1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 31 /* 32 * Scheduling policies 33 */ 34 #define SCHED_NORMAL 0 35 #define SCHED_FIFO 1 36 #define SCHED_RR 2 37 #define SCHED_BATCH 3 38 /* SCHED_ISO: reserved but not implemented yet */ 39 #define SCHED_IDLE 5 40 41 #ifdef __KERNEL__ 42 43 struct sched_param { 44 int sched_priority; 45 }; 46 47 #include <asm/param.h> /* for HZ */ 48 49 #include <linux/capability.h> 50 #include <linux/threads.h> 51 #include <linux/kernel.h> 52 #include <linux/types.h> 53 #include <linux/timex.h> 54 #include <linux/jiffies.h> 55 #include <linux/rbtree.h> 56 #include <linux/thread_info.h> 57 #include <linux/cpumask.h> 58 #include <linux/errno.h> 59 #include <linux/nodemask.h> 60 #include <linux/mm_types.h> 61 62 #include <asm/system.h> 63 #include <asm/semaphore.h> 64 #include <asm/page.h> 65 #include <asm/ptrace.h> 66 #include <asm/cputime.h> 67 68 #include <linux/smp.h> 69 #include <linux/sem.h> 70 #include <linux/signal.h> 71 #include <linux/securebits.h> 72 #include <linux/fs_struct.h> 73 #include <linux/compiler.h> 74 #include <linux/completion.h> 75 #include <linux/pid.h> 76 #include <linux/percpu.h> 77 #include <linux/topology.h> 78 #include <linux/proportions.h> 79 #include <linux/seccomp.h> 80 #include <linux/rcupdate.h> 81 #include <linux/futex.h> 82 #include <linux/rtmutex.h> 83 84 #include <linux/time.h> 85 #include <linux/param.h> 86 #include <linux/resource.h> 87 #include <linux/timer.h> 88 #include <linux/hrtimer.h> 89 #include <linux/task_io_accounting.h> 90 #include <linux/kobject.h> 91 92 #include <asm/processor.h> 93 94 struct exec_domain; 95 struct futex_pi_state; 96 struct bio; 97 98 /* 99 * List of flags we want to share for kernel threads, 100 * if only because they are not used by them anyway. 101 */ 102 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 103 104 /* 105 * These are the constant used to fake the fixed-point load-average 106 * counting. Some notes: 107 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 108 * a load-average precision of 10 bits integer + 11 bits fractional 109 * - if you want to count load-averages more often, you need more 110 * precision, or rounding will get you. With 2-second counting freq, 111 * the EXP_n values would be 1981, 2034 and 2043 if still using only 112 * 11 bit fractions. 113 */ 114 extern unsigned long avenrun[]; /* Load averages */ 115 116 #define FSHIFT 11 /* nr of bits of precision */ 117 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 118 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 119 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 120 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 121 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 122 123 #define CALC_LOAD(load,exp,n) \ 124 load *= exp; \ 125 load += n*(FIXED_1-exp); \ 126 load >>= FSHIFT; 127 128 extern unsigned long total_forks; 129 extern int nr_threads; 130 DECLARE_PER_CPU(unsigned long, process_counts); 131 extern int nr_processes(void); 132 extern unsigned long nr_running(void); 133 extern unsigned long nr_uninterruptible(void); 134 extern unsigned long nr_active(void); 135 extern unsigned long nr_iowait(void); 136 extern unsigned long weighted_cpuload(const int cpu); 137 138 struct seq_file; 139 struct cfs_rq; 140 struct task_group; 141 #ifdef CONFIG_SCHED_DEBUG 142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 143 extern void proc_sched_set_task(struct task_struct *p); 144 extern void 145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 146 #else 147 static inline void 148 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 149 { 150 } 151 static inline void proc_sched_set_task(struct task_struct *p) 152 { 153 } 154 static inline void 155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 156 { 157 } 158 #endif 159 160 /* 161 * Task state bitmask. NOTE! These bits are also 162 * encoded in fs/proc/array.c: get_task_state(). 163 * 164 * We have two separate sets of flags: task->state 165 * is about runnability, while task->exit_state are 166 * about the task exiting. Confusing, but this way 167 * modifying one set can't modify the other one by 168 * mistake. 169 */ 170 #define TASK_RUNNING 0 171 #define TASK_INTERRUPTIBLE 1 172 #define TASK_UNINTERRUPTIBLE 2 173 #define TASK_STOPPED 4 174 #define TASK_TRACED 8 175 /* in tsk->exit_state */ 176 #define EXIT_ZOMBIE 16 177 #define EXIT_DEAD 32 178 /* in tsk->state again */ 179 #define TASK_DEAD 64 180 181 #define __set_task_state(tsk, state_value) \ 182 do { (tsk)->state = (state_value); } while (0) 183 #define set_task_state(tsk, state_value) \ 184 set_mb((tsk)->state, (state_value)) 185 186 /* 187 * set_current_state() includes a barrier so that the write of current->state 188 * is correctly serialised wrt the caller's subsequent test of whether to 189 * actually sleep: 190 * 191 * set_current_state(TASK_UNINTERRUPTIBLE); 192 * if (do_i_need_to_sleep()) 193 * schedule(); 194 * 195 * If the caller does not need such serialisation then use __set_current_state() 196 */ 197 #define __set_current_state(state_value) \ 198 do { current->state = (state_value); } while (0) 199 #define set_current_state(state_value) \ 200 set_mb(current->state, (state_value)) 201 202 /* Task command name length */ 203 #define TASK_COMM_LEN 16 204 205 #include <linux/spinlock.h> 206 207 /* 208 * This serializes "schedule()" and also protects 209 * the run-queue from deletions/modifications (but 210 * _adding_ to the beginning of the run-queue has 211 * a separate lock). 212 */ 213 extern rwlock_t tasklist_lock; 214 extern spinlock_t mmlist_lock; 215 216 struct task_struct; 217 218 extern void sched_init(void); 219 extern void sched_init_smp(void); 220 extern void init_idle(struct task_struct *idle, int cpu); 221 extern void init_idle_bootup_task(struct task_struct *idle); 222 223 extern cpumask_t nohz_cpu_mask; 224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 225 extern int select_nohz_load_balancer(int cpu); 226 #else 227 static inline int select_nohz_load_balancer(int cpu) 228 { 229 return 0; 230 } 231 #endif 232 233 /* 234 * Only dump TASK_* tasks. (0 for all tasks) 235 */ 236 extern void show_state_filter(unsigned long state_filter); 237 238 static inline void show_state(void) 239 { 240 show_state_filter(0); 241 } 242 243 extern void show_regs(struct pt_regs *); 244 245 /* 246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 247 * task), SP is the stack pointer of the first frame that should be shown in the back 248 * trace (or NULL if the entire call-chain of the task should be shown). 249 */ 250 extern void show_stack(struct task_struct *task, unsigned long *sp); 251 252 void io_schedule(void); 253 long io_schedule_timeout(long timeout); 254 255 extern void cpu_init (void); 256 extern void trap_init(void); 257 extern void update_process_times(int user); 258 extern void scheduler_tick(void); 259 260 #ifdef CONFIG_DETECT_SOFTLOCKUP 261 extern void softlockup_tick(void); 262 extern void spawn_softlockup_task(void); 263 extern void touch_softlockup_watchdog(void); 264 extern void touch_all_softlockup_watchdogs(void); 265 extern int softlockup_thresh; 266 #else 267 static inline void softlockup_tick(void) 268 { 269 } 270 static inline void spawn_softlockup_task(void) 271 { 272 } 273 static inline void touch_softlockup_watchdog(void) 274 { 275 } 276 static inline void touch_all_softlockup_watchdogs(void) 277 { 278 } 279 #endif 280 281 282 /* Attach to any functions which should be ignored in wchan output. */ 283 #define __sched __attribute__((__section__(".sched.text"))) 284 /* Is this address in the __sched functions? */ 285 extern int in_sched_functions(unsigned long addr); 286 287 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 288 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 289 extern signed long schedule_timeout_interruptible(signed long timeout); 290 extern signed long schedule_timeout_uninterruptible(signed long timeout); 291 asmlinkage void schedule(void); 292 293 struct nsproxy; 294 struct user_namespace; 295 296 /* Maximum number of active map areas.. This is a random (large) number */ 297 #define DEFAULT_MAX_MAP_COUNT 65536 298 299 extern int sysctl_max_map_count; 300 301 #include <linux/aio.h> 302 303 extern unsigned long 304 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 305 unsigned long, unsigned long); 306 extern unsigned long 307 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 308 unsigned long len, unsigned long pgoff, 309 unsigned long flags); 310 extern void arch_unmap_area(struct mm_struct *, unsigned long); 311 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 312 313 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 314 /* 315 * The mm counters are not protected by its page_table_lock, 316 * so must be incremented atomically. 317 */ 318 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 319 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 320 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 321 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 322 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 323 324 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 325 /* 326 * The mm counters are protected by its page_table_lock, 327 * so can be incremented directly. 328 */ 329 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 330 #define get_mm_counter(mm, member) ((mm)->_##member) 331 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 332 #define inc_mm_counter(mm, member) (mm)->_##member++ 333 #define dec_mm_counter(mm, member) (mm)->_##member-- 334 335 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 336 337 #define get_mm_rss(mm) \ 338 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 339 #define update_hiwater_rss(mm) do { \ 340 unsigned long _rss = get_mm_rss(mm); \ 341 if ((mm)->hiwater_rss < _rss) \ 342 (mm)->hiwater_rss = _rss; \ 343 } while (0) 344 #define update_hiwater_vm(mm) do { \ 345 if ((mm)->hiwater_vm < (mm)->total_vm) \ 346 (mm)->hiwater_vm = (mm)->total_vm; \ 347 } while (0) 348 349 extern void set_dumpable(struct mm_struct *mm, int value); 350 extern int get_dumpable(struct mm_struct *mm); 351 352 /* mm flags */ 353 /* dumpable bits */ 354 #define MMF_DUMPABLE 0 /* core dump is permitted */ 355 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 356 #define MMF_DUMPABLE_BITS 2 357 358 /* coredump filter bits */ 359 #define MMF_DUMP_ANON_PRIVATE 2 360 #define MMF_DUMP_ANON_SHARED 3 361 #define MMF_DUMP_MAPPED_PRIVATE 4 362 #define MMF_DUMP_MAPPED_SHARED 5 363 #define MMF_DUMP_ELF_HEADERS 6 364 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 365 #define MMF_DUMP_FILTER_BITS 5 366 #define MMF_DUMP_FILTER_MASK \ 367 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 368 #define MMF_DUMP_FILTER_DEFAULT \ 369 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 370 371 struct sighand_struct { 372 atomic_t count; 373 struct k_sigaction action[_NSIG]; 374 spinlock_t siglock; 375 wait_queue_head_t signalfd_wqh; 376 }; 377 378 struct pacct_struct { 379 int ac_flag; 380 long ac_exitcode; 381 unsigned long ac_mem; 382 cputime_t ac_utime, ac_stime; 383 unsigned long ac_minflt, ac_majflt; 384 }; 385 386 /* 387 * NOTE! "signal_struct" does not have it's own 388 * locking, because a shared signal_struct always 389 * implies a shared sighand_struct, so locking 390 * sighand_struct is always a proper superset of 391 * the locking of signal_struct. 392 */ 393 struct signal_struct { 394 atomic_t count; 395 atomic_t live; 396 397 wait_queue_head_t wait_chldexit; /* for wait4() */ 398 399 /* current thread group signal load-balancing target: */ 400 struct task_struct *curr_target; 401 402 /* shared signal handling: */ 403 struct sigpending shared_pending; 404 405 /* thread group exit support */ 406 int group_exit_code; 407 /* overloaded: 408 * - notify group_exit_task when ->count is equal to notify_count 409 * - everyone except group_exit_task is stopped during signal delivery 410 * of fatal signals, group_exit_task processes the signal. 411 */ 412 struct task_struct *group_exit_task; 413 int notify_count; 414 415 /* thread group stop support, overloads group_exit_code too */ 416 int group_stop_count; 417 unsigned int flags; /* see SIGNAL_* flags below */ 418 419 /* POSIX.1b Interval Timers */ 420 struct list_head posix_timers; 421 422 /* ITIMER_REAL timer for the process */ 423 struct hrtimer real_timer; 424 struct task_struct *tsk; 425 ktime_t it_real_incr; 426 427 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 428 cputime_t it_prof_expires, it_virt_expires; 429 cputime_t it_prof_incr, it_virt_incr; 430 431 /* job control IDs */ 432 433 /* 434 * pgrp and session fields are deprecated. 435 * use the task_session_Xnr and task_pgrp_Xnr routines below 436 */ 437 438 union { 439 pid_t pgrp __deprecated; 440 pid_t __pgrp; 441 }; 442 443 struct pid *tty_old_pgrp; 444 445 union { 446 pid_t session __deprecated; 447 pid_t __session; 448 }; 449 450 /* boolean value for session group leader */ 451 int leader; 452 453 struct tty_struct *tty; /* NULL if no tty */ 454 455 /* 456 * Cumulative resource counters for dead threads in the group, 457 * and for reaped dead child processes forked by this group. 458 * Live threads maintain their own counters and add to these 459 * in __exit_signal, except for the group leader. 460 */ 461 cputime_t utime, stime, cutime, cstime; 462 cputime_t gtime; 463 cputime_t cgtime; 464 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 465 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 466 unsigned long inblock, oublock, cinblock, coublock; 467 468 /* 469 * Cumulative ns of scheduled CPU time for dead threads in the 470 * group, not including a zombie group leader. (This only differs 471 * from jiffies_to_ns(utime + stime) if sched_clock uses something 472 * other than jiffies.) 473 */ 474 unsigned long long sum_sched_runtime; 475 476 /* 477 * We don't bother to synchronize most readers of this at all, 478 * because there is no reader checking a limit that actually needs 479 * to get both rlim_cur and rlim_max atomically, and either one 480 * alone is a single word that can safely be read normally. 481 * getrlimit/setrlimit use task_lock(current->group_leader) to 482 * protect this instead of the siglock, because they really 483 * have no need to disable irqs. 484 */ 485 struct rlimit rlim[RLIM_NLIMITS]; 486 487 struct list_head cpu_timers[3]; 488 489 /* keep the process-shared keyrings here so that they do the right 490 * thing in threads created with CLONE_THREAD */ 491 #ifdef CONFIG_KEYS 492 struct key *session_keyring; /* keyring inherited over fork */ 493 struct key *process_keyring; /* keyring private to this process */ 494 #endif 495 #ifdef CONFIG_BSD_PROCESS_ACCT 496 struct pacct_struct pacct; /* per-process accounting information */ 497 #endif 498 #ifdef CONFIG_TASKSTATS 499 struct taskstats *stats; 500 #endif 501 #ifdef CONFIG_AUDIT 502 unsigned audit_tty; 503 struct tty_audit_buf *tty_audit_buf; 504 #endif 505 }; 506 507 /* Context switch must be unlocked if interrupts are to be enabled */ 508 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 509 # define __ARCH_WANT_UNLOCKED_CTXSW 510 #endif 511 512 /* 513 * Bits in flags field of signal_struct. 514 */ 515 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 516 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 517 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 518 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 519 520 /* 521 * Some day this will be a full-fledged user tracking system.. 522 */ 523 struct user_struct { 524 atomic_t __count; /* reference count */ 525 atomic_t processes; /* How many processes does this user have? */ 526 atomic_t files; /* How many open files does this user have? */ 527 atomic_t sigpending; /* How many pending signals does this user have? */ 528 #ifdef CONFIG_INOTIFY_USER 529 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 530 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 531 #endif 532 #ifdef CONFIG_POSIX_MQUEUE 533 /* protected by mq_lock */ 534 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 535 #endif 536 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 537 538 #ifdef CONFIG_KEYS 539 struct key *uid_keyring; /* UID specific keyring */ 540 struct key *session_keyring; /* UID's default session keyring */ 541 #endif 542 543 /* Hash table maintenance information */ 544 struct hlist_node uidhash_node; 545 uid_t uid; 546 547 #ifdef CONFIG_FAIR_USER_SCHED 548 struct task_group *tg; 549 #ifdef CONFIG_SYSFS 550 struct kset kset; 551 struct subsys_attribute user_attr; 552 struct work_struct work; 553 #endif 554 #endif 555 }; 556 557 #ifdef CONFIG_FAIR_USER_SCHED 558 extern int uids_kobject_init(void); 559 #else 560 static inline int uids_kobject_init(void) { return 0; } 561 #endif 562 563 extern struct user_struct *find_user(uid_t); 564 565 extern struct user_struct root_user; 566 #define INIT_USER (&root_user) 567 568 struct backing_dev_info; 569 struct reclaim_state; 570 571 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 572 struct sched_info { 573 /* cumulative counters */ 574 unsigned long pcount; /* # of times run on this cpu */ 575 unsigned long long cpu_time, /* time spent on the cpu */ 576 run_delay; /* time spent waiting on a runqueue */ 577 578 /* timestamps */ 579 unsigned long long last_arrival,/* when we last ran on a cpu */ 580 last_queued; /* when we were last queued to run */ 581 #ifdef CONFIG_SCHEDSTATS 582 /* BKL stats */ 583 unsigned int bkl_count; 584 #endif 585 }; 586 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 587 588 #ifdef CONFIG_SCHEDSTATS 589 extern const struct file_operations proc_schedstat_operations; 590 #endif /* CONFIG_SCHEDSTATS */ 591 592 #ifdef CONFIG_TASK_DELAY_ACCT 593 struct task_delay_info { 594 spinlock_t lock; 595 unsigned int flags; /* Private per-task flags */ 596 597 /* For each stat XXX, add following, aligned appropriately 598 * 599 * struct timespec XXX_start, XXX_end; 600 * u64 XXX_delay; 601 * u32 XXX_count; 602 * 603 * Atomicity of updates to XXX_delay, XXX_count protected by 604 * single lock above (split into XXX_lock if contention is an issue). 605 */ 606 607 /* 608 * XXX_count is incremented on every XXX operation, the delay 609 * associated with the operation is added to XXX_delay. 610 * XXX_delay contains the accumulated delay time in nanoseconds. 611 */ 612 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 613 u64 blkio_delay; /* wait for sync block io completion */ 614 u64 swapin_delay; /* wait for swapin block io completion */ 615 u32 blkio_count; /* total count of the number of sync block */ 616 /* io operations performed */ 617 u32 swapin_count; /* total count of the number of swapin block */ 618 /* io operations performed */ 619 }; 620 #endif /* CONFIG_TASK_DELAY_ACCT */ 621 622 static inline int sched_info_on(void) 623 { 624 #ifdef CONFIG_SCHEDSTATS 625 return 1; 626 #elif defined(CONFIG_TASK_DELAY_ACCT) 627 extern int delayacct_on; 628 return delayacct_on; 629 #else 630 return 0; 631 #endif 632 } 633 634 enum cpu_idle_type { 635 CPU_IDLE, 636 CPU_NOT_IDLE, 637 CPU_NEWLY_IDLE, 638 CPU_MAX_IDLE_TYPES 639 }; 640 641 /* 642 * sched-domains (multiprocessor balancing) declarations: 643 */ 644 645 /* 646 * Increase resolution of nice-level calculations: 647 */ 648 #define SCHED_LOAD_SHIFT 10 649 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 650 651 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 652 653 #ifdef CONFIG_SMP 654 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 655 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 656 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 657 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 658 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 659 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 660 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 661 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 662 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 663 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 664 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 665 666 #define BALANCE_FOR_MC_POWER \ 667 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 668 669 #define BALANCE_FOR_PKG_POWER \ 670 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 671 SD_POWERSAVINGS_BALANCE : 0) 672 673 #define test_sd_parent(sd, flag) ((sd->parent && \ 674 (sd->parent->flags & flag)) ? 1 : 0) 675 676 677 struct sched_group { 678 struct sched_group *next; /* Must be a circular list */ 679 cpumask_t cpumask; 680 681 /* 682 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 683 * single CPU. This is read only (except for setup, hotplug CPU). 684 * Note : Never change cpu_power without recompute its reciprocal 685 */ 686 unsigned int __cpu_power; 687 /* 688 * reciprocal value of cpu_power to avoid expensive divides 689 * (see include/linux/reciprocal_div.h) 690 */ 691 u32 reciprocal_cpu_power; 692 }; 693 694 struct sched_domain { 695 /* These fields must be setup */ 696 struct sched_domain *parent; /* top domain must be null terminated */ 697 struct sched_domain *child; /* bottom domain must be null terminated */ 698 struct sched_group *groups; /* the balancing groups of the domain */ 699 cpumask_t span; /* span of all CPUs in this domain */ 700 unsigned long min_interval; /* Minimum balance interval ms */ 701 unsigned long max_interval; /* Maximum balance interval ms */ 702 unsigned int busy_factor; /* less balancing by factor if busy */ 703 unsigned int imbalance_pct; /* No balance until over watermark */ 704 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 705 unsigned int busy_idx; 706 unsigned int idle_idx; 707 unsigned int newidle_idx; 708 unsigned int wake_idx; 709 unsigned int forkexec_idx; 710 int flags; /* See SD_* */ 711 712 /* Runtime fields. */ 713 unsigned long last_balance; /* init to jiffies. units in jiffies */ 714 unsigned int balance_interval; /* initialise to 1. units in ms. */ 715 unsigned int nr_balance_failed; /* initialise to 0 */ 716 717 #ifdef CONFIG_SCHEDSTATS 718 /* load_balance() stats */ 719 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 720 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 721 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 722 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 723 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 724 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 725 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 726 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 727 728 /* Active load balancing */ 729 unsigned int alb_count; 730 unsigned int alb_failed; 731 unsigned int alb_pushed; 732 733 /* SD_BALANCE_EXEC stats */ 734 unsigned int sbe_count; 735 unsigned int sbe_balanced; 736 unsigned int sbe_pushed; 737 738 /* SD_BALANCE_FORK stats */ 739 unsigned int sbf_count; 740 unsigned int sbf_balanced; 741 unsigned int sbf_pushed; 742 743 /* try_to_wake_up() stats */ 744 unsigned int ttwu_wake_remote; 745 unsigned int ttwu_move_affine; 746 unsigned int ttwu_move_balance; 747 #endif 748 }; 749 750 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new); 751 752 #endif /* CONFIG_SMP */ 753 754 /* 755 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 756 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 757 * task of nice 0 or enough lower priority tasks to bring up the 758 * weighted_cpuload 759 */ 760 static inline int above_background_load(void) 761 { 762 unsigned long cpu; 763 764 for_each_online_cpu(cpu) { 765 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 766 return 1; 767 } 768 return 0; 769 } 770 771 struct io_context; /* See blkdev.h */ 772 #define NGROUPS_SMALL 32 773 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 774 struct group_info { 775 int ngroups; 776 atomic_t usage; 777 gid_t small_block[NGROUPS_SMALL]; 778 int nblocks; 779 gid_t *blocks[0]; 780 }; 781 782 /* 783 * get_group_info() must be called with the owning task locked (via task_lock()) 784 * when task != current. The reason being that the vast majority of callers are 785 * looking at current->group_info, which can not be changed except by the 786 * current task. Changing current->group_info requires the task lock, too. 787 */ 788 #define get_group_info(group_info) do { \ 789 atomic_inc(&(group_info)->usage); \ 790 } while (0) 791 792 #define put_group_info(group_info) do { \ 793 if (atomic_dec_and_test(&(group_info)->usage)) \ 794 groups_free(group_info); \ 795 } while (0) 796 797 extern struct group_info *groups_alloc(int gidsetsize); 798 extern void groups_free(struct group_info *group_info); 799 extern int set_current_groups(struct group_info *group_info); 800 extern int groups_search(struct group_info *group_info, gid_t grp); 801 /* access the groups "array" with this macro */ 802 #define GROUP_AT(gi, i) \ 803 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 804 805 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 806 extern void prefetch_stack(struct task_struct *t); 807 #else 808 static inline void prefetch_stack(struct task_struct *t) { } 809 #endif 810 811 struct audit_context; /* See audit.c */ 812 struct mempolicy; 813 struct pipe_inode_info; 814 struct uts_namespace; 815 816 struct rq; 817 struct sched_domain; 818 819 struct sched_class { 820 const struct sched_class *next; 821 822 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 823 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 824 void (*yield_task) (struct rq *rq); 825 826 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 827 828 struct task_struct * (*pick_next_task) (struct rq *rq); 829 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 830 831 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 832 struct rq *busiest, 833 unsigned long max_nr_move, unsigned long max_load_move, 834 struct sched_domain *sd, enum cpu_idle_type idle, 835 int *all_pinned, int *this_best_prio); 836 837 void (*set_curr_task) (struct rq *rq); 838 void (*task_tick) (struct rq *rq, struct task_struct *p); 839 void (*task_new) (struct rq *rq, struct task_struct *p); 840 }; 841 842 struct load_weight { 843 unsigned long weight, inv_weight; 844 }; 845 846 /* 847 * CFS stats for a schedulable entity (task, task-group etc) 848 * 849 * Current field usage histogram: 850 * 851 * 4 se->block_start 852 * 4 se->run_node 853 * 4 se->sleep_start 854 * 6 se->load.weight 855 */ 856 struct sched_entity { 857 struct load_weight load; /* for load-balancing */ 858 struct rb_node run_node; 859 unsigned int on_rq; 860 int peer_preempt; 861 862 u64 exec_start; 863 u64 sum_exec_runtime; 864 u64 vruntime; 865 u64 prev_sum_exec_runtime; 866 867 #ifdef CONFIG_SCHEDSTATS 868 u64 wait_start; 869 u64 wait_max; 870 871 u64 sleep_start; 872 u64 sleep_max; 873 s64 sum_sleep_runtime; 874 875 u64 block_start; 876 u64 block_max; 877 u64 exec_max; 878 u64 slice_max; 879 880 u64 nr_migrations; 881 u64 nr_migrations_cold; 882 u64 nr_failed_migrations_affine; 883 u64 nr_failed_migrations_running; 884 u64 nr_failed_migrations_hot; 885 u64 nr_forced_migrations; 886 u64 nr_forced2_migrations; 887 888 u64 nr_wakeups; 889 u64 nr_wakeups_sync; 890 u64 nr_wakeups_migrate; 891 u64 nr_wakeups_local; 892 u64 nr_wakeups_remote; 893 u64 nr_wakeups_affine; 894 u64 nr_wakeups_affine_attempts; 895 u64 nr_wakeups_passive; 896 u64 nr_wakeups_idle; 897 #endif 898 899 #ifdef CONFIG_FAIR_GROUP_SCHED 900 struct sched_entity *parent; 901 /* rq on which this entity is (to be) queued: */ 902 struct cfs_rq *cfs_rq; 903 /* rq "owned" by this entity/group: */ 904 struct cfs_rq *my_q; 905 #endif 906 }; 907 908 struct task_struct { 909 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 910 void *stack; 911 atomic_t usage; 912 unsigned int flags; /* per process flags, defined below */ 913 unsigned int ptrace; 914 915 int lock_depth; /* BKL lock depth */ 916 917 #ifdef CONFIG_SMP 918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 919 int oncpu; 920 #endif 921 #endif 922 923 int prio, static_prio, normal_prio; 924 struct list_head run_list; 925 const struct sched_class *sched_class; 926 struct sched_entity se; 927 928 #ifdef CONFIG_PREEMPT_NOTIFIERS 929 /* list of struct preempt_notifier: */ 930 struct hlist_head preempt_notifiers; 931 #endif 932 933 unsigned short ioprio; 934 /* 935 * fpu_counter contains the number of consecutive context switches 936 * that the FPU is used. If this is over a threshold, the lazy fpu 937 * saving becomes unlazy to save the trap. This is an unsigned char 938 * so that after 256 times the counter wraps and the behavior turns 939 * lazy again; this to deal with bursty apps that only use FPU for 940 * a short time 941 */ 942 unsigned char fpu_counter; 943 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 944 #ifdef CONFIG_BLK_DEV_IO_TRACE 945 unsigned int btrace_seq; 946 #endif 947 948 unsigned int policy; 949 cpumask_t cpus_allowed; 950 unsigned int time_slice; 951 952 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 953 struct sched_info sched_info; 954 #endif 955 956 struct list_head tasks; 957 /* 958 * ptrace_list/ptrace_children forms the list of my children 959 * that were stolen by a ptracer. 960 */ 961 struct list_head ptrace_children; 962 struct list_head ptrace_list; 963 964 struct mm_struct *mm, *active_mm; 965 966 /* task state */ 967 struct linux_binfmt *binfmt; 968 int exit_state; 969 int exit_code, exit_signal; 970 int pdeath_signal; /* The signal sent when the parent dies */ 971 /* ??? */ 972 unsigned int personality; 973 unsigned did_exec:1; 974 pid_t pid; 975 pid_t tgid; 976 977 #ifdef CONFIG_CC_STACKPROTECTOR 978 /* Canary value for the -fstack-protector gcc feature */ 979 unsigned long stack_canary; 980 #endif 981 /* 982 * pointers to (original) parent process, youngest child, younger sibling, 983 * older sibling, respectively. (p->father can be replaced with 984 * p->parent->pid) 985 */ 986 struct task_struct *real_parent; /* real parent process (when being debugged) */ 987 struct task_struct *parent; /* parent process */ 988 /* 989 * children/sibling forms the list of my children plus the 990 * tasks I'm ptracing. 991 */ 992 struct list_head children; /* list of my children */ 993 struct list_head sibling; /* linkage in my parent's children list */ 994 struct task_struct *group_leader; /* threadgroup leader */ 995 996 /* PID/PID hash table linkage. */ 997 struct pid_link pids[PIDTYPE_MAX]; 998 struct list_head thread_group; 999 1000 struct completion *vfork_done; /* for vfork() */ 1001 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1002 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1003 1004 unsigned int rt_priority; 1005 cputime_t utime, stime, utimescaled, stimescaled; 1006 cputime_t gtime; 1007 unsigned long nvcsw, nivcsw; /* context switch counts */ 1008 struct timespec start_time; /* monotonic time */ 1009 struct timespec real_start_time; /* boot based time */ 1010 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1011 unsigned long min_flt, maj_flt; 1012 1013 cputime_t it_prof_expires, it_virt_expires; 1014 unsigned long long it_sched_expires; 1015 struct list_head cpu_timers[3]; 1016 1017 /* process credentials */ 1018 uid_t uid,euid,suid,fsuid; 1019 gid_t gid,egid,sgid,fsgid; 1020 struct group_info *group_info; 1021 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 1022 unsigned keep_capabilities:1; 1023 struct user_struct *user; 1024 #ifdef CONFIG_KEYS 1025 struct key *request_key_auth; /* assumed request_key authority */ 1026 struct key *thread_keyring; /* keyring private to this thread */ 1027 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1028 #endif 1029 char comm[TASK_COMM_LEN]; /* executable name excluding path 1030 - access with [gs]et_task_comm (which lock 1031 it with task_lock()) 1032 - initialized normally by flush_old_exec */ 1033 /* file system info */ 1034 int link_count, total_link_count; 1035 #ifdef CONFIG_SYSVIPC 1036 /* ipc stuff */ 1037 struct sysv_sem sysvsem; 1038 #endif 1039 /* CPU-specific state of this task */ 1040 struct thread_struct thread; 1041 /* filesystem information */ 1042 struct fs_struct *fs; 1043 /* open file information */ 1044 struct files_struct *files; 1045 /* namespaces */ 1046 struct nsproxy *nsproxy; 1047 /* signal handlers */ 1048 struct signal_struct *signal; 1049 struct sighand_struct *sighand; 1050 1051 sigset_t blocked, real_blocked; 1052 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 1053 struct sigpending pending; 1054 1055 unsigned long sas_ss_sp; 1056 size_t sas_ss_size; 1057 int (*notifier)(void *priv); 1058 void *notifier_data; 1059 sigset_t *notifier_mask; 1060 #ifdef CONFIG_SECURITY 1061 void *security; 1062 #endif 1063 struct audit_context *audit_context; 1064 seccomp_t seccomp; 1065 1066 /* Thread group tracking */ 1067 u32 parent_exec_id; 1068 u32 self_exec_id; 1069 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1070 spinlock_t alloc_lock; 1071 1072 /* Protection of the PI data structures: */ 1073 spinlock_t pi_lock; 1074 1075 #ifdef CONFIG_RT_MUTEXES 1076 /* PI waiters blocked on a rt_mutex held by this task */ 1077 struct plist_head pi_waiters; 1078 /* Deadlock detection and priority inheritance handling */ 1079 struct rt_mutex_waiter *pi_blocked_on; 1080 #endif 1081 1082 #ifdef CONFIG_DEBUG_MUTEXES 1083 /* mutex deadlock detection */ 1084 struct mutex_waiter *blocked_on; 1085 #endif 1086 #ifdef CONFIG_TRACE_IRQFLAGS 1087 unsigned int irq_events; 1088 int hardirqs_enabled; 1089 unsigned long hardirq_enable_ip; 1090 unsigned int hardirq_enable_event; 1091 unsigned long hardirq_disable_ip; 1092 unsigned int hardirq_disable_event; 1093 int softirqs_enabled; 1094 unsigned long softirq_disable_ip; 1095 unsigned int softirq_disable_event; 1096 unsigned long softirq_enable_ip; 1097 unsigned int softirq_enable_event; 1098 int hardirq_context; 1099 int softirq_context; 1100 #endif 1101 #ifdef CONFIG_LOCKDEP 1102 # define MAX_LOCK_DEPTH 30UL 1103 u64 curr_chain_key; 1104 int lockdep_depth; 1105 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1106 unsigned int lockdep_recursion; 1107 #endif 1108 1109 /* journalling filesystem info */ 1110 void *journal_info; 1111 1112 /* stacked block device info */ 1113 struct bio *bio_list, **bio_tail; 1114 1115 /* VM state */ 1116 struct reclaim_state *reclaim_state; 1117 1118 struct backing_dev_info *backing_dev_info; 1119 1120 struct io_context *io_context; 1121 1122 unsigned long ptrace_message; 1123 siginfo_t *last_siginfo; /* For ptrace use. */ 1124 #ifdef CONFIG_TASK_XACCT 1125 /* i/o counters(bytes read/written, #syscalls */ 1126 u64 rchar, wchar, syscr, syscw; 1127 #endif 1128 struct task_io_accounting ioac; 1129 #if defined(CONFIG_TASK_XACCT) 1130 u64 acct_rss_mem1; /* accumulated rss usage */ 1131 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1132 cputime_t acct_stimexpd;/* stime since last update */ 1133 #endif 1134 #ifdef CONFIG_NUMA 1135 struct mempolicy *mempolicy; 1136 short il_next; 1137 #endif 1138 #ifdef CONFIG_CPUSETS 1139 nodemask_t mems_allowed; 1140 int cpuset_mems_generation; 1141 int cpuset_mem_spread_rotor; 1142 #endif 1143 #ifdef CONFIG_CGROUPS 1144 /* Control Group info protected by css_set_lock */ 1145 struct css_set *cgroups; 1146 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1147 struct list_head cg_list; 1148 #endif 1149 #ifdef CONFIG_FUTEX 1150 struct robust_list_head __user *robust_list; 1151 #ifdef CONFIG_COMPAT 1152 struct compat_robust_list_head __user *compat_robust_list; 1153 #endif 1154 struct list_head pi_state_list; 1155 struct futex_pi_state *pi_state_cache; 1156 #endif 1157 atomic_t fs_excl; /* holding fs exclusive resources */ 1158 struct rcu_head rcu; 1159 1160 /* 1161 * cache last used pipe for splice 1162 */ 1163 struct pipe_inode_info *splice_pipe; 1164 #ifdef CONFIG_TASK_DELAY_ACCT 1165 struct task_delay_info *delays; 1166 #endif 1167 #ifdef CONFIG_FAULT_INJECTION 1168 int make_it_fail; 1169 #endif 1170 struct prop_local_single dirties; 1171 }; 1172 1173 /* 1174 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1175 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1176 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1177 * values are inverted: lower p->prio value means higher priority. 1178 * 1179 * The MAX_USER_RT_PRIO value allows the actual maximum 1180 * RT priority to be separate from the value exported to 1181 * user-space. This allows kernel threads to set their 1182 * priority to a value higher than any user task. Note: 1183 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1184 */ 1185 1186 #define MAX_USER_RT_PRIO 100 1187 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1188 1189 #define MAX_PRIO (MAX_RT_PRIO + 40) 1190 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1191 1192 static inline int rt_prio(int prio) 1193 { 1194 if (unlikely(prio < MAX_RT_PRIO)) 1195 return 1; 1196 return 0; 1197 } 1198 1199 static inline int rt_task(struct task_struct *p) 1200 { 1201 return rt_prio(p->prio); 1202 } 1203 1204 static inline void set_task_session(struct task_struct *tsk, pid_t session) 1205 { 1206 tsk->signal->__session = session; 1207 } 1208 1209 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1210 { 1211 tsk->signal->__pgrp = pgrp; 1212 } 1213 1214 static inline struct pid *task_pid(struct task_struct *task) 1215 { 1216 return task->pids[PIDTYPE_PID].pid; 1217 } 1218 1219 static inline struct pid *task_tgid(struct task_struct *task) 1220 { 1221 return task->group_leader->pids[PIDTYPE_PID].pid; 1222 } 1223 1224 static inline struct pid *task_pgrp(struct task_struct *task) 1225 { 1226 return task->group_leader->pids[PIDTYPE_PGID].pid; 1227 } 1228 1229 static inline struct pid *task_session(struct task_struct *task) 1230 { 1231 return task->group_leader->pids[PIDTYPE_SID].pid; 1232 } 1233 1234 struct pid_namespace; 1235 1236 /* 1237 * the helpers to get the task's different pids as they are seen 1238 * from various namespaces 1239 * 1240 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1241 * task_xid_vnr() : virtual id, i.e. the id seen from the namespace the task 1242 * belongs to. this only makes sence when called in the 1243 * context of the task that belongs to the same namespace; 1244 * task_xid_nr_ns() : id seen from the ns specified; 1245 * 1246 * set_task_vxid() : assigns a virtual id to a task; 1247 * 1248 * task_ppid_nr_ns() : the parent's id as seen from the namespace specified. 1249 * the result depends on the namespace and whether the 1250 * task in question is the namespace's init. e.g. for the 1251 * namespace's init this will return 0 when called from 1252 * the namespace of this init, or appropriate id otherwise. 1253 * 1254 * 1255 * see also pid_nr() etc in include/linux/pid.h 1256 */ 1257 1258 static inline pid_t task_pid_nr(struct task_struct *tsk) 1259 { 1260 return tsk->pid; 1261 } 1262 1263 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1264 1265 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1266 { 1267 return pid_vnr(task_pid(tsk)); 1268 } 1269 1270 1271 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1272 { 1273 return tsk->tgid; 1274 } 1275 1276 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1277 1278 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1279 { 1280 return pid_vnr(task_tgid(tsk)); 1281 } 1282 1283 1284 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1285 { 1286 return tsk->signal->__pgrp; 1287 } 1288 1289 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1290 1291 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1292 { 1293 return pid_vnr(task_pgrp(tsk)); 1294 } 1295 1296 1297 static inline pid_t task_session_nr(struct task_struct *tsk) 1298 { 1299 return tsk->signal->__session; 1300 } 1301 1302 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1303 1304 static inline pid_t task_session_vnr(struct task_struct *tsk) 1305 { 1306 return pid_vnr(task_session(tsk)); 1307 } 1308 1309 1310 static inline pid_t task_ppid_nr_ns(struct task_struct *tsk, 1311 struct pid_namespace *ns) 1312 { 1313 return pid_nr_ns(task_pid(rcu_dereference(tsk->real_parent)), ns); 1314 } 1315 1316 /** 1317 * pid_alive - check that a task structure is not stale 1318 * @p: Task structure to be checked. 1319 * 1320 * Test if a process is not yet dead (at most zombie state) 1321 * If pid_alive fails, then pointers within the task structure 1322 * can be stale and must not be dereferenced. 1323 */ 1324 static inline int pid_alive(struct task_struct *p) 1325 { 1326 return p->pids[PIDTYPE_PID].pid != NULL; 1327 } 1328 1329 /** 1330 * is_global_init - check if a task structure is init 1331 * @tsk: Task structure to be checked. 1332 * 1333 * Check if a task structure is the first user space task the kernel created. 1334 */ 1335 static inline int is_global_init(struct task_struct *tsk) 1336 { 1337 return tsk->pid == 1; 1338 } 1339 1340 /* 1341 * is_container_init: 1342 * check whether in the task is init in its own pid namespace. 1343 */ 1344 extern int is_container_init(struct task_struct *tsk); 1345 1346 extern struct pid *cad_pid; 1347 1348 extern void free_task(struct task_struct *tsk); 1349 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1350 1351 extern void __put_task_struct(struct task_struct *t); 1352 1353 static inline void put_task_struct(struct task_struct *t) 1354 { 1355 if (atomic_dec_and_test(&t->usage)) 1356 __put_task_struct(t); 1357 } 1358 1359 /* 1360 * Per process flags 1361 */ 1362 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1363 /* Not implemented yet, only for 486*/ 1364 #define PF_STARTING 0x00000002 /* being created */ 1365 #define PF_EXITING 0x00000004 /* getting shut down */ 1366 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1367 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1368 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1369 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1370 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1371 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1372 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1373 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1374 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1375 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1376 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1377 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1378 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1379 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1380 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1381 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1382 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1383 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1384 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1385 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1386 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1387 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1388 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1389 1390 /* 1391 * Only the _current_ task can read/write to tsk->flags, but other 1392 * tasks can access tsk->flags in readonly mode for example 1393 * with tsk_used_math (like during threaded core dumping). 1394 * There is however an exception to this rule during ptrace 1395 * or during fork: the ptracer task is allowed to write to the 1396 * child->flags of its traced child (same goes for fork, the parent 1397 * can write to the child->flags), because we're guaranteed the 1398 * child is not running and in turn not changing child->flags 1399 * at the same time the parent does it. 1400 */ 1401 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1402 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1403 #define clear_used_math() clear_stopped_child_used_math(current) 1404 #define set_used_math() set_stopped_child_used_math(current) 1405 #define conditional_stopped_child_used_math(condition, child) \ 1406 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1407 #define conditional_used_math(condition) \ 1408 conditional_stopped_child_used_math(condition, current) 1409 #define copy_to_stopped_child_used_math(child) \ 1410 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1411 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1412 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1413 #define used_math() tsk_used_math(current) 1414 1415 #ifdef CONFIG_SMP 1416 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1417 #else 1418 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1419 { 1420 if (!cpu_isset(0, new_mask)) 1421 return -EINVAL; 1422 return 0; 1423 } 1424 #endif 1425 1426 extern unsigned long long sched_clock(void); 1427 1428 /* 1429 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1430 * clock constructed from sched_clock(): 1431 */ 1432 extern unsigned long long cpu_clock(int cpu); 1433 1434 extern unsigned long long 1435 task_sched_runtime(struct task_struct *task); 1436 1437 /* sched_exec is called by processes performing an exec */ 1438 #ifdef CONFIG_SMP 1439 extern void sched_exec(void); 1440 #else 1441 #define sched_exec() {} 1442 #endif 1443 1444 extern void sched_clock_idle_sleep_event(void); 1445 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1446 1447 #ifdef CONFIG_HOTPLUG_CPU 1448 extern void idle_task_exit(void); 1449 #else 1450 static inline void idle_task_exit(void) {} 1451 #endif 1452 1453 extern void sched_idle_next(void); 1454 1455 #ifdef CONFIG_SCHED_DEBUG 1456 extern unsigned int sysctl_sched_latency; 1457 extern unsigned int sysctl_sched_nr_latency; 1458 extern unsigned int sysctl_sched_wakeup_granularity; 1459 extern unsigned int sysctl_sched_batch_wakeup_granularity; 1460 extern unsigned int sysctl_sched_child_runs_first; 1461 extern unsigned int sysctl_sched_features; 1462 extern unsigned int sysctl_sched_migration_cost; 1463 #endif 1464 1465 extern unsigned int sysctl_sched_compat_yield; 1466 1467 #ifdef CONFIG_RT_MUTEXES 1468 extern int rt_mutex_getprio(struct task_struct *p); 1469 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1470 extern void rt_mutex_adjust_pi(struct task_struct *p); 1471 #else 1472 static inline int rt_mutex_getprio(struct task_struct *p) 1473 { 1474 return p->normal_prio; 1475 } 1476 # define rt_mutex_adjust_pi(p) do { } while (0) 1477 #endif 1478 1479 extern void set_user_nice(struct task_struct *p, long nice); 1480 extern int task_prio(const struct task_struct *p); 1481 extern int task_nice(const struct task_struct *p); 1482 extern int can_nice(const struct task_struct *p, const int nice); 1483 extern int task_curr(const struct task_struct *p); 1484 extern int idle_cpu(int cpu); 1485 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1486 extern struct task_struct *idle_task(int cpu); 1487 extern struct task_struct *curr_task(int cpu); 1488 extern void set_curr_task(int cpu, struct task_struct *p); 1489 1490 void yield(void); 1491 1492 /* 1493 * The default (Linux) execution domain. 1494 */ 1495 extern struct exec_domain default_exec_domain; 1496 1497 union thread_union { 1498 struct thread_info thread_info; 1499 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1500 }; 1501 1502 #ifndef __HAVE_ARCH_KSTACK_END 1503 static inline int kstack_end(void *addr) 1504 { 1505 /* Reliable end of stack detection: 1506 * Some APM bios versions misalign the stack 1507 */ 1508 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1509 } 1510 #endif 1511 1512 extern union thread_union init_thread_union; 1513 extern struct task_struct init_task; 1514 1515 extern struct mm_struct init_mm; 1516 1517 extern struct pid_namespace init_pid_ns; 1518 1519 /* 1520 * find a task by one of its numerical ids 1521 * 1522 * find_task_by_pid_type_ns(): 1523 * it is the most generic call - it finds a task by all id, 1524 * type and namespace specified 1525 * find_task_by_pid_ns(): 1526 * finds a task by its pid in the specified namespace 1527 * find_task_by_vpid(): 1528 * finds a task by its virtual pid 1529 * find_task_by_pid(): 1530 * finds a task by its global pid 1531 * 1532 * see also find_pid() etc in include/linux/pid.h 1533 */ 1534 1535 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1536 struct pid_namespace *ns); 1537 1538 extern struct task_struct *find_task_by_pid(pid_t nr); 1539 extern struct task_struct *find_task_by_vpid(pid_t nr); 1540 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1541 struct pid_namespace *ns); 1542 1543 extern void __set_special_pids(pid_t session, pid_t pgrp); 1544 1545 /* per-UID process charging. */ 1546 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1547 static inline struct user_struct *get_uid(struct user_struct *u) 1548 { 1549 atomic_inc(&u->__count); 1550 return u; 1551 } 1552 extern void free_uid(struct user_struct *); 1553 extern void switch_uid(struct user_struct *); 1554 extern void release_uids(struct user_namespace *ns); 1555 1556 #include <asm/current.h> 1557 1558 extern void do_timer(unsigned long ticks); 1559 1560 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1561 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1562 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1563 unsigned long clone_flags)); 1564 #ifdef CONFIG_SMP 1565 extern void kick_process(struct task_struct *tsk); 1566 #else 1567 static inline void kick_process(struct task_struct *tsk) { } 1568 #endif 1569 extern void sched_fork(struct task_struct *p, int clone_flags); 1570 extern void sched_dead(struct task_struct *p); 1571 1572 extern int in_group_p(gid_t); 1573 extern int in_egroup_p(gid_t); 1574 1575 extern void proc_caches_init(void); 1576 extern void flush_signals(struct task_struct *); 1577 extern void ignore_signals(struct task_struct *); 1578 extern void flush_signal_handlers(struct task_struct *, int force_default); 1579 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1580 1581 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1582 { 1583 unsigned long flags; 1584 int ret; 1585 1586 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1587 ret = dequeue_signal(tsk, mask, info); 1588 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1589 1590 return ret; 1591 } 1592 1593 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1594 sigset_t *mask); 1595 extern void unblock_all_signals(void); 1596 extern void release_task(struct task_struct * p); 1597 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1598 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1599 extern int force_sigsegv(int, struct task_struct *); 1600 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1601 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1602 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1603 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1604 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1605 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1606 extern int kill_pid(struct pid *pid, int sig, int priv); 1607 extern int kill_proc_info(int, struct siginfo *, pid_t); 1608 extern void do_notify_parent(struct task_struct *, int); 1609 extern void force_sig(int, struct task_struct *); 1610 extern void force_sig_specific(int, struct task_struct *); 1611 extern int send_sig(int, struct task_struct *, int); 1612 extern void zap_other_threads(struct task_struct *p); 1613 extern int kill_proc(pid_t, int, int); 1614 extern struct sigqueue *sigqueue_alloc(void); 1615 extern void sigqueue_free(struct sigqueue *); 1616 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1617 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1618 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1619 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1620 1621 static inline int kill_cad_pid(int sig, int priv) 1622 { 1623 return kill_pid(cad_pid, sig, priv); 1624 } 1625 1626 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1627 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1628 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1629 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1630 1631 static inline int is_si_special(const struct siginfo *info) 1632 { 1633 return info <= SEND_SIG_FORCED; 1634 } 1635 1636 /* True if we are on the alternate signal stack. */ 1637 1638 static inline int on_sig_stack(unsigned long sp) 1639 { 1640 return (sp - current->sas_ss_sp < current->sas_ss_size); 1641 } 1642 1643 static inline int sas_ss_flags(unsigned long sp) 1644 { 1645 return (current->sas_ss_size == 0 ? SS_DISABLE 1646 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1647 } 1648 1649 /* 1650 * Routines for handling mm_structs 1651 */ 1652 extern struct mm_struct * mm_alloc(void); 1653 1654 /* mmdrop drops the mm and the page tables */ 1655 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1656 static inline void mmdrop(struct mm_struct * mm) 1657 { 1658 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1659 __mmdrop(mm); 1660 } 1661 1662 /* mmput gets rid of the mappings and all user-space */ 1663 extern void mmput(struct mm_struct *); 1664 /* Grab a reference to a task's mm, if it is not already going away */ 1665 extern struct mm_struct *get_task_mm(struct task_struct *task); 1666 /* Remove the current tasks stale references to the old mm_struct */ 1667 extern void mm_release(struct task_struct *, struct mm_struct *); 1668 1669 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1670 extern void flush_thread(void); 1671 extern void exit_thread(void); 1672 1673 extern void exit_files(struct task_struct *); 1674 extern void __cleanup_signal(struct signal_struct *); 1675 extern void __cleanup_sighand(struct sighand_struct *); 1676 extern void exit_itimers(struct signal_struct *); 1677 1678 extern NORET_TYPE void do_group_exit(int); 1679 1680 extern void daemonize(const char *, ...); 1681 extern int allow_signal(int); 1682 extern int disallow_signal(int); 1683 1684 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1685 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1686 struct task_struct *fork_idle(int); 1687 1688 extern void set_task_comm(struct task_struct *tsk, char *from); 1689 extern void get_task_comm(char *to, struct task_struct *tsk); 1690 1691 #ifdef CONFIG_SMP 1692 extern void wait_task_inactive(struct task_struct * p); 1693 #else 1694 #define wait_task_inactive(p) do { } while (0) 1695 #endif 1696 1697 #define remove_parent(p) list_del_init(&(p)->sibling) 1698 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1699 1700 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1701 1702 #define for_each_process(p) \ 1703 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1704 1705 /* 1706 * Careful: do_each_thread/while_each_thread is a double loop so 1707 * 'break' will not work as expected - use goto instead. 1708 */ 1709 #define do_each_thread(g, t) \ 1710 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1711 1712 #define while_each_thread(g, t) \ 1713 while ((t = next_thread(t)) != g) 1714 1715 /* de_thread depends on thread_group_leader not being a pid based check */ 1716 #define thread_group_leader(p) (p == p->group_leader) 1717 1718 /* Do to the insanities of de_thread it is possible for a process 1719 * to have the pid of the thread group leader without actually being 1720 * the thread group leader. For iteration through the pids in proc 1721 * all we care about is that we have a task with the appropriate 1722 * pid, we don't actually care if we have the right task. 1723 */ 1724 static inline int has_group_leader_pid(struct task_struct *p) 1725 { 1726 return p->pid == p->tgid; 1727 } 1728 1729 static inline 1730 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1731 { 1732 return p1->tgid == p2->tgid; 1733 } 1734 1735 static inline struct task_struct *next_thread(const struct task_struct *p) 1736 { 1737 return list_entry(rcu_dereference(p->thread_group.next), 1738 struct task_struct, thread_group); 1739 } 1740 1741 static inline int thread_group_empty(struct task_struct *p) 1742 { 1743 return list_empty(&p->thread_group); 1744 } 1745 1746 #define delay_group_leader(p) \ 1747 (thread_group_leader(p) && !thread_group_empty(p)) 1748 1749 /* 1750 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1751 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1752 * pins the final release of task.io_context. Also protects ->cpuset and 1753 * ->cgroup.subsys[]. 1754 * 1755 * Nests both inside and outside of read_lock(&tasklist_lock). 1756 * It must not be nested with write_lock_irq(&tasklist_lock), 1757 * neither inside nor outside. 1758 */ 1759 static inline void task_lock(struct task_struct *p) 1760 { 1761 spin_lock(&p->alloc_lock); 1762 } 1763 1764 static inline void task_unlock(struct task_struct *p) 1765 { 1766 spin_unlock(&p->alloc_lock); 1767 } 1768 1769 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1770 unsigned long *flags); 1771 1772 static inline void unlock_task_sighand(struct task_struct *tsk, 1773 unsigned long *flags) 1774 { 1775 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1776 } 1777 1778 #ifndef __HAVE_THREAD_FUNCTIONS 1779 1780 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 1781 #define task_stack_page(task) ((task)->stack) 1782 1783 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1784 { 1785 *task_thread_info(p) = *task_thread_info(org); 1786 task_thread_info(p)->task = p; 1787 } 1788 1789 static inline unsigned long *end_of_stack(struct task_struct *p) 1790 { 1791 return (unsigned long *)(task_thread_info(p) + 1); 1792 } 1793 1794 #endif 1795 1796 /* set thread flags in other task's structures 1797 * - see asm/thread_info.h for TIF_xxxx flags available 1798 */ 1799 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1800 { 1801 set_ti_thread_flag(task_thread_info(tsk), flag); 1802 } 1803 1804 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1805 { 1806 clear_ti_thread_flag(task_thread_info(tsk), flag); 1807 } 1808 1809 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1810 { 1811 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1812 } 1813 1814 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1815 { 1816 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1817 } 1818 1819 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1820 { 1821 return test_ti_thread_flag(task_thread_info(tsk), flag); 1822 } 1823 1824 static inline void set_tsk_need_resched(struct task_struct *tsk) 1825 { 1826 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1827 } 1828 1829 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1830 { 1831 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1832 } 1833 1834 static inline int signal_pending(struct task_struct *p) 1835 { 1836 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1837 } 1838 1839 static inline int need_resched(void) 1840 { 1841 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1842 } 1843 1844 /* 1845 * cond_resched() and cond_resched_lock(): latency reduction via 1846 * explicit rescheduling in places that are safe. The return 1847 * value indicates whether a reschedule was done in fact. 1848 * cond_resched_lock() will drop the spinlock before scheduling, 1849 * cond_resched_softirq() will enable bhs before scheduling. 1850 */ 1851 extern int cond_resched(void); 1852 extern int cond_resched_lock(spinlock_t * lock); 1853 extern int cond_resched_softirq(void); 1854 1855 /* 1856 * Does a critical section need to be broken due to another 1857 * task waiting?: 1858 */ 1859 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1860 # define need_lockbreak(lock) ((lock)->break_lock) 1861 #else 1862 # define need_lockbreak(lock) 0 1863 #endif 1864 1865 /* 1866 * Does a critical section need to be broken due to another 1867 * task waiting or preemption being signalled: 1868 */ 1869 static inline int lock_need_resched(spinlock_t *lock) 1870 { 1871 if (need_lockbreak(lock) || need_resched()) 1872 return 1; 1873 return 0; 1874 } 1875 1876 /* 1877 * Reevaluate whether the task has signals pending delivery. 1878 * Wake the task if so. 1879 * This is required every time the blocked sigset_t changes. 1880 * callers must hold sighand->siglock. 1881 */ 1882 extern void recalc_sigpending_and_wake(struct task_struct *t); 1883 extern void recalc_sigpending(void); 1884 1885 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1886 1887 /* 1888 * Wrappers for p->thread_info->cpu access. No-op on UP. 1889 */ 1890 #ifdef CONFIG_SMP 1891 1892 static inline unsigned int task_cpu(const struct task_struct *p) 1893 { 1894 return task_thread_info(p)->cpu; 1895 } 1896 1897 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1898 1899 #else 1900 1901 static inline unsigned int task_cpu(const struct task_struct *p) 1902 { 1903 return 0; 1904 } 1905 1906 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1907 { 1908 } 1909 1910 #endif /* CONFIG_SMP */ 1911 1912 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1913 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1914 #else 1915 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1916 { 1917 mm->mmap_base = TASK_UNMAPPED_BASE; 1918 mm->get_unmapped_area = arch_get_unmapped_area; 1919 mm->unmap_area = arch_unmap_area; 1920 } 1921 #endif 1922 1923 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1924 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1925 1926 extern int sched_mc_power_savings, sched_smt_power_savings; 1927 1928 extern void normalize_rt_tasks(void); 1929 1930 #ifdef CONFIG_FAIR_GROUP_SCHED 1931 1932 extern struct task_group init_task_group; 1933 1934 extern struct task_group *sched_create_group(void); 1935 extern void sched_destroy_group(struct task_group *tg); 1936 extern void sched_move_task(struct task_struct *tsk); 1937 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 1938 extern unsigned long sched_group_shares(struct task_group *tg); 1939 1940 #endif 1941 1942 #ifdef CONFIG_TASK_XACCT 1943 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 1944 { 1945 tsk->rchar += amt; 1946 } 1947 1948 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 1949 { 1950 tsk->wchar += amt; 1951 } 1952 1953 static inline void inc_syscr(struct task_struct *tsk) 1954 { 1955 tsk->syscr++; 1956 } 1957 1958 static inline void inc_syscw(struct task_struct *tsk) 1959 { 1960 tsk->syscw++; 1961 } 1962 #else 1963 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 1964 { 1965 } 1966 1967 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 1968 { 1969 } 1970 1971 static inline void inc_syscr(struct task_struct *tsk) 1972 { 1973 } 1974 1975 static inline void inc_syscw(struct task_struct *tsk) 1976 { 1977 } 1978 #endif 1979 1980 #endif /* __KERNEL__ */ 1981 1982 #endif 1983