xref: /linux/include/linux/sched.h (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
27 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
28 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
29 #define CLONE_NEWNET		0x40000000	/* New network namespace */
30 
31 /*
32  * Scheduling policies
33  */
34 #define SCHED_NORMAL		0
35 #define SCHED_FIFO		1
36 #define SCHED_RR		2
37 #define SCHED_BATCH		3
38 /* SCHED_ISO: reserved but not implemented yet */
39 #define SCHED_IDLE		5
40 
41 #ifdef __KERNEL__
42 
43 struct sched_param {
44 	int sched_priority;
45 };
46 
47 #include <asm/param.h>	/* for HZ */
48 
49 #include <linux/capability.h>
50 #include <linux/threads.h>
51 #include <linux/kernel.h>
52 #include <linux/types.h>
53 #include <linux/timex.h>
54 #include <linux/jiffies.h>
55 #include <linux/rbtree.h>
56 #include <linux/thread_info.h>
57 #include <linux/cpumask.h>
58 #include <linux/errno.h>
59 #include <linux/nodemask.h>
60 #include <linux/mm_types.h>
61 
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67 
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/securebits.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/futex.h>
82 #include <linux/rtmutex.h>
83 
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91 
92 #include <asm/processor.h>
93 
94 struct exec_domain;
95 struct futex_pi_state;
96 struct bio;
97 
98 /*
99  * List of flags we want to share for kernel threads,
100  * if only because they are not used by them anyway.
101  */
102 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103 
104 /*
105  * These are the constant used to fake the fixed-point load-average
106  * counting. Some notes:
107  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
108  *    a load-average precision of 10 bits integer + 11 bits fractional
109  *  - if you want to count load-averages more often, you need more
110  *    precision, or rounding will get you. With 2-second counting freq,
111  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
112  *    11 bit fractions.
113  */
114 extern unsigned long avenrun[];		/* Load averages */
115 
116 #define FSHIFT		11		/* nr of bits of precision */
117 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
118 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
119 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
120 #define EXP_5		2014		/* 1/exp(5sec/5min) */
121 #define EXP_15		2037		/* 1/exp(5sec/15min) */
122 
123 #define CALC_LOAD(load,exp,n) \
124 	load *= exp; \
125 	load += n*(FIXED_1-exp); \
126 	load >>= FSHIFT;
127 
128 extern unsigned long total_forks;
129 extern int nr_threads;
130 DECLARE_PER_CPU(unsigned long, process_counts);
131 extern int nr_processes(void);
132 extern unsigned long nr_running(void);
133 extern unsigned long nr_uninterruptible(void);
134 extern unsigned long nr_active(void);
135 extern unsigned long nr_iowait(void);
136 extern unsigned long weighted_cpuload(const int cpu);
137 
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159 
160 /*
161  * Task state bitmask. NOTE! These bits are also
162  * encoded in fs/proc/array.c: get_task_state().
163  *
164  * We have two separate sets of flags: task->state
165  * is about runnability, while task->exit_state are
166  * about the task exiting. Confusing, but this way
167  * modifying one set can't modify the other one by
168  * mistake.
169  */
170 #define TASK_RUNNING		0
171 #define TASK_INTERRUPTIBLE	1
172 #define TASK_UNINTERRUPTIBLE	2
173 #define TASK_STOPPED		4
174 #define TASK_TRACED		8
175 /* in tsk->exit_state */
176 #define EXIT_ZOMBIE		16
177 #define EXIT_DEAD		32
178 /* in tsk->state again */
179 #define TASK_DEAD		64
180 
181 #define __set_task_state(tsk, state_value)		\
182 	do { (tsk)->state = (state_value); } while (0)
183 #define set_task_state(tsk, state_value)		\
184 	set_mb((tsk)->state, (state_value))
185 
186 /*
187  * set_current_state() includes a barrier so that the write of current->state
188  * is correctly serialised wrt the caller's subsequent test of whether to
189  * actually sleep:
190  *
191  *	set_current_state(TASK_UNINTERRUPTIBLE);
192  *	if (do_i_need_to_sleep())
193  *		schedule();
194  *
195  * If the caller does not need such serialisation then use __set_current_state()
196  */
197 #define __set_current_state(state_value)			\
198 	do { current->state = (state_value); } while (0)
199 #define set_current_state(state_value)		\
200 	set_mb(current->state, (state_value))
201 
202 /* Task command name length */
203 #define TASK_COMM_LEN 16
204 
205 #include <linux/spinlock.h>
206 
207 /*
208  * This serializes "schedule()" and also protects
209  * the run-queue from deletions/modifications (but
210  * _adding_ to the beginning of the run-queue has
211  * a separate lock).
212  */
213 extern rwlock_t tasklist_lock;
214 extern spinlock_t mmlist_lock;
215 
216 struct task_struct;
217 
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern void init_idle(struct task_struct *idle, int cpu);
221 extern void init_idle_bootup_task(struct task_struct *idle);
222 
223 extern cpumask_t nohz_cpu_mask;
224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225 extern int select_nohz_load_balancer(int cpu);
226 #else
227 static inline int select_nohz_load_balancer(int cpu)
228 {
229 	return 0;
230 }
231 #endif
232 
233 /*
234  * Only dump TASK_* tasks. (0 for all tasks)
235  */
236 extern void show_state_filter(unsigned long state_filter);
237 
238 static inline void show_state(void)
239 {
240 	show_state_filter(0);
241 }
242 
243 extern void show_regs(struct pt_regs *);
244 
245 /*
246  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247  * task), SP is the stack pointer of the first frame that should be shown in the back
248  * trace (or NULL if the entire call-chain of the task should be shown).
249  */
250 extern void show_stack(struct task_struct *task, unsigned long *sp);
251 
252 void io_schedule(void);
253 long io_schedule_timeout(long timeout);
254 
255 extern void cpu_init (void);
256 extern void trap_init(void);
257 extern void update_process_times(int user);
258 extern void scheduler_tick(void);
259 
260 #ifdef CONFIG_DETECT_SOFTLOCKUP
261 extern void softlockup_tick(void);
262 extern void spawn_softlockup_task(void);
263 extern void touch_softlockup_watchdog(void);
264 extern void touch_all_softlockup_watchdogs(void);
265 extern int softlockup_thresh;
266 #else
267 static inline void softlockup_tick(void)
268 {
269 }
270 static inline void spawn_softlockup_task(void)
271 {
272 }
273 static inline void touch_softlockup_watchdog(void)
274 {
275 }
276 static inline void touch_all_softlockup_watchdogs(void)
277 {
278 }
279 #endif
280 
281 
282 /* Attach to any functions which should be ignored in wchan output. */
283 #define __sched		__attribute__((__section__(".sched.text")))
284 /* Is this address in the __sched functions? */
285 extern int in_sched_functions(unsigned long addr);
286 
287 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
288 extern signed long FASTCALL(schedule_timeout(signed long timeout));
289 extern signed long schedule_timeout_interruptible(signed long timeout);
290 extern signed long schedule_timeout_uninterruptible(signed long timeout);
291 asmlinkage void schedule(void);
292 
293 struct nsproxy;
294 struct user_namespace;
295 
296 /* Maximum number of active map areas.. This is a random (large) number */
297 #define DEFAULT_MAX_MAP_COUNT	65536
298 
299 extern int sysctl_max_map_count;
300 
301 #include <linux/aio.h>
302 
303 extern unsigned long
304 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
305 		       unsigned long, unsigned long);
306 extern unsigned long
307 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
308 			  unsigned long len, unsigned long pgoff,
309 			  unsigned long flags);
310 extern void arch_unmap_area(struct mm_struct *, unsigned long);
311 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
312 
313 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
314 /*
315  * The mm counters are not protected by its page_table_lock,
316  * so must be incremented atomically.
317  */
318 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
319 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
320 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
321 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
322 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
323 
324 #else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
325 /*
326  * The mm counters are protected by its page_table_lock,
327  * so can be incremented directly.
328  */
329 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
330 #define get_mm_counter(mm, member) ((mm)->_##member)
331 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
332 #define inc_mm_counter(mm, member) (mm)->_##member++
333 #define dec_mm_counter(mm, member) (mm)->_##member--
334 
335 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
336 
337 #define get_mm_rss(mm)					\
338 	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
339 #define update_hiwater_rss(mm)	do {			\
340 	unsigned long _rss = get_mm_rss(mm);		\
341 	if ((mm)->hiwater_rss < _rss)			\
342 		(mm)->hiwater_rss = _rss;		\
343 } while (0)
344 #define update_hiwater_vm(mm)	do {			\
345 	if ((mm)->hiwater_vm < (mm)->total_vm)		\
346 		(mm)->hiwater_vm = (mm)->total_vm;	\
347 } while (0)
348 
349 extern void set_dumpable(struct mm_struct *mm, int value);
350 extern int get_dumpable(struct mm_struct *mm);
351 
352 /* mm flags */
353 /* dumpable bits */
354 #define MMF_DUMPABLE      0  /* core dump is permitted */
355 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
356 #define MMF_DUMPABLE_BITS 2
357 
358 /* coredump filter bits */
359 #define MMF_DUMP_ANON_PRIVATE	2
360 #define MMF_DUMP_ANON_SHARED	3
361 #define MMF_DUMP_MAPPED_PRIVATE	4
362 #define MMF_DUMP_MAPPED_SHARED	5
363 #define MMF_DUMP_ELF_HEADERS	6
364 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
365 #define MMF_DUMP_FILTER_BITS	5
366 #define MMF_DUMP_FILTER_MASK \
367 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
368 #define MMF_DUMP_FILTER_DEFAULT \
369 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED))
370 
371 struct sighand_struct {
372 	atomic_t		count;
373 	struct k_sigaction	action[_NSIG];
374 	spinlock_t		siglock;
375 	wait_queue_head_t	signalfd_wqh;
376 };
377 
378 struct pacct_struct {
379 	int			ac_flag;
380 	long			ac_exitcode;
381 	unsigned long		ac_mem;
382 	cputime_t		ac_utime, ac_stime;
383 	unsigned long		ac_minflt, ac_majflt;
384 };
385 
386 /*
387  * NOTE! "signal_struct" does not have it's own
388  * locking, because a shared signal_struct always
389  * implies a shared sighand_struct, so locking
390  * sighand_struct is always a proper superset of
391  * the locking of signal_struct.
392  */
393 struct signal_struct {
394 	atomic_t		count;
395 	atomic_t		live;
396 
397 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
398 
399 	/* current thread group signal load-balancing target: */
400 	struct task_struct	*curr_target;
401 
402 	/* shared signal handling: */
403 	struct sigpending	shared_pending;
404 
405 	/* thread group exit support */
406 	int			group_exit_code;
407 	/* overloaded:
408 	 * - notify group_exit_task when ->count is equal to notify_count
409 	 * - everyone except group_exit_task is stopped during signal delivery
410 	 *   of fatal signals, group_exit_task processes the signal.
411 	 */
412 	struct task_struct	*group_exit_task;
413 	int			notify_count;
414 
415 	/* thread group stop support, overloads group_exit_code too */
416 	int			group_stop_count;
417 	unsigned int		flags; /* see SIGNAL_* flags below */
418 
419 	/* POSIX.1b Interval Timers */
420 	struct list_head posix_timers;
421 
422 	/* ITIMER_REAL timer for the process */
423 	struct hrtimer real_timer;
424 	struct task_struct *tsk;
425 	ktime_t it_real_incr;
426 
427 	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
428 	cputime_t it_prof_expires, it_virt_expires;
429 	cputime_t it_prof_incr, it_virt_incr;
430 
431 	/* job control IDs */
432 
433 	/*
434 	 * pgrp and session fields are deprecated.
435 	 * use the task_session_Xnr and task_pgrp_Xnr routines below
436 	 */
437 
438 	union {
439 		pid_t pgrp __deprecated;
440 		pid_t __pgrp;
441 	};
442 
443 	struct pid *tty_old_pgrp;
444 
445 	union {
446 		pid_t session __deprecated;
447 		pid_t __session;
448 	};
449 
450 	/* boolean value for session group leader */
451 	int leader;
452 
453 	struct tty_struct *tty; /* NULL if no tty */
454 
455 	/*
456 	 * Cumulative resource counters for dead threads in the group,
457 	 * and for reaped dead child processes forked by this group.
458 	 * Live threads maintain their own counters and add to these
459 	 * in __exit_signal, except for the group leader.
460 	 */
461 	cputime_t utime, stime, cutime, cstime;
462 	cputime_t gtime;
463 	cputime_t cgtime;
464 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
465 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
466 	unsigned long inblock, oublock, cinblock, coublock;
467 
468 	/*
469 	 * Cumulative ns of scheduled CPU time for dead threads in the
470 	 * group, not including a zombie group leader.  (This only differs
471 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
472 	 * other than jiffies.)
473 	 */
474 	unsigned long long sum_sched_runtime;
475 
476 	/*
477 	 * We don't bother to synchronize most readers of this at all,
478 	 * because there is no reader checking a limit that actually needs
479 	 * to get both rlim_cur and rlim_max atomically, and either one
480 	 * alone is a single word that can safely be read normally.
481 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
482 	 * protect this instead of the siglock, because they really
483 	 * have no need to disable irqs.
484 	 */
485 	struct rlimit rlim[RLIM_NLIMITS];
486 
487 	struct list_head cpu_timers[3];
488 
489 	/* keep the process-shared keyrings here so that they do the right
490 	 * thing in threads created with CLONE_THREAD */
491 #ifdef CONFIG_KEYS
492 	struct key *session_keyring;	/* keyring inherited over fork */
493 	struct key *process_keyring;	/* keyring private to this process */
494 #endif
495 #ifdef CONFIG_BSD_PROCESS_ACCT
496 	struct pacct_struct pacct;	/* per-process accounting information */
497 #endif
498 #ifdef CONFIG_TASKSTATS
499 	struct taskstats *stats;
500 #endif
501 #ifdef CONFIG_AUDIT
502 	unsigned audit_tty;
503 	struct tty_audit_buf *tty_audit_buf;
504 #endif
505 };
506 
507 /* Context switch must be unlocked if interrupts are to be enabled */
508 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
509 # define __ARCH_WANT_UNLOCKED_CTXSW
510 #endif
511 
512 /*
513  * Bits in flags field of signal_struct.
514  */
515 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
516 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
517 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
518 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
519 
520 /*
521  * Some day this will be a full-fledged user tracking system..
522  */
523 struct user_struct {
524 	atomic_t __count;	/* reference count */
525 	atomic_t processes;	/* How many processes does this user have? */
526 	atomic_t files;		/* How many open files does this user have? */
527 	atomic_t sigpending;	/* How many pending signals does this user have? */
528 #ifdef CONFIG_INOTIFY_USER
529 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
530 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
531 #endif
532 #ifdef CONFIG_POSIX_MQUEUE
533 	/* protected by mq_lock	*/
534 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
535 #endif
536 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
537 
538 #ifdef CONFIG_KEYS
539 	struct key *uid_keyring;	/* UID specific keyring */
540 	struct key *session_keyring;	/* UID's default session keyring */
541 #endif
542 
543 	/* Hash table maintenance information */
544 	struct hlist_node uidhash_node;
545 	uid_t uid;
546 
547 #ifdef CONFIG_FAIR_USER_SCHED
548 	struct task_group *tg;
549 #ifdef CONFIG_SYSFS
550 	struct kset kset;
551 	struct subsys_attribute user_attr;
552 	struct work_struct work;
553 #endif
554 #endif
555 };
556 
557 #ifdef CONFIG_FAIR_USER_SCHED
558 extern int uids_kobject_init(void);
559 #else
560 static inline int uids_kobject_init(void) { return 0; }
561 #endif
562 
563 extern struct user_struct *find_user(uid_t);
564 
565 extern struct user_struct root_user;
566 #define INIT_USER (&root_user)
567 
568 struct backing_dev_info;
569 struct reclaim_state;
570 
571 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
572 struct sched_info {
573 	/* cumulative counters */
574 	unsigned long pcount;	      /* # of times run on this cpu */
575 	unsigned long long cpu_time,  /* time spent on the cpu */
576 			   run_delay; /* time spent waiting on a runqueue */
577 
578 	/* timestamps */
579 	unsigned long long last_arrival,/* when we last ran on a cpu */
580 			   last_queued;	/* when we were last queued to run */
581 #ifdef CONFIG_SCHEDSTATS
582 	/* BKL stats */
583 	unsigned int bkl_count;
584 #endif
585 };
586 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
587 
588 #ifdef CONFIG_SCHEDSTATS
589 extern const struct file_operations proc_schedstat_operations;
590 #endif /* CONFIG_SCHEDSTATS */
591 
592 #ifdef CONFIG_TASK_DELAY_ACCT
593 struct task_delay_info {
594 	spinlock_t	lock;
595 	unsigned int	flags;	/* Private per-task flags */
596 
597 	/* For each stat XXX, add following, aligned appropriately
598 	 *
599 	 * struct timespec XXX_start, XXX_end;
600 	 * u64 XXX_delay;
601 	 * u32 XXX_count;
602 	 *
603 	 * Atomicity of updates to XXX_delay, XXX_count protected by
604 	 * single lock above (split into XXX_lock if contention is an issue).
605 	 */
606 
607 	/*
608 	 * XXX_count is incremented on every XXX operation, the delay
609 	 * associated with the operation is added to XXX_delay.
610 	 * XXX_delay contains the accumulated delay time in nanoseconds.
611 	 */
612 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
613 	u64 blkio_delay;	/* wait for sync block io completion */
614 	u64 swapin_delay;	/* wait for swapin block io completion */
615 	u32 blkio_count;	/* total count of the number of sync block */
616 				/* io operations performed */
617 	u32 swapin_count;	/* total count of the number of swapin block */
618 				/* io operations performed */
619 };
620 #endif	/* CONFIG_TASK_DELAY_ACCT */
621 
622 static inline int sched_info_on(void)
623 {
624 #ifdef CONFIG_SCHEDSTATS
625 	return 1;
626 #elif defined(CONFIG_TASK_DELAY_ACCT)
627 	extern int delayacct_on;
628 	return delayacct_on;
629 #else
630 	return 0;
631 #endif
632 }
633 
634 enum cpu_idle_type {
635 	CPU_IDLE,
636 	CPU_NOT_IDLE,
637 	CPU_NEWLY_IDLE,
638 	CPU_MAX_IDLE_TYPES
639 };
640 
641 /*
642  * sched-domains (multiprocessor balancing) declarations:
643  */
644 
645 /*
646  * Increase resolution of nice-level calculations:
647  */
648 #define SCHED_LOAD_SHIFT	10
649 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
650 
651 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
652 
653 #ifdef CONFIG_SMP
654 #define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
655 #define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
656 #define SD_BALANCE_EXEC		4	/* Balance on exec */
657 #define SD_BALANCE_FORK		8	/* Balance on fork, clone */
658 #define SD_WAKE_IDLE		16	/* Wake to idle CPU on task wakeup */
659 #define SD_WAKE_AFFINE		32	/* Wake task to waking CPU */
660 #define SD_WAKE_BALANCE		64	/* Perform balancing at task wakeup */
661 #define SD_SHARE_CPUPOWER	128	/* Domain members share cpu power */
662 #define SD_POWERSAVINGS_BALANCE	256	/* Balance for power savings */
663 #define SD_SHARE_PKG_RESOURCES	512	/* Domain members share cpu pkg resources */
664 #define SD_SERIALIZE		1024	/* Only a single load balancing instance */
665 
666 #define BALANCE_FOR_MC_POWER	\
667 	(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
668 
669 #define BALANCE_FOR_PKG_POWER	\
670 	((sched_mc_power_savings || sched_smt_power_savings) ?	\
671 	 SD_POWERSAVINGS_BALANCE : 0)
672 
673 #define test_sd_parent(sd, flag)	((sd->parent &&		\
674 					 (sd->parent->flags & flag)) ? 1 : 0)
675 
676 
677 struct sched_group {
678 	struct sched_group *next;	/* Must be a circular list */
679 	cpumask_t cpumask;
680 
681 	/*
682 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
683 	 * single CPU. This is read only (except for setup, hotplug CPU).
684 	 * Note : Never change cpu_power without recompute its reciprocal
685 	 */
686 	unsigned int __cpu_power;
687 	/*
688 	 * reciprocal value of cpu_power to avoid expensive divides
689 	 * (see include/linux/reciprocal_div.h)
690 	 */
691 	u32 reciprocal_cpu_power;
692 };
693 
694 struct sched_domain {
695 	/* These fields must be setup */
696 	struct sched_domain *parent;	/* top domain must be null terminated */
697 	struct sched_domain *child;	/* bottom domain must be null terminated */
698 	struct sched_group *groups;	/* the balancing groups of the domain */
699 	cpumask_t span;			/* span of all CPUs in this domain */
700 	unsigned long min_interval;	/* Minimum balance interval ms */
701 	unsigned long max_interval;	/* Maximum balance interval ms */
702 	unsigned int busy_factor;	/* less balancing by factor if busy */
703 	unsigned int imbalance_pct;	/* No balance until over watermark */
704 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
705 	unsigned int busy_idx;
706 	unsigned int idle_idx;
707 	unsigned int newidle_idx;
708 	unsigned int wake_idx;
709 	unsigned int forkexec_idx;
710 	int flags;			/* See SD_* */
711 
712 	/* Runtime fields. */
713 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
714 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
715 	unsigned int nr_balance_failed; /* initialise to 0 */
716 
717 #ifdef CONFIG_SCHEDSTATS
718 	/* load_balance() stats */
719 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
720 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
721 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
722 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
723 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
724 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
725 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
726 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
727 
728 	/* Active load balancing */
729 	unsigned int alb_count;
730 	unsigned int alb_failed;
731 	unsigned int alb_pushed;
732 
733 	/* SD_BALANCE_EXEC stats */
734 	unsigned int sbe_count;
735 	unsigned int sbe_balanced;
736 	unsigned int sbe_pushed;
737 
738 	/* SD_BALANCE_FORK stats */
739 	unsigned int sbf_count;
740 	unsigned int sbf_balanced;
741 	unsigned int sbf_pushed;
742 
743 	/* try_to_wake_up() stats */
744 	unsigned int ttwu_wake_remote;
745 	unsigned int ttwu_move_affine;
746 	unsigned int ttwu_move_balance;
747 #endif
748 };
749 
750 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
751 
752 #endif	/* CONFIG_SMP */
753 
754 /*
755  * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
756  * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
757  * task of nice 0 or enough lower priority tasks to bring up the
758  * weighted_cpuload
759  */
760 static inline int above_background_load(void)
761 {
762 	unsigned long cpu;
763 
764 	for_each_online_cpu(cpu) {
765 		if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
766 			return 1;
767 	}
768 	return 0;
769 }
770 
771 struct io_context;			/* See blkdev.h */
772 #define NGROUPS_SMALL		32
773 #define NGROUPS_PER_BLOCK	((int)(PAGE_SIZE / sizeof(gid_t)))
774 struct group_info {
775 	int ngroups;
776 	atomic_t usage;
777 	gid_t small_block[NGROUPS_SMALL];
778 	int nblocks;
779 	gid_t *blocks[0];
780 };
781 
782 /*
783  * get_group_info() must be called with the owning task locked (via task_lock())
784  * when task != current.  The reason being that the vast majority of callers are
785  * looking at current->group_info, which can not be changed except by the
786  * current task.  Changing current->group_info requires the task lock, too.
787  */
788 #define get_group_info(group_info) do { \
789 	atomic_inc(&(group_info)->usage); \
790 } while (0)
791 
792 #define put_group_info(group_info) do { \
793 	if (atomic_dec_and_test(&(group_info)->usage)) \
794 		groups_free(group_info); \
795 } while (0)
796 
797 extern struct group_info *groups_alloc(int gidsetsize);
798 extern void groups_free(struct group_info *group_info);
799 extern int set_current_groups(struct group_info *group_info);
800 extern int groups_search(struct group_info *group_info, gid_t grp);
801 /* access the groups "array" with this macro */
802 #define GROUP_AT(gi, i) \
803     ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
804 
805 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
806 extern void prefetch_stack(struct task_struct *t);
807 #else
808 static inline void prefetch_stack(struct task_struct *t) { }
809 #endif
810 
811 struct audit_context;		/* See audit.c */
812 struct mempolicy;
813 struct pipe_inode_info;
814 struct uts_namespace;
815 
816 struct rq;
817 struct sched_domain;
818 
819 struct sched_class {
820 	const struct sched_class *next;
821 
822 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
823 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
824 	void (*yield_task) (struct rq *rq);
825 
826 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
827 
828 	struct task_struct * (*pick_next_task) (struct rq *rq);
829 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
830 
831 	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
832 			struct rq *busiest,
833 			unsigned long max_nr_move, unsigned long max_load_move,
834 			struct sched_domain *sd, enum cpu_idle_type idle,
835 			int *all_pinned, int *this_best_prio);
836 
837 	void (*set_curr_task) (struct rq *rq);
838 	void (*task_tick) (struct rq *rq, struct task_struct *p);
839 	void (*task_new) (struct rq *rq, struct task_struct *p);
840 };
841 
842 struct load_weight {
843 	unsigned long weight, inv_weight;
844 };
845 
846 /*
847  * CFS stats for a schedulable entity (task, task-group etc)
848  *
849  * Current field usage histogram:
850  *
851  *     4 se->block_start
852  *     4 se->run_node
853  *     4 se->sleep_start
854  *     6 se->load.weight
855  */
856 struct sched_entity {
857 	struct load_weight	load;		/* for load-balancing */
858 	struct rb_node		run_node;
859 	unsigned int		on_rq;
860 	int			peer_preempt;
861 
862 	u64			exec_start;
863 	u64			sum_exec_runtime;
864 	u64			vruntime;
865 	u64			prev_sum_exec_runtime;
866 
867 #ifdef CONFIG_SCHEDSTATS
868 	u64			wait_start;
869 	u64			wait_max;
870 
871 	u64			sleep_start;
872 	u64			sleep_max;
873 	s64			sum_sleep_runtime;
874 
875 	u64			block_start;
876 	u64			block_max;
877 	u64			exec_max;
878 	u64			slice_max;
879 
880 	u64			nr_migrations;
881 	u64			nr_migrations_cold;
882 	u64			nr_failed_migrations_affine;
883 	u64			nr_failed_migrations_running;
884 	u64			nr_failed_migrations_hot;
885 	u64			nr_forced_migrations;
886 	u64			nr_forced2_migrations;
887 
888 	u64			nr_wakeups;
889 	u64			nr_wakeups_sync;
890 	u64			nr_wakeups_migrate;
891 	u64			nr_wakeups_local;
892 	u64			nr_wakeups_remote;
893 	u64			nr_wakeups_affine;
894 	u64			nr_wakeups_affine_attempts;
895 	u64			nr_wakeups_passive;
896 	u64			nr_wakeups_idle;
897 #endif
898 
899 #ifdef CONFIG_FAIR_GROUP_SCHED
900 	struct sched_entity	*parent;
901 	/* rq on which this entity is (to be) queued: */
902 	struct cfs_rq		*cfs_rq;
903 	/* rq "owned" by this entity/group: */
904 	struct cfs_rq		*my_q;
905 #endif
906 };
907 
908 struct task_struct {
909 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
910 	void *stack;
911 	atomic_t usage;
912 	unsigned int flags;	/* per process flags, defined below */
913 	unsigned int ptrace;
914 
915 	int lock_depth;		/* BKL lock depth */
916 
917 #ifdef CONFIG_SMP
918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
919 	int oncpu;
920 #endif
921 #endif
922 
923 	int prio, static_prio, normal_prio;
924 	struct list_head run_list;
925 	const struct sched_class *sched_class;
926 	struct sched_entity se;
927 
928 #ifdef CONFIG_PREEMPT_NOTIFIERS
929 	/* list of struct preempt_notifier: */
930 	struct hlist_head preempt_notifiers;
931 #endif
932 
933 	unsigned short ioprio;
934 	/*
935 	 * fpu_counter contains the number of consecutive context switches
936 	 * that the FPU is used. If this is over a threshold, the lazy fpu
937 	 * saving becomes unlazy to save the trap. This is an unsigned char
938 	 * so that after 256 times the counter wraps and the behavior turns
939 	 * lazy again; this to deal with bursty apps that only use FPU for
940 	 * a short time
941 	 */
942 	unsigned char fpu_counter;
943 	s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
944 #ifdef CONFIG_BLK_DEV_IO_TRACE
945 	unsigned int btrace_seq;
946 #endif
947 
948 	unsigned int policy;
949 	cpumask_t cpus_allowed;
950 	unsigned int time_slice;
951 
952 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
953 	struct sched_info sched_info;
954 #endif
955 
956 	struct list_head tasks;
957 	/*
958 	 * ptrace_list/ptrace_children forms the list of my children
959 	 * that were stolen by a ptracer.
960 	 */
961 	struct list_head ptrace_children;
962 	struct list_head ptrace_list;
963 
964 	struct mm_struct *mm, *active_mm;
965 
966 /* task state */
967 	struct linux_binfmt *binfmt;
968 	int exit_state;
969 	int exit_code, exit_signal;
970 	int pdeath_signal;  /*  The signal sent when the parent dies  */
971 	/* ??? */
972 	unsigned int personality;
973 	unsigned did_exec:1;
974 	pid_t pid;
975 	pid_t tgid;
976 
977 #ifdef CONFIG_CC_STACKPROTECTOR
978 	/* Canary value for the -fstack-protector gcc feature */
979 	unsigned long stack_canary;
980 #endif
981 	/*
982 	 * pointers to (original) parent process, youngest child, younger sibling,
983 	 * older sibling, respectively.  (p->father can be replaced with
984 	 * p->parent->pid)
985 	 */
986 	struct task_struct *real_parent; /* real parent process (when being debugged) */
987 	struct task_struct *parent;	/* parent process */
988 	/*
989 	 * children/sibling forms the list of my children plus the
990 	 * tasks I'm ptracing.
991 	 */
992 	struct list_head children;	/* list of my children */
993 	struct list_head sibling;	/* linkage in my parent's children list */
994 	struct task_struct *group_leader;	/* threadgroup leader */
995 
996 	/* PID/PID hash table linkage. */
997 	struct pid_link pids[PIDTYPE_MAX];
998 	struct list_head thread_group;
999 
1000 	struct completion *vfork_done;		/* for vfork() */
1001 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1002 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1003 
1004 	unsigned int rt_priority;
1005 	cputime_t utime, stime, utimescaled, stimescaled;
1006 	cputime_t gtime;
1007 	unsigned long nvcsw, nivcsw; /* context switch counts */
1008 	struct timespec start_time; 		/* monotonic time */
1009 	struct timespec real_start_time;	/* boot based time */
1010 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1011 	unsigned long min_flt, maj_flt;
1012 
1013   	cputime_t it_prof_expires, it_virt_expires;
1014 	unsigned long long it_sched_expires;
1015 	struct list_head cpu_timers[3];
1016 
1017 /* process credentials */
1018 	uid_t uid,euid,suid,fsuid;
1019 	gid_t gid,egid,sgid,fsgid;
1020 	struct group_info *group_info;
1021 	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
1022 	unsigned keep_capabilities:1;
1023 	struct user_struct *user;
1024 #ifdef CONFIG_KEYS
1025 	struct key *request_key_auth;	/* assumed request_key authority */
1026 	struct key *thread_keyring;	/* keyring private to this thread */
1027 	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
1028 #endif
1029 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1030 				     - access with [gs]et_task_comm (which lock
1031 				       it with task_lock())
1032 				     - initialized normally by flush_old_exec */
1033 /* file system info */
1034 	int link_count, total_link_count;
1035 #ifdef CONFIG_SYSVIPC
1036 /* ipc stuff */
1037 	struct sysv_sem sysvsem;
1038 #endif
1039 /* CPU-specific state of this task */
1040 	struct thread_struct thread;
1041 /* filesystem information */
1042 	struct fs_struct *fs;
1043 /* open file information */
1044 	struct files_struct *files;
1045 /* namespaces */
1046 	struct nsproxy *nsproxy;
1047 /* signal handlers */
1048 	struct signal_struct *signal;
1049 	struct sighand_struct *sighand;
1050 
1051 	sigset_t blocked, real_blocked;
1052 	sigset_t saved_sigmask;		/* To be restored with TIF_RESTORE_SIGMASK */
1053 	struct sigpending pending;
1054 
1055 	unsigned long sas_ss_sp;
1056 	size_t sas_ss_size;
1057 	int (*notifier)(void *priv);
1058 	void *notifier_data;
1059 	sigset_t *notifier_mask;
1060 #ifdef CONFIG_SECURITY
1061 	void *security;
1062 #endif
1063 	struct audit_context *audit_context;
1064 	seccomp_t seccomp;
1065 
1066 /* Thread group tracking */
1067    	u32 parent_exec_id;
1068    	u32 self_exec_id;
1069 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1070 	spinlock_t alloc_lock;
1071 
1072 	/* Protection of the PI data structures: */
1073 	spinlock_t pi_lock;
1074 
1075 #ifdef CONFIG_RT_MUTEXES
1076 	/* PI waiters blocked on a rt_mutex held by this task */
1077 	struct plist_head pi_waiters;
1078 	/* Deadlock detection and priority inheritance handling */
1079 	struct rt_mutex_waiter *pi_blocked_on;
1080 #endif
1081 
1082 #ifdef CONFIG_DEBUG_MUTEXES
1083 	/* mutex deadlock detection */
1084 	struct mutex_waiter *blocked_on;
1085 #endif
1086 #ifdef CONFIG_TRACE_IRQFLAGS
1087 	unsigned int irq_events;
1088 	int hardirqs_enabled;
1089 	unsigned long hardirq_enable_ip;
1090 	unsigned int hardirq_enable_event;
1091 	unsigned long hardirq_disable_ip;
1092 	unsigned int hardirq_disable_event;
1093 	int softirqs_enabled;
1094 	unsigned long softirq_disable_ip;
1095 	unsigned int softirq_disable_event;
1096 	unsigned long softirq_enable_ip;
1097 	unsigned int softirq_enable_event;
1098 	int hardirq_context;
1099 	int softirq_context;
1100 #endif
1101 #ifdef CONFIG_LOCKDEP
1102 # define MAX_LOCK_DEPTH 30UL
1103 	u64 curr_chain_key;
1104 	int lockdep_depth;
1105 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1106 	unsigned int lockdep_recursion;
1107 #endif
1108 
1109 /* journalling filesystem info */
1110 	void *journal_info;
1111 
1112 /* stacked block device info */
1113 	struct bio *bio_list, **bio_tail;
1114 
1115 /* VM state */
1116 	struct reclaim_state *reclaim_state;
1117 
1118 	struct backing_dev_info *backing_dev_info;
1119 
1120 	struct io_context *io_context;
1121 
1122 	unsigned long ptrace_message;
1123 	siginfo_t *last_siginfo; /* For ptrace use.  */
1124 #ifdef CONFIG_TASK_XACCT
1125 /* i/o counters(bytes read/written, #syscalls */
1126 	u64 rchar, wchar, syscr, syscw;
1127 #endif
1128 	struct task_io_accounting ioac;
1129 #if defined(CONFIG_TASK_XACCT)
1130 	u64 acct_rss_mem1;	/* accumulated rss usage */
1131 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1132 	cputime_t acct_stimexpd;/* stime since last update */
1133 #endif
1134 #ifdef CONFIG_NUMA
1135   	struct mempolicy *mempolicy;
1136 	short il_next;
1137 #endif
1138 #ifdef CONFIG_CPUSETS
1139 	nodemask_t mems_allowed;
1140 	int cpuset_mems_generation;
1141 	int cpuset_mem_spread_rotor;
1142 #endif
1143 #ifdef CONFIG_CGROUPS
1144 	/* Control Group info protected by css_set_lock */
1145 	struct css_set *cgroups;
1146 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1147 	struct list_head cg_list;
1148 #endif
1149 #ifdef CONFIG_FUTEX
1150 	struct robust_list_head __user *robust_list;
1151 #ifdef CONFIG_COMPAT
1152 	struct compat_robust_list_head __user *compat_robust_list;
1153 #endif
1154 	struct list_head pi_state_list;
1155 	struct futex_pi_state *pi_state_cache;
1156 #endif
1157 	atomic_t fs_excl;	/* holding fs exclusive resources */
1158 	struct rcu_head rcu;
1159 
1160 	/*
1161 	 * cache last used pipe for splice
1162 	 */
1163 	struct pipe_inode_info *splice_pipe;
1164 #ifdef	CONFIG_TASK_DELAY_ACCT
1165 	struct task_delay_info *delays;
1166 #endif
1167 #ifdef CONFIG_FAULT_INJECTION
1168 	int make_it_fail;
1169 #endif
1170 	struct prop_local_single dirties;
1171 };
1172 
1173 /*
1174  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1175  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1176  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1177  * values are inverted: lower p->prio value means higher priority.
1178  *
1179  * The MAX_USER_RT_PRIO value allows the actual maximum
1180  * RT priority to be separate from the value exported to
1181  * user-space.  This allows kernel threads to set their
1182  * priority to a value higher than any user task. Note:
1183  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1184  */
1185 
1186 #define MAX_USER_RT_PRIO	100
1187 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1188 
1189 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1190 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1191 
1192 static inline int rt_prio(int prio)
1193 {
1194 	if (unlikely(prio < MAX_RT_PRIO))
1195 		return 1;
1196 	return 0;
1197 }
1198 
1199 static inline int rt_task(struct task_struct *p)
1200 {
1201 	return rt_prio(p->prio);
1202 }
1203 
1204 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1205 {
1206 	tsk->signal->__session = session;
1207 }
1208 
1209 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1210 {
1211 	tsk->signal->__pgrp = pgrp;
1212 }
1213 
1214 static inline struct pid *task_pid(struct task_struct *task)
1215 {
1216 	return task->pids[PIDTYPE_PID].pid;
1217 }
1218 
1219 static inline struct pid *task_tgid(struct task_struct *task)
1220 {
1221 	return task->group_leader->pids[PIDTYPE_PID].pid;
1222 }
1223 
1224 static inline struct pid *task_pgrp(struct task_struct *task)
1225 {
1226 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1227 }
1228 
1229 static inline struct pid *task_session(struct task_struct *task)
1230 {
1231 	return task->group_leader->pids[PIDTYPE_SID].pid;
1232 }
1233 
1234 struct pid_namespace;
1235 
1236 /*
1237  * the helpers to get the task's different pids as they are seen
1238  * from various namespaces
1239  *
1240  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1241  * task_xid_vnr()    : virtual id, i.e. the id seen from the namespace the task
1242  *                     belongs to. this only makes sence when called in the
1243  *                     context of the task that belongs to the same namespace;
1244  * task_xid_nr_ns()  : id seen from the ns specified;
1245  *
1246  * set_task_vxid()   : assigns a virtual id to a task;
1247  *
1248  * task_ppid_nr_ns() : the parent's id as seen from the namespace specified.
1249  *                     the result depends on the namespace and whether the
1250  *                     task in question is the namespace's init. e.g. for the
1251  *                     namespace's init this will return 0 when called from
1252  *                     the namespace of this init, or appropriate id otherwise.
1253  *
1254  *
1255  * see also pid_nr() etc in include/linux/pid.h
1256  */
1257 
1258 static inline pid_t task_pid_nr(struct task_struct *tsk)
1259 {
1260 	return tsk->pid;
1261 }
1262 
1263 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1264 
1265 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1266 {
1267 	return pid_vnr(task_pid(tsk));
1268 }
1269 
1270 
1271 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1272 {
1273 	return tsk->tgid;
1274 }
1275 
1276 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1277 
1278 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1279 {
1280 	return pid_vnr(task_tgid(tsk));
1281 }
1282 
1283 
1284 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1285 {
1286 	return tsk->signal->__pgrp;
1287 }
1288 
1289 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1290 
1291 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1292 {
1293 	return pid_vnr(task_pgrp(tsk));
1294 }
1295 
1296 
1297 static inline pid_t task_session_nr(struct task_struct *tsk)
1298 {
1299 	return tsk->signal->__session;
1300 }
1301 
1302 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1303 
1304 static inline pid_t task_session_vnr(struct task_struct *tsk)
1305 {
1306 	return pid_vnr(task_session(tsk));
1307 }
1308 
1309 
1310 static inline pid_t task_ppid_nr_ns(struct task_struct *tsk,
1311 		struct pid_namespace *ns)
1312 {
1313 	return pid_nr_ns(task_pid(rcu_dereference(tsk->real_parent)), ns);
1314 }
1315 
1316 /**
1317  * pid_alive - check that a task structure is not stale
1318  * @p: Task structure to be checked.
1319  *
1320  * Test if a process is not yet dead (at most zombie state)
1321  * If pid_alive fails, then pointers within the task structure
1322  * can be stale and must not be dereferenced.
1323  */
1324 static inline int pid_alive(struct task_struct *p)
1325 {
1326 	return p->pids[PIDTYPE_PID].pid != NULL;
1327 }
1328 
1329 /**
1330  * is_global_init - check if a task structure is init
1331  * @tsk: Task structure to be checked.
1332  *
1333  * Check if a task structure is the first user space task the kernel created.
1334  */
1335 static inline int is_global_init(struct task_struct *tsk)
1336 {
1337 	return tsk->pid == 1;
1338 }
1339 
1340 /*
1341  * is_container_init:
1342  * check whether in the task is init in its own pid namespace.
1343  */
1344 extern int is_container_init(struct task_struct *tsk);
1345 
1346 extern struct pid *cad_pid;
1347 
1348 extern void free_task(struct task_struct *tsk);
1349 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1350 
1351 extern void __put_task_struct(struct task_struct *t);
1352 
1353 static inline void put_task_struct(struct task_struct *t)
1354 {
1355 	if (atomic_dec_and_test(&t->usage))
1356 		__put_task_struct(t);
1357 }
1358 
1359 /*
1360  * Per process flags
1361  */
1362 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1363 					/* Not implemented yet, only for 486*/
1364 #define PF_STARTING	0x00000002	/* being created */
1365 #define PF_EXITING	0x00000004	/* getting shut down */
1366 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1367 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1368 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1369 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1370 #define PF_DUMPCORE	0x00000200	/* dumped core */
1371 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1372 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1373 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1374 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1375 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1376 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1377 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1378 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1379 #define PF_SWAPOFF	0x00080000	/* I am in swapoff */
1380 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1381 #define PF_BORROWED_MM	0x00200000	/* I am a kthread doing use_mm */
1382 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1383 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1384 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1385 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1386 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1387 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1388 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1389 
1390 /*
1391  * Only the _current_ task can read/write to tsk->flags, but other
1392  * tasks can access tsk->flags in readonly mode for example
1393  * with tsk_used_math (like during threaded core dumping).
1394  * There is however an exception to this rule during ptrace
1395  * or during fork: the ptracer task is allowed to write to the
1396  * child->flags of its traced child (same goes for fork, the parent
1397  * can write to the child->flags), because we're guaranteed the
1398  * child is not running and in turn not changing child->flags
1399  * at the same time the parent does it.
1400  */
1401 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1402 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1403 #define clear_used_math() clear_stopped_child_used_math(current)
1404 #define set_used_math() set_stopped_child_used_math(current)
1405 #define conditional_stopped_child_used_math(condition, child) \
1406 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1407 #define conditional_used_math(condition) \
1408 	conditional_stopped_child_used_math(condition, current)
1409 #define copy_to_stopped_child_used_math(child) \
1410 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1411 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1412 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1413 #define used_math() tsk_used_math(current)
1414 
1415 #ifdef CONFIG_SMP
1416 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1417 #else
1418 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1419 {
1420 	if (!cpu_isset(0, new_mask))
1421 		return -EINVAL;
1422 	return 0;
1423 }
1424 #endif
1425 
1426 extern unsigned long long sched_clock(void);
1427 
1428 /*
1429  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1430  * clock constructed from sched_clock():
1431  */
1432 extern unsigned long long cpu_clock(int cpu);
1433 
1434 extern unsigned long long
1435 task_sched_runtime(struct task_struct *task);
1436 
1437 /* sched_exec is called by processes performing an exec */
1438 #ifdef CONFIG_SMP
1439 extern void sched_exec(void);
1440 #else
1441 #define sched_exec()   {}
1442 #endif
1443 
1444 extern void sched_clock_idle_sleep_event(void);
1445 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1446 
1447 #ifdef CONFIG_HOTPLUG_CPU
1448 extern void idle_task_exit(void);
1449 #else
1450 static inline void idle_task_exit(void) {}
1451 #endif
1452 
1453 extern void sched_idle_next(void);
1454 
1455 #ifdef CONFIG_SCHED_DEBUG
1456 extern unsigned int sysctl_sched_latency;
1457 extern unsigned int sysctl_sched_nr_latency;
1458 extern unsigned int sysctl_sched_wakeup_granularity;
1459 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1460 extern unsigned int sysctl_sched_child_runs_first;
1461 extern unsigned int sysctl_sched_features;
1462 extern unsigned int sysctl_sched_migration_cost;
1463 #endif
1464 
1465 extern unsigned int sysctl_sched_compat_yield;
1466 
1467 #ifdef CONFIG_RT_MUTEXES
1468 extern int rt_mutex_getprio(struct task_struct *p);
1469 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1470 extern void rt_mutex_adjust_pi(struct task_struct *p);
1471 #else
1472 static inline int rt_mutex_getprio(struct task_struct *p)
1473 {
1474 	return p->normal_prio;
1475 }
1476 # define rt_mutex_adjust_pi(p)		do { } while (0)
1477 #endif
1478 
1479 extern void set_user_nice(struct task_struct *p, long nice);
1480 extern int task_prio(const struct task_struct *p);
1481 extern int task_nice(const struct task_struct *p);
1482 extern int can_nice(const struct task_struct *p, const int nice);
1483 extern int task_curr(const struct task_struct *p);
1484 extern int idle_cpu(int cpu);
1485 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1486 extern struct task_struct *idle_task(int cpu);
1487 extern struct task_struct *curr_task(int cpu);
1488 extern void set_curr_task(int cpu, struct task_struct *p);
1489 
1490 void yield(void);
1491 
1492 /*
1493  * The default (Linux) execution domain.
1494  */
1495 extern struct exec_domain	default_exec_domain;
1496 
1497 union thread_union {
1498 	struct thread_info thread_info;
1499 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1500 };
1501 
1502 #ifndef __HAVE_ARCH_KSTACK_END
1503 static inline int kstack_end(void *addr)
1504 {
1505 	/* Reliable end of stack detection:
1506 	 * Some APM bios versions misalign the stack
1507 	 */
1508 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1509 }
1510 #endif
1511 
1512 extern union thread_union init_thread_union;
1513 extern struct task_struct init_task;
1514 
1515 extern struct   mm_struct init_mm;
1516 
1517 extern struct pid_namespace init_pid_ns;
1518 
1519 /*
1520  * find a task by one of its numerical ids
1521  *
1522  * find_task_by_pid_type_ns():
1523  *      it is the most generic call - it finds a task by all id,
1524  *      type and namespace specified
1525  * find_task_by_pid_ns():
1526  *      finds a task by its pid in the specified namespace
1527  * find_task_by_vpid():
1528  *      finds a task by its virtual pid
1529  * find_task_by_pid():
1530  *      finds a task by its global pid
1531  *
1532  * see also find_pid() etc in include/linux/pid.h
1533  */
1534 
1535 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1536 		struct pid_namespace *ns);
1537 
1538 extern struct task_struct *find_task_by_pid(pid_t nr);
1539 extern struct task_struct *find_task_by_vpid(pid_t nr);
1540 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1541 		struct pid_namespace *ns);
1542 
1543 extern void __set_special_pids(pid_t session, pid_t pgrp);
1544 
1545 /* per-UID process charging. */
1546 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1547 static inline struct user_struct *get_uid(struct user_struct *u)
1548 {
1549 	atomic_inc(&u->__count);
1550 	return u;
1551 }
1552 extern void free_uid(struct user_struct *);
1553 extern void switch_uid(struct user_struct *);
1554 extern void release_uids(struct user_namespace *ns);
1555 
1556 #include <asm/current.h>
1557 
1558 extern void do_timer(unsigned long ticks);
1559 
1560 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1561 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1562 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1563 						unsigned long clone_flags));
1564 #ifdef CONFIG_SMP
1565  extern void kick_process(struct task_struct *tsk);
1566 #else
1567  static inline void kick_process(struct task_struct *tsk) { }
1568 #endif
1569 extern void sched_fork(struct task_struct *p, int clone_flags);
1570 extern void sched_dead(struct task_struct *p);
1571 
1572 extern int in_group_p(gid_t);
1573 extern int in_egroup_p(gid_t);
1574 
1575 extern void proc_caches_init(void);
1576 extern void flush_signals(struct task_struct *);
1577 extern void ignore_signals(struct task_struct *);
1578 extern void flush_signal_handlers(struct task_struct *, int force_default);
1579 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1580 
1581 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1582 {
1583 	unsigned long flags;
1584 	int ret;
1585 
1586 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1587 	ret = dequeue_signal(tsk, mask, info);
1588 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1589 
1590 	return ret;
1591 }
1592 
1593 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1594 			      sigset_t *mask);
1595 extern void unblock_all_signals(void);
1596 extern void release_task(struct task_struct * p);
1597 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1598 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1599 extern int force_sigsegv(int, struct task_struct *);
1600 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1601 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1602 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1603 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1604 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1605 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1606 extern int kill_pid(struct pid *pid, int sig, int priv);
1607 extern int kill_proc_info(int, struct siginfo *, pid_t);
1608 extern void do_notify_parent(struct task_struct *, int);
1609 extern void force_sig(int, struct task_struct *);
1610 extern void force_sig_specific(int, struct task_struct *);
1611 extern int send_sig(int, struct task_struct *, int);
1612 extern void zap_other_threads(struct task_struct *p);
1613 extern int kill_proc(pid_t, int, int);
1614 extern struct sigqueue *sigqueue_alloc(void);
1615 extern void sigqueue_free(struct sigqueue *);
1616 extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1617 extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1618 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1619 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1620 
1621 static inline int kill_cad_pid(int sig, int priv)
1622 {
1623 	return kill_pid(cad_pid, sig, priv);
1624 }
1625 
1626 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
1627 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1628 #define SEND_SIG_PRIV	((struct siginfo *) 1)
1629 #define SEND_SIG_FORCED	((struct siginfo *) 2)
1630 
1631 static inline int is_si_special(const struct siginfo *info)
1632 {
1633 	return info <= SEND_SIG_FORCED;
1634 }
1635 
1636 /* True if we are on the alternate signal stack.  */
1637 
1638 static inline int on_sig_stack(unsigned long sp)
1639 {
1640 	return (sp - current->sas_ss_sp < current->sas_ss_size);
1641 }
1642 
1643 static inline int sas_ss_flags(unsigned long sp)
1644 {
1645 	return (current->sas_ss_size == 0 ? SS_DISABLE
1646 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
1647 }
1648 
1649 /*
1650  * Routines for handling mm_structs
1651  */
1652 extern struct mm_struct * mm_alloc(void);
1653 
1654 /* mmdrop drops the mm and the page tables */
1655 extern void FASTCALL(__mmdrop(struct mm_struct *));
1656 static inline void mmdrop(struct mm_struct * mm)
1657 {
1658 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1659 		__mmdrop(mm);
1660 }
1661 
1662 /* mmput gets rid of the mappings and all user-space */
1663 extern void mmput(struct mm_struct *);
1664 /* Grab a reference to a task's mm, if it is not already going away */
1665 extern struct mm_struct *get_task_mm(struct task_struct *task);
1666 /* Remove the current tasks stale references to the old mm_struct */
1667 extern void mm_release(struct task_struct *, struct mm_struct *);
1668 
1669 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1670 extern void flush_thread(void);
1671 extern void exit_thread(void);
1672 
1673 extern void exit_files(struct task_struct *);
1674 extern void __cleanup_signal(struct signal_struct *);
1675 extern void __cleanup_sighand(struct sighand_struct *);
1676 extern void exit_itimers(struct signal_struct *);
1677 
1678 extern NORET_TYPE void do_group_exit(int);
1679 
1680 extern void daemonize(const char *, ...);
1681 extern int allow_signal(int);
1682 extern int disallow_signal(int);
1683 
1684 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1685 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1686 struct task_struct *fork_idle(int);
1687 
1688 extern void set_task_comm(struct task_struct *tsk, char *from);
1689 extern void get_task_comm(char *to, struct task_struct *tsk);
1690 
1691 #ifdef CONFIG_SMP
1692 extern void wait_task_inactive(struct task_struct * p);
1693 #else
1694 #define wait_task_inactive(p)	do { } while (0)
1695 #endif
1696 
1697 #define remove_parent(p)	list_del_init(&(p)->sibling)
1698 #define add_parent(p)		list_add_tail(&(p)->sibling,&(p)->parent->children)
1699 
1700 #define next_task(p)	list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1701 
1702 #define for_each_process(p) \
1703 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1704 
1705 /*
1706  * Careful: do_each_thread/while_each_thread is a double loop so
1707  *          'break' will not work as expected - use goto instead.
1708  */
1709 #define do_each_thread(g, t) \
1710 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1711 
1712 #define while_each_thread(g, t) \
1713 	while ((t = next_thread(t)) != g)
1714 
1715 /* de_thread depends on thread_group_leader not being a pid based check */
1716 #define thread_group_leader(p)	(p == p->group_leader)
1717 
1718 /* Do to the insanities of de_thread it is possible for a process
1719  * to have the pid of the thread group leader without actually being
1720  * the thread group leader.  For iteration through the pids in proc
1721  * all we care about is that we have a task with the appropriate
1722  * pid, we don't actually care if we have the right task.
1723  */
1724 static inline int has_group_leader_pid(struct task_struct *p)
1725 {
1726 	return p->pid == p->tgid;
1727 }
1728 
1729 static inline
1730 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1731 {
1732 	return p1->tgid == p2->tgid;
1733 }
1734 
1735 static inline struct task_struct *next_thread(const struct task_struct *p)
1736 {
1737 	return list_entry(rcu_dereference(p->thread_group.next),
1738 			  struct task_struct, thread_group);
1739 }
1740 
1741 static inline int thread_group_empty(struct task_struct *p)
1742 {
1743 	return list_empty(&p->thread_group);
1744 }
1745 
1746 #define delay_group_leader(p) \
1747 		(thread_group_leader(p) && !thread_group_empty(p))
1748 
1749 /*
1750  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1751  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1752  * pins the final release of task.io_context.  Also protects ->cpuset and
1753  * ->cgroup.subsys[].
1754  *
1755  * Nests both inside and outside of read_lock(&tasklist_lock).
1756  * It must not be nested with write_lock_irq(&tasklist_lock),
1757  * neither inside nor outside.
1758  */
1759 static inline void task_lock(struct task_struct *p)
1760 {
1761 	spin_lock(&p->alloc_lock);
1762 }
1763 
1764 static inline void task_unlock(struct task_struct *p)
1765 {
1766 	spin_unlock(&p->alloc_lock);
1767 }
1768 
1769 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1770 							unsigned long *flags);
1771 
1772 static inline void unlock_task_sighand(struct task_struct *tsk,
1773 						unsigned long *flags)
1774 {
1775 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1776 }
1777 
1778 #ifndef __HAVE_THREAD_FUNCTIONS
1779 
1780 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
1781 #define task_stack_page(task)	((task)->stack)
1782 
1783 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1784 {
1785 	*task_thread_info(p) = *task_thread_info(org);
1786 	task_thread_info(p)->task = p;
1787 }
1788 
1789 static inline unsigned long *end_of_stack(struct task_struct *p)
1790 {
1791 	return (unsigned long *)(task_thread_info(p) + 1);
1792 }
1793 
1794 #endif
1795 
1796 /* set thread flags in other task's structures
1797  * - see asm/thread_info.h for TIF_xxxx flags available
1798  */
1799 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1800 {
1801 	set_ti_thread_flag(task_thread_info(tsk), flag);
1802 }
1803 
1804 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1805 {
1806 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1807 }
1808 
1809 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1810 {
1811 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1812 }
1813 
1814 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1815 {
1816 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1817 }
1818 
1819 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1820 {
1821 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1822 }
1823 
1824 static inline void set_tsk_need_resched(struct task_struct *tsk)
1825 {
1826 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1827 }
1828 
1829 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1830 {
1831 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1832 }
1833 
1834 static inline int signal_pending(struct task_struct *p)
1835 {
1836 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1837 }
1838 
1839 static inline int need_resched(void)
1840 {
1841 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1842 }
1843 
1844 /*
1845  * cond_resched() and cond_resched_lock(): latency reduction via
1846  * explicit rescheduling in places that are safe. The return
1847  * value indicates whether a reschedule was done in fact.
1848  * cond_resched_lock() will drop the spinlock before scheduling,
1849  * cond_resched_softirq() will enable bhs before scheduling.
1850  */
1851 extern int cond_resched(void);
1852 extern int cond_resched_lock(spinlock_t * lock);
1853 extern int cond_resched_softirq(void);
1854 
1855 /*
1856  * Does a critical section need to be broken due to another
1857  * task waiting?:
1858  */
1859 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1860 # define need_lockbreak(lock) ((lock)->break_lock)
1861 #else
1862 # define need_lockbreak(lock) 0
1863 #endif
1864 
1865 /*
1866  * Does a critical section need to be broken due to another
1867  * task waiting or preemption being signalled:
1868  */
1869 static inline int lock_need_resched(spinlock_t *lock)
1870 {
1871 	if (need_lockbreak(lock) || need_resched())
1872 		return 1;
1873 	return 0;
1874 }
1875 
1876 /*
1877  * Reevaluate whether the task has signals pending delivery.
1878  * Wake the task if so.
1879  * This is required every time the blocked sigset_t changes.
1880  * callers must hold sighand->siglock.
1881  */
1882 extern void recalc_sigpending_and_wake(struct task_struct *t);
1883 extern void recalc_sigpending(void);
1884 
1885 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1886 
1887 /*
1888  * Wrappers for p->thread_info->cpu access. No-op on UP.
1889  */
1890 #ifdef CONFIG_SMP
1891 
1892 static inline unsigned int task_cpu(const struct task_struct *p)
1893 {
1894 	return task_thread_info(p)->cpu;
1895 }
1896 
1897 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1898 
1899 #else
1900 
1901 static inline unsigned int task_cpu(const struct task_struct *p)
1902 {
1903 	return 0;
1904 }
1905 
1906 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1907 {
1908 }
1909 
1910 #endif /* CONFIG_SMP */
1911 
1912 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1913 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1914 #else
1915 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1916 {
1917 	mm->mmap_base = TASK_UNMAPPED_BASE;
1918 	mm->get_unmapped_area = arch_get_unmapped_area;
1919 	mm->unmap_area = arch_unmap_area;
1920 }
1921 #endif
1922 
1923 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1924 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1925 
1926 extern int sched_mc_power_savings, sched_smt_power_savings;
1927 
1928 extern void normalize_rt_tasks(void);
1929 
1930 #ifdef CONFIG_FAIR_GROUP_SCHED
1931 
1932 extern struct task_group init_task_group;
1933 
1934 extern struct task_group *sched_create_group(void);
1935 extern void sched_destroy_group(struct task_group *tg);
1936 extern void sched_move_task(struct task_struct *tsk);
1937 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1938 extern unsigned long sched_group_shares(struct task_group *tg);
1939 
1940 #endif
1941 
1942 #ifdef CONFIG_TASK_XACCT
1943 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1944 {
1945 	tsk->rchar += amt;
1946 }
1947 
1948 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1949 {
1950 	tsk->wchar += amt;
1951 }
1952 
1953 static inline void inc_syscr(struct task_struct *tsk)
1954 {
1955 	tsk->syscr++;
1956 }
1957 
1958 static inline void inc_syscw(struct task_struct *tsk)
1959 {
1960 	tsk->syscw++;
1961 }
1962 #else
1963 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1964 {
1965 }
1966 
1967 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1968 {
1969 }
1970 
1971 static inline void inc_syscr(struct task_struct *tsk)
1972 {
1973 }
1974 
1975 static inline void inc_syscw(struct task_struct *tsk)
1976 {
1977 }
1978 #endif
1979 
1980 #endif /* __KERNEL__ */
1981 
1982 #endif
1983