xref: /linux/include/linux/sched.h (revision 96ac6d435100450f0565708d9b885ea2a7400e0a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/signal_types.h>
29 #include <linux/mm_types_task.h>
30 #include <linux/task_io_accounting.h>
31 #include <linux/rseq.h>
32 
33 /* task_struct member predeclarations (sorted alphabetically): */
34 struct audit_context;
35 struct backing_dev_info;
36 struct bio_list;
37 struct blk_plug;
38 struct cfs_rq;
39 struct fs_struct;
40 struct futex_pi_state;
41 struct io_context;
42 struct mempolicy;
43 struct nameidata;
44 struct nsproxy;
45 struct perf_event_context;
46 struct pid_namespace;
47 struct pipe_inode_info;
48 struct rcu_node;
49 struct reclaim_state;
50 struct capture_control;
51 struct robust_list_head;
52 struct sched_attr;
53 struct sched_param;
54 struct seq_file;
55 struct sighand_struct;
56 struct signal_struct;
57 struct task_delay_info;
58 struct task_group;
59 
60 /*
61  * Task state bitmask. NOTE! These bits are also
62  * encoded in fs/proc/array.c: get_task_state().
63  *
64  * We have two separate sets of flags: task->state
65  * is about runnability, while task->exit_state are
66  * about the task exiting. Confusing, but this way
67  * modifying one set can't modify the other one by
68  * mistake.
69  */
70 
71 /* Used in tsk->state: */
72 #define TASK_RUNNING			0x0000
73 #define TASK_INTERRUPTIBLE		0x0001
74 #define TASK_UNINTERRUPTIBLE		0x0002
75 #define __TASK_STOPPED			0x0004
76 #define __TASK_TRACED			0x0008
77 /* Used in tsk->exit_state: */
78 #define EXIT_DEAD			0x0010
79 #define EXIT_ZOMBIE			0x0020
80 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
81 /* Used in tsk->state again: */
82 #define TASK_PARKED			0x0040
83 #define TASK_DEAD			0x0080
84 #define TASK_WAKEKILL			0x0100
85 #define TASK_WAKING			0x0200
86 #define TASK_NOLOAD			0x0400
87 #define TASK_NEW			0x0800
88 #define TASK_STATE_MAX			0x1000
89 
90 /* Convenience macros for the sake of set_current_state: */
91 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
92 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
93 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
94 
95 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
96 
97 /* Convenience macros for the sake of wake_up(): */
98 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
99 
100 /* get_task_state(): */
101 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
102 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
103 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
104 					 TASK_PARKED)
105 
106 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
107 
108 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
109 
110 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
111 
112 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
113 					 (task->flags & PF_FROZEN) == 0 && \
114 					 (task->state & TASK_NOLOAD) == 0)
115 
116 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
117 
118 /*
119  * Special states are those that do not use the normal wait-loop pattern. See
120  * the comment with set_special_state().
121  */
122 #define is_special_task_state(state)				\
123 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
124 
125 #define __set_current_state(state_value)			\
126 	do {							\
127 		WARN_ON_ONCE(is_special_task_state(state_value));\
128 		current->task_state_change = _THIS_IP_;		\
129 		current->state = (state_value);			\
130 	} while (0)
131 
132 #define set_current_state(state_value)				\
133 	do {							\
134 		WARN_ON_ONCE(is_special_task_state(state_value));\
135 		current->task_state_change = _THIS_IP_;		\
136 		smp_store_mb(current->state, (state_value));	\
137 	} while (0)
138 
139 #define set_special_state(state_value)					\
140 	do {								\
141 		unsigned long flags; /* may shadow */			\
142 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
143 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
144 		current->task_state_change = _THIS_IP_;			\
145 		current->state = (state_value);				\
146 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
147 	} while (0)
148 #else
149 /*
150  * set_current_state() includes a barrier so that the write of current->state
151  * is correctly serialised wrt the caller's subsequent test of whether to
152  * actually sleep:
153  *
154  *   for (;;) {
155  *	set_current_state(TASK_UNINTERRUPTIBLE);
156  *	if (!need_sleep)
157  *		break;
158  *
159  *	schedule();
160  *   }
161  *   __set_current_state(TASK_RUNNING);
162  *
163  * If the caller does not need such serialisation (because, for instance, the
164  * condition test and condition change and wakeup are under the same lock) then
165  * use __set_current_state().
166  *
167  * The above is typically ordered against the wakeup, which does:
168  *
169  *   need_sleep = false;
170  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
171  *
172  * where wake_up_state() executes a full memory barrier before accessing the
173  * task state.
174  *
175  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
176  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
177  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
178  *
179  * However, with slightly different timing the wakeup TASK_RUNNING store can
180  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
181  * a problem either because that will result in one extra go around the loop
182  * and our @cond test will save the day.
183  *
184  * Also see the comments of try_to_wake_up().
185  */
186 #define __set_current_state(state_value)				\
187 	current->state = (state_value)
188 
189 #define set_current_state(state_value)					\
190 	smp_store_mb(current->state, (state_value))
191 
192 /*
193  * set_special_state() should be used for those states when the blocking task
194  * can not use the regular condition based wait-loop. In that case we must
195  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
196  * will not collide with our state change.
197  */
198 #define set_special_state(state_value)					\
199 	do {								\
200 		unsigned long flags; /* may shadow */			\
201 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
202 		current->state = (state_value);				\
203 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
204 	} while (0)
205 
206 #endif
207 
208 /* Task command name length: */
209 #define TASK_COMM_LEN			16
210 
211 extern void scheduler_tick(void);
212 
213 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
214 
215 extern long schedule_timeout(long timeout);
216 extern long schedule_timeout_interruptible(long timeout);
217 extern long schedule_timeout_killable(long timeout);
218 extern long schedule_timeout_uninterruptible(long timeout);
219 extern long schedule_timeout_idle(long timeout);
220 asmlinkage void schedule(void);
221 extern void schedule_preempt_disabled(void);
222 
223 extern int __must_check io_schedule_prepare(void);
224 extern void io_schedule_finish(int token);
225 extern long io_schedule_timeout(long timeout);
226 extern void io_schedule(void);
227 
228 /**
229  * struct prev_cputime - snapshot of system and user cputime
230  * @utime: time spent in user mode
231  * @stime: time spent in system mode
232  * @lock: protects the above two fields
233  *
234  * Stores previous user/system time values such that we can guarantee
235  * monotonicity.
236  */
237 struct prev_cputime {
238 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
239 	u64				utime;
240 	u64				stime;
241 	raw_spinlock_t			lock;
242 #endif
243 };
244 
245 /**
246  * struct task_cputime - collected CPU time counts
247  * @utime:		time spent in user mode, in nanoseconds
248  * @stime:		time spent in kernel mode, in nanoseconds
249  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
250  *
251  * This structure groups together three kinds of CPU time that are tracked for
252  * threads and thread groups.  Most things considering CPU time want to group
253  * these counts together and treat all three of them in parallel.
254  */
255 struct task_cputime {
256 	u64				utime;
257 	u64				stime;
258 	unsigned long long		sum_exec_runtime;
259 };
260 
261 /* Alternate field names when used on cache expirations: */
262 #define virt_exp			utime
263 #define prof_exp			stime
264 #define sched_exp			sum_exec_runtime
265 
266 enum vtime_state {
267 	/* Task is sleeping or running in a CPU with VTIME inactive: */
268 	VTIME_INACTIVE = 0,
269 	/* Task runs in userspace in a CPU with VTIME active: */
270 	VTIME_USER,
271 	/* Task runs in kernelspace in a CPU with VTIME active: */
272 	VTIME_SYS,
273 };
274 
275 struct vtime {
276 	seqcount_t		seqcount;
277 	unsigned long long	starttime;
278 	enum vtime_state	state;
279 	u64			utime;
280 	u64			stime;
281 	u64			gtime;
282 };
283 
284 struct sched_info {
285 #ifdef CONFIG_SCHED_INFO
286 	/* Cumulative counters: */
287 
288 	/* # of times we have run on this CPU: */
289 	unsigned long			pcount;
290 
291 	/* Time spent waiting on a runqueue: */
292 	unsigned long long		run_delay;
293 
294 	/* Timestamps: */
295 
296 	/* When did we last run on a CPU? */
297 	unsigned long long		last_arrival;
298 
299 	/* When were we last queued to run? */
300 	unsigned long long		last_queued;
301 
302 #endif /* CONFIG_SCHED_INFO */
303 };
304 
305 /*
306  * Integer metrics need fixed point arithmetic, e.g., sched/fair
307  * has a few: load, load_avg, util_avg, freq, and capacity.
308  *
309  * We define a basic fixed point arithmetic range, and then formalize
310  * all these metrics based on that basic range.
311  */
312 # define SCHED_FIXEDPOINT_SHIFT		10
313 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
314 
315 struct load_weight {
316 	unsigned long			weight;
317 	u32				inv_weight;
318 };
319 
320 /**
321  * struct util_est - Estimation utilization of FAIR tasks
322  * @enqueued: instantaneous estimated utilization of a task/cpu
323  * @ewma:     the Exponential Weighted Moving Average (EWMA)
324  *            utilization of a task
325  *
326  * Support data structure to track an Exponential Weighted Moving Average
327  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
328  * average each time a task completes an activation. Sample's weight is chosen
329  * so that the EWMA will be relatively insensitive to transient changes to the
330  * task's workload.
331  *
332  * The enqueued attribute has a slightly different meaning for tasks and cpus:
333  * - task:   the task's util_avg at last task dequeue time
334  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
335  * Thus, the util_est.enqueued of a task represents the contribution on the
336  * estimated utilization of the CPU where that task is currently enqueued.
337  *
338  * Only for tasks we track a moving average of the past instantaneous
339  * estimated utilization. This allows to absorb sporadic drops in utilization
340  * of an otherwise almost periodic task.
341  */
342 struct util_est {
343 	unsigned int			enqueued;
344 	unsigned int			ewma;
345 #define UTIL_EST_WEIGHT_SHIFT		2
346 } __attribute__((__aligned__(sizeof(u64))));
347 
348 /*
349  * The load_avg/util_avg accumulates an infinite geometric series
350  * (see __update_load_avg() in kernel/sched/fair.c).
351  *
352  * [load_avg definition]
353  *
354  *   load_avg = runnable% * scale_load_down(load)
355  *
356  * where runnable% is the time ratio that a sched_entity is runnable.
357  * For cfs_rq, it is the aggregated load_avg of all runnable and
358  * blocked sched_entities.
359  *
360  * [util_avg definition]
361  *
362  *   util_avg = running% * SCHED_CAPACITY_SCALE
363  *
364  * where running% is the time ratio that a sched_entity is running on
365  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
366  * and blocked sched_entities.
367  *
368  * load_avg and util_avg don't direcly factor frequency scaling and CPU
369  * capacity scaling. The scaling is done through the rq_clock_pelt that
370  * is used for computing those signals (see update_rq_clock_pelt())
371  *
372  * N.B., the above ratios (runnable% and running%) themselves are in the
373  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
374  * to as large a range as necessary. This is for example reflected by
375  * util_avg's SCHED_CAPACITY_SCALE.
376  *
377  * [Overflow issue]
378  *
379  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
380  * with the highest load (=88761), always runnable on a single cfs_rq,
381  * and should not overflow as the number already hits PID_MAX_LIMIT.
382  *
383  * For all other cases (including 32-bit kernels), struct load_weight's
384  * weight will overflow first before we do, because:
385  *
386  *    Max(load_avg) <= Max(load.weight)
387  *
388  * Then it is the load_weight's responsibility to consider overflow
389  * issues.
390  */
391 struct sched_avg {
392 	u64				last_update_time;
393 	u64				load_sum;
394 	u64				runnable_load_sum;
395 	u32				util_sum;
396 	u32				period_contrib;
397 	unsigned long			load_avg;
398 	unsigned long			runnable_load_avg;
399 	unsigned long			util_avg;
400 	struct util_est			util_est;
401 } ____cacheline_aligned;
402 
403 struct sched_statistics {
404 #ifdef CONFIG_SCHEDSTATS
405 	u64				wait_start;
406 	u64				wait_max;
407 	u64				wait_count;
408 	u64				wait_sum;
409 	u64				iowait_count;
410 	u64				iowait_sum;
411 
412 	u64				sleep_start;
413 	u64				sleep_max;
414 	s64				sum_sleep_runtime;
415 
416 	u64				block_start;
417 	u64				block_max;
418 	u64				exec_max;
419 	u64				slice_max;
420 
421 	u64				nr_migrations_cold;
422 	u64				nr_failed_migrations_affine;
423 	u64				nr_failed_migrations_running;
424 	u64				nr_failed_migrations_hot;
425 	u64				nr_forced_migrations;
426 
427 	u64				nr_wakeups;
428 	u64				nr_wakeups_sync;
429 	u64				nr_wakeups_migrate;
430 	u64				nr_wakeups_local;
431 	u64				nr_wakeups_remote;
432 	u64				nr_wakeups_affine;
433 	u64				nr_wakeups_affine_attempts;
434 	u64				nr_wakeups_passive;
435 	u64				nr_wakeups_idle;
436 #endif
437 };
438 
439 struct sched_entity {
440 	/* For load-balancing: */
441 	struct load_weight		load;
442 	unsigned long			runnable_weight;
443 	struct rb_node			run_node;
444 	struct list_head		group_node;
445 	unsigned int			on_rq;
446 
447 	u64				exec_start;
448 	u64				sum_exec_runtime;
449 	u64				vruntime;
450 	u64				prev_sum_exec_runtime;
451 
452 	u64				nr_migrations;
453 
454 	struct sched_statistics		statistics;
455 
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 	int				depth;
458 	struct sched_entity		*parent;
459 	/* rq on which this entity is (to be) queued: */
460 	struct cfs_rq			*cfs_rq;
461 	/* rq "owned" by this entity/group: */
462 	struct cfs_rq			*my_q;
463 #endif
464 
465 #ifdef CONFIG_SMP
466 	/*
467 	 * Per entity load average tracking.
468 	 *
469 	 * Put into separate cache line so it does not
470 	 * collide with read-mostly values above.
471 	 */
472 	struct sched_avg		avg;
473 #endif
474 };
475 
476 struct sched_rt_entity {
477 	struct list_head		run_list;
478 	unsigned long			timeout;
479 	unsigned long			watchdog_stamp;
480 	unsigned int			time_slice;
481 	unsigned short			on_rq;
482 	unsigned short			on_list;
483 
484 	struct sched_rt_entity		*back;
485 #ifdef CONFIG_RT_GROUP_SCHED
486 	struct sched_rt_entity		*parent;
487 	/* rq on which this entity is (to be) queued: */
488 	struct rt_rq			*rt_rq;
489 	/* rq "owned" by this entity/group: */
490 	struct rt_rq			*my_q;
491 #endif
492 } __randomize_layout;
493 
494 struct sched_dl_entity {
495 	struct rb_node			rb_node;
496 
497 	/*
498 	 * Original scheduling parameters. Copied here from sched_attr
499 	 * during sched_setattr(), they will remain the same until
500 	 * the next sched_setattr().
501 	 */
502 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
503 	u64				dl_deadline;	/* Relative deadline of each instance	*/
504 	u64				dl_period;	/* Separation of two instances (period) */
505 	u64				dl_bw;		/* dl_runtime / dl_period		*/
506 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
507 
508 	/*
509 	 * Actual scheduling parameters. Initialized with the values above,
510 	 * they are continuously updated during task execution. Note that
511 	 * the remaining runtime could be < 0 in case we are in overrun.
512 	 */
513 	s64				runtime;	/* Remaining runtime for this instance	*/
514 	u64				deadline;	/* Absolute deadline for this instance	*/
515 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
516 
517 	/*
518 	 * Some bool flags:
519 	 *
520 	 * @dl_throttled tells if we exhausted the runtime. If so, the
521 	 * task has to wait for a replenishment to be performed at the
522 	 * next firing of dl_timer.
523 	 *
524 	 * @dl_boosted tells if we are boosted due to DI. If so we are
525 	 * outside bandwidth enforcement mechanism (but only until we
526 	 * exit the critical section);
527 	 *
528 	 * @dl_yielded tells if task gave up the CPU before consuming
529 	 * all its available runtime during the last job.
530 	 *
531 	 * @dl_non_contending tells if the task is inactive while still
532 	 * contributing to the active utilization. In other words, it
533 	 * indicates if the inactive timer has been armed and its handler
534 	 * has not been executed yet. This flag is useful to avoid race
535 	 * conditions between the inactive timer handler and the wakeup
536 	 * code.
537 	 *
538 	 * @dl_overrun tells if the task asked to be informed about runtime
539 	 * overruns.
540 	 */
541 	unsigned int			dl_throttled      : 1;
542 	unsigned int			dl_boosted        : 1;
543 	unsigned int			dl_yielded        : 1;
544 	unsigned int			dl_non_contending : 1;
545 	unsigned int			dl_overrun	  : 1;
546 
547 	/*
548 	 * Bandwidth enforcement timer. Each -deadline task has its
549 	 * own bandwidth to be enforced, thus we need one timer per task.
550 	 */
551 	struct hrtimer			dl_timer;
552 
553 	/*
554 	 * Inactive timer, responsible for decreasing the active utilization
555 	 * at the "0-lag time". When a -deadline task blocks, it contributes
556 	 * to GRUB's active utilization until the "0-lag time", hence a
557 	 * timer is needed to decrease the active utilization at the correct
558 	 * time.
559 	 */
560 	struct hrtimer inactive_timer;
561 };
562 
563 union rcu_special {
564 	struct {
565 		u8			blocked;
566 		u8			need_qs;
567 		u8			exp_hint; /* Hint for performance. */
568 		u8			pad; /* No garbage from compiler! */
569 	} b; /* Bits. */
570 	u32 s; /* Set of bits. */
571 };
572 
573 enum perf_event_task_context {
574 	perf_invalid_context = -1,
575 	perf_hw_context = 0,
576 	perf_sw_context,
577 	perf_nr_task_contexts,
578 };
579 
580 struct wake_q_node {
581 	struct wake_q_node *next;
582 };
583 
584 struct task_struct {
585 #ifdef CONFIG_THREAD_INFO_IN_TASK
586 	/*
587 	 * For reasons of header soup (see current_thread_info()), this
588 	 * must be the first element of task_struct.
589 	 */
590 	struct thread_info		thread_info;
591 #endif
592 	/* -1 unrunnable, 0 runnable, >0 stopped: */
593 	volatile long			state;
594 
595 	/*
596 	 * This begins the randomizable portion of task_struct. Only
597 	 * scheduling-critical items should be added above here.
598 	 */
599 	randomized_struct_fields_start
600 
601 	void				*stack;
602 	refcount_t			usage;
603 	/* Per task flags (PF_*), defined further below: */
604 	unsigned int			flags;
605 	unsigned int			ptrace;
606 
607 #ifdef CONFIG_SMP
608 	struct llist_node		wake_entry;
609 	int				on_cpu;
610 #ifdef CONFIG_THREAD_INFO_IN_TASK
611 	/* Current CPU: */
612 	unsigned int			cpu;
613 #endif
614 	unsigned int			wakee_flips;
615 	unsigned long			wakee_flip_decay_ts;
616 	struct task_struct		*last_wakee;
617 
618 	/*
619 	 * recent_used_cpu is initially set as the last CPU used by a task
620 	 * that wakes affine another task. Waker/wakee relationships can
621 	 * push tasks around a CPU where each wakeup moves to the next one.
622 	 * Tracking a recently used CPU allows a quick search for a recently
623 	 * used CPU that may be idle.
624 	 */
625 	int				recent_used_cpu;
626 	int				wake_cpu;
627 #endif
628 	int				on_rq;
629 
630 	int				prio;
631 	int				static_prio;
632 	int				normal_prio;
633 	unsigned int			rt_priority;
634 
635 	const struct sched_class	*sched_class;
636 	struct sched_entity		se;
637 	struct sched_rt_entity		rt;
638 #ifdef CONFIG_CGROUP_SCHED
639 	struct task_group		*sched_task_group;
640 #endif
641 	struct sched_dl_entity		dl;
642 
643 #ifdef CONFIG_PREEMPT_NOTIFIERS
644 	/* List of struct preempt_notifier: */
645 	struct hlist_head		preempt_notifiers;
646 #endif
647 
648 #ifdef CONFIG_BLK_DEV_IO_TRACE
649 	unsigned int			btrace_seq;
650 #endif
651 
652 	unsigned int			policy;
653 	int				nr_cpus_allowed;
654 	cpumask_t			cpus_allowed;
655 
656 #ifdef CONFIG_PREEMPT_RCU
657 	int				rcu_read_lock_nesting;
658 	union rcu_special		rcu_read_unlock_special;
659 	struct list_head		rcu_node_entry;
660 	struct rcu_node			*rcu_blocked_node;
661 #endif /* #ifdef CONFIG_PREEMPT_RCU */
662 
663 #ifdef CONFIG_TASKS_RCU
664 	unsigned long			rcu_tasks_nvcsw;
665 	u8				rcu_tasks_holdout;
666 	u8				rcu_tasks_idx;
667 	int				rcu_tasks_idle_cpu;
668 	struct list_head		rcu_tasks_holdout_list;
669 #endif /* #ifdef CONFIG_TASKS_RCU */
670 
671 	struct sched_info		sched_info;
672 
673 	struct list_head		tasks;
674 #ifdef CONFIG_SMP
675 	struct plist_node		pushable_tasks;
676 	struct rb_node			pushable_dl_tasks;
677 #endif
678 
679 	struct mm_struct		*mm;
680 	struct mm_struct		*active_mm;
681 
682 	/* Per-thread vma caching: */
683 	struct vmacache			vmacache;
684 
685 #ifdef SPLIT_RSS_COUNTING
686 	struct task_rss_stat		rss_stat;
687 #endif
688 	int				exit_state;
689 	int				exit_code;
690 	int				exit_signal;
691 	/* The signal sent when the parent dies: */
692 	int				pdeath_signal;
693 	/* JOBCTL_*, siglock protected: */
694 	unsigned long			jobctl;
695 
696 	/* Used for emulating ABI behavior of previous Linux versions: */
697 	unsigned int			personality;
698 
699 	/* Scheduler bits, serialized by scheduler locks: */
700 	unsigned			sched_reset_on_fork:1;
701 	unsigned			sched_contributes_to_load:1;
702 	unsigned			sched_migrated:1;
703 	unsigned			sched_remote_wakeup:1;
704 #ifdef CONFIG_PSI
705 	unsigned			sched_psi_wake_requeue:1;
706 #endif
707 
708 	/* Force alignment to the next boundary: */
709 	unsigned			:0;
710 
711 	/* Unserialized, strictly 'current' */
712 
713 	/* Bit to tell LSMs we're in execve(): */
714 	unsigned			in_execve:1;
715 	unsigned			in_iowait:1;
716 #ifndef TIF_RESTORE_SIGMASK
717 	unsigned			restore_sigmask:1;
718 #endif
719 #ifdef CONFIG_MEMCG
720 	unsigned			in_user_fault:1;
721 #endif
722 #ifdef CONFIG_COMPAT_BRK
723 	unsigned			brk_randomized:1;
724 #endif
725 #ifdef CONFIG_CGROUPS
726 	/* disallow userland-initiated cgroup migration */
727 	unsigned			no_cgroup_migration:1;
728 	/* task is frozen/stopped (used by the cgroup freezer) */
729 	unsigned			frozen:1;
730 #endif
731 #ifdef CONFIG_BLK_CGROUP
732 	/* to be used once the psi infrastructure lands upstream. */
733 	unsigned			use_memdelay:1;
734 #endif
735 
736 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
737 
738 	struct restart_block		restart_block;
739 
740 	pid_t				pid;
741 	pid_t				tgid;
742 
743 #ifdef CONFIG_STACKPROTECTOR
744 	/* Canary value for the -fstack-protector GCC feature: */
745 	unsigned long			stack_canary;
746 #endif
747 	/*
748 	 * Pointers to the (original) parent process, youngest child, younger sibling,
749 	 * older sibling, respectively.  (p->father can be replaced with
750 	 * p->real_parent->pid)
751 	 */
752 
753 	/* Real parent process: */
754 	struct task_struct __rcu	*real_parent;
755 
756 	/* Recipient of SIGCHLD, wait4() reports: */
757 	struct task_struct __rcu	*parent;
758 
759 	/*
760 	 * Children/sibling form the list of natural children:
761 	 */
762 	struct list_head		children;
763 	struct list_head		sibling;
764 	struct task_struct		*group_leader;
765 
766 	/*
767 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
768 	 *
769 	 * This includes both natural children and PTRACE_ATTACH targets.
770 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
771 	 */
772 	struct list_head		ptraced;
773 	struct list_head		ptrace_entry;
774 
775 	/* PID/PID hash table linkage. */
776 	struct pid			*thread_pid;
777 	struct hlist_node		pid_links[PIDTYPE_MAX];
778 	struct list_head		thread_group;
779 	struct list_head		thread_node;
780 
781 	struct completion		*vfork_done;
782 
783 	/* CLONE_CHILD_SETTID: */
784 	int __user			*set_child_tid;
785 
786 	/* CLONE_CHILD_CLEARTID: */
787 	int __user			*clear_child_tid;
788 
789 	u64				utime;
790 	u64				stime;
791 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
792 	u64				utimescaled;
793 	u64				stimescaled;
794 #endif
795 	u64				gtime;
796 	struct prev_cputime		prev_cputime;
797 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
798 	struct vtime			vtime;
799 #endif
800 
801 #ifdef CONFIG_NO_HZ_FULL
802 	atomic_t			tick_dep_mask;
803 #endif
804 	/* Context switch counts: */
805 	unsigned long			nvcsw;
806 	unsigned long			nivcsw;
807 
808 	/* Monotonic time in nsecs: */
809 	u64				start_time;
810 
811 	/* Boot based time in nsecs: */
812 	u64				real_start_time;
813 
814 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
815 	unsigned long			min_flt;
816 	unsigned long			maj_flt;
817 
818 #ifdef CONFIG_POSIX_TIMERS
819 	struct task_cputime		cputime_expires;
820 	struct list_head		cpu_timers[3];
821 #endif
822 
823 	/* Process credentials: */
824 
825 	/* Tracer's credentials at attach: */
826 	const struct cred __rcu		*ptracer_cred;
827 
828 	/* Objective and real subjective task credentials (COW): */
829 	const struct cred __rcu		*real_cred;
830 
831 	/* Effective (overridable) subjective task credentials (COW): */
832 	const struct cred __rcu		*cred;
833 
834 	/*
835 	 * executable name, excluding path.
836 	 *
837 	 * - normally initialized setup_new_exec()
838 	 * - access it with [gs]et_task_comm()
839 	 * - lock it with task_lock()
840 	 */
841 	char				comm[TASK_COMM_LEN];
842 
843 	struct nameidata		*nameidata;
844 
845 #ifdef CONFIG_SYSVIPC
846 	struct sysv_sem			sysvsem;
847 	struct sysv_shm			sysvshm;
848 #endif
849 #ifdef CONFIG_DETECT_HUNG_TASK
850 	unsigned long			last_switch_count;
851 	unsigned long			last_switch_time;
852 #endif
853 	/* Filesystem information: */
854 	struct fs_struct		*fs;
855 
856 	/* Open file information: */
857 	struct files_struct		*files;
858 
859 	/* Namespaces: */
860 	struct nsproxy			*nsproxy;
861 
862 	/* Signal handlers: */
863 	struct signal_struct		*signal;
864 	struct sighand_struct		*sighand;
865 	sigset_t			blocked;
866 	sigset_t			real_blocked;
867 	/* Restored if set_restore_sigmask() was used: */
868 	sigset_t			saved_sigmask;
869 	struct sigpending		pending;
870 	unsigned long			sas_ss_sp;
871 	size_t				sas_ss_size;
872 	unsigned int			sas_ss_flags;
873 
874 	struct callback_head		*task_works;
875 
876 #ifdef CONFIG_AUDIT
877 #ifdef CONFIG_AUDITSYSCALL
878 	struct audit_context		*audit_context;
879 #endif
880 	kuid_t				loginuid;
881 	unsigned int			sessionid;
882 #endif
883 	struct seccomp			seccomp;
884 
885 	/* Thread group tracking: */
886 	u32				parent_exec_id;
887 	u32				self_exec_id;
888 
889 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
890 	spinlock_t			alloc_lock;
891 
892 	/* Protection of the PI data structures: */
893 	raw_spinlock_t			pi_lock;
894 
895 	struct wake_q_node		wake_q;
896 
897 #ifdef CONFIG_RT_MUTEXES
898 	/* PI waiters blocked on a rt_mutex held by this task: */
899 	struct rb_root_cached		pi_waiters;
900 	/* Updated under owner's pi_lock and rq lock */
901 	struct task_struct		*pi_top_task;
902 	/* Deadlock detection and priority inheritance handling: */
903 	struct rt_mutex_waiter		*pi_blocked_on;
904 #endif
905 
906 #ifdef CONFIG_DEBUG_MUTEXES
907 	/* Mutex deadlock detection: */
908 	struct mutex_waiter		*blocked_on;
909 #endif
910 
911 #ifdef CONFIG_TRACE_IRQFLAGS
912 	unsigned int			irq_events;
913 	unsigned long			hardirq_enable_ip;
914 	unsigned long			hardirq_disable_ip;
915 	unsigned int			hardirq_enable_event;
916 	unsigned int			hardirq_disable_event;
917 	int				hardirqs_enabled;
918 	int				hardirq_context;
919 	unsigned long			softirq_disable_ip;
920 	unsigned long			softirq_enable_ip;
921 	unsigned int			softirq_disable_event;
922 	unsigned int			softirq_enable_event;
923 	int				softirqs_enabled;
924 	int				softirq_context;
925 #endif
926 
927 #ifdef CONFIG_LOCKDEP
928 # define MAX_LOCK_DEPTH			48UL
929 	u64				curr_chain_key;
930 	int				lockdep_depth;
931 	unsigned int			lockdep_recursion;
932 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
933 #endif
934 
935 #ifdef CONFIG_UBSAN
936 	unsigned int			in_ubsan;
937 #endif
938 
939 	/* Journalling filesystem info: */
940 	void				*journal_info;
941 
942 	/* Stacked block device info: */
943 	struct bio_list			*bio_list;
944 
945 #ifdef CONFIG_BLOCK
946 	/* Stack plugging: */
947 	struct blk_plug			*plug;
948 #endif
949 
950 	/* VM state: */
951 	struct reclaim_state		*reclaim_state;
952 
953 	struct backing_dev_info		*backing_dev_info;
954 
955 	struct io_context		*io_context;
956 
957 #ifdef CONFIG_COMPACTION
958 	struct capture_control		*capture_control;
959 #endif
960 	/* Ptrace state: */
961 	unsigned long			ptrace_message;
962 	kernel_siginfo_t		*last_siginfo;
963 
964 	struct task_io_accounting	ioac;
965 #ifdef CONFIG_PSI
966 	/* Pressure stall state */
967 	unsigned int			psi_flags;
968 #endif
969 #ifdef CONFIG_TASK_XACCT
970 	/* Accumulated RSS usage: */
971 	u64				acct_rss_mem1;
972 	/* Accumulated virtual memory usage: */
973 	u64				acct_vm_mem1;
974 	/* stime + utime since last update: */
975 	u64				acct_timexpd;
976 #endif
977 #ifdef CONFIG_CPUSETS
978 	/* Protected by ->alloc_lock: */
979 	nodemask_t			mems_allowed;
980 	/* Seqence number to catch updates: */
981 	seqcount_t			mems_allowed_seq;
982 	int				cpuset_mem_spread_rotor;
983 	int				cpuset_slab_spread_rotor;
984 #endif
985 #ifdef CONFIG_CGROUPS
986 	/* Control Group info protected by css_set_lock: */
987 	struct css_set __rcu		*cgroups;
988 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
989 	struct list_head		cg_list;
990 #endif
991 #ifdef CONFIG_X86_CPU_RESCTRL
992 	u32				closid;
993 	u32				rmid;
994 #endif
995 #ifdef CONFIG_FUTEX
996 	struct robust_list_head __user	*robust_list;
997 #ifdef CONFIG_COMPAT
998 	struct compat_robust_list_head __user *compat_robust_list;
999 #endif
1000 	struct list_head		pi_state_list;
1001 	struct futex_pi_state		*pi_state_cache;
1002 #endif
1003 #ifdef CONFIG_PERF_EVENTS
1004 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1005 	struct mutex			perf_event_mutex;
1006 	struct list_head		perf_event_list;
1007 #endif
1008 #ifdef CONFIG_DEBUG_PREEMPT
1009 	unsigned long			preempt_disable_ip;
1010 #endif
1011 #ifdef CONFIG_NUMA
1012 	/* Protected by alloc_lock: */
1013 	struct mempolicy		*mempolicy;
1014 	short				il_prev;
1015 	short				pref_node_fork;
1016 #endif
1017 #ifdef CONFIG_NUMA_BALANCING
1018 	int				numa_scan_seq;
1019 	unsigned int			numa_scan_period;
1020 	unsigned int			numa_scan_period_max;
1021 	int				numa_preferred_nid;
1022 	unsigned long			numa_migrate_retry;
1023 	/* Migration stamp: */
1024 	u64				node_stamp;
1025 	u64				last_task_numa_placement;
1026 	u64				last_sum_exec_runtime;
1027 	struct callback_head		numa_work;
1028 
1029 	struct numa_group		*numa_group;
1030 
1031 	/*
1032 	 * numa_faults is an array split into four regions:
1033 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1034 	 * in this precise order.
1035 	 *
1036 	 * faults_memory: Exponential decaying average of faults on a per-node
1037 	 * basis. Scheduling placement decisions are made based on these
1038 	 * counts. The values remain static for the duration of a PTE scan.
1039 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1040 	 * hinting fault was incurred.
1041 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1042 	 * during the current scan window. When the scan completes, the counts
1043 	 * in faults_memory and faults_cpu decay and these values are copied.
1044 	 */
1045 	unsigned long			*numa_faults;
1046 	unsigned long			total_numa_faults;
1047 
1048 	/*
1049 	 * numa_faults_locality tracks if faults recorded during the last
1050 	 * scan window were remote/local or failed to migrate. The task scan
1051 	 * period is adapted based on the locality of the faults with different
1052 	 * weights depending on whether they were shared or private faults
1053 	 */
1054 	unsigned long			numa_faults_locality[3];
1055 
1056 	unsigned long			numa_pages_migrated;
1057 #endif /* CONFIG_NUMA_BALANCING */
1058 
1059 #ifdef CONFIG_RSEQ
1060 	struct rseq __user *rseq;
1061 	u32 rseq_sig;
1062 	/*
1063 	 * RmW on rseq_event_mask must be performed atomically
1064 	 * with respect to preemption.
1065 	 */
1066 	unsigned long rseq_event_mask;
1067 #endif
1068 
1069 	struct tlbflush_unmap_batch	tlb_ubc;
1070 
1071 	struct rcu_head			rcu;
1072 
1073 	/* Cache last used pipe for splice(): */
1074 	struct pipe_inode_info		*splice_pipe;
1075 
1076 	struct page_frag		task_frag;
1077 
1078 #ifdef CONFIG_TASK_DELAY_ACCT
1079 	struct task_delay_info		*delays;
1080 #endif
1081 
1082 #ifdef CONFIG_FAULT_INJECTION
1083 	int				make_it_fail;
1084 	unsigned int			fail_nth;
1085 #endif
1086 	/*
1087 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1088 	 * balance_dirty_pages() for a dirty throttling pause:
1089 	 */
1090 	int				nr_dirtied;
1091 	int				nr_dirtied_pause;
1092 	/* Start of a write-and-pause period: */
1093 	unsigned long			dirty_paused_when;
1094 
1095 #ifdef CONFIG_LATENCYTOP
1096 	int				latency_record_count;
1097 	struct latency_record		latency_record[LT_SAVECOUNT];
1098 #endif
1099 	/*
1100 	 * Time slack values; these are used to round up poll() and
1101 	 * select() etc timeout values. These are in nanoseconds.
1102 	 */
1103 	u64				timer_slack_ns;
1104 	u64				default_timer_slack_ns;
1105 
1106 #ifdef CONFIG_KASAN
1107 	unsigned int			kasan_depth;
1108 #endif
1109 
1110 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1111 	/* Index of current stored address in ret_stack: */
1112 	int				curr_ret_stack;
1113 	int				curr_ret_depth;
1114 
1115 	/* Stack of return addresses for return function tracing: */
1116 	struct ftrace_ret_stack		*ret_stack;
1117 
1118 	/* Timestamp for last schedule: */
1119 	unsigned long long		ftrace_timestamp;
1120 
1121 	/*
1122 	 * Number of functions that haven't been traced
1123 	 * because of depth overrun:
1124 	 */
1125 	atomic_t			trace_overrun;
1126 
1127 	/* Pause tracing: */
1128 	atomic_t			tracing_graph_pause;
1129 #endif
1130 
1131 #ifdef CONFIG_TRACING
1132 	/* State flags for use by tracers: */
1133 	unsigned long			trace;
1134 
1135 	/* Bitmask and counter of trace recursion: */
1136 	unsigned long			trace_recursion;
1137 #endif /* CONFIG_TRACING */
1138 
1139 #ifdef CONFIG_KCOV
1140 	/* Coverage collection mode enabled for this task (0 if disabled): */
1141 	unsigned int			kcov_mode;
1142 
1143 	/* Size of the kcov_area: */
1144 	unsigned int			kcov_size;
1145 
1146 	/* Buffer for coverage collection: */
1147 	void				*kcov_area;
1148 
1149 	/* KCOV descriptor wired with this task or NULL: */
1150 	struct kcov			*kcov;
1151 #endif
1152 
1153 #ifdef CONFIG_MEMCG
1154 	struct mem_cgroup		*memcg_in_oom;
1155 	gfp_t				memcg_oom_gfp_mask;
1156 	int				memcg_oom_order;
1157 
1158 	/* Number of pages to reclaim on returning to userland: */
1159 	unsigned int			memcg_nr_pages_over_high;
1160 
1161 	/* Used by memcontrol for targeted memcg charge: */
1162 	struct mem_cgroup		*active_memcg;
1163 #endif
1164 
1165 #ifdef CONFIG_BLK_CGROUP
1166 	struct request_queue		*throttle_queue;
1167 #endif
1168 
1169 #ifdef CONFIG_UPROBES
1170 	struct uprobe_task		*utask;
1171 #endif
1172 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1173 	unsigned int			sequential_io;
1174 	unsigned int			sequential_io_avg;
1175 #endif
1176 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1177 	unsigned long			task_state_change;
1178 #endif
1179 	int				pagefault_disabled;
1180 #ifdef CONFIG_MMU
1181 	struct task_struct		*oom_reaper_list;
1182 #endif
1183 #ifdef CONFIG_VMAP_STACK
1184 	struct vm_struct		*stack_vm_area;
1185 #endif
1186 #ifdef CONFIG_THREAD_INFO_IN_TASK
1187 	/* A live task holds one reference: */
1188 	refcount_t			stack_refcount;
1189 #endif
1190 #ifdef CONFIG_LIVEPATCH
1191 	int patch_state;
1192 #endif
1193 #ifdef CONFIG_SECURITY
1194 	/* Used by LSM modules for access restriction: */
1195 	void				*security;
1196 #endif
1197 
1198 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1199 	unsigned long			lowest_stack;
1200 	unsigned long			prev_lowest_stack;
1201 #endif
1202 
1203 	/*
1204 	 * New fields for task_struct should be added above here, so that
1205 	 * they are included in the randomized portion of task_struct.
1206 	 */
1207 	randomized_struct_fields_end
1208 
1209 	/* CPU-specific state of this task: */
1210 	struct thread_struct		thread;
1211 
1212 	/*
1213 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1214 	 * structure.  It *MUST* be at the end of 'task_struct'.
1215 	 *
1216 	 * Do not put anything below here!
1217 	 */
1218 };
1219 
1220 static inline struct pid *task_pid(struct task_struct *task)
1221 {
1222 	return task->thread_pid;
1223 }
1224 
1225 /*
1226  * the helpers to get the task's different pids as they are seen
1227  * from various namespaces
1228  *
1229  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1230  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1231  *                     current.
1232  * task_xid_nr_ns()  : id seen from the ns specified;
1233  *
1234  * see also pid_nr() etc in include/linux/pid.h
1235  */
1236 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1237 
1238 static inline pid_t task_pid_nr(struct task_struct *tsk)
1239 {
1240 	return tsk->pid;
1241 }
1242 
1243 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1244 {
1245 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1246 }
1247 
1248 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1249 {
1250 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1251 }
1252 
1253 
1254 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1255 {
1256 	return tsk->tgid;
1257 }
1258 
1259 /**
1260  * pid_alive - check that a task structure is not stale
1261  * @p: Task structure to be checked.
1262  *
1263  * Test if a process is not yet dead (at most zombie state)
1264  * If pid_alive fails, then pointers within the task structure
1265  * can be stale and must not be dereferenced.
1266  *
1267  * Return: 1 if the process is alive. 0 otherwise.
1268  */
1269 static inline int pid_alive(const struct task_struct *p)
1270 {
1271 	return p->thread_pid != NULL;
1272 }
1273 
1274 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1275 {
1276 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1277 }
1278 
1279 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1280 {
1281 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1282 }
1283 
1284 
1285 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1286 {
1287 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1288 }
1289 
1290 static inline pid_t task_session_vnr(struct task_struct *tsk)
1291 {
1292 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1293 }
1294 
1295 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1296 {
1297 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1298 }
1299 
1300 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1301 {
1302 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1303 }
1304 
1305 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1306 {
1307 	pid_t pid = 0;
1308 
1309 	rcu_read_lock();
1310 	if (pid_alive(tsk))
1311 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1312 	rcu_read_unlock();
1313 
1314 	return pid;
1315 }
1316 
1317 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1318 {
1319 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1320 }
1321 
1322 /* Obsolete, do not use: */
1323 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1324 {
1325 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1326 }
1327 
1328 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1329 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1330 
1331 static inline unsigned int task_state_index(struct task_struct *tsk)
1332 {
1333 	unsigned int tsk_state = READ_ONCE(tsk->state);
1334 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1335 
1336 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1337 
1338 	if (tsk_state == TASK_IDLE)
1339 		state = TASK_REPORT_IDLE;
1340 
1341 	return fls(state);
1342 }
1343 
1344 static inline char task_index_to_char(unsigned int state)
1345 {
1346 	static const char state_char[] = "RSDTtXZPI";
1347 
1348 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1349 
1350 	return state_char[state];
1351 }
1352 
1353 static inline char task_state_to_char(struct task_struct *tsk)
1354 {
1355 	return task_index_to_char(task_state_index(tsk));
1356 }
1357 
1358 /**
1359  * is_global_init - check if a task structure is init. Since init
1360  * is free to have sub-threads we need to check tgid.
1361  * @tsk: Task structure to be checked.
1362  *
1363  * Check if a task structure is the first user space task the kernel created.
1364  *
1365  * Return: 1 if the task structure is init. 0 otherwise.
1366  */
1367 static inline int is_global_init(struct task_struct *tsk)
1368 {
1369 	return task_tgid_nr(tsk) == 1;
1370 }
1371 
1372 extern struct pid *cad_pid;
1373 
1374 /*
1375  * Per process flags
1376  */
1377 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1378 #define PF_EXITING		0x00000004	/* Getting shut down */
1379 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1380 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1381 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1382 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1383 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1384 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1385 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1386 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1387 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1388 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1389 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1390 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1391 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1392 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1393 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1394 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1395 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1396 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1397 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1398 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1399 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1400 #define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1401 #define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1402 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1403 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1404 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1405 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1406 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1407 
1408 /*
1409  * Only the _current_ task can read/write to tsk->flags, but other
1410  * tasks can access tsk->flags in readonly mode for example
1411  * with tsk_used_math (like during threaded core dumping).
1412  * There is however an exception to this rule during ptrace
1413  * or during fork: the ptracer task is allowed to write to the
1414  * child->flags of its traced child (same goes for fork, the parent
1415  * can write to the child->flags), because we're guaranteed the
1416  * child is not running and in turn not changing child->flags
1417  * at the same time the parent does it.
1418  */
1419 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1420 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1421 #define clear_used_math()			clear_stopped_child_used_math(current)
1422 #define set_used_math()				set_stopped_child_used_math(current)
1423 
1424 #define conditional_stopped_child_used_math(condition, child) \
1425 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1426 
1427 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1428 
1429 #define copy_to_stopped_child_used_math(child) \
1430 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1431 
1432 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1433 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1434 #define used_math()				tsk_used_math(current)
1435 
1436 static inline bool is_percpu_thread(void)
1437 {
1438 #ifdef CONFIG_SMP
1439 	return (current->flags & PF_NO_SETAFFINITY) &&
1440 		(current->nr_cpus_allowed  == 1);
1441 #else
1442 	return true;
1443 #endif
1444 }
1445 
1446 /* Per-process atomic flags. */
1447 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1448 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1449 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1450 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1451 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1452 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1453 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1454 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1455 
1456 #define TASK_PFA_TEST(name, func)					\
1457 	static inline bool task_##func(struct task_struct *p)		\
1458 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1459 
1460 #define TASK_PFA_SET(name, func)					\
1461 	static inline void task_set_##func(struct task_struct *p)	\
1462 	{ set_bit(PFA_##name, &p->atomic_flags); }
1463 
1464 #define TASK_PFA_CLEAR(name, func)					\
1465 	static inline void task_clear_##func(struct task_struct *p)	\
1466 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1467 
1468 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1469 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1470 
1471 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1472 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1473 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1474 
1475 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1476 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1477 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1478 
1479 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1480 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1481 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1482 
1483 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1484 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1485 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1486 
1487 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1488 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1489 
1490 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1491 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1492 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1493 
1494 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1495 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1496 
1497 static inline void
1498 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1499 {
1500 	current->flags &= ~flags;
1501 	current->flags |= orig_flags & flags;
1502 }
1503 
1504 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1505 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1506 #ifdef CONFIG_SMP
1507 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1508 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1509 #else
1510 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1511 {
1512 }
1513 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1514 {
1515 	if (!cpumask_test_cpu(0, new_mask))
1516 		return -EINVAL;
1517 	return 0;
1518 }
1519 #endif
1520 
1521 #ifndef cpu_relax_yield
1522 #define cpu_relax_yield() cpu_relax()
1523 #endif
1524 
1525 extern int yield_to(struct task_struct *p, bool preempt);
1526 extern void set_user_nice(struct task_struct *p, long nice);
1527 extern int task_prio(const struct task_struct *p);
1528 
1529 /**
1530  * task_nice - return the nice value of a given task.
1531  * @p: the task in question.
1532  *
1533  * Return: The nice value [ -20 ... 0 ... 19 ].
1534  */
1535 static inline int task_nice(const struct task_struct *p)
1536 {
1537 	return PRIO_TO_NICE((p)->static_prio);
1538 }
1539 
1540 extern int can_nice(const struct task_struct *p, const int nice);
1541 extern int task_curr(const struct task_struct *p);
1542 extern int idle_cpu(int cpu);
1543 extern int available_idle_cpu(int cpu);
1544 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1545 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1546 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1547 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1548 extern struct task_struct *idle_task(int cpu);
1549 
1550 /**
1551  * is_idle_task - is the specified task an idle task?
1552  * @p: the task in question.
1553  *
1554  * Return: 1 if @p is an idle task. 0 otherwise.
1555  */
1556 static inline bool is_idle_task(const struct task_struct *p)
1557 {
1558 	return !!(p->flags & PF_IDLE);
1559 }
1560 
1561 extern struct task_struct *curr_task(int cpu);
1562 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1563 
1564 void yield(void);
1565 
1566 union thread_union {
1567 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1568 	struct task_struct task;
1569 #endif
1570 #ifndef CONFIG_THREAD_INFO_IN_TASK
1571 	struct thread_info thread_info;
1572 #endif
1573 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1574 };
1575 
1576 #ifndef CONFIG_THREAD_INFO_IN_TASK
1577 extern struct thread_info init_thread_info;
1578 #endif
1579 
1580 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1581 
1582 #ifdef CONFIG_THREAD_INFO_IN_TASK
1583 static inline struct thread_info *task_thread_info(struct task_struct *task)
1584 {
1585 	return &task->thread_info;
1586 }
1587 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1588 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1589 #endif
1590 
1591 /*
1592  * find a task by one of its numerical ids
1593  *
1594  * find_task_by_pid_ns():
1595  *      finds a task by its pid in the specified namespace
1596  * find_task_by_vpid():
1597  *      finds a task by its virtual pid
1598  *
1599  * see also find_vpid() etc in include/linux/pid.h
1600  */
1601 
1602 extern struct task_struct *find_task_by_vpid(pid_t nr);
1603 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1604 
1605 /*
1606  * find a task by its virtual pid and get the task struct
1607  */
1608 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1609 
1610 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1611 extern int wake_up_process(struct task_struct *tsk);
1612 extern void wake_up_new_task(struct task_struct *tsk);
1613 
1614 #ifdef CONFIG_SMP
1615 extern void kick_process(struct task_struct *tsk);
1616 #else
1617 static inline void kick_process(struct task_struct *tsk) { }
1618 #endif
1619 
1620 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1621 
1622 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1623 {
1624 	__set_task_comm(tsk, from, false);
1625 }
1626 
1627 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1628 #define get_task_comm(buf, tsk) ({			\
1629 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1630 	__get_task_comm(buf, sizeof(buf), tsk);		\
1631 })
1632 
1633 #ifdef CONFIG_SMP
1634 void scheduler_ipi(void);
1635 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1636 #else
1637 static inline void scheduler_ipi(void) { }
1638 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1639 {
1640 	return 1;
1641 }
1642 #endif
1643 
1644 /*
1645  * Set thread flags in other task's structures.
1646  * See asm/thread_info.h for TIF_xxxx flags available:
1647  */
1648 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1649 {
1650 	set_ti_thread_flag(task_thread_info(tsk), flag);
1651 }
1652 
1653 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1654 {
1655 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1656 }
1657 
1658 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1659 					  bool value)
1660 {
1661 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1662 }
1663 
1664 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1665 {
1666 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1667 }
1668 
1669 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1670 {
1671 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1672 }
1673 
1674 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1675 {
1676 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1677 }
1678 
1679 static inline void set_tsk_need_resched(struct task_struct *tsk)
1680 {
1681 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1682 }
1683 
1684 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1685 {
1686 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1687 }
1688 
1689 static inline int test_tsk_need_resched(struct task_struct *tsk)
1690 {
1691 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1692 }
1693 
1694 /*
1695  * cond_resched() and cond_resched_lock(): latency reduction via
1696  * explicit rescheduling in places that are safe. The return
1697  * value indicates whether a reschedule was done in fact.
1698  * cond_resched_lock() will drop the spinlock before scheduling,
1699  */
1700 #ifndef CONFIG_PREEMPT
1701 extern int _cond_resched(void);
1702 #else
1703 static inline int _cond_resched(void) { return 0; }
1704 #endif
1705 
1706 #define cond_resched() ({			\
1707 	___might_sleep(__FILE__, __LINE__, 0);	\
1708 	_cond_resched();			\
1709 })
1710 
1711 extern int __cond_resched_lock(spinlock_t *lock);
1712 
1713 #define cond_resched_lock(lock) ({				\
1714 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1715 	__cond_resched_lock(lock);				\
1716 })
1717 
1718 static inline void cond_resched_rcu(void)
1719 {
1720 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1721 	rcu_read_unlock();
1722 	cond_resched();
1723 	rcu_read_lock();
1724 #endif
1725 }
1726 
1727 /*
1728  * Does a critical section need to be broken due to another
1729  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1730  * but a general need for low latency)
1731  */
1732 static inline int spin_needbreak(spinlock_t *lock)
1733 {
1734 #ifdef CONFIG_PREEMPT
1735 	return spin_is_contended(lock);
1736 #else
1737 	return 0;
1738 #endif
1739 }
1740 
1741 static __always_inline bool need_resched(void)
1742 {
1743 	return unlikely(tif_need_resched());
1744 }
1745 
1746 /*
1747  * Wrappers for p->thread_info->cpu access. No-op on UP.
1748  */
1749 #ifdef CONFIG_SMP
1750 
1751 static inline unsigned int task_cpu(const struct task_struct *p)
1752 {
1753 #ifdef CONFIG_THREAD_INFO_IN_TASK
1754 	return READ_ONCE(p->cpu);
1755 #else
1756 	return READ_ONCE(task_thread_info(p)->cpu);
1757 #endif
1758 }
1759 
1760 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1761 
1762 #else
1763 
1764 static inline unsigned int task_cpu(const struct task_struct *p)
1765 {
1766 	return 0;
1767 }
1768 
1769 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1770 {
1771 }
1772 
1773 #endif /* CONFIG_SMP */
1774 
1775 /*
1776  * In order to reduce various lock holder preemption latencies provide an
1777  * interface to see if a vCPU is currently running or not.
1778  *
1779  * This allows us to terminate optimistic spin loops and block, analogous to
1780  * the native optimistic spin heuristic of testing if the lock owner task is
1781  * running or not.
1782  */
1783 #ifndef vcpu_is_preempted
1784 # define vcpu_is_preempted(cpu)	false
1785 #endif
1786 
1787 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1788 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1789 
1790 #ifndef TASK_SIZE_OF
1791 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1792 #endif
1793 
1794 #ifdef CONFIG_RSEQ
1795 
1796 /*
1797  * Map the event mask on the user-space ABI enum rseq_cs_flags
1798  * for direct mask checks.
1799  */
1800 enum rseq_event_mask_bits {
1801 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1802 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1803 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1804 };
1805 
1806 enum rseq_event_mask {
1807 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1808 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1809 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1810 };
1811 
1812 static inline void rseq_set_notify_resume(struct task_struct *t)
1813 {
1814 	if (t->rseq)
1815 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1816 }
1817 
1818 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1819 
1820 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1821 					     struct pt_regs *regs)
1822 {
1823 	if (current->rseq)
1824 		__rseq_handle_notify_resume(ksig, regs);
1825 }
1826 
1827 static inline void rseq_signal_deliver(struct ksignal *ksig,
1828 				       struct pt_regs *regs)
1829 {
1830 	preempt_disable();
1831 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1832 	preempt_enable();
1833 	rseq_handle_notify_resume(ksig, regs);
1834 }
1835 
1836 /* rseq_preempt() requires preemption to be disabled. */
1837 static inline void rseq_preempt(struct task_struct *t)
1838 {
1839 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1840 	rseq_set_notify_resume(t);
1841 }
1842 
1843 /* rseq_migrate() requires preemption to be disabled. */
1844 static inline void rseq_migrate(struct task_struct *t)
1845 {
1846 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1847 	rseq_set_notify_resume(t);
1848 }
1849 
1850 /*
1851  * If parent process has a registered restartable sequences area, the
1852  * child inherits. Only applies when forking a process, not a thread.
1853  */
1854 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1855 {
1856 	if (clone_flags & CLONE_THREAD) {
1857 		t->rseq = NULL;
1858 		t->rseq_sig = 0;
1859 		t->rseq_event_mask = 0;
1860 	} else {
1861 		t->rseq = current->rseq;
1862 		t->rseq_sig = current->rseq_sig;
1863 		t->rseq_event_mask = current->rseq_event_mask;
1864 	}
1865 }
1866 
1867 static inline void rseq_execve(struct task_struct *t)
1868 {
1869 	t->rseq = NULL;
1870 	t->rseq_sig = 0;
1871 	t->rseq_event_mask = 0;
1872 }
1873 
1874 #else
1875 
1876 static inline void rseq_set_notify_resume(struct task_struct *t)
1877 {
1878 }
1879 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1880 					     struct pt_regs *regs)
1881 {
1882 }
1883 static inline void rseq_signal_deliver(struct ksignal *ksig,
1884 				       struct pt_regs *regs)
1885 {
1886 }
1887 static inline void rseq_preempt(struct task_struct *t)
1888 {
1889 }
1890 static inline void rseq_migrate(struct task_struct *t)
1891 {
1892 }
1893 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1894 {
1895 }
1896 static inline void rseq_execve(struct task_struct *t)
1897 {
1898 }
1899 
1900 #endif
1901 
1902 void __exit_umh(struct task_struct *tsk);
1903 
1904 static inline void exit_umh(struct task_struct *tsk)
1905 {
1906 	if (unlikely(tsk->flags & PF_UMH))
1907 		__exit_umh(tsk);
1908 }
1909 
1910 #ifdef CONFIG_DEBUG_RSEQ
1911 
1912 void rseq_syscall(struct pt_regs *regs);
1913 
1914 #else
1915 
1916 static inline void rseq_syscall(struct pt_regs *regs)
1917 {
1918 }
1919 
1920 #endif
1921 
1922 #endif
1923