xref: /linux/include/linux/sched.h (revision 99a97a8ba9881fc47901ff36b057e5cd0bf06af0)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * Define 'struct task_struct' and provide the main scheduler
6  * APIs (schedule(), wakeup variants, etc.)
7  */
8 
9 #include <uapi/linux/sched.h>
10 
11 #include <asm/current.h>
12 
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29 
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55 
56 /*
57  * Task state bitmask. NOTE! These bits are also
58  * encoded in fs/proc/array.c: get_task_state().
59  *
60  * We have two separate sets of flags: task->state
61  * is about runnability, while task->exit_state are
62  * about the task exiting. Confusing, but this way
63  * modifying one set can't modify the other one by
64  * mistake.
65  */
66 
67 /* Used in tsk->state: */
68 #define TASK_RUNNING			0
69 #define TASK_INTERRUPTIBLE		1
70 #define TASK_UNINTERRUPTIBLE		2
71 #define __TASK_STOPPED			4
72 #define __TASK_TRACED			8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD			16
75 #define EXIT_ZOMBIE			32
76 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD			64
79 #define TASK_WAKEKILL			128
80 #define TASK_WAKING			256
81 #define TASK_PARKED			512
82 #define TASK_NOLOAD			1024
83 #define TASK_NEW			2048
84 #define TASK_STATE_MAX			4096
85 
86 #define TASK_STATE_TO_CHAR_STR		"RSDTtXZxKWPNn"
87 
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
92 
93 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94 
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98 
99 /* get_task_state(): */
100 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 					 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103 
104 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
105 
106 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
107 
108 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 
110 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 					 (task->flags & PF_FROZEN) == 0 && \
112 					 (task->state & TASK_NOLOAD) == 0)
113 
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115 
116 #define __set_current_state(state_value)			\
117 	do {							\
118 		current->task_state_change = _THIS_IP_;		\
119 		current->state = (state_value);			\
120 	} while (0)
121 #define set_current_state(state_value)				\
122 	do {							\
123 		current->task_state_change = _THIS_IP_;		\
124 		smp_store_mb(current->state, (state_value));	\
125 	} while (0)
126 
127 #else
128 /*
129  * set_current_state() includes a barrier so that the write of current->state
130  * is correctly serialised wrt the caller's subsequent test of whether to
131  * actually sleep:
132  *
133  *   for (;;) {
134  *	set_current_state(TASK_UNINTERRUPTIBLE);
135  *	if (!need_sleep)
136  *		break;
137  *
138  *	schedule();
139  *   }
140  *   __set_current_state(TASK_RUNNING);
141  *
142  * If the caller does not need such serialisation (because, for instance, the
143  * condition test and condition change and wakeup are under the same lock) then
144  * use __set_current_state().
145  *
146  * The above is typically ordered against the wakeup, which does:
147  *
148  *	need_sleep = false;
149  *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
150  *
151  * Where wake_up_state() (and all other wakeup primitives) imply enough
152  * barriers to order the store of the variable against wakeup.
153  *
154  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157  *
158  * This is obviously fine, since they both store the exact same value.
159  *
160  * Also see the comments of try_to_wake_up().
161  */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))
164 #endif
165 
166 /* Task command name length: */
167 #define TASK_COMM_LEN			16
168 
169 extern cpumask_var_t			cpu_isolated_map;
170 
171 extern void scheduler_tick(void);
172 
173 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
174 
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182 
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187 
188 /**
189  * struct prev_cputime - snaphsot of system and user cputime
190  * @utime: time spent in user mode
191  * @stime: time spent in system mode
192  * @lock: protects the above two fields
193  *
194  * Stores previous user/system time values such that we can guarantee
195  * monotonicity.
196  */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 	u64				utime;
200 	u64				stime;
201 	raw_spinlock_t			lock;
202 #endif
203 };
204 
205 /**
206  * struct task_cputime - collected CPU time counts
207  * @utime:		time spent in user mode, in nanoseconds
208  * @stime:		time spent in kernel mode, in nanoseconds
209  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
210  *
211  * This structure groups together three kinds of CPU time that are tracked for
212  * threads and thread groups.  Most things considering CPU time want to group
213  * these counts together and treat all three of them in parallel.
214  */
215 struct task_cputime {
216 	u64				utime;
217 	u64				stime;
218 	unsigned long long		sum_exec_runtime;
219 };
220 
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp			utime
223 #define prof_exp			stime
224 #define sched_exp			sum_exec_runtime
225 
226 struct sched_info {
227 #ifdef CONFIG_SCHED_INFO
228 	/* Cumulative counters: */
229 
230 	/* # of times we have run on this CPU: */
231 	unsigned long			pcount;
232 
233 	/* Time spent waiting on a runqueue: */
234 	unsigned long long		run_delay;
235 
236 	/* Timestamps: */
237 
238 	/* When did we last run on a CPU? */
239 	unsigned long long		last_arrival;
240 
241 	/* When were we last queued to run? */
242 	unsigned long long		last_queued;
243 
244 #endif /* CONFIG_SCHED_INFO */
245 };
246 
247 /*
248  * Integer metrics need fixed point arithmetic, e.g., sched/fair
249  * has a few: load, load_avg, util_avg, freq, and capacity.
250  *
251  * We define a basic fixed point arithmetic range, and then formalize
252  * all these metrics based on that basic range.
253  */
254 # define SCHED_FIXEDPOINT_SHIFT		10
255 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
256 
257 struct load_weight {
258 	unsigned long			weight;
259 	u32				inv_weight;
260 };
261 
262 /*
263  * The load_avg/util_avg accumulates an infinite geometric series
264  * (see __update_load_avg() in kernel/sched/fair.c).
265  *
266  * [load_avg definition]
267  *
268  *   load_avg = runnable% * scale_load_down(load)
269  *
270  * where runnable% is the time ratio that a sched_entity is runnable.
271  * For cfs_rq, it is the aggregated load_avg of all runnable and
272  * blocked sched_entities.
273  *
274  * load_avg may also take frequency scaling into account:
275  *
276  *   load_avg = runnable% * scale_load_down(load) * freq%
277  *
278  * where freq% is the CPU frequency normalized to the highest frequency.
279  *
280  * [util_avg definition]
281  *
282  *   util_avg = running% * SCHED_CAPACITY_SCALE
283  *
284  * where running% is the time ratio that a sched_entity is running on
285  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
286  * and blocked sched_entities.
287  *
288  * util_avg may also factor frequency scaling and CPU capacity scaling:
289  *
290  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
291  *
292  * where freq% is the same as above, and capacity% is the CPU capacity
293  * normalized to the greatest capacity (due to uarch differences, etc).
294  *
295  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
296  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
297  * we therefore scale them to as large a range as necessary. This is for
298  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
299  *
300  * [Overflow issue]
301  *
302  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
303  * with the highest load (=88761), always runnable on a single cfs_rq,
304  * and should not overflow as the number already hits PID_MAX_LIMIT.
305  *
306  * For all other cases (including 32-bit kernels), struct load_weight's
307  * weight will overflow first before we do, because:
308  *
309  *    Max(load_avg) <= Max(load.weight)
310  *
311  * Then it is the load_weight's responsibility to consider overflow
312  * issues.
313  */
314 struct sched_avg {
315 	u64				last_update_time;
316 	u64				load_sum;
317 	u32				util_sum;
318 	u32				period_contrib;
319 	unsigned long			load_avg;
320 	unsigned long			util_avg;
321 };
322 
323 struct sched_statistics {
324 #ifdef CONFIG_SCHEDSTATS
325 	u64				wait_start;
326 	u64				wait_max;
327 	u64				wait_count;
328 	u64				wait_sum;
329 	u64				iowait_count;
330 	u64				iowait_sum;
331 
332 	u64				sleep_start;
333 	u64				sleep_max;
334 	s64				sum_sleep_runtime;
335 
336 	u64				block_start;
337 	u64				block_max;
338 	u64				exec_max;
339 	u64				slice_max;
340 
341 	u64				nr_migrations_cold;
342 	u64				nr_failed_migrations_affine;
343 	u64				nr_failed_migrations_running;
344 	u64				nr_failed_migrations_hot;
345 	u64				nr_forced_migrations;
346 
347 	u64				nr_wakeups;
348 	u64				nr_wakeups_sync;
349 	u64				nr_wakeups_migrate;
350 	u64				nr_wakeups_local;
351 	u64				nr_wakeups_remote;
352 	u64				nr_wakeups_affine;
353 	u64				nr_wakeups_affine_attempts;
354 	u64				nr_wakeups_passive;
355 	u64				nr_wakeups_idle;
356 #endif
357 };
358 
359 struct sched_entity {
360 	/* For load-balancing: */
361 	struct load_weight		load;
362 	struct rb_node			run_node;
363 	struct list_head		group_node;
364 	unsigned int			on_rq;
365 
366 	u64				exec_start;
367 	u64				sum_exec_runtime;
368 	u64				vruntime;
369 	u64				prev_sum_exec_runtime;
370 
371 	u64				nr_migrations;
372 
373 	struct sched_statistics		statistics;
374 
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 	int				depth;
377 	struct sched_entity		*parent;
378 	/* rq on which this entity is (to be) queued: */
379 	struct cfs_rq			*cfs_rq;
380 	/* rq "owned" by this entity/group: */
381 	struct cfs_rq			*my_q;
382 #endif
383 
384 #ifdef CONFIG_SMP
385 	/*
386 	 * Per entity load average tracking.
387 	 *
388 	 * Put into separate cache line so it does not
389 	 * collide with read-mostly values above.
390 	 */
391 	struct sched_avg		avg ____cacheline_aligned_in_smp;
392 #endif
393 };
394 
395 struct sched_rt_entity {
396 	struct list_head		run_list;
397 	unsigned long			timeout;
398 	unsigned long			watchdog_stamp;
399 	unsigned int			time_slice;
400 	unsigned short			on_rq;
401 	unsigned short			on_list;
402 
403 	struct sched_rt_entity		*back;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 	struct sched_rt_entity		*parent;
406 	/* rq on which this entity is (to be) queued: */
407 	struct rt_rq			*rt_rq;
408 	/* rq "owned" by this entity/group: */
409 	struct rt_rq			*my_q;
410 #endif
411 };
412 
413 struct sched_dl_entity {
414 	struct rb_node			rb_node;
415 
416 	/*
417 	 * Original scheduling parameters. Copied here from sched_attr
418 	 * during sched_setattr(), they will remain the same until
419 	 * the next sched_setattr().
420 	 */
421 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
422 	u64				dl_deadline;	/* Relative deadline of each instance	*/
423 	u64				dl_period;	/* Separation of two instances (period) */
424 	u64				dl_bw;		/* dl_runtime / dl_deadline		*/
425 
426 	/*
427 	 * Actual scheduling parameters. Initialized with the values above,
428 	 * they are continously updated during task execution. Note that
429 	 * the remaining runtime could be < 0 in case we are in overrun.
430 	 */
431 	s64				runtime;	/* Remaining runtime for this instance	*/
432 	u64				deadline;	/* Absolute deadline for this instance	*/
433 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
434 
435 	/*
436 	 * Some bool flags:
437 	 *
438 	 * @dl_throttled tells if we exhausted the runtime. If so, the
439 	 * task has to wait for a replenishment to be performed at the
440 	 * next firing of dl_timer.
441 	 *
442 	 * @dl_boosted tells if we are boosted due to DI. If so we are
443 	 * outside bandwidth enforcement mechanism (but only until we
444 	 * exit the critical section);
445 	 *
446 	 * @dl_yielded tells if task gave up the CPU before consuming
447 	 * all its available runtime during the last job.
448 	 */
449 	int				dl_throttled;
450 	int				dl_boosted;
451 	int				dl_yielded;
452 
453 	/*
454 	 * Bandwidth enforcement timer. Each -deadline task has its
455 	 * own bandwidth to be enforced, thus we need one timer per task.
456 	 */
457 	struct hrtimer			dl_timer;
458 };
459 
460 union rcu_special {
461 	struct {
462 		u8			blocked;
463 		u8			need_qs;
464 		u8			exp_need_qs;
465 
466 		/* Otherwise the compiler can store garbage here: */
467 		u8			pad;
468 	} b; /* Bits. */
469 	u32 s; /* Set of bits. */
470 };
471 
472 enum perf_event_task_context {
473 	perf_invalid_context = -1,
474 	perf_hw_context = 0,
475 	perf_sw_context,
476 	perf_nr_task_contexts,
477 };
478 
479 struct wake_q_node {
480 	struct wake_q_node *next;
481 };
482 
483 struct task_struct {
484 #ifdef CONFIG_THREAD_INFO_IN_TASK
485 	/*
486 	 * For reasons of header soup (see current_thread_info()), this
487 	 * must be the first element of task_struct.
488 	 */
489 	struct thread_info		thread_info;
490 #endif
491 	/* -1 unrunnable, 0 runnable, >0 stopped: */
492 	volatile long			state;
493 	void				*stack;
494 	atomic_t			usage;
495 	/* Per task flags (PF_*), defined further below: */
496 	unsigned int			flags;
497 	unsigned int			ptrace;
498 
499 #ifdef CONFIG_SMP
500 	struct llist_node		wake_entry;
501 	int				on_cpu;
502 #ifdef CONFIG_THREAD_INFO_IN_TASK
503 	/* Current CPU: */
504 	unsigned int			cpu;
505 #endif
506 	unsigned int			wakee_flips;
507 	unsigned long			wakee_flip_decay_ts;
508 	struct task_struct		*last_wakee;
509 
510 	int				wake_cpu;
511 #endif
512 	int				on_rq;
513 
514 	int				prio;
515 	int				static_prio;
516 	int				normal_prio;
517 	unsigned int			rt_priority;
518 
519 	const struct sched_class	*sched_class;
520 	struct sched_entity		se;
521 	struct sched_rt_entity		rt;
522 #ifdef CONFIG_CGROUP_SCHED
523 	struct task_group		*sched_task_group;
524 #endif
525 	struct sched_dl_entity		dl;
526 
527 #ifdef CONFIG_PREEMPT_NOTIFIERS
528 	/* List of struct preempt_notifier: */
529 	struct hlist_head		preempt_notifiers;
530 #endif
531 
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 	unsigned int			btrace_seq;
534 #endif
535 
536 	unsigned int			policy;
537 	int				nr_cpus_allowed;
538 	cpumask_t			cpus_allowed;
539 
540 #ifdef CONFIG_PREEMPT_RCU
541 	int				rcu_read_lock_nesting;
542 	union rcu_special		rcu_read_unlock_special;
543 	struct list_head		rcu_node_entry;
544 	struct rcu_node			*rcu_blocked_node;
545 #endif /* #ifdef CONFIG_PREEMPT_RCU */
546 
547 #ifdef CONFIG_TASKS_RCU
548 	unsigned long			rcu_tasks_nvcsw;
549 	bool				rcu_tasks_holdout;
550 	struct list_head		rcu_tasks_holdout_list;
551 	int				rcu_tasks_idle_cpu;
552 #endif /* #ifdef CONFIG_TASKS_RCU */
553 
554 	struct sched_info		sched_info;
555 
556 	struct list_head		tasks;
557 #ifdef CONFIG_SMP
558 	struct plist_node		pushable_tasks;
559 	struct rb_node			pushable_dl_tasks;
560 #endif
561 
562 	struct mm_struct		*mm;
563 	struct mm_struct		*active_mm;
564 
565 	/* Per-thread vma caching: */
566 	struct vmacache			vmacache;
567 
568 #ifdef SPLIT_RSS_COUNTING
569 	struct task_rss_stat		rss_stat;
570 #endif
571 	int				exit_state;
572 	int				exit_code;
573 	int				exit_signal;
574 	/* The signal sent when the parent dies: */
575 	int				pdeath_signal;
576 	/* JOBCTL_*, siglock protected: */
577 	unsigned long			jobctl;
578 
579 	/* Used for emulating ABI behavior of previous Linux versions: */
580 	unsigned int			personality;
581 
582 	/* Scheduler bits, serialized by scheduler locks: */
583 	unsigned			sched_reset_on_fork:1;
584 	unsigned			sched_contributes_to_load:1;
585 	unsigned			sched_migrated:1;
586 	unsigned			sched_remote_wakeup:1;
587 	/* Force alignment to the next boundary: */
588 	unsigned			:0;
589 
590 	/* Unserialized, strictly 'current' */
591 
592 	/* Bit to tell LSMs we're in execve(): */
593 	unsigned			in_execve:1;
594 	unsigned			in_iowait:1;
595 #ifndef TIF_RESTORE_SIGMASK
596 	unsigned			restore_sigmask:1;
597 #endif
598 #ifdef CONFIG_MEMCG
599 	unsigned			memcg_may_oom:1;
600 #ifndef CONFIG_SLOB
601 	unsigned			memcg_kmem_skip_account:1;
602 #endif
603 #endif
604 #ifdef CONFIG_COMPAT_BRK
605 	unsigned			brk_randomized:1;
606 #endif
607 
608 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
609 
610 	struct restart_block		restart_block;
611 
612 	pid_t				pid;
613 	pid_t				tgid;
614 
615 #ifdef CONFIG_CC_STACKPROTECTOR
616 	/* Canary value for the -fstack-protector GCC feature: */
617 	unsigned long			stack_canary;
618 #endif
619 	/*
620 	 * Pointers to the (original) parent process, youngest child, younger sibling,
621 	 * older sibling, respectively.  (p->father can be replaced with
622 	 * p->real_parent->pid)
623 	 */
624 
625 	/* Real parent process: */
626 	struct task_struct __rcu	*real_parent;
627 
628 	/* Recipient of SIGCHLD, wait4() reports: */
629 	struct task_struct __rcu	*parent;
630 
631 	/*
632 	 * Children/sibling form the list of natural children:
633 	 */
634 	struct list_head		children;
635 	struct list_head		sibling;
636 	struct task_struct		*group_leader;
637 
638 	/*
639 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
640 	 *
641 	 * This includes both natural children and PTRACE_ATTACH targets.
642 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
643 	 */
644 	struct list_head		ptraced;
645 	struct list_head		ptrace_entry;
646 
647 	/* PID/PID hash table linkage. */
648 	struct pid_link			pids[PIDTYPE_MAX];
649 	struct list_head		thread_group;
650 	struct list_head		thread_node;
651 
652 	struct completion		*vfork_done;
653 
654 	/* CLONE_CHILD_SETTID: */
655 	int __user			*set_child_tid;
656 
657 	/* CLONE_CHILD_CLEARTID: */
658 	int __user			*clear_child_tid;
659 
660 	u64				utime;
661 	u64				stime;
662 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
663 	u64				utimescaled;
664 	u64				stimescaled;
665 #endif
666 	u64				gtime;
667 	struct prev_cputime		prev_cputime;
668 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
669 	seqcount_t			vtime_seqcount;
670 	unsigned long long		vtime_snap;
671 	enum {
672 		/* Task is sleeping or running in a CPU with VTIME inactive: */
673 		VTIME_INACTIVE = 0,
674 		/* Task runs in userspace in a CPU with VTIME active: */
675 		VTIME_USER,
676 		/* Task runs in kernelspace in a CPU with VTIME active: */
677 		VTIME_SYS,
678 	} vtime_snap_whence;
679 #endif
680 
681 #ifdef CONFIG_NO_HZ_FULL
682 	atomic_t			tick_dep_mask;
683 #endif
684 	/* Context switch counts: */
685 	unsigned long			nvcsw;
686 	unsigned long			nivcsw;
687 
688 	/* Monotonic time in nsecs: */
689 	u64				start_time;
690 
691 	/* Boot based time in nsecs: */
692 	u64				real_start_time;
693 
694 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
695 	unsigned long			min_flt;
696 	unsigned long			maj_flt;
697 
698 #ifdef CONFIG_POSIX_TIMERS
699 	struct task_cputime		cputime_expires;
700 	struct list_head		cpu_timers[3];
701 #endif
702 
703 	/* Process credentials: */
704 
705 	/* Tracer's credentials at attach: */
706 	const struct cred __rcu		*ptracer_cred;
707 
708 	/* Objective and real subjective task credentials (COW): */
709 	const struct cred __rcu		*real_cred;
710 
711 	/* Effective (overridable) subjective task credentials (COW): */
712 	const struct cred __rcu		*cred;
713 
714 	/*
715 	 * executable name, excluding path.
716 	 *
717 	 * - normally initialized setup_new_exec()
718 	 * - access it with [gs]et_task_comm()
719 	 * - lock it with task_lock()
720 	 */
721 	char				comm[TASK_COMM_LEN];
722 
723 	struct nameidata		*nameidata;
724 
725 #ifdef CONFIG_SYSVIPC
726 	struct sysv_sem			sysvsem;
727 	struct sysv_shm			sysvshm;
728 #endif
729 #ifdef CONFIG_DETECT_HUNG_TASK
730 	unsigned long			last_switch_count;
731 #endif
732 	/* Filesystem information: */
733 	struct fs_struct		*fs;
734 
735 	/* Open file information: */
736 	struct files_struct		*files;
737 
738 	/* Namespaces: */
739 	struct nsproxy			*nsproxy;
740 
741 	/* Signal handlers: */
742 	struct signal_struct		*signal;
743 	struct sighand_struct		*sighand;
744 	sigset_t			blocked;
745 	sigset_t			real_blocked;
746 	/* Restored if set_restore_sigmask() was used: */
747 	sigset_t			saved_sigmask;
748 	struct sigpending		pending;
749 	unsigned long			sas_ss_sp;
750 	size_t				sas_ss_size;
751 	unsigned int			sas_ss_flags;
752 
753 	struct callback_head		*task_works;
754 
755 	struct audit_context		*audit_context;
756 #ifdef CONFIG_AUDITSYSCALL
757 	kuid_t				loginuid;
758 	unsigned int			sessionid;
759 #endif
760 	struct seccomp			seccomp;
761 
762 	/* Thread group tracking: */
763 	u32				parent_exec_id;
764 	u32				self_exec_id;
765 
766 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
767 	spinlock_t			alloc_lock;
768 
769 	/* Protection of the PI data structures: */
770 	raw_spinlock_t			pi_lock;
771 
772 	struct wake_q_node		wake_q;
773 
774 #ifdef CONFIG_RT_MUTEXES
775 	/* PI waiters blocked on a rt_mutex held by this task: */
776 	struct rb_root			pi_waiters;
777 	struct rb_node			*pi_waiters_leftmost;
778 	/* Deadlock detection and priority inheritance handling: */
779 	struct rt_mutex_waiter		*pi_blocked_on;
780 #endif
781 
782 #ifdef CONFIG_DEBUG_MUTEXES
783 	/* Mutex deadlock detection: */
784 	struct mutex_waiter		*blocked_on;
785 #endif
786 
787 #ifdef CONFIG_TRACE_IRQFLAGS
788 	unsigned int			irq_events;
789 	unsigned long			hardirq_enable_ip;
790 	unsigned long			hardirq_disable_ip;
791 	unsigned int			hardirq_enable_event;
792 	unsigned int			hardirq_disable_event;
793 	int				hardirqs_enabled;
794 	int				hardirq_context;
795 	unsigned long			softirq_disable_ip;
796 	unsigned long			softirq_enable_ip;
797 	unsigned int			softirq_disable_event;
798 	unsigned int			softirq_enable_event;
799 	int				softirqs_enabled;
800 	int				softirq_context;
801 #endif
802 
803 #ifdef CONFIG_LOCKDEP
804 # define MAX_LOCK_DEPTH			48UL
805 	u64				curr_chain_key;
806 	int				lockdep_depth;
807 	unsigned int			lockdep_recursion;
808 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
809 	gfp_t				lockdep_reclaim_gfp;
810 #endif
811 
812 #ifdef CONFIG_UBSAN
813 	unsigned int			in_ubsan;
814 #endif
815 
816 	/* Journalling filesystem info: */
817 	void				*journal_info;
818 
819 	/* Stacked block device info: */
820 	struct bio_list			*bio_list;
821 
822 #ifdef CONFIG_BLOCK
823 	/* Stack plugging: */
824 	struct blk_plug			*plug;
825 #endif
826 
827 	/* VM state: */
828 	struct reclaim_state		*reclaim_state;
829 
830 	struct backing_dev_info		*backing_dev_info;
831 
832 	struct io_context		*io_context;
833 
834 	/* Ptrace state: */
835 	unsigned long			ptrace_message;
836 	siginfo_t			*last_siginfo;
837 
838 	struct task_io_accounting	ioac;
839 #ifdef CONFIG_TASK_XACCT
840 	/* Accumulated RSS usage: */
841 	u64				acct_rss_mem1;
842 	/* Accumulated virtual memory usage: */
843 	u64				acct_vm_mem1;
844 	/* stime + utime since last update: */
845 	u64				acct_timexpd;
846 #endif
847 #ifdef CONFIG_CPUSETS
848 	/* Protected by ->alloc_lock: */
849 	nodemask_t			mems_allowed;
850 	/* Seqence number to catch updates: */
851 	seqcount_t			mems_allowed_seq;
852 	int				cpuset_mem_spread_rotor;
853 	int				cpuset_slab_spread_rotor;
854 #endif
855 #ifdef CONFIG_CGROUPS
856 	/* Control Group info protected by css_set_lock: */
857 	struct css_set __rcu		*cgroups;
858 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
859 	struct list_head		cg_list;
860 #endif
861 #ifdef CONFIG_INTEL_RDT_A
862 	int				closid;
863 #endif
864 #ifdef CONFIG_FUTEX
865 	struct robust_list_head __user	*robust_list;
866 #ifdef CONFIG_COMPAT
867 	struct compat_robust_list_head __user *compat_robust_list;
868 #endif
869 	struct list_head		pi_state_list;
870 	struct futex_pi_state		*pi_state_cache;
871 #endif
872 #ifdef CONFIG_PERF_EVENTS
873 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
874 	struct mutex			perf_event_mutex;
875 	struct list_head		perf_event_list;
876 #endif
877 #ifdef CONFIG_DEBUG_PREEMPT
878 	unsigned long			preempt_disable_ip;
879 #endif
880 #ifdef CONFIG_NUMA
881 	/* Protected by alloc_lock: */
882 	struct mempolicy		*mempolicy;
883 	short				il_next;
884 	short				pref_node_fork;
885 #endif
886 #ifdef CONFIG_NUMA_BALANCING
887 	int				numa_scan_seq;
888 	unsigned int			numa_scan_period;
889 	unsigned int			numa_scan_period_max;
890 	int				numa_preferred_nid;
891 	unsigned long			numa_migrate_retry;
892 	/* Migration stamp: */
893 	u64				node_stamp;
894 	u64				last_task_numa_placement;
895 	u64				last_sum_exec_runtime;
896 	struct callback_head		numa_work;
897 
898 	struct list_head		numa_entry;
899 	struct numa_group		*numa_group;
900 
901 	/*
902 	 * numa_faults is an array split into four regions:
903 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
904 	 * in this precise order.
905 	 *
906 	 * faults_memory: Exponential decaying average of faults on a per-node
907 	 * basis. Scheduling placement decisions are made based on these
908 	 * counts. The values remain static for the duration of a PTE scan.
909 	 * faults_cpu: Track the nodes the process was running on when a NUMA
910 	 * hinting fault was incurred.
911 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
912 	 * during the current scan window. When the scan completes, the counts
913 	 * in faults_memory and faults_cpu decay and these values are copied.
914 	 */
915 	unsigned long			*numa_faults;
916 	unsigned long			total_numa_faults;
917 
918 	/*
919 	 * numa_faults_locality tracks if faults recorded during the last
920 	 * scan window were remote/local or failed to migrate. The task scan
921 	 * period is adapted based on the locality of the faults with different
922 	 * weights depending on whether they were shared or private faults
923 	 */
924 	unsigned long			numa_faults_locality[3];
925 
926 	unsigned long			numa_pages_migrated;
927 #endif /* CONFIG_NUMA_BALANCING */
928 
929 	struct tlbflush_unmap_batch	tlb_ubc;
930 
931 	struct rcu_head			rcu;
932 
933 	/* Cache last used pipe for splice(): */
934 	struct pipe_inode_info		*splice_pipe;
935 
936 	struct page_frag		task_frag;
937 
938 #ifdef CONFIG_TASK_DELAY_ACCT
939 	struct task_delay_info		*delays;
940 #endif
941 
942 #ifdef CONFIG_FAULT_INJECTION
943 	int				make_it_fail;
944 #endif
945 	/*
946 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
947 	 * balance_dirty_pages() for a dirty throttling pause:
948 	 */
949 	int				nr_dirtied;
950 	int				nr_dirtied_pause;
951 	/* Start of a write-and-pause period: */
952 	unsigned long			dirty_paused_when;
953 
954 #ifdef CONFIG_LATENCYTOP
955 	int				latency_record_count;
956 	struct latency_record		latency_record[LT_SAVECOUNT];
957 #endif
958 	/*
959 	 * Time slack values; these are used to round up poll() and
960 	 * select() etc timeout values. These are in nanoseconds.
961 	 */
962 	u64				timer_slack_ns;
963 	u64				default_timer_slack_ns;
964 
965 #ifdef CONFIG_KASAN
966 	unsigned int			kasan_depth;
967 #endif
968 
969 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
970 	/* Index of current stored address in ret_stack: */
971 	int				curr_ret_stack;
972 
973 	/* Stack of return addresses for return function tracing: */
974 	struct ftrace_ret_stack		*ret_stack;
975 
976 	/* Timestamp for last schedule: */
977 	unsigned long long		ftrace_timestamp;
978 
979 	/*
980 	 * Number of functions that haven't been traced
981 	 * because of depth overrun:
982 	 */
983 	atomic_t			trace_overrun;
984 
985 	/* Pause tracing: */
986 	atomic_t			tracing_graph_pause;
987 #endif
988 
989 #ifdef CONFIG_TRACING
990 	/* State flags for use by tracers: */
991 	unsigned long			trace;
992 
993 	/* Bitmask and counter of trace recursion: */
994 	unsigned long			trace_recursion;
995 #endif /* CONFIG_TRACING */
996 
997 #ifdef CONFIG_KCOV
998 	/* Coverage collection mode enabled for this task (0 if disabled): */
999 	enum kcov_mode			kcov_mode;
1000 
1001 	/* Size of the kcov_area: */
1002 	unsigned int			kcov_size;
1003 
1004 	/* Buffer for coverage collection: */
1005 	void				*kcov_area;
1006 
1007 	/* KCOV descriptor wired with this task or NULL: */
1008 	struct kcov			*kcov;
1009 #endif
1010 
1011 #ifdef CONFIG_MEMCG
1012 	struct mem_cgroup		*memcg_in_oom;
1013 	gfp_t				memcg_oom_gfp_mask;
1014 	int				memcg_oom_order;
1015 
1016 	/* Number of pages to reclaim on returning to userland: */
1017 	unsigned int			memcg_nr_pages_over_high;
1018 #endif
1019 
1020 #ifdef CONFIG_UPROBES
1021 	struct uprobe_task		*utask;
1022 #endif
1023 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1024 	unsigned int			sequential_io;
1025 	unsigned int			sequential_io_avg;
1026 #endif
1027 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1028 	unsigned long			task_state_change;
1029 #endif
1030 	int				pagefault_disabled;
1031 #ifdef CONFIG_MMU
1032 	struct task_struct		*oom_reaper_list;
1033 #endif
1034 #ifdef CONFIG_VMAP_STACK
1035 	struct vm_struct		*stack_vm_area;
1036 #endif
1037 #ifdef CONFIG_THREAD_INFO_IN_TASK
1038 	/* A live task holds one reference: */
1039 	atomic_t			stack_refcount;
1040 #endif
1041 	/* CPU-specific state of this task: */
1042 	struct thread_struct		thread;
1043 
1044 	/*
1045 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1046 	 * structure.  It *MUST* be at the end of 'task_struct'.
1047 	 *
1048 	 * Do not put anything below here!
1049 	 */
1050 };
1051 
1052 static inline struct pid *task_pid(struct task_struct *task)
1053 {
1054 	return task->pids[PIDTYPE_PID].pid;
1055 }
1056 
1057 static inline struct pid *task_tgid(struct task_struct *task)
1058 {
1059 	return task->group_leader->pids[PIDTYPE_PID].pid;
1060 }
1061 
1062 /*
1063  * Without tasklist or RCU lock it is not safe to dereference
1064  * the result of task_pgrp/task_session even if task == current,
1065  * we can race with another thread doing sys_setsid/sys_setpgid.
1066  */
1067 static inline struct pid *task_pgrp(struct task_struct *task)
1068 {
1069 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1070 }
1071 
1072 static inline struct pid *task_session(struct task_struct *task)
1073 {
1074 	return task->group_leader->pids[PIDTYPE_SID].pid;
1075 }
1076 
1077 /*
1078  * the helpers to get the task's different pids as they are seen
1079  * from various namespaces
1080  *
1081  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1082  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1083  *                     current.
1084  * task_xid_nr_ns()  : id seen from the ns specified;
1085  *
1086  * set_task_vxid()   : assigns a virtual id to a task;
1087  *
1088  * see also pid_nr() etc in include/linux/pid.h
1089  */
1090 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1091 
1092 static inline pid_t task_pid_nr(struct task_struct *tsk)
1093 {
1094 	return tsk->pid;
1095 }
1096 
1097 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1098 {
1099 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1100 }
1101 
1102 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1103 {
1104 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1105 }
1106 
1107 
1108 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1109 {
1110 	return tsk->tgid;
1111 }
1112 
1113 extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1114 
1115 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1116 {
1117 	return pid_vnr(task_tgid(tsk));
1118 }
1119 
1120 /**
1121  * pid_alive - check that a task structure is not stale
1122  * @p: Task structure to be checked.
1123  *
1124  * Test if a process is not yet dead (at most zombie state)
1125  * If pid_alive fails, then pointers within the task structure
1126  * can be stale and must not be dereferenced.
1127  *
1128  * Return: 1 if the process is alive. 0 otherwise.
1129  */
1130 static inline int pid_alive(const struct task_struct *p)
1131 {
1132 	return p->pids[PIDTYPE_PID].pid != NULL;
1133 }
1134 
1135 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1136 {
1137 	pid_t pid = 0;
1138 
1139 	rcu_read_lock();
1140 	if (pid_alive(tsk))
1141 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1142 	rcu_read_unlock();
1143 
1144 	return pid;
1145 }
1146 
1147 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1148 {
1149 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1150 }
1151 
1152 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1153 {
1154 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1155 }
1156 
1157 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1158 {
1159 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1160 }
1161 
1162 
1163 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1164 {
1165 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1166 }
1167 
1168 static inline pid_t task_session_vnr(struct task_struct *tsk)
1169 {
1170 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1171 }
1172 
1173 /* Obsolete, do not use: */
1174 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1175 {
1176 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1177 }
1178 
1179 /**
1180  * is_global_init - check if a task structure is init. Since init
1181  * is free to have sub-threads we need to check tgid.
1182  * @tsk: Task structure to be checked.
1183  *
1184  * Check if a task structure is the first user space task the kernel created.
1185  *
1186  * Return: 1 if the task structure is init. 0 otherwise.
1187  */
1188 static inline int is_global_init(struct task_struct *tsk)
1189 {
1190 	return task_tgid_nr(tsk) == 1;
1191 }
1192 
1193 extern struct pid *cad_pid;
1194 
1195 /*
1196  * Per process flags
1197  */
1198 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1199 #define PF_EXITING		0x00000004	/* Getting shut down */
1200 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1201 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1202 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1203 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1204 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1205 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1206 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1207 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1208 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1209 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1210 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1211 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1212 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1213 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1214 #define PF_FSTRANS		0x00020000	/* Inside a filesystem transaction */
1215 #define PF_KSWAPD		0x00040000	/* I am kswapd */
1216 #define PF_MEMALLOC_NOIO	0x00080000	/* Allocating memory without IO involved */
1217 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1218 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1219 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1220 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1221 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1222 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1223 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1224 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1225 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1226 
1227 /*
1228  * Only the _current_ task can read/write to tsk->flags, but other
1229  * tasks can access tsk->flags in readonly mode for example
1230  * with tsk_used_math (like during threaded core dumping).
1231  * There is however an exception to this rule during ptrace
1232  * or during fork: the ptracer task is allowed to write to the
1233  * child->flags of its traced child (same goes for fork, the parent
1234  * can write to the child->flags), because we're guaranteed the
1235  * child is not running and in turn not changing child->flags
1236  * at the same time the parent does it.
1237  */
1238 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1239 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1240 #define clear_used_math()			clear_stopped_child_used_math(current)
1241 #define set_used_math()				set_stopped_child_used_math(current)
1242 
1243 #define conditional_stopped_child_used_math(condition, child) \
1244 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1245 
1246 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1247 
1248 #define copy_to_stopped_child_used_math(child) \
1249 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1250 
1251 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1252 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1253 #define used_math()				tsk_used_math(current)
1254 
1255 /* Per-process atomic flags. */
1256 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1257 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1258 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1259 #define PFA_LMK_WAITING			3	/* Lowmemorykiller is waiting */
1260 
1261 
1262 #define TASK_PFA_TEST(name, func)					\
1263 	static inline bool task_##func(struct task_struct *p)		\
1264 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1265 
1266 #define TASK_PFA_SET(name, func)					\
1267 	static inline void task_set_##func(struct task_struct *p)	\
1268 	{ set_bit(PFA_##name, &p->atomic_flags); }
1269 
1270 #define TASK_PFA_CLEAR(name, func)					\
1271 	static inline void task_clear_##func(struct task_struct *p)	\
1272 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1273 
1274 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1275 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1276 
1277 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1278 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1279 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1280 
1281 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1282 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1283 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1284 
1285 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
1286 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
1287 
1288 static inline void
1289 tsk_restore_flags(struct task_struct *task, unsigned long orig_flags, unsigned long flags)
1290 {
1291 	task->flags &= ~flags;
1292 	task->flags |= orig_flags & flags;
1293 }
1294 
1295 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1296 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1297 #ifdef CONFIG_SMP
1298 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1299 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1300 #else
1301 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1302 {
1303 }
1304 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1305 {
1306 	if (!cpumask_test_cpu(0, new_mask))
1307 		return -EINVAL;
1308 	return 0;
1309 }
1310 #endif
1311 
1312 #ifndef cpu_relax_yield
1313 #define cpu_relax_yield() cpu_relax()
1314 #endif
1315 
1316 extern int yield_to(struct task_struct *p, bool preempt);
1317 extern void set_user_nice(struct task_struct *p, long nice);
1318 extern int task_prio(const struct task_struct *p);
1319 
1320 /**
1321  * task_nice - return the nice value of a given task.
1322  * @p: the task in question.
1323  *
1324  * Return: The nice value [ -20 ... 0 ... 19 ].
1325  */
1326 static inline int task_nice(const struct task_struct *p)
1327 {
1328 	return PRIO_TO_NICE((p)->static_prio);
1329 }
1330 
1331 extern int can_nice(const struct task_struct *p, const int nice);
1332 extern int task_curr(const struct task_struct *p);
1333 extern int idle_cpu(int cpu);
1334 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1335 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1336 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1337 extern struct task_struct *idle_task(int cpu);
1338 
1339 /**
1340  * is_idle_task - is the specified task an idle task?
1341  * @p: the task in question.
1342  *
1343  * Return: 1 if @p is an idle task. 0 otherwise.
1344  */
1345 static inline bool is_idle_task(const struct task_struct *p)
1346 {
1347 	return !!(p->flags & PF_IDLE);
1348 }
1349 
1350 extern struct task_struct *curr_task(int cpu);
1351 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1352 
1353 void yield(void);
1354 
1355 union thread_union {
1356 #ifndef CONFIG_THREAD_INFO_IN_TASK
1357 	struct thread_info thread_info;
1358 #endif
1359 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1360 };
1361 
1362 #ifdef CONFIG_THREAD_INFO_IN_TASK
1363 static inline struct thread_info *task_thread_info(struct task_struct *task)
1364 {
1365 	return &task->thread_info;
1366 }
1367 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1368 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1369 #endif
1370 
1371 /*
1372  * find a task by one of its numerical ids
1373  *
1374  * find_task_by_pid_ns():
1375  *      finds a task by its pid in the specified namespace
1376  * find_task_by_vpid():
1377  *      finds a task by its virtual pid
1378  *
1379  * see also find_vpid() etc in include/linux/pid.h
1380  */
1381 
1382 extern struct task_struct *find_task_by_vpid(pid_t nr);
1383 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1384 
1385 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1386 extern int wake_up_process(struct task_struct *tsk);
1387 extern void wake_up_new_task(struct task_struct *tsk);
1388 
1389 #ifdef CONFIG_SMP
1390 extern void kick_process(struct task_struct *tsk);
1391 #else
1392 static inline void kick_process(struct task_struct *tsk) { }
1393 #endif
1394 
1395 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1396 
1397 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1398 {
1399 	__set_task_comm(tsk, from, false);
1400 }
1401 
1402 extern char *get_task_comm(char *to, struct task_struct *tsk);
1403 
1404 #ifdef CONFIG_SMP
1405 void scheduler_ipi(void);
1406 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1407 #else
1408 static inline void scheduler_ipi(void) { }
1409 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1410 {
1411 	return 1;
1412 }
1413 #endif
1414 
1415 /*
1416  * Set thread flags in other task's structures.
1417  * See asm/thread_info.h for TIF_xxxx flags available:
1418  */
1419 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1420 {
1421 	set_ti_thread_flag(task_thread_info(tsk), flag);
1422 }
1423 
1424 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1425 {
1426 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1427 }
1428 
1429 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1430 {
1431 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1432 }
1433 
1434 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1435 {
1436 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1437 }
1438 
1439 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1440 {
1441 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1442 }
1443 
1444 static inline void set_tsk_need_resched(struct task_struct *tsk)
1445 {
1446 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1447 }
1448 
1449 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1450 {
1451 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1452 }
1453 
1454 static inline int test_tsk_need_resched(struct task_struct *tsk)
1455 {
1456 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1457 }
1458 
1459 /*
1460  * cond_resched() and cond_resched_lock(): latency reduction via
1461  * explicit rescheduling in places that are safe. The return
1462  * value indicates whether a reschedule was done in fact.
1463  * cond_resched_lock() will drop the spinlock before scheduling,
1464  * cond_resched_softirq() will enable bhs before scheduling.
1465  */
1466 #ifndef CONFIG_PREEMPT
1467 extern int _cond_resched(void);
1468 #else
1469 static inline int _cond_resched(void) { return 0; }
1470 #endif
1471 
1472 #define cond_resched() ({			\
1473 	___might_sleep(__FILE__, __LINE__, 0);	\
1474 	_cond_resched();			\
1475 })
1476 
1477 extern int __cond_resched_lock(spinlock_t *lock);
1478 
1479 #define cond_resched_lock(lock) ({				\
1480 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1481 	__cond_resched_lock(lock);				\
1482 })
1483 
1484 extern int __cond_resched_softirq(void);
1485 
1486 #define cond_resched_softirq() ({					\
1487 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1488 	__cond_resched_softirq();					\
1489 })
1490 
1491 static inline void cond_resched_rcu(void)
1492 {
1493 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1494 	rcu_read_unlock();
1495 	cond_resched();
1496 	rcu_read_lock();
1497 #endif
1498 }
1499 
1500 /*
1501  * Does a critical section need to be broken due to another
1502  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1503  * but a general need for low latency)
1504  */
1505 static inline int spin_needbreak(spinlock_t *lock)
1506 {
1507 #ifdef CONFIG_PREEMPT
1508 	return spin_is_contended(lock);
1509 #else
1510 	return 0;
1511 #endif
1512 }
1513 
1514 static __always_inline bool need_resched(void)
1515 {
1516 	return unlikely(tif_need_resched());
1517 }
1518 
1519 /*
1520  * Wrappers for p->thread_info->cpu access. No-op on UP.
1521  */
1522 #ifdef CONFIG_SMP
1523 
1524 static inline unsigned int task_cpu(const struct task_struct *p)
1525 {
1526 #ifdef CONFIG_THREAD_INFO_IN_TASK
1527 	return p->cpu;
1528 #else
1529 	return task_thread_info(p)->cpu;
1530 #endif
1531 }
1532 
1533 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1534 
1535 #else
1536 
1537 static inline unsigned int task_cpu(const struct task_struct *p)
1538 {
1539 	return 0;
1540 }
1541 
1542 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1543 {
1544 }
1545 
1546 #endif /* CONFIG_SMP */
1547 
1548 /*
1549  * In order to reduce various lock holder preemption latencies provide an
1550  * interface to see if a vCPU is currently running or not.
1551  *
1552  * This allows us to terminate optimistic spin loops and block, analogous to
1553  * the native optimistic spin heuristic of testing if the lock owner task is
1554  * running or not.
1555  */
1556 #ifndef vcpu_is_preempted
1557 # define vcpu_is_preempted(cpu)	false
1558 #endif
1559 
1560 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1561 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1562 
1563 #ifndef TASK_SIZE_OF
1564 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1565 #endif
1566 
1567 #endif
1568