live task will have its PF_EXITING set. 2673 * 2674 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2675 * sub-thread becomes a new leader. 2676 */ 2677 static inline void threadgroup_lock(struct task_struct *tsk) 2678 { 2679 down_write(&tsk->signal->group_rwsem); 2680 } 2681 2682 /** 2683 * threadgroup_unlock - unlock threadgroup 2684 * @tsk: member task of the threadgroup to unlock 2685 * 2686 * Reverse threadgroup_lock(). 2687 */ 2688 static inline void threadgroup_unlock(struct task_struct *tsk) 2689 { 2690 up_write(&tsk->signal->group_rwsem); 2691 } 2692 #else 2693 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2694 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2695 static inline void threadgroup_lock(struct task_struct *tsk) {} 2696 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2697 #endif 2698 2699 #ifndef __HAVE_THREAD_FUNCTIONS 2700 2701 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2702 #define task_stack_page(task) ((task)->stack) 2703 2704 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2705 { 2706 *task_thread_info(p) = *task_thread_info(org); 2707 task_thread_info(p)->task = p; 2708 } 2709 2710 /* 2711 * Return the address of the last usable long on the stack. 2712 * 2713 * When the stack grows down, this is just above the thread 2714 * info struct. Going any lower will corrupt the threadinfo. 2715 * 2716 * When the stack grows up, this is the highest address. 2717 * Beyond that position, we corrupt data on the next page. 2718 */ 2719 static inline unsigned long *end_of_stack(struct task_struct *p) 2720 { 2721 #ifdef CONFIG_STACK_GROWSUP 2722 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2723 #else 2724 return (unsigned long *)(task_thread_info(p) + 1); 2725 #endif 2726 } 2727 2728 #endif 2729 #define task_stack_end_corrupted(task) \ 2730 (*(end_of_stack(task)) != STACK_END_MAGIC) 2731 2732 static inline int object_is_on_stack(void *obj) 2733 { 2734 void *stack = task_stack_page(current); 2735 2736 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2737 } 2738 2739 extern void thread_info_cache_init(void); 2740 2741 #ifdef CONFIG_DEBUG_STACK_USAGE 2742 static inline unsigned long stack_not_used(struct task_struct *p) 2743 { 2744 unsigned long *n = end_of_stack(p); 2745 2746 do { /* Skip over canary */ 2747 n++; 2748 } while (!*n); 2749 2750 return (unsigned long)n - (unsigned long)end_of_stack(p); 2751 } 2752 #endif 2753 extern void set_task_stack_end_magic(struct task_struct *tsk); 2754 2755 /* set thread flags in other task's structures 2756 * - see asm/thread_info.h for TIF_xxxx flags available 2757 */ 2758 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2759 { 2760 set_ti_thread_flag(task_thread_info(tsk), flag); 2761 } 2762 2763 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2764 { 2765 clear_ti_thread_flag(task_thread_info(tsk), flag); 2766 } 2767 2768 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2769 { 2770 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2771 } 2772 2773 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2774 { 2775 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2776 } 2777 2778 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2779 { 2780 return test_ti_thread_flag(task_thread_info(tsk), flag); 2781 } 2782 2783 static inline void set_tsk_need_resched(struct task_struct *tsk) 2784 { 2785 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2786 } 2787 2788 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2789 { 2790 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2791 } 2792 2793 static inline int test_tsk_need_resched(struct task_struct *tsk) 2794 { 2795 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2796 } 2797 2798 static inline int restart_syscall(void) 2799 { 2800 set_tsk_thread_flag(current, TIF_SIGPENDING); 2801 return -ERESTARTNOINTR; 2802 } 2803 2804 static inline int signal_pending(struct task_struct *p) 2805 { 2806 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2807 } 2808 2809 static inline int __fatal_signal_pending(struct task_struct *p) 2810 { 2811 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2812 } 2813 2814 static inline int fatal_signal_pending(struct task_struct *p) 2815 { 2816 return signal_pending(p) && __fatal_signal_pending(p); 2817 } 2818 2819 static inline int signal_pending_state(long state, struct task_struct *p) 2820 { 2821 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2822 return 0; 2823 if (!signal_pending(p)) 2824 return 0; 2825 2826 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2827 } 2828 2829 /* 2830 * cond_resched() and cond_resched_lock(): latency reduction via 2831 * explicit rescheduling in places that are safe. The return 2832 * value indicates whether a reschedule was done in fact. 2833 * cond_resched_lock() will drop the spinlock before scheduling, 2834 * cond_resched_softirq() will enable bhs before scheduling. 2835 */ 2836 extern int _cond_resched(void); 2837 2838 #define cond_resched() ({ \ 2839 ___might_sleep(__FILE__, __LINE__, 0); \ 2840 _cond_resched(); \ 2841 }) 2842 2843 extern int __cond_resched_lock(spinlock_t *lock); 2844 2845 #ifdef CONFIG_PREEMPT_COUNT 2846 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2847 #else 2848 #define PREEMPT_LOCK_OFFSET 0 2849 #endif 2850 2851 #define cond_resched_lock(lock) ({ \ 2852 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2853 __cond_resched_lock(lock); \ 2854 }) 2855 2856 extern int __cond_resched_softirq(void); 2857 2858 #define cond_resched_softirq() ({ \ 2859 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2860 __cond_resched_softirq(); \ 2861 }) 2862 2863 static inline void cond_resched_rcu(void) 2864 { 2865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2866 rcu_read_unlock(); 2867 cond_resched(); 2868 rcu_read_lock(); 2869 #endif 2870 } 2871 2872 /* 2873 * Does a critical section need to be broken due to another 2874 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2875 * but a general need for low latency) 2876 */ 2877 static inline int spin_needbreak(spinlock_t *lock) 2878 { 2879 #ifdef CONFIG_PREEMPT 2880 return spin_is_contended(lock); 2881 #else 2882 return 0; 2883 #endif 2884 } 2885 2886 /* 2887 * Idle thread specific functions to determine the need_resched 2888 * polling state. 2889 */ 2890 #ifdef TIF_POLLING_NRFLAG 2891 static inline int tsk_is_polling(struct task_struct *p) 2892 { 2893 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2894 } 2895 2896 static inline void __current_set_polling(void) 2897 { 2898 set_thread_flag(TIF_POLLING_NRFLAG); 2899 } 2900 2901 static inline bool __must_check current_set_polling_and_test(void) 2902 { 2903 __current_set_polling(); 2904 2905 /* 2906 * Polling state must be visible before we test NEED_RESCHED, 2907 * paired by resched_curr() 2908 */ 2909 smp_mb__after_atomic(); 2910 2911 return unlikely(tif_need_resched()); 2912 } 2913 2914 static inline void __current_clr_polling(void) 2915 { 2916 clear_thread_flag(TIF_POLLING_NRFLAG); 2917 } 2918 2919 static inline bool __must_check current_clr_polling_and_test(void) 2920 { 2921 __current_clr_polling(); 2922 2923 /* 2924 * Polling state must be visible before we test NEED_RESCHED, 2925 * paired by resched_curr() 2926 */ 2927 smp_mb__after_atomic(); 2928 2929 return unlikely(tif_need_resched()); 2930 } 2931 2932 #else 2933 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2934 static inline void __current_set_polling(void) { } 2935 static inline void __current_clr_polling(void) { } 2936 2937 static inline bool __must_check current_set_polling_and_test(void) 2938 { 2939 return unlikely(tif_need_resched()); 2940 } 2941 static inline bool __must_check current_clr_polling_and_test(void) 2942 { 2943 return unlikely(tif_need_resched()); 2944 } 2945 #endif 2946 2947 static inline void current_clr_polling(void) 2948 { 2949 __current_clr_polling(); 2950 2951 /* 2952 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2953 * Once the bit is cleared, we'll get IPIs with every new 2954 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2955 * fold. 2956 */ 2957 smp_mb(); /* paired with resched_curr() */ 2958 2959 preempt_fold_need_resched(); 2960 } 2961 2962 static __always_inline bool need_resched(void) 2963 { 2964 return unlikely(tif_need_resched()); 2965 } 2966 2967 /* 2968 * Thread group CPU time accounting. 2969 */ 2970 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2971 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2972 2973 static inline void thread_group_cputime_init(struct signal_struct *sig) 2974 { 2975 raw_spin_lock_init(&sig->cputimer.lock); 2976 } 2977 2978 /* 2979 * Reevaluate whether the task has signals pending delivery. 2980 * Wake the task if so. 2981 * This is required every time the blocked sigset_t changes. 2982 * callers must hold sighand->siglock. 2983 */ 2984 extern void recalc_sigpending_and_wake(struct task_struct *t); 2985 extern void recalc_sigpending(void); 2986 2987 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2988 2989 static inline void signal_wake_up(struct task_struct *t, bool resume) 2990 { 2991 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2992 } 2993 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2994 { 2995 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2996 } 2997 2998 /* 2999 * Wrappers for p->thread_info->cpu access. No-op on UP. 3000 */ 3001 #ifdef CONFIG_SMP 3002 3003 static inline unsigned int task_cpu(const struct task_struct *p) 3004 { 3005 return task_thread_info(p)->cpu; 3006 } 3007 3008 static inline int task_node(const struct task_struct *p) 3009 { 3010 return cpu_to_node(task_cpu(p)); 3011 } 3012 3013 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3014 3015 #else 3016 3017 static inline unsigned int task_cpu(const struct task_struct *p) 3018 { 3019 return 0; 3020 } 3021 3022 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3023 { 3024 } 3025 3026 #endif /* CONFIG_SMP */ 3027 3028 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3029 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3030 3031 #ifdef CONFIG_CGROUP_SCHED 3032 extern struct task_group root_task_group; 3033 #endif /* CONFIG_CGROUP_SCHED */ 3034 3035 extern int task_can_switch_user(struct user_struct *up, 3036 struct task_struct *tsk); 3037 3038 #ifdef CONFIG_TASK_XACCT 3039 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3040 { 3041 tsk->ioac.rchar += amt; 3042 } 3043 3044 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3045 { 3046 tsk->ioac.wchar += amt; 3047 } 3048 3049 static inline void inc_syscr(struct task_struct *tsk) 3050 { 3051 tsk->ioac.syscr++; 3052 } 3053 3054 static inline void inc_syscw(struct task_struct *tsk) 3055 { 3056 tsk->ioac.syscw++; 3057 } 3058 #else 3059 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3060 { 3061 } 3062 3063 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3064 { 3065 } 3066 3067 static inline void inc_syscr(struct task_struct *tsk) 3068 { 3069 } 3070 3071 static inline void inc_syscw(struct task_struct *tsk) 3072 { 3073 } 3074 #endif 3075 3076 #ifndef TASK_SIZE_OF 3077 #define TASK_SIZE_OF(tsk) TASK_SIZE 3078 #endif 3079 3080 #ifdef CONFIG_MEMCG 3081 extern void mm_update_next_owner(struct mm_struct *mm); 3082 #else 3083 static inline void mm_update_next_owner(struct mm_struct *mm) 3084 { 3085 } 3086 #endif /* CONFIG_MEMCG */ 3087 3088 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3089 unsigned int limit) 3090 { 3091 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 3092 } 3093 3094 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3095 unsigned int limit) 3096 { 3097 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 3098 } 3099 3100 static inline unsigned long rlimit(unsigned int limit) 3101 { 3102 return task_rlimit(current, limit); 3103 } 3104 3105 static inline unsigned long rlimit_max(unsigned int limit) 3106 { 3107 return task_rlimit_max(current, limit); 3108 } 3109 3110 #endif 3111