1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <asm/param.h> /* for HZ */ 5 6 #include <linux/config.h> 7 #include <linux/capability.h> 8 #include <linux/threads.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/timex.h> 12 #include <linux/jiffies.h> 13 #include <linux/rbtree.h> 14 #include <linux/thread_info.h> 15 #include <linux/cpumask.h> 16 #include <linux/errno.h> 17 #include <linux/nodemask.h> 18 19 #include <asm/system.h> 20 #include <asm/semaphore.h> 21 #include <asm/page.h> 22 #include <asm/ptrace.h> 23 #include <asm/mmu.h> 24 #include <asm/cputime.h> 25 26 #include <linux/smp.h> 27 #include <linux/sem.h> 28 #include <linux/signal.h> 29 #include <linux/securebits.h> 30 #include <linux/fs_struct.h> 31 #include <linux/compiler.h> 32 #include <linux/completion.h> 33 #include <linux/pid.h> 34 #include <linux/percpu.h> 35 #include <linux/topology.h> 36 #include <linux/seccomp.h> 37 38 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 39 40 struct exec_domain; 41 42 /* 43 * cloning flags: 44 */ 45 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 46 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 47 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 48 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 49 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 50 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 51 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 52 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 53 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 54 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 55 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 56 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 57 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 58 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 59 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 60 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 61 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 62 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 63 64 /* 65 * List of flags we want to share for kernel threads, 66 * if only because they are not used by them anyway. 67 */ 68 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 69 70 /* 71 * These are the constant used to fake the fixed-point load-average 72 * counting. Some notes: 73 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 74 * a load-average precision of 10 bits integer + 11 bits fractional 75 * - if you want to count load-averages more often, you need more 76 * precision, or rounding will get you. With 2-second counting freq, 77 * the EXP_n values would be 1981, 2034 and 2043 if still using only 78 * 11 bit fractions. 79 */ 80 extern unsigned long avenrun[]; /* Load averages */ 81 82 #define FSHIFT 11 /* nr of bits of precision */ 83 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 84 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 85 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 86 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 87 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 88 89 #define CALC_LOAD(load,exp,n) \ 90 load *= exp; \ 91 load += n*(FIXED_1-exp); \ 92 load >>= FSHIFT; 93 94 extern unsigned long total_forks; 95 extern int nr_threads; 96 extern int last_pid; 97 DECLARE_PER_CPU(unsigned long, process_counts); 98 extern int nr_processes(void); 99 extern unsigned long nr_running(void); 100 extern unsigned long nr_uninterruptible(void); 101 extern unsigned long nr_iowait(void); 102 103 #include <linux/time.h> 104 #include <linux/param.h> 105 #include <linux/resource.h> 106 #include <linux/timer.h> 107 108 #include <asm/processor.h> 109 110 /* 111 * Task state bitmask. NOTE! These bits are also 112 * encoded in fs/proc/array.c: get_task_state(). 113 * 114 * We have two separate sets of flags: task->state 115 * is about runnability, while task->exit_state are 116 * about the task exiting. Confusing, but this way 117 * modifying one set can't modify the other one by 118 * mistake. 119 */ 120 #define TASK_RUNNING 0 121 #define TASK_INTERRUPTIBLE 1 122 #define TASK_UNINTERRUPTIBLE 2 123 #define TASK_STOPPED 4 124 #define TASK_TRACED 8 125 /* in tsk->exit_state */ 126 #define EXIT_ZOMBIE 16 127 #define EXIT_DEAD 32 128 /* in tsk->state again */ 129 #define TASK_NONINTERACTIVE 64 130 131 #define __set_task_state(tsk, state_value) \ 132 do { (tsk)->state = (state_value); } while (0) 133 #define set_task_state(tsk, state_value) \ 134 set_mb((tsk)->state, (state_value)) 135 136 /* 137 * set_current_state() includes a barrier so that the write of current->state 138 * is correctly serialised wrt the caller's subsequent test of whether to 139 * actually sleep: 140 * 141 * set_current_state(TASK_UNINTERRUPTIBLE); 142 * if (do_i_need_to_sleep()) 143 * schedule(); 144 * 145 * If the caller does not need such serialisation then use __set_current_state() 146 */ 147 #define __set_current_state(state_value) \ 148 do { current->state = (state_value); } while (0) 149 #define set_current_state(state_value) \ 150 set_mb(current->state, (state_value)) 151 152 /* Task command name length */ 153 #define TASK_COMM_LEN 16 154 155 /* 156 * Scheduling policies 157 */ 158 #define SCHED_NORMAL 0 159 #define SCHED_FIFO 1 160 #define SCHED_RR 2 161 162 struct sched_param { 163 int sched_priority; 164 }; 165 166 #ifdef __KERNEL__ 167 168 #include <linux/spinlock.h> 169 170 /* 171 * This serializes "schedule()" and also protects 172 * the run-queue from deletions/modifications (but 173 * _adding_ to the beginning of the run-queue has 174 * a separate lock). 175 */ 176 extern rwlock_t tasklist_lock; 177 extern spinlock_t mmlist_lock; 178 179 typedef struct task_struct task_t; 180 181 extern void sched_init(void); 182 extern void sched_init_smp(void); 183 extern void init_idle(task_t *idle, int cpu); 184 185 extern cpumask_t nohz_cpu_mask; 186 187 extern void show_state(void); 188 extern void show_regs(struct pt_regs *); 189 190 /* 191 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 192 * task), SP is the stack pointer of the first frame that should be shown in the back 193 * trace (or NULL if the entire call-chain of the task should be shown). 194 */ 195 extern void show_stack(struct task_struct *task, unsigned long *sp); 196 197 void io_schedule(void); 198 long io_schedule_timeout(long timeout); 199 200 extern void cpu_init (void); 201 extern void trap_init(void); 202 extern void update_process_times(int user); 203 extern void scheduler_tick(void); 204 205 #ifdef CONFIG_DETECT_SOFTLOCKUP 206 extern void softlockup_tick(struct pt_regs *regs); 207 extern void spawn_softlockup_task(void); 208 extern void touch_softlockup_watchdog(void); 209 #else 210 static inline void softlockup_tick(struct pt_regs *regs) 211 { 212 } 213 static inline void spawn_softlockup_task(void) 214 { 215 } 216 static inline void touch_softlockup_watchdog(void) 217 { 218 } 219 #endif 220 221 222 /* Attach to any functions which should be ignored in wchan output. */ 223 #define __sched __attribute__((__section__(".sched.text"))) 224 /* Is this address in the __sched functions? */ 225 extern int in_sched_functions(unsigned long addr); 226 227 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 228 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 229 extern signed long schedule_timeout_interruptible(signed long timeout); 230 extern signed long schedule_timeout_uninterruptible(signed long timeout); 231 asmlinkage void schedule(void); 232 233 struct namespace; 234 235 /* Maximum number of active map areas.. This is a random (large) number */ 236 #define DEFAULT_MAX_MAP_COUNT 65536 237 238 extern int sysctl_max_map_count; 239 240 #include <linux/aio.h> 241 242 extern unsigned long 243 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 244 unsigned long, unsigned long); 245 extern unsigned long 246 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 247 unsigned long len, unsigned long pgoff, 248 unsigned long flags); 249 extern void arch_unmap_area(struct mm_struct *, unsigned long); 250 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 251 252 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 253 /* 254 * The mm counters are not protected by its page_table_lock, 255 * so must be incremented atomically. 256 */ 257 #ifdef ATOMIC64_INIT 258 #define set_mm_counter(mm, member, value) atomic64_set(&(mm)->_##member, value) 259 #define get_mm_counter(mm, member) ((unsigned long)atomic64_read(&(mm)->_##member)) 260 #define add_mm_counter(mm, member, value) atomic64_add(value, &(mm)->_##member) 261 #define inc_mm_counter(mm, member) atomic64_inc(&(mm)->_##member) 262 #define dec_mm_counter(mm, member) atomic64_dec(&(mm)->_##member) 263 typedef atomic64_t mm_counter_t; 264 #else /* !ATOMIC64_INIT */ 265 /* 266 * The counters wrap back to 0 at 2^32 * PAGE_SIZE, 267 * that is, at 16TB if using 4kB page size. 268 */ 269 #define set_mm_counter(mm, member, value) atomic_set(&(mm)->_##member, value) 270 #define get_mm_counter(mm, member) ((unsigned long)atomic_read(&(mm)->_##member)) 271 #define add_mm_counter(mm, member, value) atomic_add(value, &(mm)->_##member) 272 #define inc_mm_counter(mm, member) atomic_inc(&(mm)->_##member) 273 #define dec_mm_counter(mm, member) atomic_dec(&(mm)->_##member) 274 typedef atomic_t mm_counter_t; 275 #endif /* !ATOMIC64_INIT */ 276 277 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 278 /* 279 * The mm counters are protected by its page_table_lock, 280 * so can be incremented directly. 281 */ 282 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 283 #define get_mm_counter(mm, member) ((mm)->_##member) 284 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 285 #define inc_mm_counter(mm, member) (mm)->_##member++ 286 #define dec_mm_counter(mm, member) (mm)->_##member-- 287 typedef unsigned long mm_counter_t; 288 289 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 290 291 #define get_mm_rss(mm) \ 292 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 293 #define update_hiwater_rss(mm) do { \ 294 unsigned long _rss = get_mm_rss(mm); \ 295 if ((mm)->hiwater_rss < _rss) \ 296 (mm)->hiwater_rss = _rss; \ 297 } while (0) 298 #define update_hiwater_vm(mm) do { \ 299 if ((mm)->hiwater_vm < (mm)->total_vm) \ 300 (mm)->hiwater_vm = (mm)->total_vm; \ 301 } while (0) 302 303 struct mm_struct { 304 struct vm_area_struct * mmap; /* list of VMAs */ 305 struct rb_root mm_rb; 306 struct vm_area_struct * mmap_cache; /* last find_vma result */ 307 unsigned long (*get_unmapped_area) (struct file *filp, 308 unsigned long addr, unsigned long len, 309 unsigned long pgoff, unsigned long flags); 310 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 311 unsigned long mmap_base; /* base of mmap area */ 312 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 313 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 314 pgd_t * pgd; 315 atomic_t mm_users; /* How many users with user space? */ 316 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 317 int map_count; /* number of VMAs */ 318 struct rw_semaphore mmap_sem; 319 spinlock_t page_table_lock; /* Protects page tables and some counters */ 320 321 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 322 * together off init_mm.mmlist, and are protected 323 * by mmlist_lock 324 */ 325 326 /* Special counters, in some configurations protected by the 327 * page_table_lock, in other configurations by being atomic. 328 */ 329 mm_counter_t _file_rss; 330 mm_counter_t _anon_rss; 331 332 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 333 unsigned long hiwater_vm; /* High-water virtual memory usage */ 334 335 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 336 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 337 unsigned long start_code, end_code, start_data, end_data; 338 unsigned long start_brk, brk, start_stack; 339 unsigned long arg_start, arg_end, env_start, env_end; 340 341 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 342 343 unsigned dumpable:2; 344 cpumask_t cpu_vm_mask; 345 346 /* Architecture-specific MM context */ 347 mm_context_t context; 348 349 /* Token based thrashing protection. */ 350 unsigned long swap_token_time; 351 char recent_pagein; 352 353 /* coredumping support */ 354 int core_waiters; 355 struct completion *core_startup_done, core_done; 356 357 /* aio bits */ 358 rwlock_t ioctx_list_lock; 359 struct kioctx *ioctx_list; 360 }; 361 362 struct sighand_struct { 363 atomic_t count; 364 struct k_sigaction action[_NSIG]; 365 spinlock_t siglock; 366 }; 367 368 /* 369 * NOTE! "signal_struct" does not have it's own 370 * locking, because a shared signal_struct always 371 * implies a shared sighand_struct, so locking 372 * sighand_struct is always a proper superset of 373 * the locking of signal_struct. 374 */ 375 struct signal_struct { 376 atomic_t count; 377 atomic_t live; 378 379 wait_queue_head_t wait_chldexit; /* for wait4() */ 380 381 /* current thread group signal load-balancing target: */ 382 task_t *curr_target; 383 384 /* shared signal handling: */ 385 struct sigpending shared_pending; 386 387 /* thread group exit support */ 388 int group_exit_code; 389 /* overloaded: 390 * - notify group_exit_task when ->count is equal to notify_count 391 * - everyone except group_exit_task is stopped during signal delivery 392 * of fatal signals, group_exit_task processes the signal. 393 */ 394 struct task_struct *group_exit_task; 395 int notify_count; 396 397 /* thread group stop support, overloads group_exit_code too */ 398 int group_stop_count; 399 unsigned int flags; /* see SIGNAL_* flags below */ 400 401 /* POSIX.1b Interval Timers */ 402 struct list_head posix_timers; 403 404 /* ITIMER_REAL timer for the process */ 405 struct timer_list real_timer; 406 unsigned long it_real_value, it_real_incr; 407 408 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 409 cputime_t it_prof_expires, it_virt_expires; 410 cputime_t it_prof_incr, it_virt_incr; 411 412 /* job control IDs */ 413 pid_t pgrp; 414 pid_t tty_old_pgrp; 415 pid_t session; 416 /* boolean value for session group leader */ 417 int leader; 418 419 struct tty_struct *tty; /* NULL if no tty */ 420 421 /* 422 * Cumulative resource counters for dead threads in the group, 423 * and for reaped dead child processes forked by this group. 424 * Live threads maintain their own counters and add to these 425 * in __exit_signal, except for the group leader. 426 */ 427 cputime_t utime, stime, cutime, cstime; 428 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 429 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 430 431 /* 432 * Cumulative ns of scheduled CPU time for dead threads in the 433 * group, not including a zombie group leader. (This only differs 434 * from jiffies_to_ns(utime + stime) if sched_clock uses something 435 * other than jiffies.) 436 */ 437 unsigned long long sched_time; 438 439 /* 440 * We don't bother to synchronize most readers of this at all, 441 * because there is no reader checking a limit that actually needs 442 * to get both rlim_cur and rlim_max atomically, and either one 443 * alone is a single word that can safely be read normally. 444 * getrlimit/setrlimit use task_lock(current->group_leader) to 445 * protect this instead of the siglock, because they really 446 * have no need to disable irqs. 447 */ 448 struct rlimit rlim[RLIM_NLIMITS]; 449 450 struct list_head cpu_timers[3]; 451 452 /* keep the process-shared keyrings here so that they do the right 453 * thing in threads created with CLONE_THREAD */ 454 #ifdef CONFIG_KEYS 455 struct key *session_keyring; /* keyring inherited over fork */ 456 struct key *process_keyring; /* keyring private to this process */ 457 #endif 458 }; 459 460 /* Context switch must be unlocked if interrupts are to be enabled */ 461 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 462 # define __ARCH_WANT_UNLOCKED_CTXSW 463 #endif 464 465 /* 466 * Bits in flags field of signal_struct. 467 */ 468 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 469 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 470 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 471 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 472 473 474 /* 475 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 476 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are 477 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values 478 * are inverted: lower p->prio value means higher priority. 479 * 480 * The MAX_USER_RT_PRIO value allows the actual maximum 481 * RT priority to be separate from the value exported to 482 * user-space. This allows kernel threads to set their 483 * priority to a value higher than any user task. Note: 484 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 485 */ 486 487 #define MAX_USER_RT_PRIO 100 488 #define MAX_RT_PRIO MAX_USER_RT_PRIO 489 490 #define MAX_PRIO (MAX_RT_PRIO + 40) 491 492 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 493 494 /* 495 * Some day this will be a full-fledged user tracking system.. 496 */ 497 struct user_struct { 498 atomic_t __count; /* reference count */ 499 atomic_t processes; /* How many processes does this user have? */ 500 atomic_t files; /* How many open files does this user have? */ 501 atomic_t sigpending; /* How many pending signals does this user have? */ 502 #ifdef CONFIG_INOTIFY 503 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 504 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 505 #endif 506 /* protected by mq_lock */ 507 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 508 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 509 510 #ifdef CONFIG_KEYS 511 struct key *uid_keyring; /* UID specific keyring */ 512 struct key *session_keyring; /* UID's default session keyring */ 513 #endif 514 515 /* Hash table maintenance information */ 516 struct list_head uidhash_list; 517 uid_t uid; 518 }; 519 520 extern struct user_struct *find_user(uid_t); 521 522 extern struct user_struct root_user; 523 #define INIT_USER (&root_user) 524 525 typedef struct prio_array prio_array_t; 526 struct backing_dev_info; 527 struct reclaim_state; 528 529 #ifdef CONFIG_SCHEDSTATS 530 struct sched_info { 531 /* cumulative counters */ 532 unsigned long cpu_time, /* time spent on the cpu */ 533 run_delay, /* time spent waiting on a runqueue */ 534 pcnt; /* # of timeslices run on this cpu */ 535 536 /* timestamps */ 537 unsigned long last_arrival, /* when we last ran on a cpu */ 538 last_queued; /* when we were last queued to run */ 539 }; 540 541 extern struct file_operations proc_schedstat_operations; 542 #endif 543 544 enum idle_type 545 { 546 SCHED_IDLE, 547 NOT_IDLE, 548 NEWLY_IDLE, 549 MAX_IDLE_TYPES 550 }; 551 552 /* 553 * sched-domains (multiprocessor balancing) declarations: 554 */ 555 #ifdef CONFIG_SMP 556 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 557 558 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 559 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 560 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 561 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 562 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 563 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 564 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 565 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 566 567 struct sched_group { 568 struct sched_group *next; /* Must be a circular list */ 569 cpumask_t cpumask; 570 571 /* 572 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 573 * single CPU. This is read only (except for setup, hotplug CPU). 574 */ 575 unsigned long cpu_power; 576 }; 577 578 struct sched_domain { 579 /* These fields must be setup */ 580 struct sched_domain *parent; /* top domain must be null terminated */ 581 struct sched_group *groups; /* the balancing groups of the domain */ 582 cpumask_t span; /* span of all CPUs in this domain */ 583 unsigned long min_interval; /* Minimum balance interval ms */ 584 unsigned long max_interval; /* Maximum balance interval ms */ 585 unsigned int busy_factor; /* less balancing by factor if busy */ 586 unsigned int imbalance_pct; /* No balance until over watermark */ 587 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 588 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 589 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 590 unsigned int busy_idx; 591 unsigned int idle_idx; 592 unsigned int newidle_idx; 593 unsigned int wake_idx; 594 unsigned int forkexec_idx; 595 int flags; /* See SD_* */ 596 597 /* Runtime fields. */ 598 unsigned long last_balance; /* init to jiffies. units in jiffies */ 599 unsigned int balance_interval; /* initialise to 1. units in ms. */ 600 unsigned int nr_balance_failed; /* initialise to 0 */ 601 602 #ifdef CONFIG_SCHEDSTATS 603 /* load_balance() stats */ 604 unsigned long lb_cnt[MAX_IDLE_TYPES]; 605 unsigned long lb_failed[MAX_IDLE_TYPES]; 606 unsigned long lb_balanced[MAX_IDLE_TYPES]; 607 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 608 unsigned long lb_gained[MAX_IDLE_TYPES]; 609 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 610 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 611 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 612 613 /* Active load balancing */ 614 unsigned long alb_cnt; 615 unsigned long alb_failed; 616 unsigned long alb_pushed; 617 618 /* SD_BALANCE_EXEC stats */ 619 unsigned long sbe_cnt; 620 unsigned long sbe_balanced; 621 unsigned long sbe_pushed; 622 623 /* SD_BALANCE_FORK stats */ 624 unsigned long sbf_cnt; 625 unsigned long sbf_balanced; 626 unsigned long sbf_pushed; 627 628 /* try_to_wake_up() stats */ 629 unsigned long ttwu_wake_remote; 630 unsigned long ttwu_move_affine; 631 unsigned long ttwu_move_balance; 632 #endif 633 }; 634 635 extern void partition_sched_domains(cpumask_t *partition1, 636 cpumask_t *partition2); 637 #endif /* CONFIG_SMP */ 638 639 640 struct io_context; /* See blkdev.h */ 641 void exit_io_context(void); 642 struct cpuset; 643 644 #define NGROUPS_SMALL 32 645 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 646 struct group_info { 647 int ngroups; 648 atomic_t usage; 649 gid_t small_block[NGROUPS_SMALL]; 650 int nblocks; 651 gid_t *blocks[0]; 652 }; 653 654 /* 655 * get_group_info() must be called with the owning task locked (via task_lock()) 656 * when task != current. The reason being that the vast majority of callers are 657 * looking at current->group_info, which can not be changed except by the 658 * current task. Changing current->group_info requires the task lock, too. 659 */ 660 #define get_group_info(group_info) do { \ 661 atomic_inc(&(group_info)->usage); \ 662 } while (0) 663 664 #define put_group_info(group_info) do { \ 665 if (atomic_dec_and_test(&(group_info)->usage)) \ 666 groups_free(group_info); \ 667 } while (0) 668 669 extern struct group_info *groups_alloc(int gidsetsize); 670 extern void groups_free(struct group_info *group_info); 671 extern int set_current_groups(struct group_info *group_info); 672 extern int groups_search(struct group_info *group_info, gid_t grp); 673 /* access the groups "array" with this macro */ 674 #define GROUP_AT(gi, i) \ 675 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 676 677 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 678 extern void prefetch_stack(struct task_struct*); 679 #else 680 static inline void prefetch_stack(struct task_struct *t) { } 681 #endif 682 683 struct audit_context; /* See audit.c */ 684 struct mempolicy; 685 686 struct task_struct { 687 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 688 struct thread_info *thread_info; 689 atomic_t usage; 690 unsigned long flags; /* per process flags, defined below */ 691 unsigned long ptrace; 692 693 int lock_depth; /* BKL lock depth */ 694 695 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 696 int oncpu; 697 #endif 698 int prio, static_prio; 699 struct list_head run_list; 700 prio_array_t *array; 701 702 unsigned short ioprio; 703 704 unsigned long sleep_avg; 705 unsigned long long timestamp, last_ran; 706 unsigned long long sched_time; /* sched_clock time spent running */ 707 int activated; 708 709 unsigned long policy; 710 cpumask_t cpus_allowed; 711 unsigned int time_slice, first_time_slice; 712 713 #ifdef CONFIG_SCHEDSTATS 714 struct sched_info sched_info; 715 #endif 716 717 struct list_head tasks; 718 /* 719 * ptrace_list/ptrace_children forms the list of my children 720 * that were stolen by a ptracer. 721 */ 722 struct list_head ptrace_children; 723 struct list_head ptrace_list; 724 725 struct mm_struct *mm, *active_mm; 726 727 /* task state */ 728 struct linux_binfmt *binfmt; 729 long exit_state; 730 int exit_code, exit_signal; 731 int pdeath_signal; /* The signal sent when the parent dies */ 732 /* ??? */ 733 unsigned long personality; 734 unsigned did_exec:1; 735 pid_t pid; 736 pid_t tgid; 737 /* 738 * pointers to (original) parent process, youngest child, younger sibling, 739 * older sibling, respectively. (p->father can be replaced with 740 * p->parent->pid) 741 */ 742 struct task_struct *real_parent; /* real parent process (when being debugged) */ 743 struct task_struct *parent; /* parent process */ 744 /* 745 * children/sibling forms the list of my children plus the 746 * tasks I'm ptracing. 747 */ 748 struct list_head children; /* list of my children */ 749 struct list_head sibling; /* linkage in my parent's children list */ 750 struct task_struct *group_leader; /* threadgroup leader */ 751 752 /* PID/PID hash table linkage. */ 753 struct pid pids[PIDTYPE_MAX]; 754 755 struct completion *vfork_done; /* for vfork() */ 756 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 757 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 758 759 unsigned long rt_priority; 760 cputime_t utime, stime; 761 unsigned long nvcsw, nivcsw; /* context switch counts */ 762 struct timespec start_time; 763 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 764 unsigned long min_flt, maj_flt; 765 766 cputime_t it_prof_expires, it_virt_expires; 767 unsigned long long it_sched_expires; 768 struct list_head cpu_timers[3]; 769 770 /* process credentials */ 771 uid_t uid,euid,suid,fsuid; 772 gid_t gid,egid,sgid,fsgid; 773 struct group_info *group_info; 774 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 775 unsigned keep_capabilities:1; 776 struct user_struct *user; 777 #ifdef CONFIG_KEYS 778 struct key *thread_keyring; /* keyring private to this thread */ 779 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 780 #endif 781 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 782 char comm[TASK_COMM_LEN]; /* executable name excluding path 783 - access with [gs]et_task_comm (which lock 784 it with task_lock()) 785 - initialized normally by flush_old_exec */ 786 /* file system info */ 787 int link_count, total_link_count; 788 /* ipc stuff */ 789 struct sysv_sem sysvsem; 790 /* CPU-specific state of this task */ 791 struct thread_struct thread; 792 /* filesystem information */ 793 struct fs_struct *fs; 794 /* open file information */ 795 struct files_struct *files; 796 /* namespace */ 797 struct namespace *namespace; 798 /* signal handlers */ 799 struct signal_struct *signal; 800 struct sighand_struct *sighand; 801 802 sigset_t blocked, real_blocked; 803 struct sigpending pending; 804 805 unsigned long sas_ss_sp; 806 size_t sas_ss_size; 807 int (*notifier)(void *priv); 808 void *notifier_data; 809 sigset_t *notifier_mask; 810 811 void *security; 812 struct audit_context *audit_context; 813 seccomp_t seccomp; 814 815 /* Thread group tracking */ 816 u32 parent_exec_id; 817 u32 self_exec_id; 818 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 819 spinlock_t alloc_lock; 820 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 821 spinlock_t proc_lock; 822 823 /* journalling filesystem info */ 824 void *journal_info; 825 826 /* VM state */ 827 struct reclaim_state *reclaim_state; 828 829 struct dentry *proc_dentry; 830 struct backing_dev_info *backing_dev_info; 831 832 struct io_context *io_context; 833 834 unsigned long ptrace_message; 835 siginfo_t *last_siginfo; /* For ptrace use. */ 836 /* 837 * current io wait handle: wait queue entry to use for io waits 838 * If this thread is processing aio, this points at the waitqueue 839 * inside the currently handled kiocb. It may be NULL (i.e. default 840 * to a stack based synchronous wait) if its doing sync IO. 841 */ 842 wait_queue_t *io_wait; 843 /* i/o counters(bytes read/written, #syscalls */ 844 u64 rchar, wchar, syscr, syscw; 845 #if defined(CONFIG_BSD_PROCESS_ACCT) 846 u64 acct_rss_mem1; /* accumulated rss usage */ 847 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 848 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 849 #endif 850 #ifdef CONFIG_NUMA 851 struct mempolicy *mempolicy; 852 short il_next; 853 #endif 854 #ifdef CONFIG_CPUSETS 855 struct cpuset *cpuset; 856 nodemask_t mems_allowed; 857 int cpuset_mems_generation; 858 #endif 859 atomic_t fs_excl; /* holding fs exclusive resources */ 860 }; 861 862 static inline pid_t process_group(struct task_struct *tsk) 863 { 864 return tsk->signal->pgrp; 865 } 866 867 /** 868 * pid_alive - check that a task structure is not stale 869 * @p: Task structure to be checked. 870 * 871 * Test if a process is not yet dead (at most zombie state) 872 * If pid_alive fails, then pointers within the task structure 873 * can be stale and must not be dereferenced. 874 */ 875 static inline int pid_alive(struct task_struct *p) 876 { 877 return p->pids[PIDTYPE_PID].nr != 0; 878 } 879 880 extern void free_task(struct task_struct *tsk); 881 extern void __put_task_struct(struct task_struct *tsk); 882 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 883 #define put_task_struct(tsk) \ 884 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0) 885 886 /* 887 * Per process flags 888 */ 889 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 890 /* Not implemented yet, only for 486*/ 891 #define PF_STARTING 0x00000002 /* being created */ 892 #define PF_EXITING 0x00000004 /* getting shut down */ 893 #define PF_DEAD 0x00000008 /* Dead */ 894 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 895 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 896 #define PF_DUMPCORE 0x00000200 /* dumped core */ 897 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 898 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 899 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 900 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 901 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 902 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 903 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 904 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 905 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 906 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 907 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 908 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 909 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 910 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 911 912 /* 913 * Only the _current_ task can read/write to tsk->flags, but other 914 * tasks can access tsk->flags in readonly mode for example 915 * with tsk_used_math (like during threaded core dumping). 916 * There is however an exception to this rule during ptrace 917 * or during fork: the ptracer task is allowed to write to the 918 * child->flags of its traced child (same goes for fork, the parent 919 * can write to the child->flags), because we're guaranteed the 920 * child is not running and in turn not changing child->flags 921 * at the same time the parent does it. 922 */ 923 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 924 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 925 #define clear_used_math() clear_stopped_child_used_math(current) 926 #define set_used_math() set_stopped_child_used_math(current) 927 #define conditional_stopped_child_used_math(condition, child) \ 928 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 929 #define conditional_used_math(condition) \ 930 conditional_stopped_child_used_math(condition, current) 931 #define copy_to_stopped_child_used_math(child) \ 932 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 933 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 934 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 935 #define used_math() tsk_used_math(current) 936 937 #ifdef CONFIG_SMP 938 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 939 #else 940 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 941 { 942 if (!cpu_isset(0, new_mask)) 943 return -EINVAL; 944 return 0; 945 } 946 #endif 947 948 extern unsigned long long sched_clock(void); 949 extern unsigned long long current_sched_time(const task_t *current_task); 950 951 /* sched_exec is called by processes performing an exec */ 952 #ifdef CONFIG_SMP 953 extern void sched_exec(void); 954 #else 955 #define sched_exec() {} 956 #endif 957 958 #ifdef CONFIG_HOTPLUG_CPU 959 extern void idle_task_exit(void); 960 #else 961 static inline void idle_task_exit(void) {} 962 #endif 963 964 extern void sched_idle_next(void); 965 extern void set_user_nice(task_t *p, long nice); 966 extern int task_prio(const task_t *p); 967 extern int task_nice(const task_t *p); 968 extern int can_nice(const task_t *p, const int nice); 969 extern int task_curr(const task_t *p); 970 extern int idle_cpu(int cpu); 971 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 972 extern task_t *idle_task(int cpu); 973 extern task_t *curr_task(int cpu); 974 extern void set_curr_task(int cpu, task_t *p); 975 976 void yield(void); 977 978 /* 979 * The default (Linux) execution domain. 980 */ 981 extern struct exec_domain default_exec_domain; 982 983 union thread_union { 984 struct thread_info thread_info; 985 unsigned long stack[THREAD_SIZE/sizeof(long)]; 986 }; 987 988 #ifndef __HAVE_ARCH_KSTACK_END 989 static inline int kstack_end(void *addr) 990 { 991 /* Reliable end of stack detection: 992 * Some APM bios versions misalign the stack 993 */ 994 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 995 } 996 #endif 997 998 extern union thread_union init_thread_union; 999 extern struct task_struct init_task; 1000 1001 extern struct mm_struct init_mm; 1002 1003 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1004 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1005 extern void set_special_pids(pid_t session, pid_t pgrp); 1006 extern void __set_special_pids(pid_t session, pid_t pgrp); 1007 1008 /* per-UID process charging. */ 1009 extern struct user_struct * alloc_uid(uid_t); 1010 static inline struct user_struct *get_uid(struct user_struct *u) 1011 { 1012 atomic_inc(&u->__count); 1013 return u; 1014 } 1015 extern void free_uid(struct user_struct *); 1016 extern void switch_uid(struct user_struct *); 1017 1018 #include <asm/current.h> 1019 1020 extern void do_timer(struct pt_regs *); 1021 1022 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1023 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1024 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1025 unsigned long clone_flags)); 1026 #ifdef CONFIG_SMP 1027 extern void kick_process(struct task_struct *tsk); 1028 #else 1029 static inline void kick_process(struct task_struct *tsk) { } 1030 #endif 1031 extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); 1032 extern void FASTCALL(sched_exit(task_t * p)); 1033 1034 extern int in_group_p(gid_t); 1035 extern int in_egroup_p(gid_t); 1036 1037 extern void proc_caches_init(void); 1038 extern void flush_signals(struct task_struct *); 1039 extern void flush_signal_handlers(struct task_struct *, int force_default); 1040 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1041 1042 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1043 { 1044 unsigned long flags; 1045 int ret; 1046 1047 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1048 ret = dequeue_signal(tsk, mask, info); 1049 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1050 1051 return ret; 1052 } 1053 1054 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1055 sigset_t *mask); 1056 extern void unblock_all_signals(void); 1057 extern void release_task(struct task_struct * p); 1058 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1059 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1060 extern int force_sigsegv(int, struct task_struct *); 1061 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1062 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1063 extern int kill_pg_info(int, struct siginfo *, pid_t); 1064 extern int kill_proc_info(int, struct siginfo *, pid_t); 1065 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t); 1066 extern void do_notify_parent(struct task_struct *, int); 1067 extern void force_sig(int, struct task_struct *); 1068 extern void force_sig_specific(int, struct task_struct *); 1069 extern int send_sig(int, struct task_struct *, int); 1070 extern void zap_other_threads(struct task_struct *p); 1071 extern int kill_pg(pid_t, int, int); 1072 extern int kill_sl(pid_t, int, int); 1073 extern int kill_proc(pid_t, int, int); 1074 extern struct sigqueue *sigqueue_alloc(void); 1075 extern void sigqueue_free(struct sigqueue *); 1076 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1077 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1078 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *); 1079 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1080 1081 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1082 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1083 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1084 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1085 1086 static inline int is_si_special(const struct siginfo *info) 1087 { 1088 return info <= SEND_SIG_FORCED; 1089 } 1090 1091 /* True if we are on the alternate signal stack. */ 1092 1093 static inline int on_sig_stack(unsigned long sp) 1094 { 1095 return (sp - current->sas_ss_sp < current->sas_ss_size); 1096 } 1097 1098 static inline int sas_ss_flags(unsigned long sp) 1099 { 1100 return (current->sas_ss_size == 0 ? SS_DISABLE 1101 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1102 } 1103 1104 1105 #ifdef CONFIG_SECURITY 1106 /* code is in security.c */ 1107 extern int capable(int cap); 1108 #else 1109 static inline int capable(int cap) 1110 { 1111 if (cap_raised(current->cap_effective, cap)) { 1112 current->flags |= PF_SUPERPRIV; 1113 return 1; 1114 } 1115 return 0; 1116 } 1117 #endif 1118 1119 /* 1120 * Routines for handling mm_structs 1121 */ 1122 extern struct mm_struct * mm_alloc(void); 1123 1124 /* mmdrop drops the mm and the page tables */ 1125 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1126 static inline void mmdrop(struct mm_struct * mm) 1127 { 1128 if (atomic_dec_and_test(&mm->mm_count)) 1129 __mmdrop(mm); 1130 } 1131 1132 /* mmput gets rid of the mappings and all user-space */ 1133 extern void mmput(struct mm_struct *); 1134 /* Grab a reference to a task's mm, if it is not already going away */ 1135 extern struct mm_struct *get_task_mm(struct task_struct *task); 1136 /* Remove the current tasks stale references to the old mm_struct */ 1137 extern void mm_release(struct task_struct *, struct mm_struct *); 1138 1139 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1140 extern void flush_thread(void); 1141 extern void exit_thread(void); 1142 1143 extern void exit_files(struct task_struct *); 1144 extern void exit_signal(struct task_struct *); 1145 extern void __exit_signal(struct task_struct *); 1146 extern void exit_sighand(struct task_struct *); 1147 extern void __exit_sighand(struct task_struct *); 1148 extern void exit_itimers(struct signal_struct *); 1149 1150 extern NORET_TYPE void do_group_exit(int); 1151 1152 extern void daemonize(const char *, ...); 1153 extern int allow_signal(int); 1154 extern int disallow_signal(int); 1155 extern task_t *child_reaper; 1156 1157 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1158 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1159 task_t *fork_idle(int); 1160 1161 extern void set_task_comm(struct task_struct *tsk, char *from); 1162 extern void get_task_comm(char *to, struct task_struct *tsk); 1163 1164 #ifdef CONFIG_SMP 1165 extern void wait_task_inactive(task_t * p); 1166 #else 1167 #define wait_task_inactive(p) do { } while (0) 1168 #endif 1169 1170 #define remove_parent(p) list_del_init(&(p)->sibling) 1171 #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) 1172 1173 #define REMOVE_LINKS(p) do { \ 1174 if (thread_group_leader(p)) \ 1175 list_del_init(&(p)->tasks); \ 1176 remove_parent(p); \ 1177 } while (0) 1178 1179 #define SET_LINKS(p) do { \ 1180 if (thread_group_leader(p)) \ 1181 list_add_tail(&(p)->tasks,&init_task.tasks); \ 1182 add_parent(p, (p)->parent); \ 1183 } while (0) 1184 1185 #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) 1186 #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) 1187 1188 #define for_each_process(p) \ 1189 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1190 1191 /* 1192 * Careful: do_each_thread/while_each_thread is a double loop so 1193 * 'break' will not work as expected - use goto instead. 1194 */ 1195 #define do_each_thread(g, t) \ 1196 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1197 1198 #define while_each_thread(g, t) \ 1199 while ((t = next_thread(t)) != g) 1200 1201 extern task_t * FASTCALL(next_thread(const task_t *p)); 1202 1203 #define thread_group_leader(p) (p->pid == p->tgid) 1204 1205 static inline int thread_group_empty(task_t *p) 1206 { 1207 return list_empty(&p->pids[PIDTYPE_TGID].pid_list); 1208 } 1209 1210 #define delay_group_leader(p) \ 1211 (thread_group_leader(p) && !thread_group_empty(p)) 1212 1213 extern void unhash_process(struct task_struct *p); 1214 1215 /* 1216 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1217 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1218 * pins the final release of task.io_context. Also protects ->cpuset. 1219 * 1220 * Nests both inside and outside of read_lock(&tasklist_lock). 1221 * It must not be nested with write_lock_irq(&tasklist_lock), 1222 * neither inside nor outside. 1223 */ 1224 static inline void task_lock(struct task_struct *p) 1225 { 1226 spin_lock(&p->alloc_lock); 1227 } 1228 1229 static inline void task_unlock(struct task_struct *p) 1230 { 1231 spin_unlock(&p->alloc_lock); 1232 } 1233 1234 #ifndef __HAVE_THREAD_FUNCTIONS 1235 1236 #define task_thread_info(task) (task)->thread_info 1237 1238 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1239 { 1240 *task_thread_info(p) = *task_thread_info(org); 1241 task_thread_info(p)->task = p; 1242 } 1243 1244 static inline unsigned long *end_of_stack(struct task_struct *p) 1245 { 1246 return (unsigned long *)(p->thread_info + 1); 1247 } 1248 1249 #endif 1250 1251 /* set thread flags in other task's structures 1252 * - see asm/thread_info.h for TIF_xxxx flags available 1253 */ 1254 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1255 { 1256 set_ti_thread_flag(task_thread_info(tsk), flag); 1257 } 1258 1259 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1260 { 1261 clear_ti_thread_flag(task_thread_info(tsk), flag); 1262 } 1263 1264 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1265 { 1266 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1267 } 1268 1269 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1270 { 1271 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1272 } 1273 1274 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1275 { 1276 return test_ti_thread_flag(task_thread_info(tsk), flag); 1277 } 1278 1279 static inline void set_tsk_need_resched(struct task_struct *tsk) 1280 { 1281 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1282 } 1283 1284 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1285 { 1286 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1287 } 1288 1289 static inline int signal_pending(struct task_struct *p) 1290 { 1291 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1292 } 1293 1294 static inline int need_resched(void) 1295 { 1296 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1297 } 1298 1299 /* 1300 * cond_resched() and cond_resched_lock(): latency reduction via 1301 * explicit rescheduling in places that are safe. The return 1302 * value indicates whether a reschedule was done in fact. 1303 * cond_resched_lock() will drop the spinlock before scheduling, 1304 * cond_resched_softirq() will enable bhs before scheduling. 1305 */ 1306 extern int cond_resched(void); 1307 extern int cond_resched_lock(spinlock_t * lock); 1308 extern int cond_resched_softirq(void); 1309 1310 /* 1311 * Does a critical section need to be broken due to another 1312 * task waiting?: 1313 */ 1314 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1315 # define need_lockbreak(lock) ((lock)->break_lock) 1316 #else 1317 # define need_lockbreak(lock) 0 1318 #endif 1319 1320 /* 1321 * Does a critical section need to be broken due to another 1322 * task waiting or preemption being signalled: 1323 */ 1324 static inline int lock_need_resched(spinlock_t *lock) 1325 { 1326 if (need_lockbreak(lock) || need_resched()) 1327 return 1; 1328 return 0; 1329 } 1330 1331 /* Reevaluate whether the task has signals pending delivery. 1332 This is required every time the blocked sigset_t changes. 1333 callers must hold sighand->siglock. */ 1334 1335 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1336 extern void recalc_sigpending(void); 1337 1338 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1339 1340 /* 1341 * Wrappers for p->thread_info->cpu access. No-op on UP. 1342 */ 1343 #ifdef CONFIG_SMP 1344 1345 static inline unsigned int task_cpu(const struct task_struct *p) 1346 { 1347 return task_thread_info(p)->cpu; 1348 } 1349 1350 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1351 { 1352 task_thread_info(p)->cpu = cpu; 1353 } 1354 1355 #else 1356 1357 static inline unsigned int task_cpu(const struct task_struct *p) 1358 { 1359 return 0; 1360 } 1361 1362 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1363 { 1364 } 1365 1366 #endif /* CONFIG_SMP */ 1367 1368 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1369 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1370 #else 1371 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1372 { 1373 mm->mmap_base = TASK_UNMAPPED_BASE; 1374 mm->get_unmapped_area = arch_get_unmapped_area; 1375 mm->unmap_area = arch_unmap_area; 1376 } 1377 #endif 1378 1379 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1380 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1381 1382 #ifdef CONFIG_MAGIC_SYSRQ 1383 1384 extern void normalize_rt_tasks(void); 1385 1386 #endif 1387 1388 #ifdef CONFIG_PM 1389 /* 1390 * Check if a process has been frozen 1391 */ 1392 static inline int frozen(struct task_struct *p) 1393 { 1394 return p->flags & PF_FROZEN; 1395 } 1396 1397 /* 1398 * Check if there is a request to freeze a process 1399 */ 1400 static inline int freezing(struct task_struct *p) 1401 { 1402 return p->flags & PF_FREEZE; 1403 } 1404 1405 /* 1406 * Request that a process be frozen 1407 * FIXME: SMP problem. We may not modify other process' flags! 1408 */ 1409 static inline void freeze(struct task_struct *p) 1410 { 1411 p->flags |= PF_FREEZE; 1412 } 1413 1414 /* 1415 * Wake up a frozen process 1416 */ 1417 static inline int thaw_process(struct task_struct *p) 1418 { 1419 if (frozen(p)) { 1420 p->flags &= ~PF_FROZEN; 1421 wake_up_process(p); 1422 return 1; 1423 } 1424 return 0; 1425 } 1426 1427 /* 1428 * freezing is complete, mark process as frozen 1429 */ 1430 static inline void frozen_process(struct task_struct *p) 1431 { 1432 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1433 } 1434 1435 extern void refrigerator(void); 1436 extern int freeze_processes(void); 1437 extern void thaw_processes(void); 1438 1439 static inline int try_to_freeze(void) 1440 { 1441 if (freezing(current)) { 1442 refrigerator(); 1443 return 1; 1444 } else 1445 return 0; 1446 } 1447 #else 1448 static inline int frozen(struct task_struct *p) { return 0; } 1449 static inline int freezing(struct task_struct *p) { return 0; } 1450 static inline void freeze(struct task_struct *p) { BUG(); } 1451 static inline int thaw_process(struct task_struct *p) { return 1; } 1452 static inline void frozen_process(struct task_struct *p) { BUG(); } 1453 1454 static inline void refrigerator(void) {} 1455 static inline int freeze_processes(void) { BUG(); return 0; } 1456 static inline void thaw_processes(void) {} 1457 1458 static inline int try_to_freeze(void) { return 0; } 1459 1460 #endif /* CONFIG_PM */ 1461 #endif /* __KERNEL__ */ 1462 1463 #endif 1464