1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio; 101 struct fs_struct; 102 struct bts_context; 103 struct perf_event_context; 104 105 /* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111 /* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121 extern unsigned long avenrun[]; /* Load averages */ 122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124 #define FSHIFT 11 /* nr of bits of precision */ 125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 129 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131 #define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136 extern unsigned long total_forks; 137 extern int nr_threads; 138 DECLARE_PER_CPU(unsigned long, process_counts); 139 extern int nr_processes(void); 140 extern unsigned long nr_running(void); 141 extern unsigned long nr_uninterruptible(void); 142 extern unsigned long nr_iowait(void); 143 extern unsigned long nr_iowait_cpu(void); 144 extern unsigned long this_cpu_load(void); 145 146 147 extern void calc_global_load(void); 148 149 extern unsigned long get_parent_ip(unsigned long addr); 150 151 struct seq_file; 152 struct cfs_rq; 153 struct task_group; 154 #ifdef CONFIG_SCHED_DEBUG 155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 156 extern void proc_sched_set_task(struct task_struct *p); 157 extern void 158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 159 #else 160 static inline void 161 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 162 { 163 } 164 static inline void proc_sched_set_task(struct task_struct *p) 165 { 166 } 167 static inline void 168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 169 { 170 } 171 #endif 172 173 /* 174 * Task state bitmask. NOTE! These bits are also 175 * encoded in fs/proc/array.c: get_task_state(). 176 * 177 * We have two separate sets of flags: task->state 178 * is about runnability, while task->exit_state are 179 * about the task exiting. Confusing, but this way 180 * modifying one set can't modify the other one by 181 * mistake. 182 */ 183 #define TASK_RUNNING 0 184 #define TASK_INTERRUPTIBLE 1 185 #define TASK_UNINTERRUPTIBLE 2 186 #define __TASK_STOPPED 4 187 #define __TASK_TRACED 8 188 /* in tsk->exit_state */ 189 #define EXIT_ZOMBIE 16 190 #define EXIT_DEAD 32 191 /* in tsk->state again */ 192 #define TASK_DEAD 64 193 #define TASK_WAKEKILL 128 194 #define TASK_WAKING 256 195 196 /* Convenience macros for the sake of set_task_state */ 197 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 198 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 199 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 200 201 /* Convenience macros for the sake of wake_up */ 202 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 203 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 204 205 /* get_task_state() */ 206 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 207 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 208 __TASK_TRACED) 209 210 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 211 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 212 #define task_is_stopped_or_traced(task) \ 213 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 214 #define task_contributes_to_load(task) \ 215 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 216 (task->flags & PF_FREEZING) == 0) 217 218 #define __set_task_state(tsk, state_value) \ 219 do { (tsk)->state = (state_value); } while (0) 220 #define set_task_state(tsk, state_value) \ 221 set_mb((tsk)->state, (state_value)) 222 223 /* 224 * set_current_state() includes a barrier so that the write of current->state 225 * is correctly serialised wrt the caller's subsequent test of whether to 226 * actually sleep: 227 * 228 * set_current_state(TASK_UNINTERRUPTIBLE); 229 * if (do_i_need_to_sleep()) 230 * schedule(); 231 * 232 * If the caller does not need such serialisation then use __set_current_state() 233 */ 234 #define __set_current_state(state_value) \ 235 do { current->state = (state_value); } while (0) 236 #define set_current_state(state_value) \ 237 set_mb(current->state, (state_value)) 238 239 /* Task command name length */ 240 #define TASK_COMM_LEN 16 241 242 #include <linux/spinlock.h> 243 244 /* 245 * This serializes "schedule()" and also protects 246 * the run-queue from deletions/modifications (but 247 * _adding_ to the beginning of the run-queue has 248 * a separate lock). 249 */ 250 extern rwlock_t tasklist_lock; 251 extern spinlock_t mmlist_lock; 252 253 struct task_struct; 254 255 extern void sched_init(void); 256 extern void sched_init_smp(void); 257 extern asmlinkage void schedule_tail(struct task_struct *prev); 258 extern void init_idle(struct task_struct *idle, int cpu); 259 extern void init_idle_bootup_task(struct task_struct *idle); 260 261 extern int runqueue_is_locked(int cpu); 262 extern void task_rq_unlock_wait(struct task_struct *p); 263 264 extern cpumask_var_t nohz_cpu_mask; 265 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 266 extern int select_nohz_load_balancer(int cpu); 267 extern int get_nohz_load_balancer(void); 268 #else 269 static inline int select_nohz_load_balancer(int cpu) 270 { 271 return 0; 272 } 273 #endif 274 275 /* 276 * Only dump TASK_* tasks. (0 for all tasks) 277 */ 278 extern void show_state_filter(unsigned long state_filter); 279 280 static inline void show_state(void) 281 { 282 show_state_filter(0); 283 } 284 285 extern void show_regs(struct pt_regs *); 286 287 /* 288 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 289 * task), SP is the stack pointer of the first frame that should be shown in the back 290 * trace (or NULL if the entire call-chain of the task should be shown). 291 */ 292 extern void show_stack(struct task_struct *task, unsigned long *sp); 293 294 void io_schedule(void); 295 long io_schedule_timeout(long timeout); 296 297 extern void cpu_init (void); 298 extern void trap_init(void); 299 extern void update_process_times(int user); 300 extern void scheduler_tick(void); 301 302 extern void sched_show_task(struct task_struct *p); 303 304 #ifdef CONFIG_DETECT_SOFTLOCKUP 305 extern void softlockup_tick(void); 306 extern void touch_softlockup_watchdog(void); 307 extern void touch_all_softlockup_watchdogs(void); 308 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 309 void __user *buffer, 310 size_t *lenp, loff_t *ppos); 311 extern unsigned int softlockup_panic; 312 extern int softlockup_thresh; 313 #else 314 static inline void softlockup_tick(void) 315 { 316 } 317 static inline void touch_softlockup_watchdog(void) 318 { 319 } 320 static inline void touch_all_softlockup_watchdogs(void) 321 { 322 } 323 #endif 324 325 #ifdef CONFIG_DETECT_HUNG_TASK 326 extern unsigned int sysctl_hung_task_panic; 327 extern unsigned long sysctl_hung_task_check_count; 328 extern unsigned long sysctl_hung_task_timeout_secs; 329 extern unsigned long sysctl_hung_task_warnings; 330 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 331 void __user *buffer, 332 size_t *lenp, loff_t *ppos); 333 #endif 334 335 /* Attach to any functions which should be ignored in wchan output. */ 336 #define __sched __attribute__((__section__(".sched.text"))) 337 338 /* Linker adds these: start and end of __sched functions */ 339 extern char __sched_text_start[], __sched_text_end[]; 340 341 /* Is this address in the __sched functions? */ 342 extern int in_sched_functions(unsigned long addr); 343 344 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 345 extern signed long schedule_timeout(signed long timeout); 346 extern signed long schedule_timeout_interruptible(signed long timeout); 347 extern signed long schedule_timeout_killable(signed long timeout); 348 extern signed long schedule_timeout_uninterruptible(signed long timeout); 349 asmlinkage void schedule(void); 350 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 351 352 struct nsproxy; 353 struct user_namespace; 354 355 /* 356 * Default maximum number of active map areas, this limits the number of vmas 357 * per mm struct. Users can overwrite this number by sysctl but there is a 358 * problem. 359 * 360 * When a program's coredump is generated as ELF format, a section is created 361 * per a vma. In ELF, the number of sections is represented in unsigned short. 362 * This means the number of sections should be smaller than 65535 at coredump. 363 * Because the kernel adds some informative sections to a image of program at 364 * generating coredump, we need some margin. The number of extra sections is 365 * 1-3 now and depends on arch. We use "5" as safe margin, here. 366 */ 367 #define MAPCOUNT_ELF_CORE_MARGIN (5) 368 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 369 370 extern int sysctl_max_map_count; 371 372 #include <linux/aio.h> 373 374 extern unsigned long 375 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 376 unsigned long, unsigned long); 377 extern unsigned long 378 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 379 unsigned long len, unsigned long pgoff, 380 unsigned long flags); 381 extern void arch_unmap_area(struct mm_struct *, unsigned long); 382 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 383 384 #if USE_SPLIT_PTLOCKS 385 /* 386 * The mm counters are not protected by its page_table_lock, 387 * so must be incremented atomically. 388 */ 389 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 390 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 391 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 392 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 393 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 394 395 #else /* !USE_SPLIT_PTLOCKS */ 396 /* 397 * The mm counters are protected by its page_table_lock, 398 * so can be incremented directly. 399 */ 400 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 401 #define get_mm_counter(mm, member) ((mm)->_##member) 402 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 403 #define inc_mm_counter(mm, member) (mm)->_##member++ 404 #define dec_mm_counter(mm, member) (mm)->_##member-- 405 406 #endif /* !USE_SPLIT_PTLOCKS */ 407 408 #define get_mm_rss(mm) \ 409 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 410 #define update_hiwater_rss(mm) do { \ 411 unsigned long _rss = get_mm_rss(mm); \ 412 if ((mm)->hiwater_rss < _rss) \ 413 (mm)->hiwater_rss = _rss; \ 414 } while (0) 415 #define update_hiwater_vm(mm) do { \ 416 if ((mm)->hiwater_vm < (mm)->total_vm) \ 417 (mm)->hiwater_vm = (mm)->total_vm; \ 418 } while (0) 419 420 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 421 { 422 return max(mm->hiwater_rss, get_mm_rss(mm)); 423 } 424 425 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 426 struct mm_struct *mm) 427 { 428 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 429 430 if (*maxrss < hiwater_rss) 431 *maxrss = hiwater_rss; 432 } 433 434 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 435 { 436 return max(mm->hiwater_vm, mm->total_vm); 437 } 438 439 extern void set_dumpable(struct mm_struct *mm, int value); 440 extern int get_dumpable(struct mm_struct *mm); 441 442 /* mm flags */ 443 /* dumpable bits */ 444 #define MMF_DUMPABLE 0 /* core dump is permitted */ 445 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 446 447 #define MMF_DUMPABLE_BITS 2 448 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 449 450 /* coredump filter bits */ 451 #define MMF_DUMP_ANON_PRIVATE 2 452 #define MMF_DUMP_ANON_SHARED 3 453 #define MMF_DUMP_MAPPED_PRIVATE 4 454 #define MMF_DUMP_MAPPED_SHARED 5 455 #define MMF_DUMP_ELF_HEADERS 6 456 #define MMF_DUMP_HUGETLB_PRIVATE 7 457 #define MMF_DUMP_HUGETLB_SHARED 8 458 459 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 460 #define MMF_DUMP_FILTER_BITS 7 461 #define MMF_DUMP_FILTER_MASK \ 462 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 463 #define MMF_DUMP_FILTER_DEFAULT \ 464 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 465 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 466 467 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 468 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 469 #else 470 # define MMF_DUMP_MASK_DEFAULT_ELF 0 471 #endif 472 /* leave room for more dump flags */ 473 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 474 475 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 476 477 struct sighand_struct { 478 atomic_t count; 479 struct k_sigaction action[_NSIG]; 480 spinlock_t siglock; 481 wait_queue_head_t signalfd_wqh; 482 }; 483 484 struct pacct_struct { 485 int ac_flag; 486 long ac_exitcode; 487 unsigned long ac_mem; 488 cputime_t ac_utime, ac_stime; 489 unsigned long ac_minflt, ac_majflt; 490 }; 491 492 struct cpu_itimer { 493 cputime_t expires; 494 cputime_t incr; 495 u32 error; 496 u32 incr_error; 497 }; 498 499 /** 500 * struct task_cputime - collected CPU time counts 501 * @utime: time spent in user mode, in &cputime_t units 502 * @stime: time spent in kernel mode, in &cputime_t units 503 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 504 * 505 * This structure groups together three kinds of CPU time that are 506 * tracked for threads and thread groups. Most things considering 507 * CPU time want to group these counts together and treat all three 508 * of them in parallel. 509 */ 510 struct task_cputime { 511 cputime_t utime; 512 cputime_t stime; 513 unsigned long long sum_exec_runtime; 514 }; 515 /* Alternate field names when used to cache expirations. */ 516 #define prof_exp stime 517 #define virt_exp utime 518 #define sched_exp sum_exec_runtime 519 520 #define INIT_CPUTIME \ 521 (struct task_cputime) { \ 522 .utime = cputime_zero, \ 523 .stime = cputime_zero, \ 524 .sum_exec_runtime = 0, \ 525 } 526 527 /* 528 * Disable preemption until the scheduler is running. 529 * Reset by start_kernel()->sched_init()->init_idle(). 530 * 531 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 532 * before the scheduler is active -- see should_resched(). 533 */ 534 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 535 536 /** 537 * struct thread_group_cputimer - thread group interval timer counts 538 * @cputime: thread group interval timers. 539 * @running: non-zero when there are timers running and 540 * @cputime receives updates. 541 * @lock: lock for fields in this struct. 542 * 543 * This structure contains the version of task_cputime, above, that is 544 * used for thread group CPU timer calculations. 545 */ 546 struct thread_group_cputimer { 547 struct task_cputime cputime; 548 int running; 549 spinlock_t lock; 550 }; 551 552 /* 553 * NOTE! "signal_struct" does not have it's own 554 * locking, because a shared signal_struct always 555 * implies a shared sighand_struct, so locking 556 * sighand_struct is always a proper superset of 557 * the locking of signal_struct. 558 */ 559 struct signal_struct { 560 atomic_t count; 561 atomic_t live; 562 563 wait_queue_head_t wait_chldexit; /* for wait4() */ 564 565 /* current thread group signal load-balancing target: */ 566 struct task_struct *curr_target; 567 568 /* shared signal handling: */ 569 struct sigpending shared_pending; 570 571 /* thread group exit support */ 572 int group_exit_code; 573 /* overloaded: 574 * - notify group_exit_task when ->count is equal to notify_count 575 * - everyone except group_exit_task is stopped during signal delivery 576 * of fatal signals, group_exit_task processes the signal. 577 */ 578 int notify_count; 579 struct task_struct *group_exit_task; 580 581 /* thread group stop support, overloads group_exit_code too */ 582 int group_stop_count; 583 unsigned int flags; /* see SIGNAL_* flags below */ 584 585 /* POSIX.1b Interval Timers */ 586 struct list_head posix_timers; 587 588 /* ITIMER_REAL timer for the process */ 589 struct hrtimer real_timer; 590 struct pid *leader_pid; 591 ktime_t it_real_incr; 592 593 /* 594 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 595 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 596 * values are defined to 0 and 1 respectively 597 */ 598 struct cpu_itimer it[2]; 599 600 /* 601 * Thread group totals for process CPU timers. 602 * See thread_group_cputimer(), et al, for details. 603 */ 604 struct thread_group_cputimer cputimer; 605 606 /* Earliest-expiration cache. */ 607 struct task_cputime cputime_expires; 608 609 struct list_head cpu_timers[3]; 610 611 struct pid *tty_old_pgrp; 612 613 /* boolean value for session group leader */ 614 int leader; 615 616 struct tty_struct *tty; /* NULL if no tty */ 617 618 /* 619 * Cumulative resource counters for dead threads in the group, 620 * and for reaped dead child processes forked by this group. 621 * Live threads maintain their own counters and add to these 622 * in __exit_signal, except for the group leader. 623 */ 624 cputime_t utime, stime, cutime, cstime; 625 cputime_t gtime; 626 cputime_t cgtime; 627 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 628 cputime_t prev_utime, prev_stime; 629 #endif 630 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 631 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 632 unsigned long inblock, oublock, cinblock, coublock; 633 unsigned long maxrss, cmaxrss; 634 struct task_io_accounting ioac; 635 636 /* 637 * Cumulative ns of schedule CPU time fo dead threads in the 638 * group, not including a zombie group leader, (This only differs 639 * from jiffies_to_ns(utime + stime) if sched_clock uses something 640 * other than jiffies.) 641 */ 642 unsigned long long sum_sched_runtime; 643 644 /* 645 * We don't bother to synchronize most readers of this at all, 646 * because there is no reader checking a limit that actually needs 647 * to get both rlim_cur and rlim_max atomically, and either one 648 * alone is a single word that can safely be read normally. 649 * getrlimit/setrlimit use task_lock(current->group_leader) to 650 * protect this instead of the siglock, because they really 651 * have no need to disable irqs. 652 */ 653 struct rlimit rlim[RLIM_NLIMITS]; 654 655 #ifdef CONFIG_BSD_PROCESS_ACCT 656 struct pacct_struct pacct; /* per-process accounting information */ 657 #endif 658 #ifdef CONFIG_TASKSTATS 659 struct taskstats *stats; 660 #endif 661 #ifdef CONFIG_AUDIT 662 unsigned audit_tty; 663 struct tty_audit_buf *tty_audit_buf; 664 #endif 665 666 int oom_adj; /* OOM kill score adjustment (bit shift) */ 667 }; 668 669 /* Context switch must be unlocked if interrupts are to be enabled */ 670 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 671 # define __ARCH_WANT_UNLOCKED_CTXSW 672 #endif 673 674 /* 675 * Bits in flags field of signal_struct. 676 */ 677 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 678 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 679 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 680 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 681 /* 682 * Pending notifications to parent. 683 */ 684 #define SIGNAL_CLD_STOPPED 0x00000010 685 #define SIGNAL_CLD_CONTINUED 0x00000020 686 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 687 688 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 689 690 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 691 static inline int signal_group_exit(const struct signal_struct *sig) 692 { 693 return (sig->flags & SIGNAL_GROUP_EXIT) || 694 (sig->group_exit_task != NULL); 695 } 696 697 /* 698 * Some day this will be a full-fledged user tracking system.. 699 */ 700 struct user_struct { 701 atomic_t __count; /* reference count */ 702 atomic_t processes; /* How many processes does this user have? */ 703 atomic_t files; /* How many open files does this user have? */ 704 atomic_t sigpending; /* How many pending signals does this user have? */ 705 #ifdef CONFIG_INOTIFY_USER 706 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 707 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 708 #endif 709 #ifdef CONFIG_EPOLL 710 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 711 #endif 712 #ifdef CONFIG_POSIX_MQUEUE 713 /* protected by mq_lock */ 714 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 715 #endif 716 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 717 718 #ifdef CONFIG_KEYS 719 struct key *uid_keyring; /* UID specific keyring */ 720 struct key *session_keyring; /* UID's default session keyring */ 721 #endif 722 723 /* Hash table maintenance information */ 724 struct hlist_node uidhash_node; 725 uid_t uid; 726 struct user_namespace *user_ns; 727 728 #ifdef CONFIG_USER_SCHED 729 struct task_group *tg; 730 #ifdef CONFIG_SYSFS 731 struct kobject kobj; 732 struct delayed_work work; 733 #endif 734 #endif 735 736 #ifdef CONFIG_PERF_EVENTS 737 atomic_long_t locked_vm; 738 #endif 739 }; 740 741 extern int uids_sysfs_init(void); 742 743 extern struct user_struct *find_user(uid_t); 744 745 extern struct user_struct root_user; 746 #define INIT_USER (&root_user) 747 748 749 struct backing_dev_info; 750 struct reclaim_state; 751 752 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 753 struct sched_info { 754 /* cumulative counters */ 755 unsigned long pcount; /* # of times run on this cpu */ 756 unsigned long long run_delay; /* time spent waiting on a runqueue */ 757 758 /* timestamps */ 759 unsigned long long last_arrival,/* when we last ran on a cpu */ 760 last_queued; /* when we were last queued to run */ 761 #ifdef CONFIG_SCHEDSTATS 762 /* BKL stats */ 763 unsigned int bkl_count; 764 #endif 765 }; 766 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 767 768 #ifdef CONFIG_TASK_DELAY_ACCT 769 struct task_delay_info { 770 spinlock_t lock; 771 unsigned int flags; /* Private per-task flags */ 772 773 /* For each stat XXX, add following, aligned appropriately 774 * 775 * struct timespec XXX_start, XXX_end; 776 * u64 XXX_delay; 777 * u32 XXX_count; 778 * 779 * Atomicity of updates to XXX_delay, XXX_count protected by 780 * single lock above (split into XXX_lock if contention is an issue). 781 */ 782 783 /* 784 * XXX_count is incremented on every XXX operation, the delay 785 * associated with the operation is added to XXX_delay. 786 * XXX_delay contains the accumulated delay time in nanoseconds. 787 */ 788 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 789 u64 blkio_delay; /* wait for sync block io completion */ 790 u64 swapin_delay; /* wait for swapin block io completion */ 791 u32 blkio_count; /* total count of the number of sync block */ 792 /* io operations performed */ 793 u32 swapin_count; /* total count of the number of swapin block */ 794 /* io operations performed */ 795 796 struct timespec freepages_start, freepages_end; 797 u64 freepages_delay; /* wait for memory reclaim */ 798 u32 freepages_count; /* total count of memory reclaim */ 799 }; 800 #endif /* CONFIG_TASK_DELAY_ACCT */ 801 802 static inline int sched_info_on(void) 803 { 804 #ifdef CONFIG_SCHEDSTATS 805 return 1; 806 #elif defined(CONFIG_TASK_DELAY_ACCT) 807 extern int delayacct_on; 808 return delayacct_on; 809 #else 810 return 0; 811 #endif 812 } 813 814 enum cpu_idle_type { 815 CPU_IDLE, 816 CPU_NOT_IDLE, 817 CPU_NEWLY_IDLE, 818 CPU_MAX_IDLE_TYPES 819 }; 820 821 /* 822 * sched-domains (multiprocessor balancing) declarations: 823 */ 824 825 /* 826 * Increase resolution of nice-level calculations: 827 */ 828 #define SCHED_LOAD_SHIFT 10 829 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 830 831 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 832 833 #ifdef CONFIG_SMP 834 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 835 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 836 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 837 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 838 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 839 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 840 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 841 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 842 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 843 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 844 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 845 846 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 847 848 enum powersavings_balance_level { 849 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 850 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 851 * first for long running threads 852 */ 853 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 854 * cpu package for power savings 855 */ 856 MAX_POWERSAVINGS_BALANCE_LEVELS 857 }; 858 859 extern int sched_mc_power_savings, sched_smt_power_savings; 860 861 static inline int sd_balance_for_mc_power(void) 862 { 863 if (sched_smt_power_savings) 864 return SD_POWERSAVINGS_BALANCE; 865 866 return SD_PREFER_SIBLING; 867 } 868 869 static inline int sd_balance_for_package_power(void) 870 { 871 if (sched_mc_power_savings | sched_smt_power_savings) 872 return SD_POWERSAVINGS_BALANCE; 873 874 return SD_PREFER_SIBLING; 875 } 876 877 /* 878 * Optimise SD flags for power savings: 879 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 880 * Keep default SD flags if sched_{smt,mc}_power_saving=0 881 */ 882 883 static inline int sd_power_saving_flags(void) 884 { 885 if (sched_mc_power_savings | sched_smt_power_savings) 886 return SD_BALANCE_NEWIDLE; 887 888 return 0; 889 } 890 891 struct sched_group { 892 struct sched_group *next; /* Must be a circular list */ 893 894 /* 895 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 896 * single CPU. 897 */ 898 unsigned int cpu_power; 899 900 /* 901 * The CPUs this group covers. 902 * 903 * NOTE: this field is variable length. (Allocated dynamically 904 * by attaching extra space to the end of the structure, 905 * depending on how many CPUs the kernel has booted up with) 906 * 907 * It is also be embedded into static data structures at build 908 * time. (See 'struct static_sched_group' in kernel/sched.c) 909 */ 910 unsigned long cpumask[0]; 911 }; 912 913 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 914 { 915 return to_cpumask(sg->cpumask); 916 } 917 918 enum sched_domain_level { 919 SD_LV_NONE = 0, 920 SD_LV_SIBLING, 921 SD_LV_MC, 922 SD_LV_CPU, 923 SD_LV_NODE, 924 SD_LV_ALLNODES, 925 SD_LV_MAX 926 }; 927 928 struct sched_domain_attr { 929 int relax_domain_level; 930 }; 931 932 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 933 .relax_domain_level = -1, \ 934 } 935 936 struct sched_domain { 937 /* These fields must be setup */ 938 struct sched_domain *parent; /* top domain must be null terminated */ 939 struct sched_domain *child; /* bottom domain must be null terminated */ 940 struct sched_group *groups; /* the balancing groups of the domain */ 941 unsigned long min_interval; /* Minimum balance interval ms */ 942 unsigned long max_interval; /* Maximum balance interval ms */ 943 unsigned int busy_factor; /* less balancing by factor if busy */ 944 unsigned int imbalance_pct; /* No balance until over watermark */ 945 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 946 unsigned int busy_idx; 947 unsigned int idle_idx; 948 unsigned int newidle_idx; 949 unsigned int wake_idx; 950 unsigned int forkexec_idx; 951 unsigned int smt_gain; 952 int flags; /* See SD_* */ 953 enum sched_domain_level level; 954 955 /* Runtime fields. */ 956 unsigned long last_balance; /* init to jiffies. units in jiffies */ 957 unsigned int balance_interval; /* initialise to 1. units in ms. */ 958 unsigned int nr_balance_failed; /* initialise to 0 */ 959 960 u64 last_update; 961 962 #ifdef CONFIG_SCHEDSTATS 963 /* load_balance() stats */ 964 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 965 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 966 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 968 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 970 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 971 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 972 973 /* Active load balancing */ 974 unsigned int alb_count; 975 unsigned int alb_failed; 976 unsigned int alb_pushed; 977 978 /* SD_BALANCE_EXEC stats */ 979 unsigned int sbe_count; 980 unsigned int sbe_balanced; 981 unsigned int sbe_pushed; 982 983 /* SD_BALANCE_FORK stats */ 984 unsigned int sbf_count; 985 unsigned int sbf_balanced; 986 unsigned int sbf_pushed; 987 988 /* try_to_wake_up() stats */ 989 unsigned int ttwu_wake_remote; 990 unsigned int ttwu_move_affine; 991 unsigned int ttwu_move_balance; 992 #endif 993 #ifdef CONFIG_SCHED_DEBUG 994 char *name; 995 #endif 996 997 /* 998 * Span of all CPUs in this domain. 999 * 1000 * NOTE: this field is variable length. (Allocated dynamically 1001 * by attaching extra space to the end of the structure, 1002 * depending on how many CPUs the kernel has booted up with) 1003 * 1004 * It is also be embedded into static data structures at build 1005 * time. (See 'struct static_sched_domain' in kernel/sched.c) 1006 */ 1007 unsigned long span[0]; 1008 }; 1009 1010 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1011 { 1012 return to_cpumask(sd->span); 1013 } 1014 1015 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1016 struct sched_domain_attr *dattr_new); 1017 1018 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1019 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1021 1022 /* Test a flag in parent sched domain */ 1023 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1024 { 1025 if (sd->parent && (sd->parent->flags & flag)) 1026 return 1; 1027 1028 return 0; 1029 } 1030 1031 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1032 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1033 1034 #else /* CONFIG_SMP */ 1035 1036 struct sched_domain_attr; 1037 1038 static inline void 1039 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1040 struct sched_domain_attr *dattr_new) 1041 { 1042 } 1043 #endif /* !CONFIG_SMP */ 1044 1045 1046 struct io_context; /* See blkdev.h */ 1047 1048 1049 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1050 extern void prefetch_stack(struct task_struct *t); 1051 #else 1052 static inline void prefetch_stack(struct task_struct *t) { } 1053 #endif 1054 1055 struct audit_context; /* See audit.c */ 1056 struct mempolicy; 1057 struct pipe_inode_info; 1058 struct uts_namespace; 1059 1060 struct rq; 1061 struct sched_domain; 1062 1063 /* 1064 * wake flags 1065 */ 1066 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1067 #define WF_FORK 0x02 /* child wakeup after fork */ 1068 1069 struct sched_class { 1070 const struct sched_class *next; 1071 1072 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 1073 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 1074 void (*yield_task) (struct rq *rq); 1075 1076 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1077 1078 struct task_struct * (*pick_next_task) (struct rq *rq); 1079 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1080 1081 #ifdef CONFIG_SMP 1082 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1083 1084 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 1085 struct rq *busiest, unsigned long max_load_move, 1086 struct sched_domain *sd, enum cpu_idle_type idle, 1087 int *all_pinned, int *this_best_prio); 1088 1089 int (*move_one_task) (struct rq *this_rq, int this_cpu, 1090 struct rq *busiest, struct sched_domain *sd, 1091 enum cpu_idle_type idle); 1092 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1093 void (*post_schedule) (struct rq *this_rq); 1094 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 1095 1096 void (*set_cpus_allowed)(struct task_struct *p, 1097 const struct cpumask *newmask); 1098 1099 void (*rq_online)(struct rq *rq); 1100 void (*rq_offline)(struct rq *rq); 1101 #endif 1102 1103 void (*set_curr_task) (struct rq *rq); 1104 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1105 void (*task_new) (struct rq *rq, struct task_struct *p); 1106 1107 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1108 int running); 1109 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1110 int running); 1111 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1112 int oldprio, int running); 1113 1114 unsigned int (*get_rr_interval) (struct task_struct *task); 1115 1116 #ifdef CONFIG_FAIR_GROUP_SCHED 1117 void (*moved_group) (struct task_struct *p); 1118 #endif 1119 }; 1120 1121 struct load_weight { 1122 unsigned long weight, inv_weight; 1123 }; 1124 1125 /* 1126 * CFS stats for a schedulable entity (task, task-group etc) 1127 * 1128 * Current field usage histogram: 1129 * 1130 * 4 se->block_start 1131 * 4 se->run_node 1132 * 4 se->sleep_start 1133 * 6 se->load.weight 1134 */ 1135 struct sched_entity { 1136 struct load_weight load; /* for load-balancing */ 1137 struct rb_node run_node; 1138 struct list_head group_node; 1139 unsigned int on_rq; 1140 1141 u64 exec_start; 1142 u64 sum_exec_runtime; 1143 u64 vruntime; 1144 u64 prev_sum_exec_runtime; 1145 1146 u64 last_wakeup; 1147 u64 avg_overlap; 1148 1149 u64 nr_migrations; 1150 1151 u64 start_runtime; 1152 u64 avg_wakeup; 1153 1154 u64 avg_running; 1155 1156 #ifdef CONFIG_SCHEDSTATS 1157 u64 wait_start; 1158 u64 wait_max; 1159 u64 wait_count; 1160 u64 wait_sum; 1161 u64 iowait_count; 1162 u64 iowait_sum; 1163 1164 u64 sleep_start; 1165 u64 sleep_max; 1166 s64 sum_sleep_runtime; 1167 1168 u64 block_start; 1169 u64 block_max; 1170 u64 exec_max; 1171 u64 slice_max; 1172 1173 u64 nr_migrations_cold; 1174 u64 nr_failed_migrations_affine; 1175 u64 nr_failed_migrations_running; 1176 u64 nr_failed_migrations_hot; 1177 u64 nr_forced_migrations; 1178 u64 nr_forced2_migrations; 1179 1180 u64 nr_wakeups; 1181 u64 nr_wakeups_sync; 1182 u64 nr_wakeups_migrate; 1183 u64 nr_wakeups_local; 1184 u64 nr_wakeups_remote; 1185 u64 nr_wakeups_affine; 1186 u64 nr_wakeups_affine_attempts; 1187 u64 nr_wakeups_passive; 1188 u64 nr_wakeups_idle; 1189 #endif 1190 1191 #ifdef CONFIG_FAIR_GROUP_SCHED 1192 struct sched_entity *parent; 1193 /* rq on which this entity is (to be) queued: */ 1194 struct cfs_rq *cfs_rq; 1195 /* rq "owned" by this entity/group: */ 1196 struct cfs_rq *my_q; 1197 #endif 1198 }; 1199 1200 struct sched_rt_entity { 1201 struct list_head run_list; 1202 unsigned long timeout; 1203 unsigned int time_slice; 1204 int nr_cpus_allowed; 1205 1206 struct sched_rt_entity *back; 1207 #ifdef CONFIG_RT_GROUP_SCHED 1208 struct sched_rt_entity *parent; 1209 /* rq on which this entity is (to be) queued: */ 1210 struct rt_rq *rt_rq; 1211 /* rq "owned" by this entity/group: */ 1212 struct rt_rq *my_q; 1213 #endif 1214 }; 1215 1216 struct rcu_node; 1217 1218 struct task_struct { 1219 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1220 void *stack; 1221 atomic_t usage; 1222 unsigned int flags; /* per process flags, defined below */ 1223 unsigned int ptrace; 1224 1225 int lock_depth; /* BKL lock depth */ 1226 1227 #ifdef CONFIG_SMP 1228 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1229 int oncpu; 1230 #endif 1231 #endif 1232 1233 int prio, static_prio, normal_prio; 1234 unsigned int rt_priority; 1235 const struct sched_class *sched_class; 1236 struct sched_entity se; 1237 struct sched_rt_entity rt; 1238 1239 #ifdef CONFIG_PREEMPT_NOTIFIERS 1240 /* list of struct preempt_notifier: */ 1241 struct hlist_head preempt_notifiers; 1242 #endif 1243 1244 /* 1245 * fpu_counter contains the number of consecutive context switches 1246 * that the FPU is used. If this is over a threshold, the lazy fpu 1247 * saving becomes unlazy to save the trap. This is an unsigned char 1248 * so that after 256 times the counter wraps and the behavior turns 1249 * lazy again; this to deal with bursty apps that only use FPU for 1250 * a short time 1251 */ 1252 unsigned char fpu_counter; 1253 #ifdef CONFIG_BLK_DEV_IO_TRACE 1254 unsigned int btrace_seq; 1255 #endif 1256 1257 unsigned int policy; 1258 cpumask_t cpus_allowed; 1259 1260 #ifdef CONFIG_TREE_PREEMPT_RCU 1261 int rcu_read_lock_nesting; 1262 char rcu_read_unlock_special; 1263 struct rcu_node *rcu_blocked_node; 1264 struct list_head rcu_node_entry; 1265 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1266 1267 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1268 struct sched_info sched_info; 1269 #endif 1270 1271 struct list_head tasks; 1272 struct plist_node pushable_tasks; 1273 1274 struct mm_struct *mm, *active_mm; 1275 1276 /* task state */ 1277 int exit_state; 1278 int exit_code, exit_signal; 1279 int pdeath_signal; /* The signal sent when the parent dies */ 1280 /* ??? */ 1281 unsigned int personality; 1282 unsigned did_exec:1; 1283 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1284 * execve */ 1285 unsigned in_iowait:1; 1286 1287 1288 /* Revert to default priority/policy when forking */ 1289 unsigned sched_reset_on_fork:1; 1290 1291 pid_t pid; 1292 pid_t tgid; 1293 1294 #ifdef CONFIG_CC_STACKPROTECTOR 1295 /* Canary value for the -fstack-protector gcc feature */ 1296 unsigned long stack_canary; 1297 #endif 1298 1299 /* 1300 * pointers to (original) parent process, youngest child, younger sibling, 1301 * older sibling, respectively. (p->father can be replaced with 1302 * p->real_parent->pid) 1303 */ 1304 struct task_struct *real_parent; /* real parent process */ 1305 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1306 /* 1307 * children/sibling forms the list of my natural children 1308 */ 1309 struct list_head children; /* list of my children */ 1310 struct list_head sibling; /* linkage in my parent's children list */ 1311 struct task_struct *group_leader; /* threadgroup leader */ 1312 1313 /* 1314 * ptraced is the list of tasks this task is using ptrace on. 1315 * This includes both natural children and PTRACE_ATTACH targets. 1316 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1317 */ 1318 struct list_head ptraced; 1319 struct list_head ptrace_entry; 1320 1321 /* 1322 * This is the tracer handle for the ptrace BTS extension. 1323 * This field actually belongs to the ptracer task. 1324 */ 1325 struct bts_context *bts; 1326 1327 /* PID/PID hash table linkage. */ 1328 struct pid_link pids[PIDTYPE_MAX]; 1329 struct list_head thread_group; 1330 1331 struct completion *vfork_done; /* for vfork() */ 1332 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1333 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1334 1335 cputime_t utime, stime, utimescaled, stimescaled; 1336 cputime_t gtime; 1337 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1338 cputime_t prev_utime, prev_stime; 1339 #endif 1340 unsigned long nvcsw, nivcsw; /* context switch counts */ 1341 struct timespec start_time; /* monotonic time */ 1342 struct timespec real_start_time; /* boot based time */ 1343 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1344 unsigned long min_flt, maj_flt; 1345 1346 struct task_cputime cputime_expires; 1347 struct list_head cpu_timers[3]; 1348 1349 /* process credentials */ 1350 const struct cred *real_cred; /* objective and real subjective task 1351 * credentials (COW) */ 1352 const struct cred *cred; /* effective (overridable) subjective task 1353 * credentials (COW) */ 1354 struct mutex cred_guard_mutex; /* guard against foreign influences on 1355 * credential calculations 1356 * (notably. ptrace) */ 1357 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1358 1359 char comm[TASK_COMM_LEN]; /* executable name excluding path 1360 - access with [gs]et_task_comm (which lock 1361 it with task_lock()) 1362 - initialized normally by flush_old_exec */ 1363 /* file system info */ 1364 int link_count, total_link_count; 1365 #ifdef CONFIG_SYSVIPC 1366 /* ipc stuff */ 1367 struct sysv_sem sysvsem; 1368 #endif 1369 #ifdef CONFIG_DETECT_HUNG_TASK 1370 /* hung task detection */ 1371 unsigned long last_switch_count; 1372 #endif 1373 /* CPU-specific state of this task */ 1374 struct thread_struct thread; 1375 /* filesystem information */ 1376 struct fs_struct *fs; 1377 /* open file information */ 1378 struct files_struct *files; 1379 /* namespaces */ 1380 struct nsproxy *nsproxy; 1381 /* signal handlers */ 1382 struct signal_struct *signal; 1383 struct sighand_struct *sighand; 1384 1385 sigset_t blocked, real_blocked; 1386 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1387 struct sigpending pending; 1388 1389 unsigned long sas_ss_sp; 1390 size_t sas_ss_size; 1391 int (*notifier)(void *priv); 1392 void *notifier_data; 1393 sigset_t *notifier_mask; 1394 struct audit_context *audit_context; 1395 #ifdef CONFIG_AUDITSYSCALL 1396 uid_t loginuid; 1397 unsigned int sessionid; 1398 #endif 1399 seccomp_t seccomp; 1400 1401 /* Thread group tracking */ 1402 u32 parent_exec_id; 1403 u32 self_exec_id; 1404 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1405 * mempolicy */ 1406 spinlock_t alloc_lock; 1407 1408 #ifdef CONFIG_GENERIC_HARDIRQS 1409 /* IRQ handler threads */ 1410 struct irqaction *irqaction; 1411 #endif 1412 1413 /* Protection of the PI data structures: */ 1414 spinlock_t pi_lock; 1415 1416 #ifdef CONFIG_RT_MUTEXES 1417 /* PI waiters blocked on a rt_mutex held by this task */ 1418 struct plist_head pi_waiters; 1419 /* Deadlock detection and priority inheritance handling */ 1420 struct rt_mutex_waiter *pi_blocked_on; 1421 #endif 1422 1423 #ifdef CONFIG_DEBUG_MUTEXES 1424 /* mutex deadlock detection */ 1425 struct mutex_waiter *blocked_on; 1426 #endif 1427 #ifdef CONFIG_TRACE_IRQFLAGS 1428 unsigned int irq_events; 1429 unsigned long hardirq_enable_ip; 1430 unsigned long hardirq_disable_ip; 1431 unsigned int hardirq_enable_event; 1432 unsigned int hardirq_disable_event; 1433 int hardirqs_enabled; 1434 int hardirq_context; 1435 unsigned long softirq_disable_ip; 1436 unsigned long softirq_enable_ip; 1437 unsigned int softirq_disable_event; 1438 unsigned int softirq_enable_event; 1439 int softirqs_enabled; 1440 int softirq_context; 1441 #endif 1442 #ifdef CONFIG_LOCKDEP 1443 # define MAX_LOCK_DEPTH 48UL 1444 u64 curr_chain_key; 1445 int lockdep_depth; 1446 unsigned int lockdep_recursion; 1447 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1448 gfp_t lockdep_reclaim_gfp; 1449 #endif 1450 1451 /* journalling filesystem info */ 1452 void *journal_info; 1453 1454 /* stacked block device info */ 1455 struct bio *bio_list, **bio_tail; 1456 1457 /* VM state */ 1458 struct reclaim_state *reclaim_state; 1459 1460 struct backing_dev_info *backing_dev_info; 1461 1462 struct io_context *io_context; 1463 1464 unsigned long ptrace_message; 1465 siginfo_t *last_siginfo; /* For ptrace use. */ 1466 struct task_io_accounting ioac; 1467 #if defined(CONFIG_TASK_XACCT) 1468 u64 acct_rss_mem1; /* accumulated rss usage */ 1469 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1470 cputime_t acct_timexpd; /* stime + utime since last update */ 1471 #endif 1472 #ifdef CONFIG_CPUSETS 1473 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1474 int cpuset_mem_spread_rotor; 1475 #endif 1476 #ifdef CONFIG_CGROUPS 1477 /* Control Group info protected by css_set_lock */ 1478 struct css_set *cgroups; 1479 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1480 struct list_head cg_list; 1481 #endif 1482 #ifdef CONFIG_FUTEX 1483 struct robust_list_head __user *robust_list; 1484 #ifdef CONFIG_COMPAT 1485 struct compat_robust_list_head __user *compat_robust_list; 1486 #endif 1487 struct list_head pi_state_list; 1488 struct futex_pi_state *pi_state_cache; 1489 #endif 1490 #ifdef CONFIG_PERF_EVENTS 1491 struct perf_event_context *perf_event_ctxp; 1492 struct mutex perf_event_mutex; 1493 struct list_head perf_event_list; 1494 #endif 1495 #ifdef CONFIG_NUMA 1496 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1497 short il_next; 1498 #endif 1499 atomic_t fs_excl; /* holding fs exclusive resources */ 1500 struct rcu_head rcu; 1501 1502 /* 1503 * cache last used pipe for splice 1504 */ 1505 struct pipe_inode_info *splice_pipe; 1506 #ifdef CONFIG_TASK_DELAY_ACCT 1507 struct task_delay_info *delays; 1508 #endif 1509 #ifdef CONFIG_FAULT_INJECTION 1510 int make_it_fail; 1511 #endif 1512 struct prop_local_single dirties; 1513 #ifdef CONFIG_LATENCYTOP 1514 int latency_record_count; 1515 struct latency_record latency_record[LT_SAVECOUNT]; 1516 #endif 1517 /* 1518 * time slack values; these are used to round up poll() and 1519 * select() etc timeout values. These are in nanoseconds. 1520 */ 1521 unsigned long timer_slack_ns; 1522 unsigned long default_timer_slack_ns; 1523 1524 struct list_head *scm_work_list; 1525 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1526 /* Index of current stored adress in ret_stack */ 1527 int curr_ret_stack; 1528 /* Stack of return addresses for return function tracing */ 1529 struct ftrace_ret_stack *ret_stack; 1530 /* time stamp for last schedule */ 1531 unsigned long long ftrace_timestamp; 1532 /* 1533 * Number of functions that haven't been traced 1534 * because of depth overrun. 1535 */ 1536 atomic_t trace_overrun; 1537 /* Pause for the tracing */ 1538 atomic_t tracing_graph_pause; 1539 #endif 1540 #ifdef CONFIG_TRACING 1541 /* state flags for use by tracers */ 1542 unsigned long trace; 1543 /* bitmask of trace recursion */ 1544 unsigned long trace_recursion; 1545 #endif /* CONFIG_TRACING */ 1546 unsigned long stack_start; 1547 }; 1548 1549 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1550 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed) 1551 1552 /* 1553 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1554 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1555 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1556 * values are inverted: lower p->prio value means higher priority. 1557 * 1558 * The MAX_USER_RT_PRIO value allows the actual maximum 1559 * RT priority to be separate from the value exported to 1560 * user-space. This allows kernel threads to set their 1561 * priority to a value higher than any user task. Note: 1562 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1563 */ 1564 1565 #define MAX_USER_RT_PRIO 100 1566 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1567 1568 #define MAX_PRIO (MAX_RT_PRIO + 40) 1569 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1570 1571 static inline int rt_prio(int prio) 1572 { 1573 if (unlikely(prio < MAX_RT_PRIO)) 1574 return 1; 1575 return 0; 1576 } 1577 1578 static inline int rt_task(struct task_struct *p) 1579 { 1580 return rt_prio(p->prio); 1581 } 1582 1583 static inline struct pid *task_pid(struct task_struct *task) 1584 { 1585 return task->pids[PIDTYPE_PID].pid; 1586 } 1587 1588 static inline struct pid *task_tgid(struct task_struct *task) 1589 { 1590 return task->group_leader->pids[PIDTYPE_PID].pid; 1591 } 1592 1593 /* 1594 * Without tasklist or rcu lock it is not safe to dereference 1595 * the result of task_pgrp/task_session even if task == current, 1596 * we can race with another thread doing sys_setsid/sys_setpgid. 1597 */ 1598 static inline struct pid *task_pgrp(struct task_struct *task) 1599 { 1600 return task->group_leader->pids[PIDTYPE_PGID].pid; 1601 } 1602 1603 static inline struct pid *task_session(struct task_struct *task) 1604 { 1605 return task->group_leader->pids[PIDTYPE_SID].pid; 1606 } 1607 1608 struct pid_namespace; 1609 1610 /* 1611 * the helpers to get the task's different pids as they are seen 1612 * from various namespaces 1613 * 1614 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1615 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1616 * current. 1617 * task_xid_nr_ns() : id seen from the ns specified; 1618 * 1619 * set_task_vxid() : assigns a virtual id to a task; 1620 * 1621 * see also pid_nr() etc in include/linux/pid.h 1622 */ 1623 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1624 struct pid_namespace *ns); 1625 1626 static inline pid_t task_pid_nr(struct task_struct *tsk) 1627 { 1628 return tsk->pid; 1629 } 1630 1631 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1632 struct pid_namespace *ns) 1633 { 1634 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1635 } 1636 1637 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1638 { 1639 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1640 } 1641 1642 1643 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1644 { 1645 return tsk->tgid; 1646 } 1647 1648 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1649 1650 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1651 { 1652 return pid_vnr(task_tgid(tsk)); 1653 } 1654 1655 1656 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1657 struct pid_namespace *ns) 1658 { 1659 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1660 } 1661 1662 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1663 { 1664 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1665 } 1666 1667 1668 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1669 struct pid_namespace *ns) 1670 { 1671 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1672 } 1673 1674 static inline pid_t task_session_vnr(struct task_struct *tsk) 1675 { 1676 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1677 } 1678 1679 /* obsolete, do not use */ 1680 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1681 { 1682 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1683 } 1684 1685 /** 1686 * pid_alive - check that a task structure is not stale 1687 * @p: Task structure to be checked. 1688 * 1689 * Test if a process is not yet dead (at most zombie state) 1690 * If pid_alive fails, then pointers within the task structure 1691 * can be stale and must not be dereferenced. 1692 */ 1693 static inline int pid_alive(struct task_struct *p) 1694 { 1695 return p->pids[PIDTYPE_PID].pid != NULL; 1696 } 1697 1698 /** 1699 * is_global_init - check if a task structure is init 1700 * @tsk: Task structure to be checked. 1701 * 1702 * Check if a task structure is the first user space task the kernel created. 1703 */ 1704 static inline int is_global_init(struct task_struct *tsk) 1705 { 1706 return tsk->pid == 1; 1707 } 1708 1709 /* 1710 * is_container_init: 1711 * check whether in the task is init in its own pid namespace. 1712 */ 1713 extern int is_container_init(struct task_struct *tsk); 1714 1715 extern struct pid *cad_pid; 1716 1717 extern void free_task(struct task_struct *tsk); 1718 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1719 1720 extern void __put_task_struct(struct task_struct *t); 1721 1722 static inline void put_task_struct(struct task_struct *t) 1723 { 1724 if (atomic_dec_and_test(&t->usage)) 1725 __put_task_struct(t); 1726 } 1727 1728 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1729 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1730 1731 /* 1732 * Per process flags 1733 */ 1734 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1735 /* Not implemented yet, only for 486*/ 1736 #define PF_STARTING 0x00000002 /* being created */ 1737 #define PF_EXITING 0x00000004 /* getting shut down */ 1738 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1739 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1740 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1741 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1742 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1743 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1744 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1745 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1746 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1747 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1748 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1749 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1750 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1751 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1752 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1753 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1754 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1755 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1756 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1757 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1758 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1759 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1760 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1761 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1762 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1763 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1764 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1765 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1766 1767 /* 1768 * Only the _current_ task can read/write to tsk->flags, but other 1769 * tasks can access tsk->flags in readonly mode for example 1770 * with tsk_used_math (like during threaded core dumping). 1771 * There is however an exception to this rule during ptrace 1772 * or during fork: the ptracer task is allowed to write to the 1773 * child->flags of its traced child (same goes for fork, the parent 1774 * can write to the child->flags), because we're guaranteed the 1775 * child is not running and in turn not changing child->flags 1776 * at the same time the parent does it. 1777 */ 1778 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1779 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1780 #define clear_used_math() clear_stopped_child_used_math(current) 1781 #define set_used_math() set_stopped_child_used_math(current) 1782 #define conditional_stopped_child_used_math(condition, child) \ 1783 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1784 #define conditional_used_math(condition) \ 1785 conditional_stopped_child_used_math(condition, current) 1786 #define copy_to_stopped_child_used_math(child) \ 1787 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1788 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1789 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1790 #define used_math() tsk_used_math(current) 1791 1792 #ifdef CONFIG_TREE_PREEMPT_RCU 1793 1794 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1795 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1796 1797 static inline void rcu_copy_process(struct task_struct *p) 1798 { 1799 p->rcu_read_lock_nesting = 0; 1800 p->rcu_read_unlock_special = 0; 1801 p->rcu_blocked_node = NULL; 1802 INIT_LIST_HEAD(&p->rcu_node_entry); 1803 } 1804 1805 #else 1806 1807 static inline void rcu_copy_process(struct task_struct *p) 1808 { 1809 } 1810 1811 #endif 1812 1813 #ifdef CONFIG_SMP 1814 extern int set_cpus_allowed_ptr(struct task_struct *p, 1815 const struct cpumask *new_mask); 1816 #else 1817 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1818 const struct cpumask *new_mask) 1819 { 1820 if (!cpumask_test_cpu(0, new_mask)) 1821 return -EINVAL; 1822 return 0; 1823 } 1824 #endif 1825 1826 #ifndef CONFIG_CPUMASK_OFFSTACK 1827 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1828 { 1829 return set_cpus_allowed_ptr(p, &new_mask); 1830 } 1831 #endif 1832 1833 /* 1834 * Architectures can set this to 1 if they have specified 1835 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1836 * but then during bootup it turns out that sched_clock() 1837 * is reliable after all: 1838 */ 1839 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1840 extern int sched_clock_stable; 1841 #endif 1842 1843 /* ftrace calls sched_clock() directly */ 1844 extern unsigned long long notrace sched_clock(void); 1845 1846 extern void sched_clock_init(void); 1847 extern u64 sched_clock_cpu(int cpu); 1848 1849 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1850 static inline void sched_clock_tick(void) 1851 { 1852 } 1853 1854 static inline void sched_clock_idle_sleep_event(void) 1855 { 1856 } 1857 1858 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1859 { 1860 } 1861 #else 1862 extern void sched_clock_tick(void); 1863 extern void sched_clock_idle_sleep_event(void); 1864 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1865 #endif 1866 1867 /* 1868 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1869 * clock constructed from sched_clock(): 1870 */ 1871 extern unsigned long long cpu_clock(int cpu); 1872 1873 extern unsigned long long 1874 task_sched_runtime(struct task_struct *task); 1875 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1876 1877 /* sched_exec is called by processes performing an exec */ 1878 #ifdef CONFIG_SMP 1879 extern void sched_exec(void); 1880 #else 1881 #define sched_exec() {} 1882 #endif 1883 1884 extern void sched_clock_idle_sleep_event(void); 1885 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1886 1887 #ifdef CONFIG_HOTPLUG_CPU 1888 extern void idle_task_exit(void); 1889 #else 1890 static inline void idle_task_exit(void) {} 1891 #endif 1892 1893 extern void sched_idle_next(void); 1894 1895 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1896 extern void wake_up_idle_cpu(int cpu); 1897 #else 1898 static inline void wake_up_idle_cpu(int cpu) { } 1899 #endif 1900 1901 extern unsigned int sysctl_sched_latency; 1902 extern unsigned int sysctl_sched_min_granularity; 1903 extern unsigned int sysctl_sched_wakeup_granularity; 1904 extern unsigned int sysctl_sched_shares_ratelimit; 1905 extern unsigned int sysctl_sched_shares_thresh; 1906 extern unsigned int sysctl_sched_child_runs_first; 1907 #ifdef CONFIG_SCHED_DEBUG 1908 extern unsigned int sysctl_sched_features; 1909 extern unsigned int sysctl_sched_migration_cost; 1910 extern unsigned int sysctl_sched_nr_migrate; 1911 extern unsigned int sysctl_sched_time_avg; 1912 extern unsigned int sysctl_timer_migration; 1913 1914 int sched_nr_latency_handler(struct ctl_table *table, int write, 1915 void __user *buffer, size_t *length, 1916 loff_t *ppos); 1917 #endif 1918 #ifdef CONFIG_SCHED_DEBUG 1919 static inline unsigned int get_sysctl_timer_migration(void) 1920 { 1921 return sysctl_timer_migration; 1922 } 1923 #else 1924 static inline unsigned int get_sysctl_timer_migration(void) 1925 { 1926 return 1; 1927 } 1928 #endif 1929 extern unsigned int sysctl_sched_rt_period; 1930 extern int sysctl_sched_rt_runtime; 1931 1932 int sched_rt_handler(struct ctl_table *table, int write, 1933 void __user *buffer, size_t *lenp, 1934 loff_t *ppos); 1935 1936 extern unsigned int sysctl_sched_compat_yield; 1937 1938 #ifdef CONFIG_RT_MUTEXES 1939 extern int rt_mutex_getprio(struct task_struct *p); 1940 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1941 extern void rt_mutex_adjust_pi(struct task_struct *p); 1942 #else 1943 static inline int rt_mutex_getprio(struct task_struct *p) 1944 { 1945 return p->normal_prio; 1946 } 1947 # define rt_mutex_adjust_pi(p) do { } while (0) 1948 #endif 1949 1950 extern void set_user_nice(struct task_struct *p, long nice); 1951 extern int task_prio(const struct task_struct *p); 1952 extern int task_nice(const struct task_struct *p); 1953 extern int can_nice(const struct task_struct *p, const int nice); 1954 extern int task_curr(const struct task_struct *p); 1955 extern int idle_cpu(int cpu); 1956 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1957 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1958 struct sched_param *); 1959 extern struct task_struct *idle_task(int cpu); 1960 extern struct task_struct *curr_task(int cpu); 1961 extern void set_curr_task(int cpu, struct task_struct *p); 1962 1963 void yield(void); 1964 1965 /* 1966 * The default (Linux) execution domain. 1967 */ 1968 extern struct exec_domain default_exec_domain; 1969 1970 union thread_union { 1971 struct thread_info thread_info; 1972 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1973 }; 1974 1975 #ifndef __HAVE_ARCH_KSTACK_END 1976 static inline int kstack_end(void *addr) 1977 { 1978 /* Reliable end of stack detection: 1979 * Some APM bios versions misalign the stack 1980 */ 1981 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1982 } 1983 #endif 1984 1985 extern union thread_union init_thread_union; 1986 extern struct task_struct init_task; 1987 1988 extern struct mm_struct init_mm; 1989 1990 extern struct pid_namespace init_pid_ns; 1991 1992 /* 1993 * find a task by one of its numerical ids 1994 * 1995 * find_task_by_pid_ns(): 1996 * finds a task by its pid in the specified namespace 1997 * find_task_by_vpid(): 1998 * finds a task by its virtual pid 1999 * 2000 * see also find_vpid() etc in include/linux/pid.h 2001 */ 2002 2003 extern struct task_struct *find_task_by_vpid(pid_t nr); 2004 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2005 struct pid_namespace *ns); 2006 2007 extern void __set_special_pids(struct pid *pid); 2008 2009 /* per-UID process charging. */ 2010 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2011 static inline struct user_struct *get_uid(struct user_struct *u) 2012 { 2013 atomic_inc(&u->__count); 2014 return u; 2015 } 2016 extern void free_uid(struct user_struct *); 2017 extern void release_uids(struct user_namespace *ns); 2018 2019 #include <asm/current.h> 2020 2021 extern void do_timer(unsigned long ticks); 2022 2023 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2024 extern int wake_up_process(struct task_struct *tsk); 2025 extern void wake_up_new_task(struct task_struct *tsk, 2026 unsigned long clone_flags); 2027 #ifdef CONFIG_SMP 2028 extern void kick_process(struct task_struct *tsk); 2029 #else 2030 static inline void kick_process(struct task_struct *tsk) { } 2031 #endif 2032 extern void sched_fork(struct task_struct *p, int clone_flags); 2033 extern void sched_dead(struct task_struct *p); 2034 2035 extern void proc_caches_init(void); 2036 extern void flush_signals(struct task_struct *); 2037 extern void __flush_signals(struct task_struct *); 2038 extern void ignore_signals(struct task_struct *); 2039 extern void flush_signal_handlers(struct task_struct *, int force_default); 2040 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2041 2042 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2043 { 2044 unsigned long flags; 2045 int ret; 2046 2047 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2048 ret = dequeue_signal(tsk, mask, info); 2049 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2050 2051 return ret; 2052 } 2053 2054 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2055 sigset_t *mask); 2056 extern void unblock_all_signals(void); 2057 extern void release_task(struct task_struct * p); 2058 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2059 extern int force_sigsegv(int, struct task_struct *); 2060 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2061 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2062 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2063 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2064 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2065 extern int kill_pid(struct pid *pid, int sig, int priv); 2066 extern int kill_proc_info(int, struct siginfo *, pid_t); 2067 extern int do_notify_parent(struct task_struct *, int); 2068 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2069 extern void force_sig(int, struct task_struct *); 2070 extern void force_sig_specific(int, struct task_struct *); 2071 extern int send_sig(int, struct task_struct *, int); 2072 extern void zap_other_threads(struct task_struct *p); 2073 extern struct sigqueue *sigqueue_alloc(void); 2074 extern void sigqueue_free(struct sigqueue *); 2075 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2076 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2077 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2078 2079 static inline int kill_cad_pid(int sig, int priv) 2080 { 2081 return kill_pid(cad_pid, sig, priv); 2082 } 2083 2084 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2085 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2086 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2087 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2088 2089 static inline int is_si_special(const struct siginfo *info) 2090 { 2091 return info <= SEND_SIG_FORCED; 2092 } 2093 2094 /* 2095 * True if we are on the alternate signal stack. 2096 */ 2097 static inline int on_sig_stack(unsigned long sp) 2098 { 2099 #ifdef CONFIG_STACK_GROWSUP 2100 return sp >= current->sas_ss_sp && 2101 sp - current->sas_ss_sp < current->sas_ss_size; 2102 #else 2103 return sp > current->sas_ss_sp && 2104 sp - current->sas_ss_sp <= current->sas_ss_size; 2105 #endif 2106 } 2107 2108 static inline int sas_ss_flags(unsigned long sp) 2109 { 2110 return (current->sas_ss_size == 0 ? SS_DISABLE 2111 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2112 } 2113 2114 /* 2115 * Routines for handling mm_structs 2116 */ 2117 extern struct mm_struct * mm_alloc(void); 2118 2119 /* mmdrop drops the mm and the page tables */ 2120 extern void __mmdrop(struct mm_struct *); 2121 static inline void mmdrop(struct mm_struct * mm) 2122 { 2123 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2124 __mmdrop(mm); 2125 } 2126 2127 /* mmput gets rid of the mappings and all user-space */ 2128 extern void mmput(struct mm_struct *); 2129 /* Grab a reference to a task's mm, if it is not already going away */ 2130 extern struct mm_struct *get_task_mm(struct task_struct *task); 2131 /* Remove the current tasks stale references to the old mm_struct */ 2132 extern void mm_release(struct task_struct *, struct mm_struct *); 2133 /* Allocate a new mm structure and copy contents from tsk->mm */ 2134 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2135 2136 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2137 struct task_struct *, struct pt_regs *); 2138 extern void flush_thread(void); 2139 extern void exit_thread(void); 2140 2141 extern void exit_files(struct task_struct *); 2142 extern void __cleanup_signal(struct signal_struct *); 2143 extern void __cleanup_sighand(struct sighand_struct *); 2144 2145 extern void exit_itimers(struct signal_struct *); 2146 extern void flush_itimer_signals(void); 2147 2148 extern NORET_TYPE void do_group_exit(int); 2149 2150 extern void daemonize(const char *, ...); 2151 extern int allow_signal(int); 2152 extern int disallow_signal(int); 2153 2154 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 2155 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2156 struct task_struct *fork_idle(int); 2157 2158 extern void set_task_comm(struct task_struct *tsk, char *from); 2159 extern char *get_task_comm(char *to, struct task_struct *tsk); 2160 2161 #ifdef CONFIG_SMP 2162 extern void wait_task_context_switch(struct task_struct *p); 2163 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2164 #else 2165 static inline void wait_task_context_switch(struct task_struct *p) {} 2166 static inline unsigned long wait_task_inactive(struct task_struct *p, 2167 long match_state) 2168 { 2169 return 1; 2170 } 2171 #endif 2172 2173 #define next_task(p) \ 2174 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2175 2176 #define for_each_process(p) \ 2177 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2178 2179 extern bool current_is_single_threaded(void); 2180 2181 /* 2182 * Careful: do_each_thread/while_each_thread is a double loop so 2183 * 'break' will not work as expected - use goto instead. 2184 */ 2185 #define do_each_thread(g, t) \ 2186 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2187 2188 #define while_each_thread(g, t) \ 2189 while ((t = next_thread(t)) != g) 2190 2191 /* de_thread depends on thread_group_leader not being a pid based check */ 2192 #define thread_group_leader(p) (p == p->group_leader) 2193 2194 /* Do to the insanities of de_thread it is possible for a process 2195 * to have the pid of the thread group leader without actually being 2196 * the thread group leader. For iteration through the pids in proc 2197 * all we care about is that we have a task with the appropriate 2198 * pid, we don't actually care if we have the right task. 2199 */ 2200 static inline int has_group_leader_pid(struct task_struct *p) 2201 { 2202 return p->pid == p->tgid; 2203 } 2204 2205 static inline 2206 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2207 { 2208 return p1->tgid == p2->tgid; 2209 } 2210 2211 static inline struct task_struct *next_thread(const struct task_struct *p) 2212 { 2213 return list_entry_rcu(p->thread_group.next, 2214 struct task_struct, thread_group); 2215 } 2216 2217 static inline int thread_group_empty(struct task_struct *p) 2218 { 2219 return list_empty(&p->thread_group); 2220 } 2221 2222 #define delay_group_leader(p) \ 2223 (thread_group_leader(p) && !thread_group_empty(p)) 2224 2225 static inline int task_detached(struct task_struct *p) 2226 { 2227 return p->exit_signal == -1; 2228 } 2229 2230 /* 2231 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2232 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2233 * pins the final release of task.io_context. Also protects ->cpuset and 2234 * ->cgroup.subsys[]. 2235 * 2236 * Nests both inside and outside of read_lock(&tasklist_lock). 2237 * It must not be nested with write_lock_irq(&tasklist_lock), 2238 * neither inside nor outside. 2239 */ 2240 static inline void task_lock(struct task_struct *p) 2241 { 2242 spin_lock(&p->alloc_lock); 2243 } 2244 2245 static inline void task_unlock(struct task_struct *p) 2246 { 2247 spin_unlock(&p->alloc_lock); 2248 } 2249 2250 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2251 unsigned long *flags); 2252 2253 static inline void unlock_task_sighand(struct task_struct *tsk, 2254 unsigned long *flags) 2255 { 2256 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2257 } 2258 2259 #ifndef __HAVE_THREAD_FUNCTIONS 2260 2261 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2262 #define task_stack_page(task) ((task)->stack) 2263 2264 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2265 { 2266 *task_thread_info(p) = *task_thread_info(org); 2267 task_thread_info(p)->task = p; 2268 } 2269 2270 static inline unsigned long *end_of_stack(struct task_struct *p) 2271 { 2272 return (unsigned long *)(task_thread_info(p) + 1); 2273 } 2274 2275 #endif 2276 2277 static inline int object_is_on_stack(void *obj) 2278 { 2279 void *stack = task_stack_page(current); 2280 2281 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2282 } 2283 2284 extern void thread_info_cache_init(void); 2285 2286 #ifdef CONFIG_DEBUG_STACK_USAGE 2287 static inline unsigned long stack_not_used(struct task_struct *p) 2288 { 2289 unsigned long *n = end_of_stack(p); 2290 2291 do { /* Skip over canary */ 2292 n++; 2293 } while (!*n); 2294 2295 return (unsigned long)n - (unsigned long)end_of_stack(p); 2296 } 2297 #endif 2298 2299 /* set thread flags in other task's structures 2300 * - see asm/thread_info.h for TIF_xxxx flags available 2301 */ 2302 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2303 { 2304 set_ti_thread_flag(task_thread_info(tsk), flag); 2305 } 2306 2307 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2308 { 2309 clear_ti_thread_flag(task_thread_info(tsk), flag); 2310 } 2311 2312 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2313 { 2314 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2315 } 2316 2317 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2318 { 2319 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2320 } 2321 2322 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2323 { 2324 return test_ti_thread_flag(task_thread_info(tsk), flag); 2325 } 2326 2327 static inline void set_tsk_need_resched(struct task_struct *tsk) 2328 { 2329 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2330 } 2331 2332 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2333 { 2334 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2335 } 2336 2337 static inline int test_tsk_need_resched(struct task_struct *tsk) 2338 { 2339 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2340 } 2341 2342 static inline int restart_syscall(void) 2343 { 2344 set_tsk_thread_flag(current, TIF_SIGPENDING); 2345 return -ERESTARTNOINTR; 2346 } 2347 2348 static inline int signal_pending(struct task_struct *p) 2349 { 2350 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2351 } 2352 2353 static inline int __fatal_signal_pending(struct task_struct *p) 2354 { 2355 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2356 } 2357 2358 static inline int fatal_signal_pending(struct task_struct *p) 2359 { 2360 return signal_pending(p) && __fatal_signal_pending(p); 2361 } 2362 2363 static inline int signal_pending_state(long state, struct task_struct *p) 2364 { 2365 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2366 return 0; 2367 if (!signal_pending(p)) 2368 return 0; 2369 2370 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2371 } 2372 2373 static inline int need_resched(void) 2374 { 2375 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2376 } 2377 2378 /* 2379 * cond_resched() and cond_resched_lock(): latency reduction via 2380 * explicit rescheduling in places that are safe. The return 2381 * value indicates whether a reschedule was done in fact. 2382 * cond_resched_lock() will drop the spinlock before scheduling, 2383 * cond_resched_softirq() will enable bhs before scheduling. 2384 */ 2385 extern int _cond_resched(void); 2386 2387 #define cond_resched() ({ \ 2388 __might_sleep(__FILE__, __LINE__, 0); \ 2389 _cond_resched(); \ 2390 }) 2391 2392 extern int __cond_resched_lock(spinlock_t *lock); 2393 2394 #ifdef CONFIG_PREEMPT 2395 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2396 #else 2397 #define PREEMPT_LOCK_OFFSET 0 2398 #endif 2399 2400 #define cond_resched_lock(lock) ({ \ 2401 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2402 __cond_resched_lock(lock); \ 2403 }) 2404 2405 extern int __cond_resched_softirq(void); 2406 2407 #define cond_resched_softirq() ({ \ 2408 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2409 __cond_resched_softirq(); \ 2410 }) 2411 2412 /* 2413 * Does a critical section need to be broken due to another 2414 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2415 * but a general need for low latency) 2416 */ 2417 static inline int spin_needbreak(spinlock_t *lock) 2418 { 2419 #ifdef CONFIG_PREEMPT 2420 return spin_is_contended(lock); 2421 #else 2422 return 0; 2423 #endif 2424 } 2425 2426 /* 2427 * Thread group CPU time accounting. 2428 */ 2429 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2430 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2431 2432 static inline void thread_group_cputime_init(struct signal_struct *sig) 2433 { 2434 sig->cputimer.cputime = INIT_CPUTIME; 2435 spin_lock_init(&sig->cputimer.lock); 2436 sig->cputimer.running = 0; 2437 } 2438 2439 static inline void thread_group_cputime_free(struct signal_struct *sig) 2440 { 2441 } 2442 2443 /* 2444 * Reevaluate whether the task has signals pending delivery. 2445 * Wake the task if so. 2446 * This is required every time the blocked sigset_t changes. 2447 * callers must hold sighand->siglock. 2448 */ 2449 extern void recalc_sigpending_and_wake(struct task_struct *t); 2450 extern void recalc_sigpending(void); 2451 2452 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2453 2454 /* 2455 * Wrappers for p->thread_info->cpu access. No-op on UP. 2456 */ 2457 #ifdef CONFIG_SMP 2458 2459 static inline unsigned int task_cpu(const struct task_struct *p) 2460 { 2461 return task_thread_info(p)->cpu; 2462 } 2463 2464 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2465 2466 #else 2467 2468 static inline unsigned int task_cpu(const struct task_struct *p) 2469 { 2470 return 0; 2471 } 2472 2473 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2474 { 2475 } 2476 2477 #endif /* CONFIG_SMP */ 2478 2479 extern void arch_pick_mmap_layout(struct mm_struct *mm); 2480 2481 #ifdef CONFIG_TRACING 2482 extern void 2483 __trace_special(void *__tr, void *__data, 2484 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2485 #else 2486 static inline void 2487 __trace_special(void *__tr, void *__data, 2488 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2489 { 2490 } 2491 #endif 2492 2493 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2494 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2495 2496 extern void normalize_rt_tasks(void); 2497 2498 #ifdef CONFIG_GROUP_SCHED 2499 2500 extern struct task_group init_task_group; 2501 #ifdef CONFIG_USER_SCHED 2502 extern struct task_group root_task_group; 2503 extern void set_tg_uid(struct user_struct *user); 2504 #endif 2505 2506 extern struct task_group *sched_create_group(struct task_group *parent); 2507 extern void sched_destroy_group(struct task_group *tg); 2508 extern void sched_move_task(struct task_struct *tsk); 2509 #ifdef CONFIG_FAIR_GROUP_SCHED 2510 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2511 extern unsigned long sched_group_shares(struct task_group *tg); 2512 #endif 2513 #ifdef CONFIG_RT_GROUP_SCHED 2514 extern int sched_group_set_rt_runtime(struct task_group *tg, 2515 long rt_runtime_us); 2516 extern long sched_group_rt_runtime(struct task_group *tg); 2517 extern int sched_group_set_rt_period(struct task_group *tg, 2518 long rt_period_us); 2519 extern long sched_group_rt_period(struct task_group *tg); 2520 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2521 #endif 2522 #endif 2523 2524 extern int task_can_switch_user(struct user_struct *up, 2525 struct task_struct *tsk); 2526 2527 #ifdef CONFIG_TASK_XACCT 2528 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2529 { 2530 tsk->ioac.rchar += amt; 2531 } 2532 2533 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2534 { 2535 tsk->ioac.wchar += amt; 2536 } 2537 2538 static inline void inc_syscr(struct task_struct *tsk) 2539 { 2540 tsk->ioac.syscr++; 2541 } 2542 2543 static inline void inc_syscw(struct task_struct *tsk) 2544 { 2545 tsk->ioac.syscw++; 2546 } 2547 #else 2548 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2549 { 2550 } 2551 2552 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2553 { 2554 } 2555 2556 static inline void inc_syscr(struct task_struct *tsk) 2557 { 2558 } 2559 2560 static inline void inc_syscw(struct task_struct *tsk) 2561 { 2562 } 2563 #endif 2564 2565 #ifndef TASK_SIZE_OF 2566 #define TASK_SIZE_OF(tsk) TASK_SIZE 2567 #endif 2568 2569 /* 2570 * Call the function if the target task is executing on a CPU right now: 2571 */ 2572 extern void task_oncpu_function_call(struct task_struct *p, 2573 void (*func) (void *info), void *info); 2574 2575 2576 #ifdef CONFIG_MM_OWNER 2577 extern void mm_update_next_owner(struct mm_struct *mm); 2578 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2579 #else 2580 static inline void mm_update_next_owner(struct mm_struct *mm) 2581 { 2582 } 2583 2584 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2585 { 2586 } 2587 #endif /* CONFIG_MM_OWNER */ 2588 2589 #define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2590 2591 #endif /* __KERNEL__ */ 2592 2593 #endif 2594