xref: /linux/include/linux/sched.h (revision 9abd613a85af72fa560e49d9a0acc5b872840c72)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/task_io_accounting.h>
40 #include <linux/posix-timers_types.h>
41 #include <linux/restart_block.h>
42 #include <uapi/linux/rseq.h>
43 #include <linux/seqlock_types.h>
44 #include <linux/kcsan.h>
45 #include <linux/rv.h>
46 #include <linux/livepatch_sched.h>
47 #include <linux/uidgid_types.h>
48 #include <asm/kmap_size.h>
49 
50 /* task_struct member predeclarations (sorted alphabetically): */
51 struct audit_context;
52 struct bio_list;
53 struct blk_plug;
54 struct bpf_local_storage;
55 struct bpf_run_ctx;
56 struct capture_control;
57 struct cfs_rq;
58 struct fs_struct;
59 struct futex_pi_state;
60 struct io_context;
61 struct io_uring_task;
62 struct mempolicy;
63 struct nameidata;
64 struct nsproxy;
65 struct perf_event_context;
66 struct pid_namespace;
67 struct pipe_inode_info;
68 struct rcu_node;
69 struct reclaim_state;
70 struct robust_list_head;
71 struct root_domain;
72 struct rq;
73 struct sched_attr;
74 struct sched_dl_entity;
75 struct seq_file;
76 struct sighand_struct;
77 struct signal_struct;
78 struct task_delay_info;
79 struct task_group;
80 struct task_struct;
81 struct user_event_mm;
82 
83 /*
84  * Task state bitmask. NOTE! These bits are also
85  * encoded in fs/proc/array.c: get_task_state().
86  *
87  * We have two separate sets of flags: task->__state
88  * is about runnability, while task->exit_state are
89  * about the task exiting. Confusing, but this way
90  * modifying one set can't modify the other one by
91  * mistake.
92  */
93 
94 /* Used in tsk->__state: */
95 #define TASK_RUNNING			0x00000000
96 #define TASK_INTERRUPTIBLE		0x00000001
97 #define TASK_UNINTERRUPTIBLE		0x00000002
98 #define __TASK_STOPPED			0x00000004
99 #define __TASK_TRACED			0x00000008
100 /* Used in tsk->exit_state: */
101 #define EXIT_DEAD			0x00000010
102 #define EXIT_ZOMBIE			0x00000020
103 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
104 /* Used in tsk->__state again: */
105 #define TASK_PARKED			0x00000040
106 #define TASK_DEAD			0x00000080
107 #define TASK_WAKEKILL			0x00000100
108 #define TASK_WAKING			0x00000200
109 #define TASK_NOLOAD			0x00000400
110 #define TASK_NEW			0x00000800
111 #define TASK_RTLOCK_WAIT		0x00001000
112 #define TASK_FREEZABLE			0x00002000
113 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
114 #define TASK_FROZEN			0x00008000
115 #define TASK_STATE_MAX			0x00010000
116 
117 #define TASK_ANY			(TASK_STATE_MAX-1)
118 
119 /*
120  * DO NOT ADD ANY NEW USERS !
121  */
122 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
123 
124 /* Convenience macros for the sake of set_current_state: */
125 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
126 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
127 #define TASK_TRACED			__TASK_TRACED
128 
129 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
130 
131 /* Convenience macros for the sake of wake_up(): */
132 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
133 
134 /* get_task_state(): */
135 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
136 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
137 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
138 					 TASK_PARKED)
139 
140 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
141 
142 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
143 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
144 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
145 
146 /*
147  * Special states are those that do not use the normal wait-loop pattern. See
148  * the comment with set_special_state().
149  */
150 #define is_special_task_state(state)				\
151 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
152 
153 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
154 # define debug_normal_state_change(state_value)				\
155 	do {								\
156 		WARN_ON_ONCE(is_special_task_state(state_value));	\
157 		current->task_state_change = _THIS_IP_;			\
158 	} while (0)
159 
160 # define debug_special_state_change(state_value)			\
161 	do {								\
162 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
163 		current->task_state_change = _THIS_IP_;			\
164 	} while (0)
165 
166 # define debug_rtlock_wait_set_state()					\
167 	do {								 \
168 		current->saved_state_change = current->task_state_change;\
169 		current->task_state_change = _THIS_IP_;			 \
170 	} while (0)
171 
172 # define debug_rtlock_wait_restore_state()				\
173 	do {								 \
174 		current->task_state_change = current->saved_state_change;\
175 	} while (0)
176 
177 #else
178 # define debug_normal_state_change(cond)	do { } while (0)
179 # define debug_special_state_change(cond)	do { } while (0)
180 # define debug_rtlock_wait_set_state()		do { } while (0)
181 # define debug_rtlock_wait_restore_state()	do { } while (0)
182 #endif
183 
184 /*
185  * set_current_state() includes a barrier so that the write of current->__state
186  * is correctly serialised wrt the caller's subsequent test of whether to
187  * actually sleep:
188  *
189  *   for (;;) {
190  *	set_current_state(TASK_UNINTERRUPTIBLE);
191  *	if (CONDITION)
192  *	   break;
193  *
194  *	schedule();
195  *   }
196  *   __set_current_state(TASK_RUNNING);
197  *
198  * If the caller does not need such serialisation (because, for instance, the
199  * CONDITION test and condition change and wakeup are under the same lock) then
200  * use __set_current_state().
201  *
202  * The above is typically ordered against the wakeup, which does:
203  *
204  *   CONDITION = 1;
205  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
206  *
207  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
208  * accessing p->__state.
209  *
210  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
211  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
212  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
213  *
214  * However, with slightly different timing the wakeup TASK_RUNNING store can
215  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
216  * a problem either because that will result in one extra go around the loop
217  * and our @cond test will save the day.
218  *
219  * Also see the comments of try_to_wake_up().
220  */
221 #define __set_current_state(state_value)				\
222 	do {								\
223 		debug_normal_state_change((state_value));		\
224 		WRITE_ONCE(current->__state, (state_value));		\
225 	} while (0)
226 
227 #define set_current_state(state_value)					\
228 	do {								\
229 		debug_normal_state_change((state_value));		\
230 		smp_store_mb(current->__state, (state_value));		\
231 	} while (0)
232 
233 /*
234  * set_special_state() should be used for those states when the blocking task
235  * can not use the regular condition based wait-loop. In that case we must
236  * serialize against wakeups such that any possible in-flight TASK_RUNNING
237  * stores will not collide with our state change.
238  */
239 #define set_special_state(state_value)					\
240 	do {								\
241 		unsigned long flags; /* may shadow */			\
242 									\
243 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
244 		debug_special_state_change((state_value));		\
245 		WRITE_ONCE(current->__state, (state_value));		\
246 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
247 	} while (0)
248 
249 /*
250  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
251  *
252  * RT's spin/rwlock substitutions are state preserving. The state of the
253  * task when blocking on the lock is saved in task_struct::saved_state and
254  * restored after the lock has been acquired.  These operations are
255  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
256  * lock related wakeups while the task is blocked on the lock are
257  * redirected to operate on task_struct::saved_state to ensure that these
258  * are not dropped. On restore task_struct::saved_state is set to
259  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
260  *
261  * The lock operation looks like this:
262  *
263  *	current_save_and_set_rtlock_wait_state();
264  *	for (;;) {
265  *		if (try_lock())
266  *			break;
267  *		raw_spin_unlock_irq(&lock->wait_lock);
268  *		schedule_rtlock();
269  *		raw_spin_lock_irq(&lock->wait_lock);
270  *		set_current_state(TASK_RTLOCK_WAIT);
271  *	}
272  *	current_restore_rtlock_saved_state();
273  */
274 #define current_save_and_set_rtlock_wait_state()			\
275 	do {								\
276 		lockdep_assert_irqs_disabled();				\
277 		raw_spin_lock(&current->pi_lock);			\
278 		current->saved_state = current->__state;		\
279 		debug_rtlock_wait_set_state();				\
280 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
281 		raw_spin_unlock(&current->pi_lock);			\
282 	} while (0);
283 
284 #define current_restore_rtlock_saved_state()				\
285 	do {								\
286 		lockdep_assert_irqs_disabled();				\
287 		raw_spin_lock(&current->pi_lock);			\
288 		debug_rtlock_wait_restore_state();			\
289 		WRITE_ONCE(current->__state, current->saved_state);	\
290 		current->saved_state = TASK_RUNNING;			\
291 		raw_spin_unlock(&current->pi_lock);			\
292 	} while (0);
293 
294 #define get_current_state()	READ_ONCE(current->__state)
295 
296 /*
297  * Define the task command name length as enum, then it can be visible to
298  * BPF programs.
299  */
300 enum {
301 	TASK_COMM_LEN = 16,
302 };
303 
304 extern void scheduler_tick(void);
305 
306 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
307 
308 extern long schedule_timeout(long timeout);
309 extern long schedule_timeout_interruptible(long timeout);
310 extern long schedule_timeout_killable(long timeout);
311 extern long schedule_timeout_uninterruptible(long timeout);
312 extern long schedule_timeout_idle(long timeout);
313 asmlinkage void schedule(void);
314 extern void schedule_preempt_disabled(void);
315 asmlinkage void preempt_schedule_irq(void);
316 #ifdef CONFIG_PREEMPT_RT
317  extern void schedule_rtlock(void);
318 #endif
319 
320 extern int __must_check io_schedule_prepare(void);
321 extern void io_schedule_finish(int token);
322 extern long io_schedule_timeout(long timeout);
323 extern void io_schedule(void);
324 
325 /**
326  * struct prev_cputime - snapshot of system and user cputime
327  * @utime: time spent in user mode
328  * @stime: time spent in system mode
329  * @lock: protects the above two fields
330  *
331  * Stores previous user/system time values such that we can guarantee
332  * monotonicity.
333  */
334 struct prev_cputime {
335 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
336 	u64				utime;
337 	u64				stime;
338 	raw_spinlock_t			lock;
339 #endif
340 };
341 
342 enum vtime_state {
343 	/* Task is sleeping or running in a CPU with VTIME inactive: */
344 	VTIME_INACTIVE = 0,
345 	/* Task is idle */
346 	VTIME_IDLE,
347 	/* Task runs in kernelspace in a CPU with VTIME active: */
348 	VTIME_SYS,
349 	/* Task runs in userspace in a CPU with VTIME active: */
350 	VTIME_USER,
351 	/* Task runs as guests in a CPU with VTIME active: */
352 	VTIME_GUEST,
353 };
354 
355 struct vtime {
356 	seqcount_t		seqcount;
357 	unsigned long long	starttime;
358 	enum vtime_state	state;
359 	unsigned int		cpu;
360 	u64			utime;
361 	u64			stime;
362 	u64			gtime;
363 };
364 
365 /*
366  * Utilization clamp constraints.
367  * @UCLAMP_MIN:	Minimum utilization
368  * @UCLAMP_MAX:	Maximum utilization
369  * @UCLAMP_CNT:	Utilization clamp constraints count
370  */
371 enum uclamp_id {
372 	UCLAMP_MIN = 0,
373 	UCLAMP_MAX,
374 	UCLAMP_CNT
375 };
376 
377 #ifdef CONFIG_SMP
378 extern struct root_domain def_root_domain;
379 extern struct mutex sched_domains_mutex;
380 #endif
381 
382 struct sched_param {
383 	int sched_priority;
384 };
385 
386 struct sched_info {
387 #ifdef CONFIG_SCHED_INFO
388 	/* Cumulative counters: */
389 
390 	/* # of times we have run on this CPU: */
391 	unsigned long			pcount;
392 
393 	/* Time spent waiting on a runqueue: */
394 	unsigned long long		run_delay;
395 
396 	/* Timestamps: */
397 
398 	/* When did we last run on a CPU? */
399 	unsigned long long		last_arrival;
400 
401 	/* When were we last queued to run? */
402 	unsigned long long		last_queued;
403 
404 #endif /* CONFIG_SCHED_INFO */
405 };
406 
407 /*
408  * Integer metrics need fixed point arithmetic, e.g., sched/fair
409  * has a few: load, load_avg, util_avg, freq, and capacity.
410  *
411  * We define a basic fixed point arithmetic range, and then formalize
412  * all these metrics based on that basic range.
413  */
414 # define SCHED_FIXEDPOINT_SHIFT		10
415 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
416 
417 /* Increase resolution of cpu_capacity calculations */
418 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
419 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
420 
421 struct load_weight {
422 	unsigned long			weight;
423 	u32				inv_weight;
424 };
425 
426 /*
427  * The load/runnable/util_avg accumulates an infinite geometric series
428  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
429  *
430  * [load_avg definition]
431  *
432  *   load_avg = runnable% * scale_load_down(load)
433  *
434  * [runnable_avg definition]
435  *
436  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
437  *
438  * [util_avg definition]
439  *
440  *   util_avg = running% * SCHED_CAPACITY_SCALE
441  *
442  * where runnable% is the time ratio that a sched_entity is runnable and
443  * running% the time ratio that a sched_entity is running.
444  *
445  * For cfs_rq, they are the aggregated values of all runnable and blocked
446  * sched_entities.
447  *
448  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
449  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
450  * for computing those signals (see update_rq_clock_pelt())
451  *
452  * N.B., the above ratios (runnable% and running%) themselves are in the
453  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
454  * to as large a range as necessary. This is for example reflected by
455  * util_avg's SCHED_CAPACITY_SCALE.
456  *
457  * [Overflow issue]
458  *
459  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
460  * with the highest load (=88761), always runnable on a single cfs_rq,
461  * and should not overflow as the number already hits PID_MAX_LIMIT.
462  *
463  * For all other cases (including 32-bit kernels), struct load_weight's
464  * weight will overflow first before we do, because:
465  *
466  *    Max(load_avg) <= Max(load.weight)
467  *
468  * Then it is the load_weight's responsibility to consider overflow
469  * issues.
470  */
471 struct sched_avg {
472 	u64				last_update_time;
473 	u64				load_sum;
474 	u64				runnable_sum;
475 	u32				util_sum;
476 	u32				period_contrib;
477 	unsigned long			load_avg;
478 	unsigned long			runnable_avg;
479 	unsigned long			util_avg;
480 	unsigned int			util_est;
481 } ____cacheline_aligned;
482 
483 /*
484  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
485  * updates. When a task is dequeued, its util_est should not be updated if its
486  * util_avg has not been updated in the meantime.
487  * This information is mapped into the MSB bit of util_est at dequeue time.
488  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
489  * it is safe to use MSB.
490  */
491 #define UTIL_EST_WEIGHT_SHIFT		2
492 #define UTIL_AVG_UNCHANGED		0x80000000
493 
494 struct sched_statistics {
495 #ifdef CONFIG_SCHEDSTATS
496 	u64				wait_start;
497 	u64				wait_max;
498 	u64				wait_count;
499 	u64				wait_sum;
500 	u64				iowait_count;
501 	u64				iowait_sum;
502 
503 	u64				sleep_start;
504 	u64				sleep_max;
505 	s64				sum_sleep_runtime;
506 
507 	u64				block_start;
508 	u64				block_max;
509 	s64				sum_block_runtime;
510 
511 	s64				exec_max;
512 	u64				slice_max;
513 
514 	u64				nr_migrations_cold;
515 	u64				nr_failed_migrations_affine;
516 	u64				nr_failed_migrations_running;
517 	u64				nr_failed_migrations_hot;
518 	u64				nr_forced_migrations;
519 
520 	u64				nr_wakeups;
521 	u64				nr_wakeups_sync;
522 	u64				nr_wakeups_migrate;
523 	u64				nr_wakeups_local;
524 	u64				nr_wakeups_remote;
525 	u64				nr_wakeups_affine;
526 	u64				nr_wakeups_affine_attempts;
527 	u64				nr_wakeups_passive;
528 	u64				nr_wakeups_idle;
529 
530 #ifdef CONFIG_SCHED_CORE
531 	u64				core_forceidle_sum;
532 #endif
533 #endif /* CONFIG_SCHEDSTATS */
534 } ____cacheline_aligned;
535 
536 struct sched_entity {
537 	/* For load-balancing: */
538 	struct load_weight		load;
539 	struct rb_node			run_node;
540 	u64				deadline;
541 	u64				min_vruntime;
542 
543 	struct list_head		group_node;
544 	unsigned int			on_rq;
545 
546 	u64				exec_start;
547 	u64				sum_exec_runtime;
548 	u64				prev_sum_exec_runtime;
549 	u64				vruntime;
550 	s64				vlag;
551 	u64				slice;
552 
553 	u64				nr_migrations;
554 
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 	int				depth;
557 	struct sched_entity		*parent;
558 	/* rq on which this entity is (to be) queued: */
559 	struct cfs_rq			*cfs_rq;
560 	/* rq "owned" by this entity/group: */
561 	struct cfs_rq			*my_q;
562 	/* cached value of my_q->h_nr_running */
563 	unsigned long			runnable_weight;
564 #endif
565 
566 #ifdef CONFIG_SMP
567 	/*
568 	 * Per entity load average tracking.
569 	 *
570 	 * Put into separate cache line so it does not
571 	 * collide with read-mostly values above.
572 	 */
573 	struct sched_avg		avg;
574 #endif
575 };
576 
577 struct sched_rt_entity {
578 	struct list_head		run_list;
579 	unsigned long			timeout;
580 	unsigned long			watchdog_stamp;
581 	unsigned int			time_slice;
582 	unsigned short			on_rq;
583 	unsigned short			on_list;
584 
585 	struct sched_rt_entity		*back;
586 #ifdef CONFIG_RT_GROUP_SCHED
587 	struct sched_rt_entity		*parent;
588 	/* rq on which this entity is (to be) queued: */
589 	struct rt_rq			*rt_rq;
590 	/* rq "owned" by this entity/group: */
591 	struct rt_rq			*my_q;
592 #endif
593 } __randomize_layout;
594 
595 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
596 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
597 
598 struct sched_dl_entity {
599 	struct rb_node			rb_node;
600 
601 	/*
602 	 * Original scheduling parameters. Copied here from sched_attr
603 	 * during sched_setattr(), they will remain the same until
604 	 * the next sched_setattr().
605 	 */
606 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
607 	u64				dl_deadline;	/* Relative deadline of each instance	*/
608 	u64				dl_period;	/* Separation of two instances (period) */
609 	u64				dl_bw;		/* dl_runtime / dl_period		*/
610 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
611 
612 	/*
613 	 * Actual scheduling parameters. Initialized with the values above,
614 	 * they are continuously updated during task execution. Note that
615 	 * the remaining runtime could be < 0 in case we are in overrun.
616 	 */
617 	s64				runtime;	/* Remaining runtime for this instance	*/
618 	u64				deadline;	/* Absolute deadline for this instance	*/
619 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
620 
621 	/*
622 	 * Some bool flags:
623 	 *
624 	 * @dl_throttled tells if we exhausted the runtime. If so, the
625 	 * task has to wait for a replenishment to be performed at the
626 	 * next firing of dl_timer.
627 	 *
628 	 * @dl_yielded tells if task gave up the CPU before consuming
629 	 * all its available runtime during the last job.
630 	 *
631 	 * @dl_non_contending tells if the task is inactive while still
632 	 * contributing to the active utilization. In other words, it
633 	 * indicates if the inactive timer has been armed and its handler
634 	 * has not been executed yet. This flag is useful to avoid race
635 	 * conditions between the inactive timer handler and the wakeup
636 	 * code.
637 	 *
638 	 * @dl_overrun tells if the task asked to be informed about runtime
639 	 * overruns.
640 	 */
641 	unsigned int			dl_throttled      : 1;
642 	unsigned int			dl_yielded        : 1;
643 	unsigned int			dl_non_contending : 1;
644 	unsigned int			dl_overrun	  : 1;
645 	unsigned int			dl_server         : 1;
646 
647 	/*
648 	 * Bandwidth enforcement timer. Each -deadline task has its
649 	 * own bandwidth to be enforced, thus we need one timer per task.
650 	 */
651 	struct hrtimer			dl_timer;
652 
653 	/*
654 	 * Inactive timer, responsible for decreasing the active utilization
655 	 * at the "0-lag time". When a -deadline task blocks, it contributes
656 	 * to GRUB's active utilization until the "0-lag time", hence a
657 	 * timer is needed to decrease the active utilization at the correct
658 	 * time.
659 	 */
660 	struct hrtimer			inactive_timer;
661 
662 	/*
663 	 * Bits for DL-server functionality. Also see the comment near
664 	 * dl_server_update().
665 	 *
666 	 * @rq the runqueue this server is for
667 	 *
668 	 * @server_has_tasks() returns true if @server_pick return a
669 	 * runnable task.
670 	 */
671 	struct rq			*rq;
672 	dl_server_has_tasks_f		server_has_tasks;
673 	dl_server_pick_f		server_pick;
674 
675 #ifdef CONFIG_RT_MUTEXES
676 	/*
677 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
678 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
679 	 * to (the original one/itself).
680 	 */
681 	struct sched_dl_entity *pi_se;
682 #endif
683 };
684 
685 #ifdef CONFIG_UCLAMP_TASK
686 /* Number of utilization clamp buckets (shorter alias) */
687 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
688 
689 /*
690  * Utilization clamp for a scheduling entity
691  * @value:		clamp value "assigned" to a se
692  * @bucket_id:		bucket index corresponding to the "assigned" value
693  * @active:		the se is currently refcounted in a rq's bucket
694  * @user_defined:	the requested clamp value comes from user-space
695  *
696  * The bucket_id is the index of the clamp bucket matching the clamp value
697  * which is pre-computed and stored to avoid expensive integer divisions from
698  * the fast path.
699  *
700  * The active bit is set whenever a task has got an "effective" value assigned,
701  * which can be different from the clamp value "requested" from user-space.
702  * This allows to know a task is refcounted in the rq's bucket corresponding
703  * to the "effective" bucket_id.
704  *
705  * The user_defined bit is set whenever a task has got a task-specific clamp
706  * value requested from userspace, i.e. the system defaults apply to this task
707  * just as a restriction. This allows to relax default clamps when a less
708  * restrictive task-specific value has been requested, thus allowing to
709  * implement a "nice" semantic. For example, a task running with a 20%
710  * default boost can still drop its own boosting to 0%.
711  */
712 struct uclamp_se {
713 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
714 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
715 	unsigned int active		: 1;
716 	unsigned int user_defined	: 1;
717 };
718 #endif /* CONFIG_UCLAMP_TASK */
719 
720 union rcu_special {
721 	struct {
722 		u8			blocked;
723 		u8			need_qs;
724 		u8			exp_hint; /* Hint for performance. */
725 		u8			need_mb; /* Readers need smp_mb(). */
726 	} b; /* Bits. */
727 	u32 s; /* Set of bits. */
728 };
729 
730 enum perf_event_task_context {
731 	perf_invalid_context = -1,
732 	perf_hw_context = 0,
733 	perf_sw_context,
734 	perf_nr_task_contexts,
735 };
736 
737 struct wake_q_node {
738 	struct wake_q_node *next;
739 };
740 
741 struct kmap_ctrl {
742 #ifdef CONFIG_KMAP_LOCAL
743 	int				idx;
744 	pte_t				pteval[KM_MAX_IDX];
745 #endif
746 };
747 
748 struct task_struct {
749 #ifdef CONFIG_THREAD_INFO_IN_TASK
750 	/*
751 	 * For reasons of header soup (see current_thread_info()), this
752 	 * must be the first element of task_struct.
753 	 */
754 	struct thread_info		thread_info;
755 #endif
756 	unsigned int			__state;
757 
758 	/* saved state for "spinlock sleepers" */
759 	unsigned int			saved_state;
760 
761 	/*
762 	 * This begins the randomizable portion of task_struct. Only
763 	 * scheduling-critical items should be added above here.
764 	 */
765 	randomized_struct_fields_start
766 
767 	void				*stack;
768 	refcount_t			usage;
769 	/* Per task flags (PF_*), defined further below: */
770 	unsigned int			flags;
771 	unsigned int			ptrace;
772 
773 #ifdef CONFIG_SMP
774 	int				on_cpu;
775 	struct __call_single_node	wake_entry;
776 	unsigned int			wakee_flips;
777 	unsigned long			wakee_flip_decay_ts;
778 	struct task_struct		*last_wakee;
779 
780 	/*
781 	 * recent_used_cpu is initially set as the last CPU used by a task
782 	 * that wakes affine another task. Waker/wakee relationships can
783 	 * push tasks around a CPU where each wakeup moves to the next one.
784 	 * Tracking a recently used CPU allows a quick search for a recently
785 	 * used CPU that may be idle.
786 	 */
787 	int				recent_used_cpu;
788 	int				wake_cpu;
789 #endif
790 	int				on_rq;
791 
792 	int				prio;
793 	int				static_prio;
794 	int				normal_prio;
795 	unsigned int			rt_priority;
796 
797 	struct sched_entity		se;
798 	struct sched_rt_entity		rt;
799 	struct sched_dl_entity		dl;
800 	struct sched_dl_entity		*dl_server;
801 	const struct sched_class	*sched_class;
802 
803 #ifdef CONFIG_SCHED_CORE
804 	struct rb_node			core_node;
805 	unsigned long			core_cookie;
806 	unsigned int			core_occupation;
807 #endif
808 
809 #ifdef CONFIG_CGROUP_SCHED
810 	struct task_group		*sched_task_group;
811 #endif
812 
813 #ifdef CONFIG_UCLAMP_TASK
814 	/*
815 	 * Clamp values requested for a scheduling entity.
816 	 * Must be updated with task_rq_lock() held.
817 	 */
818 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
819 	/*
820 	 * Effective clamp values used for a scheduling entity.
821 	 * Must be updated with task_rq_lock() held.
822 	 */
823 	struct uclamp_se		uclamp[UCLAMP_CNT];
824 #endif
825 
826 	struct sched_statistics         stats;
827 
828 #ifdef CONFIG_PREEMPT_NOTIFIERS
829 	/* List of struct preempt_notifier: */
830 	struct hlist_head		preempt_notifiers;
831 #endif
832 
833 #ifdef CONFIG_BLK_DEV_IO_TRACE
834 	unsigned int			btrace_seq;
835 #endif
836 
837 	unsigned int			policy;
838 	int				nr_cpus_allowed;
839 	const cpumask_t			*cpus_ptr;
840 	cpumask_t			*user_cpus_ptr;
841 	cpumask_t			cpus_mask;
842 	void				*migration_pending;
843 #ifdef CONFIG_SMP
844 	unsigned short			migration_disabled;
845 #endif
846 	unsigned short			migration_flags;
847 
848 #ifdef CONFIG_PREEMPT_RCU
849 	int				rcu_read_lock_nesting;
850 	union rcu_special		rcu_read_unlock_special;
851 	struct list_head		rcu_node_entry;
852 	struct rcu_node			*rcu_blocked_node;
853 #endif /* #ifdef CONFIG_PREEMPT_RCU */
854 
855 #ifdef CONFIG_TASKS_RCU
856 	unsigned long			rcu_tasks_nvcsw;
857 	u8				rcu_tasks_holdout;
858 	u8				rcu_tasks_idx;
859 	int				rcu_tasks_idle_cpu;
860 	struct list_head		rcu_tasks_holdout_list;
861 	int				rcu_tasks_exit_cpu;
862 	struct list_head		rcu_tasks_exit_list;
863 #endif /* #ifdef CONFIG_TASKS_RCU */
864 
865 #ifdef CONFIG_TASKS_TRACE_RCU
866 	int				trc_reader_nesting;
867 	int				trc_ipi_to_cpu;
868 	union rcu_special		trc_reader_special;
869 	struct list_head		trc_holdout_list;
870 	struct list_head		trc_blkd_node;
871 	int				trc_blkd_cpu;
872 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
873 
874 	struct sched_info		sched_info;
875 
876 	struct list_head		tasks;
877 #ifdef CONFIG_SMP
878 	struct plist_node		pushable_tasks;
879 	struct rb_node			pushable_dl_tasks;
880 #endif
881 
882 	struct mm_struct		*mm;
883 	struct mm_struct		*active_mm;
884 	struct address_space		*faults_disabled_mapping;
885 
886 	int				exit_state;
887 	int				exit_code;
888 	int				exit_signal;
889 	/* The signal sent when the parent dies: */
890 	int				pdeath_signal;
891 	/* JOBCTL_*, siglock protected: */
892 	unsigned long			jobctl;
893 
894 	/* Used for emulating ABI behavior of previous Linux versions: */
895 	unsigned int			personality;
896 
897 	/* Scheduler bits, serialized by scheduler locks: */
898 	unsigned			sched_reset_on_fork:1;
899 	unsigned			sched_contributes_to_load:1;
900 	unsigned			sched_migrated:1;
901 
902 	/* Force alignment to the next boundary: */
903 	unsigned			:0;
904 
905 	/* Unserialized, strictly 'current' */
906 
907 	/*
908 	 * This field must not be in the scheduler word above due to wakelist
909 	 * queueing no longer being serialized by p->on_cpu. However:
910 	 *
911 	 * p->XXX = X;			ttwu()
912 	 * schedule()			  if (p->on_rq && ..) // false
913 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
914 	 *   deactivate_task()		      ttwu_queue_wakelist())
915 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
916 	 *
917 	 * guarantees all stores of 'current' are visible before
918 	 * ->sched_remote_wakeup gets used, so it can be in this word.
919 	 */
920 	unsigned			sched_remote_wakeup:1;
921 #ifdef CONFIG_RT_MUTEXES
922 	unsigned			sched_rt_mutex:1;
923 #endif
924 
925 	/* Bit to tell TOMOYO we're in execve(): */
926 	unsigned			in_execve:1;
927 	unsigned			in_iowait:1;
928 #ifndef TIF_RESTORE_SIGMASK
929 	unsigned			restore_sigmask:1;
930 #endif
931 #ifdef CONFIG_MEMCG
932 	unsigned			in_user_fault:1;
933 #endif
934 #ifdef CONFIG_LRU_GEN
935 	/* whether the LRU algorithm may apply to this access */
936 	unsigned			in_lru_fault:1;
937 #endif
938 #ifdef CONFIG_COMPAT_BRK
939 	unsigned			brk_randomized:1;
940 #endif
941 #ifdef CONFIG_CGROUPS
942 	/* disallow userland-initiated cgroup migration */
943 	unsigned			no_cgroup_migration:1;
944 	/* task is frozen/stopped (used by the cgroup freezer) */
945 	unsigned			frozen:1;
946 #endif
947 #ifdef CONFIG_BLK_CGROUP
948 	unsigned			use_memdelay:1;
949 #endif
950 #ifdef CONFIG_PSI
951 	/* Stalled due to lack of memory */
952 	unsigned			in_memstall:1;
953 #endif
954 #ifdef CONFIG_PAGE_OWNER
955 	/* Used by page_owner=on to detect recursion in page tracking. */
956 	unsigned			in_page_owner:1;
957 #endif
958 #ifdef CONFIG_EVENTFD
959 	/* Recursion prevention for eventfd_signal() */
960 	unsigned			in_eventfd:1;
961 #endif
962 #ifdef CONFIG_ARCH_HAS_CPU_PASID
963 	unsigned			pasid_activated:1;
964 #endif
965 #ifdef	CONFIG_CPU_SUP_INTEL
966 	unsigned			reported_split_lock:1;
967 #endif
968 #ifdef CONFIG_TASK_DELAY_ACCT
969 	/* delay due to memory thrashing */
970 	unsigned                        in_thrashing:1;
971 #endif
972 
973 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
974 
975 	struct restart_block		restart_block;
976 
977 	pid_t				pid;
978 	pid_t				tgid;
979 
980 #ifdef CONFIG_STACKPROTECTOR
981 	/* Canary value for the -fstack-protector GCC feature: */
982 	unsigned long			stack_canary;
983 #endif
984 	/*
985 	 * Pointers to the (original) parent process, youngest child, younger sibling,
986 	 * older sibling, respectively.  (p->father can be replaced with
987 	 * p->real_parent->pid)
988 	 */
989 
990 	/* Real parent process: */
991 	struct task_struct __rcu	*real_parent;
992 
993 	/* Recipient of SIGCHLD, wait4() reports: */
994 	struct task_struct __rcu	*parent;
995 
996 	/*
997 	 * Children/sibling form the list of natural children:
998 	 */
999 	struct list_head		children;
1000 	struct list_head		sibling;
1001 	struct task_struct		*group_leader;
1002 
1003 	/*
1004 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1005 	 *
1006 	 * This includes both natural children and PTRACE_ATTACH targets.
1007 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1008 	 */
1009 	struct list_head		ptraced;
1010 	struct list_head		ptrace_entry;
1011 
1012 	/* PID/PID hash table linkage. */
1013 	struct pid			*thread_pid;
1014 	struct hlist_node		pid_links[PIDTYPE_MAX];
1015 	struct list_head		thread_node;
1016 
1017 	struct completion		*vfork_done;
1018 
1019 	/* CLONE_CHILD_SETTID: */
1020 	int __user			*set_child_tid;
1021 
1022 	/* CLONE_CHILD_CLEARTID: */
1023 	int __user			*clear_child_tid;
1024 
1025 	/* PF_KTHREAD | PF_IO_WORKER */
1026 	void				*worker_private;
1027 
1028 	u64				utime;
1029 	u64				stime;
1030 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1031 	u64				utimescaled;
1032 	u64				stimescaled;
1033 #endif
1034 	u64				gtime;
1035 	struct prev_cputime		prev_cputime;
1036 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1037 	struct vtime			vtime;
1038 #endif
1039 
1040 #ifdef CONFIG_NO_HZ_FULL
1041 	atomic_t			tick_dep_mask;
1042 #endif
1043 	/* Context switch counts: */
1044 	unsigned long			nvcsw;
1045 	unsigned long			nivcsw;
1046 
1047 	/* Monotonic time in nsecs: */
1048 	u64				start_time;
1049 
1050 	/* Boot based time in nsecs: */
1051 	u64				start_boottime;
1052 
1053 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1054 	unsigned long			min_flt;
1055 	unsigned long			maj_flt;
1056 
1057 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1058 	struct posix_cputimers		posix_cputimers;
1059 
1060 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1061 	struct posix_cputimers_work	posix_cputimers_work;
1062 #endif
1063 
1064 	/* Process credentials: */
1065 
1066 	/* Tracer's credentials at attach: */
1067 	const struct cred __rcu		*ptracer_cred;
1068 
1069 	/* Objective and real subjective task credentials (COW): */
1070 	const struct cred __rcu		*real_cred;
1071 
1072 	/* Effective (overridable) subjective task credentials (COW): */
1073 	const struct cred __rcu		*cred;
1074 
1075 #ifdef CONFIG_KEYS
1076 	/* Cached requested key. */
1077 	struct key			*cached_requested_key;
1078 #endif
1079 
1080 	/*
1081 	 * executable name, excluding path.
1082 	 *
1083 	 * - normally initialized setup_new_exec()
1084 	 * - access it with [gs]et_task_comm()
1085 	 * - lock it with task_lock()
1086 	 */
1087 	char				comm[TASK_COMM_LEN];
1088 
1089 	struct nameidata		*nameidata;
1090 
1091 #ifdef CONFIG_SYSVIPC
1092 	struct sysv_sem			sysvsem;
1093 	struct sysv_shm			sysvshm;
1094 #endif
1095 #ifdef CONFIG_DETECT_HUNG_TASK
1096 	unsigned long			last_switch_count;
1097 	unsigned long			last_switch_time;
1098 #endif
1099 	/* Filesystem information: */
1100 	struct fs_struct		*fs;
1101 
1102 	/* Open file information: */
1103 	struct files_struct		*files;
1104 
1105 #ifdef CONFIG_IO_URING
1106 	struct io_uring_task		*io_uring;
1107 #endif
1108 
1109 	/* Namespaces: */
1110 	struct nsproxy			*nsproxy;
1111 
1112 	/* Signal handlers: */
1113 	struct signal_struct		*signal;
1114 	struct sighand_struct __rcu		*sighand;
1115 	sigset_t			blocked;
1116 	sigset_t			real_blocked;
1117 	/* Restored if set_restore_sigmask() was used: */
1118 	sigset_t			saved_sigmask;
1119 	struct sigpending		pending;
1120 	unsigned long			sas_ss_sp;
1121 	size_t				sas_ss_size;
1122 	unsigned int			sas_ss_flags;
1123 
1124 	struct callback_head		*task_works;
1125 
1126 #ifdef CONFIG_AUDIT
1127 #ifdef CONFIG_AUDITSYSCALL
1128 	struct audit_context		*audit_context;
1129 #endif
1130 	kuid_t				loginuid;
1131 	unsigned int			sessionid;
1132 #endif
1133 	struct seccomp			seccomp;
1134 	struct syscall_user_dispatch	syscall_dispatch;
1135 
1136 	/* Thread group tracking: */
1137 	u64				parent_exec_id;
1138 	u64				self_exec_id;
1139 
1140 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1141 	spinlock_t			alloc_lock;
1142 
1143 	/* Protection of the PI data structures: */
1144 	raw_spinlock_t			pi_lock;
1145 
1146 	struct wake_q_node		wake_q;
1147 
1148 #ifdef CONFIG_RT_MUTEXES
1149 	/* PI waiters blocked on a rt_mutex held by this task: */
1150 	struct rb_root_cached		pi_waiters;
1151 	/* Updated under owner's pi_lock and rq lock */
1152 	struct task_struct		*pi_top_task;
1153 	/* Deadlock detection and priority inheritance handling: */
1154 	struct rt_mutex_waiter		*pi_blocked_on;
1155 #endif
1156 
1157 #ifdef CONFIG_DEBUG_MUTEXES
1158 	/* Mutex deadlock detection: */
1159 	struct mutex_waiter		*blocked_on;
1160 #endif
1161 
1162 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1163 	int				non_block_count;
1164 #endif
1165 
1166 #ifdef CONFIG_TRACE_IRQFLAGS
1167 	struct irqtrace_events		irqtrace;
1168 	unsigned int			hardirq_threaded;
1169 	u64				hardirq_chain_key;
1170 	int				softirqs_enabled;
1171 	int				softirq_context;
1172 	int				irq_config;
1173 #endif
1174 #ifdef CONFIG_PREEMPT_RT
1175 	int				softirq_disable_cnt;
1176 #endif
1177 
1178 #ifdef CONFIG_LOCKDEP
1179 # define MAX_LOCK_DEPTH			48UL
1180 	u64				curr_chain_key;
1181 	int				lockdep_depth;
1182 	unsigned int			lockdep_recursion;
1183 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1184 #endif
1185 
1186 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1187 	unsigned int			in_ubsan;
1188 #endif
1189 
1190 	/* Journalling filesystem info: */
1191 	void				*journal_info;
1192 
1193 	/* Stacked block device info: */
1194 	struct bio_list			*bio_list;
1195 
1196 	/* Stack plugging: */
1197 	struct blk_plug			*plug;
1198 
1199 	/* VM state: */
1200 	struct reclaim_state		*reclaim_state;
1201 
1202 	struct io_context		*io_context;
1203 
1204 #ifdef CONFIG_COMPACTION
1205 	struct capture_control		*capture_control;
1206 #endif
1207 	/* Ptrace state: */
1208 	unsigned long			ptrace_message;
1209 	kernel_siginfo_t		*last_siginfo;
1210 
1211 	struct task_io_accounting	ioac;
1212 #ifdef CONFIG_PSI
1213 	/* Pressure stall state */
1214 	unsigned int			psi_flags;
1215 #endif
1216 #ifdef CONFIG_TASK_XACCT
1217 	/* Accumulated RSS usage: */
1218 	u64				acct_rss_mem1;
1219 	/* Accumulated virtual memory usage: */
1220 	u64				acct_vm_mem1;
1221 	/* stime + utime since last update: */
1222 	u64				acct_timexpd;
1223 #endif
1224 #ifdef CONFIG_CPUSETS
1225 	/* Protected by ->alloc_lock: */
1226 	nodemask_t			mems_allowed;
1227 	/* Sequence number to catch updates: */
1228 	seqcount_spinlock_t		mems_allowed_seq;
1229 	int				cpuset_mem_spread_rotor;
1230 	int				cpuset_slab_spread_rotor;
1231 #endif
1232 #ifdef CONFIG_CGROUPS
1233 	/* Control Group info protected by css_set_lock: */
1234 	struct css_set __rcu		*cgroups;
1235 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1236 	struct list_head		cg_list;
1237 #endif
1238 #ifdef CONFIG_X86_CPU_RESCTRL
1239 	u32				closid;
1240 	u32				rmid;
1241 #endif
1242 #ifdef CONFIG_FUTEX
1243 	struct robust_list_head __user	*robust_list;
1244 #ifdef CONFIG_COMPAT
1245 	struct compat_robust_list_head __user *compat_robust_list;
1246 #endif
1247 	struct list_head		pi_state_list;
1248 	struct futex_pi_state		*pi_state_cache;
1249 	struct mutex			futex_exit_mutex;
1250 	unsigned int			futex_state;
1251 #endif
1252 #ifdef CONFIG_PERF_EVENTS
1253 	struct perf_event_context	*perf_event_ctxp;
1254 	struct mutex			perf_event_mutex;
1255 	struct list_head		perf_event_list;
1256 #endif
1257 #ifdef CONFIG_DEBUG_PREEMPT
1258 	unsigned long			preempt_disable_ip;
1259 #endif
1260 #ifdef CONFIG_NUMA
1261 	/* Protected by alloc_lock: */
1262 	struct mempolicy		*mempolicy;
1263 	short				il_prev;
1264 	u8				il_weight;
1265 	short				pref_node_fork;
1266 #endif
1267 #ifdef CONFIG_NUMA_BALANCING
1268 	int				numa_scan_seq;
1269 	unsigned int			numa_scan_period;
1270 	unsigned int			numa_scan_period_max;
1271 	int				numa_preferred_nid;
1272 	unsigned long			numa_migrate_retry;
1273 	/* Migration stamp: */
1274 	u64				node_stamp;
1275 	u64				last_task_numa_placement;
1276 	u64				last_sum_exec_runtime;
1277 	struct callback_head		numa_work;
1278 
1279 	/*
1280 	 * This pointer is only modified for current in syscall and
1281 	 * pagefault context (and for tasks being destroyed), so it can be read
1282 	 * from any of the following contexts:
1283 	 *  - RCU read-side critical section
1284 	 *  - current->numa_group from everywhere
1285 	 *  - task's runqueue locked, task not running
1286 	 */
1287 	struct numa_group __rcu		*numa_group;
1288 
1289 	/*
1290 	 * numa_faults is an array split into four regions:
1291 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1292 	 * in this precise order.
1293 	 *
1294 	 * faults_memory: Exponential decaying average of faults on a per-node
1295 	 * basis. Scheduling placement decisions are made based on these
1296 	 * counts. The values remain static for the duration of a PTE scan.
1297 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1298 	 * hinting fault was incurred.
1299 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1300 	 * during the current scan window. When the scan completes, the counts
1301 	 * in faults_memory and faults_cpu decay and these values are copied.
1302 	 */
1303 	unsigned long			*numa_faults;
1304 	unsigned long			total_numa_faults;
1305 
1306 	/*
1307 	 * numa_faults_locality tracks if faults recorded during the last
1308 	 * scan window were remote/local or failed to migrate. The task scan
1309 	 * period is adapted based on the locality of the faults with different
1310 	 * weights depending on whether they were shared or private faults
1311 	 */
1312 	unsigned long			numa_faults_locality[3];
1313 
1314 	unsigned long			numa_pages_migrated;
1315 #endif /* CONFIG_NUMA_BALANCING */
1316 
1317 #ifdef CONFIG_RSEQ
1318 	struct rseq __user *rseq;
1319 	u32 rseq_len;
1320 	u32 rseq_sig;
1321 	/*
1322 	 * RmW on rseq_event_mask must be performed atomically
1323 	 * with respect to preemption.
1324 	 */
1325 	unsigned long rseq_event_mask;
1326 #endif
1327 
1328 #ifdef CONFIG_SCHED_MM_CID
1329 	int				mm_cid;		/* Current cid in mm */
1330 	int				last_mm_cid;	/* Most recent cid in mm */
1331 	int				migrate_from_cpu;
1332 	int				mm_cid_active;	/* Whether cid bitmap is active */
1333 	struct callback_head		cid_work;
1334 #endif
1335 
1336 	struct tlbflush_unmap_batch	tlb_ubc;
1337 
1338 	/* Cache last used pipe for splice(): */
1339 	struct pipe_inode_info		*splice_pipe;
1340 
1341 	struct page_frag		task_frag;
1342 
1343 #ifdef CONFIG_TASK_DELAY_ACCT
1344 	struct task_delay_info		*delays;
1345 #endif
1346 
1347 #ifdef CONFIG_FAULT_INJECTION
1348 	int				make_it_fail;
1349 	unsigned int			fail_nth;
1350 #endif
1351 	/*
1352 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1353 	 * balance_dirty_pages() for a dirty throttling pause:
1354 	 */
1355 	int				nr_dirtied;
1356 	int				nr_dirtied_pause;
1357 	/* Start of a write-and-pause period: */
1358 	unsigned long			dirty_paused_when;
1359 
1360 #ifdef CONFIG_LATENCYTOP
1361 	int				latency_record_count;
1362 	struct latency_record		latency_record[LT_SAVECOUNT];
1363 #endif
1364 	/*
1365 	 * Time slack values; these are used to round up poll() and
1366 	 * select() etc timeout values. These are in nanoseconds.
1367 	 */
1368 	u64				timer_slack_ns;
1369 	u64				default_timer_slack_ns;
1370 
1371 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1372 	unsigned int			kasan_depth;
1373 #endif
1374 
1375 #ifdef CONFIG_KCSAN
1376 	struct kcsan_ctx		kcsan_ctx;
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378 	struct irqtrace_events		kcsan_save_irqtrace;
1379 #endif
1380 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1381 	int				kcsan_stack_depth;
1382 #endif
1383 #endif
1384 
1385 #ifdef CONFIG_KMSAN
1386 	struct kmsan_ctx		kmsan_ctx;
1387 #endif
1388 
1389 #if IS_ENABLED(CONFIG_KUNIT)
1390 	struct kunit			*kunit_test;
1391 #endif
1392 
1393 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1394 	/* Index of current stored address in ret_stack: */
1395 	int				curr_ret_stack;
1396 	int				curr_ret_depth;
1397 
1398 	/* Stack of return addresses for return function tracing: */
1399 	struct ftrace_ret_stack		*ret_stack;
1400 
1401 	/* Timestamp for last schedule: */
1402 	unsigned long long		ftrace_timestamp;
1403 
1404 	/*
1405 	 * Number of functions that haven't been traced
1406 	 * because of depth overrun:
1407 	 */
1408 	atomic_t			trace_overrun;
1409 
1410 	/* Pause tracing: */
1411 	atomic_t			tracing_graph_pause;
1412 #endif
1413 
1414 #ifdef CONFIG_TRACING
1415 	/* Bitmask and counter of trace recursion: */
1416 	unsigned long			trace_recursion;
1417 #endif /* CONFIG_TRACING */
1418 
1419 #ifdef CONFIG_KCOV
1420 	/* See kernel/kcov.c for more details. */
1421 
1422 	/* Coverage collection mode enabled for this task (0 if disabled): */
1423 	unsigned int			kcov_mode;
1424 
1425 	/* Size of the kcov_area: */
1426 	unsigned int			kcov_size;
1427 
1428 	/* Buffer for coverage collection: */
1429 	void				*kcov_area;
1430 
1431 	/* KCOV descriptor wired with this task or NULL: */
1432 	struct kcov			*kcov;
1433 
1434 	/* KCOV common handle for remote coverage collection: */
1435 	u64				kcov_handle;
1436 
1437 	/* KCOV sequence number: */
1438 	int				kcov_sequence;
1439 
1440 	/* Collect coverage from softirq context: */
1441 	unsigned int			kcov_softirq;
1442 #endif
1443 
1444 #ifdef CONFIG_MEMCG
1445 	struct mem_cgroup		*memcg_in_oom;
1446 	gfp_t				memcg_oom_gfp_mask;
1447 	int				memcg_oom_order;
1448 
1449 	/* Number of pages to reclaim on returning to userland: */
1450 	unsigned int			memcg_nr_pages_over_high;
1451 
1452 	/* Used by memcontrol for targeted memcg charge: */
1453 	struct mem_cgroup		*active_memcg;
1454 #endif
1455 
1456 #ifdef CONFIG_MEMCG_KMEM
1457 	struct obj_cgroup		*objcg;
1458 #endif
1459 
1460 #ifdef CONFIG_BLK_CGROUP
1461 	struct gendisk			*throttle_disk;
1462 #endif
1463 
1464 #ifdef CONFIG_UPROBES
1465 	struct uprobe_task		*utask;
1466 #endif
1467 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1468 	unsigned int			sequential_io;
1469 	unsigned int			sequential_io_avg;
1470 #endif
1471 	struct kmap_ctrl		kmap_ctrl;
1472 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1473 	unsigned long			task_state_change;
1474 # ifdef CONFIG_PREEMPT_RT
1475 	unsigned long			saved_state_change;
1476 # endif
1477 #endif
1478 	struct rcu_head			rcu;
1479 	refcount_t			rcu_users;
1480 	int				pagefault_disabled;
1481 #ifdef CONFIG_MMU
1482 	struct task_struct		*oom_reaper_list;
1483 	struct timer_list		oom_reaper_timer;
1484 #endif
1485 #ifdef CONFIG_VMAP_STACK
1486 	struct vm_struct		*stack_vm_area;
1487 #endif
1488 #ifdef CONFIG_THREAD_INFO_IN_TASK
1489 	/* A live task holds one reference: */
1490 	refcount_t			stack_refcount;
1491 #endif
1492 #ifdef CONFIG_LIVEPATCH
1493 	int patch_state;
1494 #endif
1495 #ifdef CONFIG_SECURITY
1496 	/* Used by LSM modules for access restriction: */
1497 	void				*security;
1498 #endif
1499 #ifdef CONFIG_BPF_SYSCALL
1500 	/* Used by BPF task local storage */
1501 	struct bpf_local_storage __rcu	*bpf_storage;
1502 	/* Used for BPF run context */
1503 	struct bpf_run_ctx		*bpf_ctx;
1504 #endif
1505 
1506 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1507 	unsigned long			lowest_stack;
1508 	unsigned long			prev_lowest_stack;
1509 #endif
1510 
1511 #ifdef CONFIG_X86_MCE
1512 	void __user			*mce_vaddr;
1513 	__u64				mce_kflags;
1514 	u64				mce_addr;
1515 	__u64				mce_ripv : 1,
1516 					mce_whole_page : 1,
1517 					__mce_reserved : 62;
1518 	struct callback_head		mce_kill_me;
1519 	int				mce_count;
1520 #endif
1521 
1522 #ifdef CONFIG_KRETPROBES
1523 	struct llist_head               kretprobe_instances;
1524 #endif
1525 #ifdef CONFIG_RETHOOK
1526 	struct llist_head               rethooks;
1527 #endif
1528 
1529 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1530 	/*
1531 	 * If L1D flush is supported on mm context switch
1532 	 * then we use this callback head to queue kill work
1533 	 * to kill tasks that are not running on SMT disabled
1534 	 * cores
1535 	 */
1536 	struct callback_head		l1d_flush_kill;
1537 #endif
1538 
1539 #ifdef CONFIG_RV
1540 	/*
1541 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1542 	 * If we find justification for more monitors, we can think
1543 	 * about adding more or developing a dynamic method. So far,
1544 	 * none of these are justified.
1545 	 */
1546 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1547 #endif
1548 
1549 #ifdef CONFIG_USER_EVENTS
1550 	struct user_event_mm		*user_event_mm;
1551 #endif
1552 
1553 	/*
1554 	 * New fields for task_struct should be added above here, so that
1555 	 * they are included in the randomized portion of task_struct.
1556 	 */
1557 	randomized_struct_fields_end
1558 
1559 	/* CPU-specific state of this task: */
1560 	struct thread_struct		thread;
1561 
1562 	/*
1563 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1564 	 * structure.  It *MUST* be at the end of 'task_struct'.
1565 	 *
1566 	 * Do not put anything below here!
1567 	 */
1568 };
1569 
1570 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1571 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1572 
1573 static inline unsigned int __task_state_index(unsigned int tsk_state,
1574 					      unsigned int tsk_exit_state)
1575 {
1576 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1577 
1578 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1579 
1580 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1581 		state = TASK_REPORT_IDLE;
1582 
1583 	/*
1584 	 * We're lying here, but rather than expose a completely new task state
1585 	 * to userspace, we can make this appear as if the task has gone through
1586 	 * a regular rt_mutex_lock() call.
1587 	 */
1588 	if (tsk_state & TASK_RTLOCK_WAIT)
1589 		state = TASK_UNINTERRUPTIBLE;
1590 
1591 	return fls(state);
1592 }
1593 
1594 static inline unsigned int task_state_index(struct task_struct *tsk)
1595 {
1596 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1597 }
1598 
1599 static inline char task_index_to_char(unsigned int state)
1600 {
1601 	static const char state_char[] = "RSDTtXZPI";
1602 
1603 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1604 
1605 	return state_char[state];
1606 }
1607 
1608 static inline char task_state_to_char(struct task_struct *tsk)
1609 {
1610 	return task_index_to_char(task_state_index(tsk));
1611 }
1612 
1613 extern struct pid *cad_pid;
1614 
1615 /*
1616  * Per process flags
1617  */
1618 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1619 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1620 #define PF_EXITING		0x00000004	/* Getting shut down */
1621 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1622 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1623 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1624 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1625 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1626 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1627 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1628 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1629 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1630 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1631 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1632 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1633 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1634 #define PF__HOLE__00010000	0x00010000
1635 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1636 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1637 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1638 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1639 						 * I am cleaning dirty pages from some other bdi. */
1640 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1641 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1642 #define PF_MEMALLOC_NORECLAIM	0x00800000	/* All allocation requests will clear __GFP_DIRECT_RECLAIM */
1643 #define PF_MEMALLOC_NOWARN	0x01000000	/* All allocation requests will inherit __GFP_NOWARN */
1644 #define PF__HOLE__02000000	0x02000000
1645 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1646 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1647 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1648 						 * See memalloc_pin_save() */
1649 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1650 #define PF__HOLE__40000000	0x40000000
1651 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1652 
1653 /*
1654  * Only the _current_ task can read/write to tsk->flags, but other
1655  * tasks can access tsk->flags in readonly mode for example
1656  * with tsk_used_math (like during threaded core dumping).
1657  * There is however an exception to this rule during ptrace
1658  * or during fork: the ptracer task is allowed to write to the
1659  * child->flags of its traced child (same goes for fork, the parent
1660  * can write to the child->flags), because we're guaranteed the
1661  * child is not running and in turn not changing child->flags
1662  * at the same time the parent does it.
1663  */
1664 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1665 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1666 #define clear_used_math()			clear_stopped_child_used_math(current)
1667 #define set_used_math()				set_stopped_child_used_math(current)
1668 
1669 #define conditional_stopped_child_used_math(condition, child) \
1670 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1671 
1672 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1673 
1674 #define copy_to_stopped_child_used_math(child) \
1675 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1676 
1677 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1678 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1679 #define used_math()				tsk_used_math(current)
1680 
1681 static __always_inline bool is_percpu_thread(void)
1682 {
1683 #ifdef CONFIG_SMP
1684 	return (current->flags & PF_NO_SETAFFINITY) &&
1685 		(current->nr_cpus_allowed  == 1);
1686 #else
1687 	return true;
1688 #endif
1689 }
1690 
1691 /* Per-process atomic flags. */
1692 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1693 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1694 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1695 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1696 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1697 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1698 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1699 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1700 
1701 #define TASK_PFA_TEST(name, func)					\
1702 	static inline bool task_##func(struct task_struct *p)		\
1703 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1704 
1705 #define TASK_PFA_SET(name, func)					\
1706 	static inline void task_set_##func(struct task_struct *p)	\
1707 	{ set_bit(PFA_##name, &p->atomic_flags); }
1708 
1709 #define TASK_PFA_CLEAR(name, func)					\
1710 	static inline void task_clear_##func(struct task_struct *p)	\
1711 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1712 
1713 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1714 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1715 
1716 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1717 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1718 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1719 
1720 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1721 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1722 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1723 
1724 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1725 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1726 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1727 
1728 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1729 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1730 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1731 
1732 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1733 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1734 
1735 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1736 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1737 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1738 
1739 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1740 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1741 
1742 static inline void
1743 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1744 {
1745 	current->flags &= ~flags;
1746 	current->flags |= orig_flags & flags;
1747 }
1748 
1749 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1750 extern int task_can_attach(struct task_struct *p);
1751 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1752 extern void dl_bw_free(int cpu, u64 dl_bw);
1753 #ifdef CONFIG_SMP
1754 
1755 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1756 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1757 
1758 /**
1759  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1760  * @p: the task
1761  * @new_mask: CPU affinity mask
1762  *
1763  * Return: zero if successful, or a negative error code
1764  */
1765 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1766 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1767 extern void release_user_cpus_ptr(struct task_struct *p);
1768 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1769 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1770 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1771 #else
1772 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1773 {
1774 }
1775 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1776 {
1777 	if (!cpumask_test_cpu(0, new_mask))
1778 		return -EINVAL;
1779 	return 0;
1780 }
1781 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1782 {
1783 	if (src->user_cpus_ptr)
1784 		return -EINVAL;
1785 	return 0;
1786 }
1787 static inline void release_user_cpus_ptr(struct task_struct *p)
1788 {
1789 	WARN_ON(p->user_cpus_ptr);
1790 }
1791 
1792 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1793 {
1794 	return 0;
1795 }
1796 #endif
1797 
1798 extern int yield_to(struct task_struct *p, bool preempt);
1799 extern void set_user_nice(struct task_struct *p, long nice);
1800 extern int task_prio(const struct task_struct *p);
1801 
1802 /**
1803  * task_nice - return the nice value of a given task.
1804  * @p: the task in question.
1805  *
1806  * Return: The nice value [ -20 ... 0 ... 19 ].
1807  */
1808 static inline int task_nice(const struct task_struct *p)
1809 {
1810 	return PRIO_TO_NICE((p)->static_prio);
1811 }
1812 
1813 extern int can_nice(const struct task_struct *p, const int nice);
1814 extern int task_curr(const struct task_struct *p);
1815 extern int idle_cpu(int cpu);
1816 extern int available_idle_cpu(int cpu);
1817 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1818 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1819 extern void sched_set_fifo(struct task_struct *p);
1820 extern void sched_set_fifo_low(struct task_struct *p);
1821 extern void sched_set_normal(struct task_struct *p, int nice);
1822 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1823 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1824 extern struct task_struct *idle_task(int cpu);
1825 
1826 /**
1827  * is_idle_task - is the specified task an idle task?
1828  * @p: the task in question.
1829  *
1830  * Return: 1 if @p is an idle task. 0 otherwise.
1831  */
1832 static __always_inline bool is_idle_task(const struct task_struct *p)
1833 {
1834 	return !!(p->flags & PF_IDLE);
1835 }
1836 
1837 extern struct task_struct *curr_task(int cpu);
1838 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1839 
1840 void yield(void);
1841 
1842 union thread_union {
1843 	struct task_struct task;
1844 #ifndef CONFIG_THREAD_INFO_IN_TASK
1845 	struct thread_info thread_info;
1846 #endif
1847 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1848 };
1849 
1850 #ifndef CONFIG_THREAD_INFO_IN_TASK
1851 extern struct thread_info init_thread_info;
1852 #endif
1853 
1854 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1855 
1856 #ifdef CONFIG_THREAD_INFO_IN_TASK
1857 # define task_thread_info(task)	(&(task)->thread_info)
1858 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1859 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1860 #endif
1861 
1862 /*
1863  * find a task by one of its numerical ids
1864  *
1865  * find_task_by_pid_ns():
1866  *      finds a task by its pid in the specified namespace
1867  * find_task_by_vpid():
1868  *      finds a task by its virtual pid
1869  *
1870  * see also find_vpid() etc in include/linux/pid.h
1871  */
1872 
1873 extern struct task_struct *find_task_by_vpid(pid_t nr);
1874 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1875 
1876 /*
1877  * find a task by its virtual pid and get the task struct
1878  */
1879 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1880 
1881 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1882 extern int wake_up_process(struct task_struct *tsk);
1883 extern void wake_up_new_task(struct task_struct *tsk);
1884 
1885 #ifdef CONFIG_SMP
1886 extern void kick_process(struct task_struct *tsk);
1887 #else
1888 static inline void kick_process(struct task_struct *tsk) { }
1889 #endif
1890 
1891 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1892 
1893 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1894 {
1895 	__set_task_comm(tsk, from, false);
1896 }
1897 
1898 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1899 #define get_task_comm(buf, tsk) ({			\
1900 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1901 	__get_task_comm(buf, sizeof(buf), tsk);		\
1902 })
1903 
1904 #ifdef CONFIG_SMP
1905 static __always_inline void scheduler_ipi(void)
1906 {
1907 	/*
1908 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1909 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1910 	 * this IPI.
1911 	 */
1912 	preempt_fold_need_resched();
1913 }
1914 #else
1915 static inline void scheduler_ipi(void) { }
1916 #endif
1917 
1918 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1919 
1920 /*
1921  * Set thread flags in other task's structures.
1922  * See asm/thread_info.h for TIF_xxxx flags available:
1923  */
1924 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1925 {
1926 	set_ti_thread_flag(task_thread_info(tsk), flag);
1927 }
1928 
1929 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1930 {
1931 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1932 }
1933 
1934 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1935 					  bool value)
1936 {
1937 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1938 }
1939 
1940 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1941 {
1942 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1943 }
1944 
1945 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1946 {
1947 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1948 }
1949 
1950 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1951 {
1952 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1953 }
1954 
1955 static inline void set_tsk_need_resched(struct task_struct *tsk)
1956 {
1957 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1958 }
1959 
1960 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1961 {
1962 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1963 }
1964 
1965 static inline int test_tsk_need_resched(struct task_struct *tsk)
1966 {
1967 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1968 }
1969 
1970 /*
1971  * cond_resched() and cond_resched_lock(): latency reduction via
1972  * explicit rescheduling in places that are safe. The return
1973  * value indicates whether a reschedule was done in fact.
1974  * cond_resched_lock() will drop the spinlock before scheduling,
1975  */
1976 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1977 extern int __cond_resched(void);
1978 
1979 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
1980 
1981 void sched_dynamic_klp_enable(void);
1982 void sched_dynamic_klp_disable(void);
1983 
1984 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1985 
1986 static __always_inline int _cond_resched(void)
1987 {
1988 	return static_call_mod(cond_resched)();
1989 }
1990 
1991 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
1992 
1993 extern int dynamic_cond_resched(void);
1994 
1995 static __always_inline int _cond_resched(void)
1996 {
1997 	return dynamic_cond_resched();
1998 }
1999 
2000 #else /* !CONFIG_PREEMPTION */
2001 
2002 static inline int _cond_resched(void)
2003 {
2004 	klp_sched_try_switch();
2005 	return __cond_resched();
2006 }
2007 
2008 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2009 
2010 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2011 
2012 static inline int _cond_resched(void)
2013 {
2014 	klp_sched_try_switch();
2015 	return 0;
2016 }
2017 
2018 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2019 
2020 #define cond_resched() ({			\
2021 	__might_resched(__FILE__, __LINE__, 0);	\
2022 	_cond_resched();			\
2023 })
2024 
2025 extern int __cond_resched_lock(spinlock_t *lock);
2026 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2027 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2028 
2029 #define MIGHT_RESCHED_RCU_SHIFT		8
2030 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2031 
2032 #ifndef CONFIG_PREEMPT_RT
2033 /*
2034  * Non RT kernels have an elevated preempt count due to the held lock,
2035  * but are not allowed to be inside a RCU read side critical section
2036  */
2037 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2038 #else
2039 /*
2040  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2041  * cond_resched*lock() has to take that into account because it checks for
2042  * preempt_count() and rcu_preempt_depth().
2043  */
2044 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2045 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2046 #endif
2047 
2048 #define cond_resched_lock(lock) ({						\
2049 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2050 	__cond_resched_lock(lock);						\
2051 })
2052 
2053 #define cond_resched_rwlock_read(lock) ({					\
2054 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2055 	__cond_resched_rwlock_read(lock);					\
2056 })
2057 
2058 #define cond_resched_rwlock_write(lock) ({					\
2059 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2060 	__cond_resched_rwlock_write(lock);					\
2061 })
2062 
2063 #ifdef CONFIG_PREEMPT_DYNAMIC
2064 
2065 extern bool preempt_model_none(void);
2066 extern bool preempt_model_voluntary(void);
2067 extern bool preempt_model_full(void);
2068 
2069 #else
2070 
2071 static inline bool preempt_model_none(void)
2072 {
2073 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2074 }
2075 static inline bool preempt_model_voluntary(void)
2076 {
2077 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2078 }
2079 static inline bool preempt_model_full(void)
2080 {
2081 	return IS_ENABLED(CONFIG_PREEMPT);
2082 }
2083 
2084 #endif
2085 
2086 static inline bool preempt_model_rt(void)
2087 {
2088 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2089 }
2090 
2091 /*
2092  * Does the preemption model allow non-cooperative preemption?
2093  *
2094  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2095  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2096  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2097  * PREEMPT_NONE model.
2098  */
2099 static inline bool preempt_model_preemptible(void)
2100 {
2101 	return preempt_model_full() || preempt_model_rt();
2102 }
2103 
2104 static __always_inline bool need_resched(void)
2105 {
2106 	return unlikely(tif_need_resched());
2107 }
2108 
2109 /*
2110  * Wrappers for p->thread_info->cpu access. No-op on UP.
2111  */
2112 #ifdef CONFIG_SMP
2113 
2114 static inline unsigned int task_cpu(const struct task_struct *p)
2115 {
2116 	return READ_ONCE(task_thread_info(p)->cpu);
2117 }
2118 
2119 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2120 
2121 #else
2122 
2123 static inline unsigned int task_cpu(const struct task_struct *p)
2124 {
2125 	return 0;
2126 }
2127 
2128 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2129 {
2130 }
2131 
2132 #endif /* CONFIG_SMP */
2133 
2134 extern bool sched_task_on_rq(struct task_struct *p);
2135 extern unsigned long get_wchan(struct task_struct *p);
2136 extern struct task_struct *cpu_curr_snapshot(int cpu);
2137 
2138 #include <linux/spinlock.h>
2139 
2140 /*
2141  * In order to reduce various lock holder preemption latencies provide an
2142  * interface to see if a vCPU is currently running or not.
2143  *
2144  * This allows us to terminate optimistic spin loops and block, analogous to
2145  * the native optimistic spin heuristic of testing if the lock owner task is
2146  * running or not.
2147  */
2148 #ifndef vcpu_is_preempted
2149 static inline bool vcpu_is_preempted(int cpu)
2150 {
2151 	return false;
2152 }
2153 #endif
2154 
2155 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2156 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2157 
2158 #ifndef TASK_SIZE_OF
2159 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2160 #endif
2161 
2162 #ifdef CONFIG_SMP
2163 static inline bool owner_on_cpu(struct task_struct *owner)
2164 {
2165 	/*
2166 	 * As lock holder preemption issue, we both skip spinning if
2167 	 * task is not on cpu or its cpu is preempted
2168 	 */
2169 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2170 }
2171 
2172 /* Returns effective CPU energy utilization, as seen by the scheduler */
2173 unsigned long sched_cpu_util(int cpu);
2174 #endif /* CONFIG_SMP */
2175 
2176 #ifdef CONFIG_SCHED_CORE
2177 extern void sched_core_free(struct task_struct *tsk);
2178 extern void sched_core_fork(struct task_struct *p);
2179 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2180 				unsigned long uaddr);
2181 extern int sched_core_idle_cpu(int cpu);
2182 #else
2183 static inline void sched_core_free(struct task_struct *tsk) { }
2184 static inline void sched_core_fork(struct task_struct *p) { }
2185 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2186 #endif
2187 
2188 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2189 
2190 #endif
2191