1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/mm_types_task.h> 31 #include <linux/task_io_accounting.h> 32 #include <linux/posix-timers.h> 33 #include <linux/rseq.h> 34 #include <linux/kcsan.h> 35 36 /* task_struct member predeclarations (sorted alphabetically): */ 37 struct audit_context; 38 struct backing_dev_info; 39 struct bio_list; 40 struct blk_plug; 41 struct capture_control; 42 struct cfs_rq; 43 struct fs_struct; 44 struct futex_pi_state; 45 struct io_context; 46 struct mempolicy; 47 struct nameidata; 48 struct nsproxy; 49 struct perf_event_context; 50 struct pid_namespace; 51 struct pipe_inode_info; 52 struct rcu_node; 53 struct reclaim_state; 54 struct robust_list_head; 55 struct root_domain; 56 struct rq; 57 struct sched_attr; 58 struct sched_param; 59 struct seq_file; 60 struct sighand_struct; 61 struct signal_struct; 62 struct task_delay_info; 63 struct task_group; 64 65 /* 66 * Task state bitmask. NOTE! These bits are also 67 * encoded in fs/proc/array.c: get_task_state(). 68 * 69 * We have two separate sets of flags: task->state 70 * is about runnability, while task->exit_state are 71 * about the task exiting. Confusing, but this way 72 * modifying one set can't modify the other one by 73 * mistake. 74 */ 75 76 /* Used in tsk->state: */ 77 #define TASK_RUNNING 0x0000 78 #define TASK_INTERRUPTIBLE 0x0001 79 #define TASK_UNINTERRUPTIBLE 0x0002 80 #define __TASK_STOPPED 0x0004 81 #define __TASK_TRACED 0x0008 82 /* Used in tsk->exit_state: */ 83 #define EXIT_DEAD 0x0010 84 #define EXIT_ZOMBIE 0x0020 85 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 86 /* Used in tsk->state again: */ 87 #define TASK_PARKED 0x0040 88 #define TASK_DEAD 0x0080 89 #define TASK_WAKEKILL 0x0100 90 #define TASK_WAKING 0x0200 91 #define TASK_NOLOAD 0x0400 92 #define TASK_NEW 0x0800 93 #define TASK_STATE_MAX 0x1000 94 95 /* Convenience macros for the sake of set_current_state: */ 96 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 97 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 98 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 99 100 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 101 102 /* Convenience macros for the sake of wake_up(): */ 103 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 104 105 /* get_task_state(): */ 106 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 107 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 108 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 109 TASK_PARKED) 110 111 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 112 113 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 114 115 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 116 117 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 118 (task->flags & PF_FROZEN) == 0 && \ 119 (task->state & TASK_NOLOAD) == 0) 120 121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 122 123 /* 124 * Special states are those that do not use the normal wait-loop pattern. See 125 * the comment with set_special_state(). 126 */ 127 #define is_special_task_state(state) \ 128 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 129 130 #define __set_current_state(state_value) \ 131 do { \ 132 WARN_ON_ONCE(is_special_task_state(state_value));\ 133 current->task_state_change = _THIS_IP_; \ 134 current->state = (state_value); \ 135 } while (0) 136 137 #define set_current_state(state_value) \ 138 do { \ 139 WARN_ON_ONCE(is_special_task_state(state_value));\ 140 current->task_state_change = _THIS_IP_; \ 141 smp_store_mb(current->state, (state_value)); \ 142 } while (0) 143 144 #define set_special_state(state_value) \ 145 do { \ 146 unsigned long flags; /* may shadow */ \ 147 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 148 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 149 current->task_state_change = _THIS_IP_; \ 150 current->state = (state_value); \ 151 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 152 } while (0) 153 #else 154 /* 155 * set_current_state() includes a barrier so that the write of current->state 156 * is correctly serialised wrt the caller's subsequent test of whether to 157 * actually sleep: 158 * 159 * for (;;) { 160 * set_current_state(TASK_UNINTERRUPTIBLE); 161 * if (!need_sleep) 162 * break; 163 * 164 * schedule(); 165 * } 166 * __set_current_state(TASK_RUNNING); 167 * 168 * If the caller does not need such serialisation (because, for instance, the 169 * condition test and condition change and wakeup are under the same lock) then 170 * use __set_current_state(). 171 * 172 * The above is typically ordered against the wakeup, which does: 173 * 174 * need_sleep = false; 175 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 176 * 177 * where wake_up_state() executes a full memory barrier before accessing the 178 * task state. 179 * 180 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 181 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 182 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 183 * 184 * However, with slightly different timing the wakeup TASK_RUNNING store can 185 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 186 * a problem either because that will result in one extra go around the loop 187 * and our @cond test will save the day. 188 * 189 * Also see the comments of try_to_wake_up(). 190 */ 191 #define __set_current_state(state_value) \ 192 current->state = (state_value) 193 194 #define set_current_state(state_value) \ 195 smp_store_mb(current->state, (state_value)) 196 197 /* 198 * set_special_state() should be used for those states when the blocking task 199 * can not use the regular condition based wait-loop. In that case we must 200 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 201 * will not collide with our state change. 202 */ 203 #define set_special_state(state_value) \ 204 do { \ 205 unsigned long flags; /* may shadow */ \ 206 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 207 current->state = (state_value); \ 208 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 209 } while (0) 210 211 #endif 212 213 /* Task command name length: */ 214 #define TASK_COMM_LEN 16 215 216 extern void scheduler_tick(void); 217 218 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 219 220 extern long schedule_timeout(long timeout); 221 extern long schedule_timeout_interruptible(long timeout); 222 extern long schedule_timeout_killable(long timeout); 223 extern long schedule_timeout_uninterruptible(long timeout); 224 extern long schedule_timeout_idle(long timeout); 225 asmlinkage void schedule(void); 226 extern void schedule_preempt_disabled(void); 227 asmlinkage void preempt_schedule_irq(void); 228 229 extern int __must_check io_schedule_prepare(void); 230 extern void io_schedule_finish(int token); 231 extern long io_schedule_timeout(long timeout); 232 extern void io_schedule(void); 233 234 /** 235 * struct prev_cputime - snapshot of system and user cputime 236 * @utime: time spent in user mode 237 * @stime: time spent in system mode 238 * @lock: protects the above two fields 239 * 240 * Stores previous user/system time values such that we can guarantee 241 * monotonicity. 242 */ 243 struct prev_cputime { 244 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 245 u64 utime; 246 u64 stime; 247 raw_spinlock_t lock; 248 #endif 249 }; 250 251 enum vtime_state { 252 /* Task is sleeping or running in a CPU with VTIME inactive: */ 253 VTIME_INACTIVE = 0, 254 /* Task is idle */ 255 VTIME_IDLE, 256 /* Task runs in kernelspace in a CPU with VTIME active: */ 257 VTIME_SYS, 258 /* Task runs in userspace in a CPU with VTIME active: */ 259 VTIME_USER, 260 /* Task runs as guests in a CPU with VTIME active: */ 261 VTIME_GUEST, 262 }; 263 264 struct vtime { 265 seqcount_t seqcount; 266 unsigned long long starttime; 267 enum vtime_state state; 268 unsigned int cpu; 269 u64 utime; 270 u64 stime; 271 u64 gtime; 272 }; 273 274 /* 275 * Utilization clamp constraints. 276 * @UCLAMP_MIN: Minimum utilization 277 * @UCLAMP_MAX: Maximum utilization 278 * @UCLAMP_CNT: Utilization clamp constraints count 279 */ 280 enum uclamp_id { 281 UCLAMP_MIN = 0, 282 UCLAMP_MAX, 283 UCLAMP_CNT 284 }; 285 286 #ifdef CONFIG_SMP 287 extern struct root_domain def_root_domain; 288 extern struct mutex sched_domains_mutex; 289 #endif 290 291 struct sched_info { 292 #ifdef CONFIG_SCHED_INFO 293 /* Cumulative counters: */ 294 295 /* # of times we have run on this CPU: */ 296 unsigned long pcount; 297 298 /* Time spent waiting on a runqueue: */ 299 unsigned long long run_delay; 300 301 /* Timestamps: */ 302 303 /* When did we last run on a CPU? */ 304 unsigned long long last_arrival; 305 306 /* When were we last queued to run? */ 307 unsigned long long last_queued; 308 309 #endif /* CONFIG_SCHED_INFO */ 310 }; 311 312 /* 313 * Integer metrics need fixed point arithmetic, e.g., sched/fair 314 * has a few: load, load_avg, util_avg, freq, and capacity. 315 * 316 * We define a basic fixed point arithmetic range, and then formalize 317 * all these metrics based on that basic range. 318 */ 319 # define SCHED_FIXEDPOINT_SHIFT 10 320 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 321 322 /* Increase resolution of cpu_capacity calculations */ 323 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 324 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 325 326 struct load_weight { 327 unsigned long weight; 328 u32 inv_weight; 329 }; 330 331 /** 332 * struct util_est - Estimation utilization of FAIR tasks 333 * @enqueued: instantaneous estimated utilization of a task/cpu 334 * @ewma: the Exponential Weighted Moving Average (EWMA) 335 * utilization of a task 336 * 337 * Support data structure to track an Exponential Weighted Moving Average 338 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 339 * average each time a task completes an activation. Sample's weight is chosen 340 * so that the EWMA will be relatively insensitive to transient changes to the 341 * task's workload. 342 * 343 * The enqueued attribute has a slightly different meaning for tasks and cpus: 344 * - task: the task's util_avg at last task dequeue time 345 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 346 * Thus, the util_est.enqueued of a task represents the contribution on the 347 * estimated utilization of the CPU where that task is currently enqueued. 348 * 349 * Only for tasks we track a moving average of the past instantaneous 350 * estimated utilization. This allows to absorb sporadic drops in utilization 351 * of an otherwise almost periodic task. 352 */ 353 struct util_est { 354 unsigned int enqueued; 355 unsigned int ewma; 356 #define UTIL_EST_WEIGHT_SHIFT 2 357 } __attribute__((__aligned__(sizeof(u64)))); 358 359 /* 360 * The load/runnable/util_avg accumulates an infinite geometric series 361 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 362 * 363 * [load_avg definition] 364 * 365 * load_avg = runnable% * scale_load_down(load) 366 * 367 * [runnable_avg definition] 368 * 369 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 370 * 371 * [util_avg definition] 372 * 373 * util_avg = running% * SCHED_CAPACITY_SCALE 374 * 375 * where runnable% is the time ratio that a sched_entity is runnable and 376 * running% the time ratio that a sched_entity is running. 377 * 378 * For cfs_rq, they are the aggregated values of all runnable and blocked 379 * sched_entities. 380 * 381 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU 382 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 383 * for computing those signals (see update_rq_clock_pelt()) 384 * 385 * N.B., the above ratios (runnable% and running%) themselves are in the 386 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 387 * to as large a range as necessary. This is for example reflected by 388 * util_avg's SCHED_CAPACITY_SCALE. 389 * 390 * [Overflow issue] 391 * 392 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 393 * with the highest load (=88761), always runnable on a single cfs_rq, 394 * and should not overflow as the number already hits PID_MAX_LIMIT. 395 * 396 * For all other cases (including 32-bit kernels), struct load_weight's 397 * weight will overflow first before we do, because: 398 * 399 * Max(load_avg) <= Max(load.weight) 400 * 401 * Then it is the load_weight's responsibility to consider overflow 402 * issues. 403 */ 404 struct sched_avg { 405 u64 last_update_time; 406 u64 load_sum; 407 u64 runnable_sum; 408 u32 util_sum; 409 u32 period_contrib; 410 unsigned long load_avg; 411 unsigned long runnable_avg; 412 unsigned long util_avg; 413 struct util_est util_est; 414 } ____cacheline_aligned; 415 416 struct sched_statistics { 417 #ifdef CONFIG_SCHEDSTATS 418 u64 wait_start; 419 u64 wait_max; 420 u64 wait_count; 421 u64 wait_sum; 422 u64 iowait_count; 423 u64 iowait_sum; 424 425 u64 sleep_start; 426 u64 sleep_max; 427 s64 sum_sleep_runtime; 428 429 u64 block_start; 430 u64 block_max; 431 u64 exec_max; 432 u64 slice_max; 433 434 u64 nr_migrations_cold; 435 u64 nr_failed_migrations_affine; 436 u64 nr_failed_migrations_running; 437 u64 nr_failed_migrations_hot; 438 u64 nr_forced_migrations; 439 440 u64 nr_wakeups; 441 u64 nr_wakeups_sync; 442 u64 nr_wakeups_migrate; 443 u64 nr_wakeups_local; 444 u64 nr_wakeups_remote; 445 u64 nr_wakeups_affine; 446 u64 nr_wakeups_affine_attempts; 447 u64 nr_wakeups_passive; 448 u64 nr_wakeups_idle; 449 #endif 450 }; 451 452 struct sched_entity { 453 /* For load-balancing: */ 454 struct load_weight load; 455 struct rb_node run_node; 456 struct list_head group_node; 457 unsigned int on_rq; 458 459 u64 exec_start; 460 u64 sum_exec_runtime; 461 u64 vruntime; 462 u64 prev_sum_exec_runtime; 463 464 u64 nr_migrations; 465 466 struct sched_statistics statistics; 467 468 #ifdef CONFIG_FAIR_GROUP_SCHED 469 int depth; 470 struct sched_entity *parent; 471 /* rq on which this entity is (to be) queued: */ 472 struct cfs_rq *cfs_rq; 473 /* rq "owned" by this entity/group: */ 474 struct cfs_rq *my_q; 475 /* cached value of my_q->h_nr_running */ 476 unsigned long runnable_weight; 477 #endif 478 479 #ifdef CONFIG_SMP 480 /* 481 * Per entity load average tracking. 482 * 483 * Put into separate cache line so it does not 484 * collide with read-mostly values above. 485 */ 486 struct sched_avg avg; 487 #endif 488 }; 489 490 struct sched_rt_entity { 491 struct list_head run_list; 492 unsigned long timeout; 493 unsigned long watchdog_stamp; 494 unsigned int time_slice; 495 unsigned short on_rq; 496 unsigned short on_list; 497 498 struct sched_rt_entity *back; 499 #ifdef CONFIG_RT_GROUP_SCHED 500 struct sched_rt_entity *parent; 501 /* rq on which this entity is (to be) queued: */ 502 struct rt_rq *rt_rq; 503 /* rq "owned" by this entity/group: */ 504 struct rt_rq *my_q; 505 #endif 506 } __randomize_layout; 507 508 struct sched_dl_entity { 509 struct rb_node rb_node; 510 511 /* 512 * Original scheduling parameters. Copied here from sched_attr 513 * during sched_setattr(), they will remain the same until 514 * the next sched_setattr(). 515 */ 516 u64 dl_runtime; /* Maximum runtime for each instance */ 517 u64 dl_deadline; /* Relative deadline of each instance */ 518 u64 dl_period; /* Separation of two instances (period) */ 519 u64 dl_bw; /* dl_runtime / dl_period */ 520 u64 dl_density; /* dl_runtime / dl_deadline */ 521 522 /* 523 * Actual scheduling parameters. Initialized with the values above, 524 * they are continuously updated during task execution. Note that 525 * the remaining runtime could be < 0 in case we are in overrun. 526 */ 527 s64 runtime; /* Remaining runtime for this instance */ 528 u64 deadline; /* Absolute deadline for this instance */ 529 unsigned int flags; /* Specifying the scheduler behaviour */ 530 531 /* 532 * Some bool flags: 533 * 534 * @dl_throttled tells if we exhausted the runtime. If so, the 535 * task has to wait for a replenishment to be performed at the 536 * next firing of dl_timer. 537 * 538 * @dl_boosted tells if we are boosted due to DI. If so we are 539 * outside bandwidth enforcement mechanism (but only until we 540 * exit the critical section); 541 * 542 * @dl_yielded tells if task gave up the CPU before consuming 543 * all its available runtime during the last job. 544 * 545 * @dl_non_contending tells if the task is inactive while still 546 * contributing to the active utilization. In other words, it 547 * indicates if the inactive timer has been armed and its handler 548 * has not been executed yet. This flag is useful to avoid race 549 * conditions between the inactive timer handler and the wakeup 550 * code. 551 * 552 * @dl_overrun tells if the task asked to be informed about runtime 553 * overruns. 554 */ 555 unsigned int dl_throttled : 1; 556 unsigned int dl_boosted : 1; 557 unsigned int dl_yielded : 1; 558 unsigned int dl_non_contending : 1; 559 unsigned int dl_overrun : 1; 560 561 /* 562 * Bandwidth enforcement timer. Each -deadline task has its 563 * own bandwidth to be enforced, thus we need one timer per task. 564 */ 565 struct hrtimer dl_timer; 566 567 /* 568 * Inactive timer, responsible for decreasing the active utilization 569 * at the "0-lag time". When a -deadline task blocks, it contributes 570 * to GRUB's active utilization until the "0-lag time", hence a 571 * timer is needed to decrease the active utilization at the correct 572 * time. 573 */ 574 struct hrtimer inactive_timer; 575 }; 576 577 #ifdef CONFIG_UCLAMP_TASK 578 /* Number of utilization clamp buckets (shorter alias) */ 579 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 580 581 /* 582 * Utilization clamp for a scheduling entity 583 * @value: clamp value "assigned" to a se 584 * @bucket_id: bucket index corresponding to the "assigned" value 585 * @active: the se is currently refcounted in a rq's bucket 586 * @user_defined: the requested clamp value comes from user-space 587 * 588 * The bucket_id is the index of the clamp bucket matching the clamp value 589 * which is pre-computed and stored to avoid expensive integer divisions from 590 * the fast path. 591 * 592 * The active bit is set whenever a task has got an "effective" value assigned, 593 * which can be different from the clamp value "requested" from user-space. 594 * This allows to know a task is refcounted in the rq's bucket corresponding 595 * to the "effective" bucket_id. 596 * 597 * The user_defined bit is set whenever a task has got a task-specific clamp 598 * value requested from userspace, i.e. the system defaults apply to this task 599 * just as a restriction. This allows to relax default clamps when a less 600 * restrictive task-specific value has been requested, thus allowing to 601 * implement a "nice" semantic. For example, a task running with a 20% 602 * default boost can still drop its own boosting to 0%. 603 */ 604 struct uclamp_se { 605 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 606 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 607 unsigned int active : 1; 608 unsigned int user_defined : 1; 609 }; 610 #endif /* CONFIG_UCLAMP_TASK */ 611 612 union rcu_special { 613 struct { 614 u8 blocked; 615 u8 need_qs; 616 u8 exp_hint; /* Hint for performance. */ 617 u8 need_mb; /* Readers need smp_mb(). */ 618 } b; /* Bits. */ 619 u32 s; /* Set of bits. */ 620 }; 621 622 enum perf_event_task_context { 623 perf_invalid_context = -1, 624 perf_hw_context = 0, 625 perf_sw_context, 626 perf_nr_task_contexts, 627 }; 628 629 struct wake_q_node { 630 struct wake_q_node *next; 631 }; 632 633 struct task_struct { 634 #ifdef CONFIG_THREAD_INFO_IN_TASK 635 /* 636 * For reasons of header soup (see current_thread_info()), this 637 * must be the first element of task_struct. 638 */ 639 struct thread_info thread_info; 640 #endif 641 /* -1 unrunnable, 0 runnable, >0 stopped: */ 642 volatile long state; 643 644 /* 645 * This begins the randomizable portion of task_struct. Only 646 * scheduling-critical items should be added above here. 647 */ 648 randomized_struct_fields_start 649 650 void *stack; 651 refcount_t usage; 652 /* Per task flags (PF_*), defined further below: */ 653 unsigned int flags; 654 unsigned int ptrace; 655 656 #ifdef CONFIG_SMP 657 struct llist_node wake_entry; 658 unsigned int wake_entry_type; 659 int on_cpu; 660 #ifdef CONFIG_THREAD_INFO_IN_TASK 661 /* Current CPU: */ 662 unsigned int cpu; 663 #endif 664 unsigned int wakee_flips; 665 unsigned long wakee_flip_decay_ts; 666 struct task_struct *last_wakee; 667 668 /* 669 * recent_used_cpu is initially set as the last CPU used by a task 670 * that wakes affine another task. Waker/wakee relationships can 671 * push tasks around a CPU where each wakeup moves to the next one. 672 * Tracking a recently used CPU allows a quick search for a recently 673 * used CPU that may be idle. 674 */ 675 int recent_used_cpu; 676 int wake_cpu; 677 #endif 678 int on_rq; 679 680 int prio; 681 int static_prio; 682 int normal_prio; 683 unsigned int rt_priority; 684 685 const struct sched_class *sched_class; 686 struct sched_entity se; 687 struct sched_rt_entity rt; 688 #ifdef CONFIG_CGROUP_SCHED 689 struct task_group *sched_task_group; 690 #endif 691 struct sched_dl_entity dl; 692 693 #ifdef CONFIG_UCLAMP_TASK 694 /* Clamp values requested for a scheduling entity */ 695 struct uclamp_se uclamp_req[UCLAMP_CNT]; 696 /* Effective clamp values used for a scheduling entity */ 697 struct uclamp_se uclamp[UCLAMP_CNT]; 698 #endif 699 700 #ifdef CONFIG_PREEMPT_NOTIFIERS 701 /* List of struct preempt_notifier: */ 702 struct hlist_head preempt_notifiers; 703 #endif 704 705 #ifdef CONFIG_BLK_DEV_IO_TRACE 706 unsigned int btrace_seq; 707 #endif 708 709 unsigned int policy; 710 int nr_cpus_allowed; 711 const cpumask_t *cpus_ptr; 712 cpumask_t cpus_mask; 713 714 #ifdef CONFIG_PREEMPT_RCU 715 int rcu_read_lock_nesting; 716 union rcu_special rcu_read_unlock_special; 717 struct list_head rcu_node_entry; 718 struct rcu_node *rcu_blocked_node; 719 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 720 721 #ifdef CONFIG_TASKS_RCU 722 unsigned long rcu_tasks_nvcsw; 723 u8 rcu_tasks_holdout; 724 u8 rcu_tasks_idx; 725 int rcu_tasks_idle_cpu; 726 struct list_head rcu_tasks_holdout_list; 727 #endif /* #ifdef CONFIG_TASKS_RCU */ 728 729 #ifdef CONFIG_TASKS_TRACE_RCU 730 int trc_reader_nesting; 731 int trc_ipi_to_cpu; 732 union rcu_special trc_reader_special; 733 bool trc_reader_checked; 734 struct list_head trc_holdout_list; 735 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 736 737 struct sched_info sched_info; 738 739 struct list_head tasks; 740 #ifdef CONFIG_SMP 741 struct plist_node pushable_tasks; 742 struct rb_node pushable_dl_tasks; 743 #endif 744 745 struct mm_struct *mm; 746 struct mm_struct *active_mm; 747 748 /* Per-thread vma caching: */ 749 struct vmacache vmacache; 750 751 #ifdef SPLIT_RSS_COUNTING 752 struct task_rss_stat rss_stat; 753 #endif 754 int exit_state; 755 int exit_code; 756 int exit_signal; 757 /* The signal sent when the parent dies: */ 758 int pdeath_signal; 759 /* JOBCTL_*, siglock protected: */ 760 unsigned long jobctl; 761 762 /* Used for emulating ABI behavior of previous Linux versions: */ 763 unsigned int personality; 764 765 /* Scheduler bits, serialized by scheduler locks: */ 766 unsigned sched_reset_on_fork:1; 767 unsigned sched_contributes_to_load:1; 768 unsigned sched_migrated:1; 769 unsigned sched_remote_wakeup:1; 770 #ifdef CONFIG_PSI 771 unsigned sched_psi_wake_requeue:1; 772 #endif 773 774 /* Force alignment to the next boundary: */ 775 unsigned :0; 776 777 /* Unserialized, strictly 'current' */ 778 779 /* Bit to tell LSMs we're in execve(): */ 780 unsigned in_execve:1; 781 unsigned in_iowait:1; 782 #ifndef TIF_RESTORE_SIGMASK 783 unsigned restore_sigmask:1; 784 #endif 785 #ifdef CONFIG_MEMCG 786 unsigned in_user_fault:1; 787 #endif 788 #ifdef CONFIG_COMPAT_BRK 789 unsigned brk_randomized:1; 790 #endif 791 #ifdef CONFIG_CGROUPS 792 /* disallow userland-initiated cgroup migration */ 793 unsigned no_cgroup_migration:1; 794 /* task is frozen/stopped (used by the cgroup freezer) */ 795 unsigned frozen:1; 796 #endif 797 #ifdef CONFIG_BLK_CGROUP 798 unsigned use_memdelay:1; 799 #endif 800 #ifdef CONFIG_PSI 801 /* Stalled due to lack of memory */ 802 unsigned in_memstall:1; 803 #endif 804 805 unsigned long atomic_flags; /* Flags requiring atomic access. */ 806 807 struct restart_block restart_block; 808 809 pid_t pid; 810 pid_t tgid; 811 812 #ifdef CONFIG_STACKPROTECTOR 813 /* Canary value for the -fstack-protector GCC feature: */ 814 unsigned long stack_canary; 815 #endif 816 /* 817 * Pointers to the (original) parent process, youngest child, younger sibling, 818 * older sibling, respectively. (p->father can be replaced with 819 * p->real_parent->pid) 820 */ 821 822 /* Real parent process: */ 823 struct task_struct __rcu *real_parent; 824 825 /* Recipient of SIGCHLD, wait4() reports: */ 826 struct task_struct __rcu *parent; 827 828 /* 829 * Children/sibling form the list of natural children: 830 */ 831 struct list_head children; 832 struct list_head sibling; 833 struct task_struct *group_leader; 834 835 /* 836 * 'ptraced' is the list of tasks this task is using ptrace() on. 837 * 838 * This includes both natural children and PTRACE_ATTACH targets. 839 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 840 */ 841 struct list_head ptraced; 842 struct list_head ptrace_entry; 843 844 /* PID/PID hash table linkage. */ 845 struct pid *thread_pid; 846 struct hlist_node pid_links[PIDTYPE_MAX]; 847 struct list_head thread_group; 848 struct list_head thread_node; 849 850 struct completion *vfork_done; 851 852 /* CLONE_CHILD_SETTID: */ 853 int __user *set_child_tid; 854 855 /* CLONE_CHILD_CLEARTID: */ 856 int __user *clear_child_tid; 857 858 u64 utime; 859 u64 stime; 860 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 861 u64 utimescaled; 862 u64 stimescaled; 863 #endif 864 u64 gtime; 865 struct prev_cputime prev_cputime; 866 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 867 struct vtime vtime; 868 #endif 869 870 #ifdef CONFIG_NO_HZ_FULL 871 atomic_t tick_dep_mask; 872 #endif 873 /* Context switch counts: */ 874 unsigned long nvcsw; 875 unsigned long nivcsw; 876 877 /* Monotonic time in nsecs: */ 878 u64 start_time; 879 880 /* Boot based time in nsecs: */ 881 u64 start_boottime; 882 883 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 884 unsigned long min_flt; 885 unsigned long maj_flt; 886 887 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 888 struct posix_cputimers posix_cputimers; 889 890 /* Process credentials: */ 891 892 /* Tracer's credentials at attach: */ 893 const struct cred __rcu *ptracer_cred; 894 895 /* Objective and real subjective task credentials (COW): */ 896 const struct cred __rcu *real_cred; 897 898 /* Effective (overridable) subjective task credentials (COW): */ 899 const struct cred __rcu *cred; 900 901 #ifdef CONFIG_KEYS 902 /* Cached requested key. */ 903 struct key *cached_requested_key; 904 #endif 905 906 /* 907 * executable name, excluding path. 908 * 909 * - normally initialized setup_new_exec() 910 * - access it with [gs]et_task_comm() 911 * - lock it with task_lock() 912 */ 913 char comm[TASK_COMM_LEN]; 914 915 struct nameidata *nameidata; 916 917 #ifdef CONFIG_SYSVIPC 918 struct sysv_sem sysvsem; 919 struct sysv_shm sysvshm; 920 #endif 921 #ifdef CONFIG_DETECT_HUNG_TASK 922 unsigned long last_switch_count; 923 unsigned long last_switch_time; 924 #endif 925 /* Filesystem information: */ 926 struct fs_struct *fs; 927 928 /* Open file information: */ 929 struct files_struct *files; 930 931 /* Namespaces: */ 932 struct nsproxy *nsproxy; 933 934 /* Signal handlers: */ 935 struct signal_struct *signal; 936 struct sighand_struct __rcu *sighand; 937 sigset_t blocked; 938 sigset_t real_blocked; 939 /* Restored if set_restore_sigmask() was used: */ 940 sigset_t saved_sigmask; 941 struct sigpending pending; 942 unsigned long sas_ss_sp; 943 size_t sas_ss_size; 944 unsigned int sas_ss_flags; 945 946 struct callback_head *task_works; 947 948 #ifdef CONFIG_AUDIT 949 #ifdef CONFIG_AUDITSYSCALL 950 struct audit_context *audit_context; 951 #endif 952 kuid_t loginuid; 953 unsigned int sessionid; 954 #endif 955 struct seccomp seccomp; 956 957 /* Thread group tracking: */ 958 u64 parent_exec_id; 959 u64 self_exec_id; 960 961 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 962 spinlock_t alloc_lock; 963 964 /* Protection of the PI data structures: */ 965 raw_spinlock_t pi_lock; 966 967 struct wake_q_node wake_q; 968 969 #ifdef CONFIG_RT_MUTEXES 970 /* PI waiters blocked on a rt_mutex held by this task: */ 971 struct rb_root_cached pi_waiters; 972 /* Updated under owner's pi_lock and rq lock */ 973 struct task_struct *pi_top_task; 974 /* Deadlock detection and priority inheritance handling: */ 975 struct rt_mutex_waiter *pi_blocked_on; 976 #endif 977 978 #ifdef CONFIG_DEBUG_MUTEXES 979 /* Mutex deadlock detection: */ 980 struct mutex_waiter *blocked_on; 981 #endif 982 983 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 984 int non_block_count; 985 #endif 986 987 #ifdef CONFIG_TRACE_IRQFLAGS 988 unsigned int irq_events; 989 unsigned int hardirq_threaded; 990 unsigned long hardirq_enable_ip; 991 unsigned long hardirq_disable_ip; 992 unsigned int hardirq_enable_event; 993 unsigned int hardirq_disable_event; 994 int hardirqs_enabled; 995 int hardirq_context; 996 u64 hardirq_chain_key; 997 unsigned long softirq_disable_ip; 998 unsigned long softirq_enable_ip; 999 unsigned int softirq_disable_event; 1000 unsigned int softirq_enable_event; 1001 int softirqs_enabled; 1002 int softirq_context; 1003 int irq_config; 1004 #endif 1005 1006 #ifdef CONFIG_LOCKDEP 1007 # define MAX_LOCK_DEPTH 48UL 1008 u64 curr_chain_key; 1009 int lockdep_depth; 1010 unsigned int lockdep_recursion; 1011 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1012 #endif 1013 1014 #ifdef CONFIG_UBSAN 1015 unsigned int in_ubsan; 1016 #endif 1017 1018 /* Journalling filesystem info: */ 1019 void *journal_info; 1020 1021 /* Stacked block device info: */ 1022 struct bio_list *bio_list; 1023 1024 #ifdef CONFIG_BLOCK 1025 /* Stack plugging: */ 1026 struct blk_plug *plug; 1027 #endif 1028 1029 /* VM state: */ 1030 struct reclaim_state *reclaim_state; 1031 1032 struct backing_dev_info *backing_dev_info; 1033 1034 struct io_context *io_context; 1035 1036 #ifdef CONFIG_COMPACTION 1037 struct capture_control *capture_control; 1038 #endif 1039 /* Ptrace state: */ 1040 unsigned long ptrace_message; 1041 kernel_siginfo_t *last_siginfo; 1042 1043 struct task_io_accounting ioac; 1044 #ifdef CONFIG_PSI 1045 /* Pressure stall state */ 1046 unsigned int psi_flags; 1047 #endif 1048 #ifdef CONFIG_TASK_XACCT 1049 /* Accumulated RSS usage: */ 1050 u64 acct_rss_mem1; 1051 /* Accumulated virtual memory usage: */ 1052 u64 acct_vm_mem1; 1053 /* stime + utime since last update: */ 1054 u64 acct_timexpd; 1055 #endif 1056 #ifdef CONFIG_CPUSETS 1057 /* Protected by ->alloc_lock: */ 1058 nodemask_t mems_allowed; 1059 /* Seqence number to catch updates: */ 1060 seqcount_t mems_allowed_seq; 1061 int cpuset_mem_spread_rotor; 1062 int cpuset_slab_spread_rotor; 1063 #endif 1064 #ifdef CONFIG_CGROUPS 1065 /* Control Group info protected by css_set_lock: */ 1066 struct css_set __rcu *cgroups; 1067 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1068 struct list_head cg_list; 1069 #endif 1070 #ifdef CONFIG_X86_CPU_RESCTRL 1071 u32 closid; 1072 u32 rmid; 1073 #endif 1074 #ifdef CONFIG_FUTEX 1075 struct robust_list_head __user *robust_list; 1076 #ifdef CONFIG_COMPAT 1077 struct compat_robust_list_head __user *compat_robust_list; 1078 #endif 1079 struct list_head pi_state_list; 1080 struct futex_pi_state *pi_state_cache; 1081 struct mutex futex_exit_mutex; 1082 unsigned int futex_state; 1083 #endif 1084 #ifdef CONFIG_PERF_EVENTS 1085 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1086 struct mutex perf_event_mutex; 1087 struct list_head perf_event_list; 1088 #endif 1089 #ifdef CONFIG_DEBUG_PREEMPT 1090 unsigned long preempt_disable_ip; 1091 #endif 1092 #ifdef CONFIG_NUMA 1093 /* Protected by alloc_lock: */ 1094 struct mempolicy *mempolicy; 1095 short il_prev; 1096 short pref_node_fork; 1097 #endif 1098 #ifdef CONFIG_NUMA_BALANCING 1099 int numa_scan_seq; 1100 unsigned int numa_scan_period; 1101 unsigned int numa_scan_period_max; 1102 int numa_preferred_nid; 1103 unsigned long numa_migrate_retry; 1104 /* Migration stamp: */ 1105 u64 node_stamp; 1106 u64 last_task_numa_placement; 1107 u64 last_sum_exec_runtime; 1108 struct callback_head numa_work; 1109 1110 /* 1111 * This pointer is only modified for current in syscall and 1112 * pagefault context (and for tasks being destroyed), so it can be read 1113 * from any of the following contexts: 1114 * - RCU read-side critical section 1115 * - current->numa_group from everywhere 1116 * - task's runqueue locked, task not running 1117 */ 1118 struct numa_group __rcu *numa_group; 1119 1120 /* 1121 * numa_faults is an array split into four regions: 1122 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1123 * in this precise order. 1124 * 1125 * faults_memory: Exponential decaying average of faults on a per-node 1126 * basis. Scheduling placement decisions are made based on these 1127 * counts. The values remain static for the duration of a PTE scan. 1128 * faults_cpu: Track the nodes the process was running on when a NUMA 1129 * hinting fault was incurred. 1130 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1131 * during the current scan window. When the scan completes, the counts 1132 * in faults_memory and faults_cpu decay and these values are copied. 1133 */ 1134 unsigned long *numa_faults; 1135 unsigned long total_numa_faults; 1136 1137 /* 1138 * numa_faults_locality tracks if faults recorded during the last 1139 * scan window were remote/local or failed to migrate. The task scan 1140 * period is adapted based on the locality of the faults with different 1141 * weights depending on whether they were shared or private faults 1142 */ 1143 unsigned long numa_faults_locality[3]; 1144 1145 unsigned long numa_pages_migrated; 1146 #endif /* CONFIG_NUMA_BALANCING */ 1147 1148 #ifdef CONFIG_RSEQ 1149 struct rseq __user *rseq; 1150 u32 rseq_sig; 1151 /* 1152 * RmW on rseq_event_mask must be performed atomically 1153 * with respect to preemption. 1154 */ 1155 unsigned long rseq_event_mask; 1156 #endif 1157 1158 struct tlbflush_unmap_batch tlb_ubc; 1159 1160 union { 1161 refcount_t rcu_users; 1162 struct rcu_head rcu; 1163 }; 1164 1165 /* Cache last used pipe for splice(): */ 1166 struct pipe_inode_info *splice_pipe; 1167 1168 struct page_frag task_frag; 1169 1170 #ifdef CONFIG_TASK_DELAY_ACCT 1171 struct task_delay_info *delays; 1172 #endif 1173 1174 #ifdef CONFIG_FAULT_INJECTION 1175 int make_it_fail; 1176 unsigned int fail_nth; 1177 #endif 1178 /* 1179 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1180 * balance_dirty_pages() for a dirty throttling pause: 1181 */ 1182 int nr_dirtied; 1183 int nr_dirtied_pause; 1184 /* Start of a write-and-pause period: */ 1185 unsigned long dirty_paused_when; 1186 1187 #ifdef CONFIG_LATENCYTOP 1188 int latency_record_count; 1189 struct latency_record latency_record[LT_SAVECOUNT]; 1190 #endif 1191 /* 1192 * Time slack values; these are used to round up poll() and 1193 * select() etc timeout values. These are in nanoseconds. 1194 */ 1195 u64 timer_slack_ns; 1196 u64 default_timer_slack_ns; 1197 1198 #ifdef CONFIG_KASAN 1199 unsigned int kasan_depth; 1200 #endif 1201 #ifdef CONFIG_KCSAN 1202 struct kcsan_ctx kcsan_ctx; 1203 #endif 1204 1205 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1206 /* Index of current stored address in ret_stack: */ 1207 int curr_ret_stack; 1208 int curr_ret_depth; 1209 1210 /* Stack of return addresses for return function tracing: */ 1211 struct ftrace_ret_stack *ret_stack; 1212 1213 /* Timestamp for last schedule: */ 1214 unsigned long long ftrace_timestamp; 1215 1216 /* 1217 * Number of functions that haven't been traced 1218 * because of depth overrun: 1219 */ 1220 atomic_t trace_overrun; 1221 1222 /* Pause tracing: */ 1223 atomic_t tracing_graph_pause; 1224 #endif 1225 1226 #ifdef CONFIG_TRACING 1227 /* State flags for use by tracers: */ 1228 unsigned long trace; 1229 1230 /* Bitmask and counter of trace recursion: */ 1231 unsigned long trace_recursion; 1232 #endif /* CONFIG_TRACING */ 1233 1234 #ifdef CONFIG_KCOV 1235 /* See kernel/kcov.c for more details. */ 1236 1237 /* Coverage collection mode enabled for this task (0 if disabled): */ 1238 unsigned int kcov_mode; 1239 1240 /* Size of the kcov_area: */ 1241 unsigned int kcov_size; 1242 1243 /* Buffer for coverage collection: */ 1244 void *kcov_area; 1245 1246 /* KCOV descriptor wired with this task or NULL: */ 1247 struct kcov *kcov; 1248 1249 /* KCOV common handle for remote coverage collection: */ 1250 u64 kcov_handle; 1251 1252 /* KCOV sequence number: */ 1253 int kcov_sequence; 1254 1255 /* Collect coverage from softirq context: */ 1256 unsigned int kcov_softirq; 1257 #endif 1258 1259 #ifdef CONFIG_MEMCG 1260 struct mem_cgroup *memcg_in_oom; 1261 gfp_t memcg_oom_gfp_mask; 1262 int memcg_oom_order; 1263 1264 /* Number of pages to reclaim on returning to userland: */ 1265 unsigned int memcg_nr_pages_over_high; 1266 1267 /* Used by memcontrol for targeted memcg charge: */ 1268 struct mem_cgroup *active_memcg; 1269 #endif 1270 1271 #ifdef CONFIG_BLK_CGROUP 1272 struct request_queue *throttle_queue; 1273 #endif 1274 1275 #ifdef CONFIG_UPROBES 1276 struct uprobe_task *utask; 1277 #endif 1278 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1279 unsigned int sequential_io; 1280 unsigned int sequential_io_avg; 1281 #endif 1282 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1283 unsigned long task_state_change; 1284 #endif 1285 int pagefault_disabled; 1286 #ifdef CONFIG_MMU 1287 struct task_struct *oom_reaper_list; 1288 #endif 1289 #ifdef CONFIG_VMAP_STACK 1290 struct vm_struct *stack_vm_area; 1291 #endif 1292 #ifdef CONFIG_THREAD_INFO_IN_TASK 1293 /* A live task holds one reference: */ 1294 refcount_t stack_refcount; 1295 #endif 1296 #ifdef CONFIG_LIVEPATCH 1297 int patch_state; 1298 #endif 1299 #ifdef CONFIG_SECURITY 1300 /* Used by LSM modules for access restriction: */ 1301 void *security; 1302 #endif 1303 1304 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1305 unsigned long lowest_stack; 1306 unsigned long prev_lowest_stack; 1307 #endif 1308 1309 #ifdef CONFIG_X86_MCE 1310 u64 mce_addr; 1311 __u64 mce_ripv : 1, 1312 mce_whole_page : 1, 1313 __mce_reserved : 62; 1314 struct callback_head mce_kill_me; 1315 #endif 1316 1317 /* 1318 * New fields for task_struct should be added above here, so that 1319 * they are included in the randomized portion of task_struct. 1320 */ 1321 randomized_struct_fields_end 1322 1323 /* CPU-specific state of this task: */ 1324 struct thread_struct thread; 1325 1326 /* 1327 * WARNING: on x86, 'thread_struct' contains a variable-sized 1328 * structure. It *MUST* be at the end of 'task_struct'. 1329 * 1330 * Do not put anything below here! 1331 */ 1332 }; 1333 1334 static inline struct pid *task_pid(struct task_struct *task) 1335 { 1336 return task->thread_pid; 1337 } 1338 1339 /* 1340 * the helpers to get the task's different pids as they are seen 1341 * from various namespaces 1342 * 1343 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1344 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1345 * current. 1346 * task_xid_nr_ns() : id seen from the ns specified; 1347 * 1348 * see also pid_nr() etc in include/linux/pid.h 1349 */ 1350 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1351 1352 static inline pid_t task_pid_nr(struct task_struct *tsk) 1353 { 1354 return tsk->pid; 1355 } 1356 1357 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1358 { 1359 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1360 } 1361 1362 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1363 { 1364 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1365 } 1366 1367 1368 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1369 { 1370 return tsk->tgid; 1371 } 1372 1373 /** 1374 * pid_alive - check that a task structure is not stale 1375 * @p: Task structure to be checked. 1376 * 1377 * Test if a process is not yet dead (at most zombie state) 1378 * If pid_alive fails, then pointers within the task structure 1379 * can be stale and must not be dereferenced. 1380 * 1381 * Return: 1 if the process is alive. 0 otherwise. 1382 */ 1383 static inline int pid_alive(const struct task_struct *p) 1384 { 1385 return p->thread_pid != NULL; 1386 } 1387 1388 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1389 { 1390 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1391 } 1392 1393 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1394 { 1395 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1396 } 1397 1398 1399 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1400 { 1401 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1402 } 1403 1404 static inline pid_t task_session_vnr(struct task_struct *tsk) 1405 { 1406 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1407 } 1408 1409 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1410 { 1411 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1412 } 1413 1414 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1415 { 1416 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1417 } 1418 1419 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1420 { 1421 pid_t pid = 0; 1422 1423 rcu_read_lock(); 1424 if (pid_alive(tsk)) 1425 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1426 rcu_read_unlock(); 1427 1428 return pid; 1429 } 1430 1431 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1432 { 1433 return task_ppid_nr_ns(tsk, &init_pid_ns); 1434 } 1435 1436 /* Obsolete, do not use: */ 1437 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1438 { 1439 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1440 } 1441 1442 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1443 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1444 1445 static inline unsigned int task_state_index(struct task_struct *tsk) 1446 { 1447 unsigned int tsk_state = READ_ONCE(tsk->state); 1448 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1449 1450 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1451 1452 if (tsk_state == TASK_IDLE) 1453 state = TASK_REPORT_IDLE; 1454 1455 return fls(state); 1456 } 1457 1458 static inline char task_index_to_char(unsigned int state) 1459 { 1460 static const char state_char[] = "RSDTtXZPI"; 1461 1462 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1463 1464 return state_char[state]; 1465 } 1466 1467 static inline char task_state_to_char(struct task_struct *tsk) 1468 { 1469 return task_index_to_char(task_state_index(tsk)); 1470 } 1471 1472 /** 1473 * is_global_init - check if a task structure is init. Since init 1474 * is free to have sub-threads we need to check tgid. 1475 * @tsk: Task structure to be checked. 1476 * 1477 * Check if a task structure is the first user space task the kernel created. 1478 * 1479 * Return: 1 if the task structure is init. 0 otherwise. 1480 */ 1481 static inline int is_global_init(struct task_struct *tsk) 1482 { 1483 return task_tgid_nr(tsk) == 1; 1484 } 1485 1486 extern struct pid *cad_pid; 1487 1488 /* 1489 * Per process flags 1490 */ 1491 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1492 #define PF_EXITING 0x00000004 /* Getting shut down */ 1493 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1494 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1495 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1496 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1497 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1498 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1499 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1500 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1501 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1502 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1503 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1504 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1505 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1506 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1507 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1508 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1509 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1510 * I am cleaning dirty pages from some other bdi. */ 1511 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1512 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1513 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1514 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1515 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1516 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1517 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1518 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */ 1519 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1520 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1521 1522 /* 1523 * Only the _current_ task can read/write to tsk->flags, but other 1524 * tasks can access tsk->flags in readonly mode for example 1525 * with tsk_used_math (like during threaded core dumping). 1526 * There is however an exception to this rule during ptrace 1527 * or during fork: the ptracer task is allowed to write to the 1528 * child->flags of its traced child (same goes for fork, the parent 1529 * can write to the child->flags), because we're guaranteed the 1530 * child is not running and in turn not changing child->flags 1531 * at the same time the parent does it. 1532 */ 1533 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1534 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1535 #define clear_used_math() clear_stopped_child_used_math(current) 1536 #define set_used_math() set_stopped_child_used_math(current) 1537 1538 #define conditional_stopped_child_used_math(condition, child) \ 1539 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1540 1541 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1542 1543 #define copy_to_stopped_child_used_math(child) \ 1544 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1545 1546 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1547 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1548 #define used_math() tsk_used_math(current) 1549 1550 static inline bool is_percpu_thread(void) 1551 { 1552 #ifdef CONFIG_SMP 1553 return (current->flags & PF_NO_SETAFFINITY) && 1554 (current->nr_cpus_allowed == 1); 1555 #else 1556 return true; 1557 #endif 1558 } 1559 1560 /* Per-process atomic flags. */ 1561 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1562 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1563 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1564 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1565 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1566 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1567 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1568 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1569 1570 #define TASK_PFA_TEST(name, func) \ 1571 static inline bool task_##func(struct task_struct *p) \ 1572 { return test_bit(PFA_##name, &p->atomic_flags); } 1573 1574 #define TASK_PFA_SET(name, func) \ 1575 static inline void task_set_##func(struct task_struct *p) \ 1576 { set_bit(PFA_##name, &p->atomic_flags); } 1577 1578 #define TASK_PFA_CLEAR(name, func) \ 1579 static inline void task_clear_##func(struct task_struct *p) \ 1580 { clear_bit(PFA_##name, &p->atomic_flags); } 1581 1582 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1583 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1584 1585 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1586 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1587 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1588 1589 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1590 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1591 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1592 1593 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1594 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1595 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1596 1597 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1598 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1599 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1600 1601 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1602 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1603 1604 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1605 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1606 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1607 1608 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1609 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1610 1611 static inline void 1612 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1613 { 1614 current->flags &= ~flags; 1615 current->flags |= orig_flags & flags; 1616 } 1617 1618 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1619 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1620 #ifdef CONFIG_SMP 1621 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1622 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1623 #else 1624 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1625 { 1626 } 1627 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1628 { 1629 if (!cpumask_test_cpu(0, new_mask)) 1630 return -EINVAL; 1631 return 0; 1632 } 1633 #endif 1634 1635 extern int yield_to(struct task_struct *p, bool preempt); 1636 extern void set_user_nice(struct task_struct *p, long nice); 1637 extern int task_prio(const struct task_struct *p); 1638 1639 /** 1640 * task_nice - return the nice value of a given task. 1641 * @p: the task in question. 1642 * 1643 * Return: The nice value [ -20 ... 0 ... 19 ]. 1644 */ 1645 static inline int task_nice(const struct task_struct *p) 1646 { 1647 return PRIO_TO_NICE((p)->static_prio); 1648 } 1649 1650 extern int can_nice(const struct task_struct *p, const int nice); 1651 extern int task_curr(const struct task_struct *p); 1652 extern int idle_cpu(int cpu); 1653 extern int available_idle_cpu(int cpu); 1654 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1655 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1656 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1657 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1658 extern struct task_struct *idle_task(int cpu); 1659 1660 /** 1661 * is_idle_task - is the specified task an idle task? 1662 * @p: the task in question. 1663 * 1664 * Return: 1 if @p is an idle task. 0 otherwise. 1665 */ 1666 static inline bool is_idle_task(const struct task_struct *p) 1667 { 1668 return !!(p->flags & PF_IDLE); 1669 } 1670 1671 extern struct task_struct *curr_task(int cpu); 1672 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1673 1674 void yield(void); 1675 1676 union thread_union { 1677 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1678 struct task_struct task; 1679 #endif 1680 #ifndef CONFIG_THREAD_INFO_IN_TASK 1681 struct thread_info thread_info; 1682 #endif 1683 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1684 }; 1685 1686 #ifndef CONFIG_THREAD_INFO_IN_TASK 1687 extern struct thread_info init_thread_info; 1688 #endif 1689 1690 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1691 1692 #ifdef CONFIG_THREAD_INFO_IN_TASK 1693 static inline struct thread_info *task_thread_info(struct task_struct *task) 1694 { 1695 return &task->thread_info; 1696 } 1697 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1698 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1699 #endif 1700 1701 /* 1702 * find a task by one of its numerical ids 1703 * 1704 * find_task_by_pid_ns(): 1705 * finds a task by its pid in the specified namespace 1706 * find_task_by_vpid(): 1707 * finds a task by its virtual pid 1708 * 1709 * see also find_vpid() etc in include/linux/pid.h 1710 */ 1711 1712 extern struct task_struct *find_task_by_vpid(pid_t nr); 1713 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1714 1715 /* 1716 * find a task by its virtual pid and get the task struct 1717 */ 1718 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1719 1720 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1721 extern int wake_up_process(struct task_struct *tsk); 1722 extern void wake_up_new_task(struct task_struct *tsk); 1723 1724 #ifdef CONFIG_SMP 1725 extern void kick_process(struct task_struct *tsk); 1726 #else 1727 static inline void kick_process(struct task_struct *tsk) { } 1728 #endif 1729 1730 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1731 1732 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1733 { 1734 __set_task_comm(tsk, from, false); 1735 } 1736 1737 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1738 #define get_task_comm(buf, tsk) ({ \ 1739 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1740 __get_task_comm(buf, sizeof(buf), tsk); \ 1741 }) 1742 1743 #ifdef CONFIG_SMP 1744 static __always_inline void scheduler_ipi(void) 1745 { 1746 /* 1747 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1748 * TIF_NEED_RESCHED remotely (for the first time) will also send 1749 * this IPI. 1750 */ 1751 preempt_fold_need_resched(); 1752 } 1753 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1754 #else 1755 static inline void scheduler_ipi(void) { } 1756 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1757 { 1758 return 1; 1759 } 1760 #endif 1761 1762 /* 1763 * Set thread flags in other task's structures. 1764 * See asm/thread_info.h for TIF_xxxx flags available: 1765 */ 1766 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1767 { 1768 set_ti_thread_flag(task_thread_info(tsk), flag); 1769 } 1770 1771 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1772 { 1773 clear_ti_thread_flag(task_thread_info(tsk), flag); 1774 } 1775 1776 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1777 bool value) 1778 { 1779 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1780 } 1781 1782 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1783 { 1784 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1785 } 1786 1787 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1788 { 1789 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1790 } 1791 1792 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1793 { 1794 return test_ti_thread_flag(task_thread_info(tsk), flag); 1795 } 1796 1797 static inline void set_tsk_need_resched(struct task_struct *tsk) 1798 { 1799 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1800 } 1801 1802 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1803 { 1804 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1805 } 1806 1807 static inline int test_tsk_need_resched(struct task_struct *tsk) 1808 { 1809 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1810 } 1811 1812 /* 1813 * cond_resched() and cond_resched_lock(): latency reduction via 1814 * explicit rescheduling in places that are safe. The return 1815 * value indicates whether a reschedule was done in fact. 1816 * cond_resched_lock() will drop the spinlock before scheduling, 1817 */ 1818 #ifndef CONFIG_PREEMPTION 1819 extern int _cond_resched(void); 1820 #else 1821 static inline int _cond_resched(void) { return 0; } 1822 #endif 1823 1824 #define cond_resched() ({ \ 1825 ___might_sleep(__FILE__, __LINE__, 0); \ 1826 _cond_resched(); \ 1827 }) 1828 1829 extern int __cond_resched_lock(spinlock_t *lock); 1830 1831 #define cond_resched_lock(lock) ({ \ 1832 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1833 __cond_resched_lock(lock); \ 1834 }) 1835 1836 static inline void cond_resched_rcu(void) 1837 { 1838 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1839 rcu_read_unlock(); 1840 cond_resched(); 1841 rcu_read_lock(); 1842 #endif 1843 } 1844 1845 /* 1846 * Does a critical section need to be broken due to another 1847 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1848 * but a general need for low latency) 1849 */ 1850 static inline int spin_needbreak(spinlock_t *lock) 1851 { 1852 #ifdef CONFIG_PREEMPTION 1853 return spin_is_contended(lock); 1854 #else 1855 return 0; 1856 #endif 1857 } 1858 1859 static __always_inline bool need_resched(void) 1860 { 1861 return unlikely(tif_need_resched()); 1862 } 1863 1864 /* 1865 * Wrappers for p->thread_info->cpu access. No-op on UP. 1866 */ 1867 #ifdef CONFIG_SMP 1868 1869 static inline unsigned int task_cpu(const struct task_struct *p) 1870 { 1871 #ifdef CONFIG_THREAD_INFO_IN_TASK 1872 return READ_ONCE(p->cpu); 1873 #else 1874 return READ_ONCE(task_thread_info(p)->cpu); 1875 #endif 1876 } 1877 1878 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1879 1880 #else 1881 1882 static inline unsigned int task_cpu(const struct task_struct *p) 1883 { 1884 return 0; 1885 } 1886 1887 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1888 { 1889 } 1890 1891 #endif /* CONFIG_SMP */ 1892 1893 /* 1894 * In order to reduce various lock holder preemption latencies provide an 1895 * interface to see if a vCPU is currently running or not. 1896 * 1897 * This allows us to terminate optimistic spin loops and block, analogous to 1898 * the native optimistic spin heuristic of testing if the lock owner task is 1899 * running or not. 1900 */ 1901 #ifndef vcpu_is_preempted 1902 static inline bool vcpu_is_preempted(int cpu) 1903 { 1904 return false; 1905 } 1906 #endif 1907 1908 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1909 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1910 1911 #ifndef TASK_SIZE_OF 1912 #define TASK_SIZE_OF(tsk) TASK_SIZE 1913 #endif 1914 1915 #ifdef CONFIG_RSEQ 1916 1917 /* 1918 * Map the event mask on the user-space ABI enum rseq_cs_flags 1919 * for direct mask checks. 1920 */ 1921 enum rseq_event_mask_bits { 1922 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1923 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1924 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1925 }; 1926 1927 enum rseq_event_mask { 1928 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1929 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1930 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1931 }; 1932 1933 static inline void rseq_set_notify_resume(struct task_struct *t) 1934 { 1935 if (t->rseq) 1936 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1937 } 1938 1939 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1940 1941 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1942 struct pt_regs *regs) 1943 { 1944 if (current->rseq) 1945 __rseq_handle_notify_resume(ksig, regs); 1946 } 1947 1948 static inline void rseq_signal_deliver(struct ksignal *ksig, 1949 struct pt_regs *regs) 1950 { 1951 preempt_disable(); 1952 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1953 preempt_enable(); 1954 rseq_handle_notify_resume(ksig, regs); 1955 } 1956 1957 /* rseq_preempt() requires preemption to be disabled. */ 1958 static inline void rseq_preempt(struct task_struct *t) 1959 { 1960 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1961 rseq_set_notify_resume(t); 1962 } 1963 1964 /* rseq_migrate() requires preemption to be disabled. */ 1965 static inline void rseq_migrate(struct task_struct *t) 1966 { 1967 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1968 rseq_set_notify_resume(t); 1969 } 1970 1971 /* 1972 * If parent process has a registered restartable sequences area, the 1973 * child inherits. Unregister rseq for a clone with CLONE_VM set. 1974 */ 1975 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1976 { 1977 if (clone_flags & CLONE_VM) { 1978 t->rseq = NULL; 1979 t->rseq_sig = 0; 1980 t->rseq_event_mask = 0; 1981 } else { 1982 t->rseq = current->rseq; 1983 t->rseq_sig = current->rseq_sig; 1984 t->rseq_event_mask = current->rseq_event_mask; 1985 } 1986 } 1987 1988 static inline void rseq_execve(struct task_struct *t) 1989 { 1990 t->rseq = NULL; 1991 t->rseq_sig = 0; 1992 t->rseq_event_mask = 0; 1993 } 1994 1995 #else 1996 1997 static inline void rseq_set_notify_resume(struct task_struct *t) 1998 { 1999 } 2000 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2001 struct pt_regs *regs) 2002 { 2003 } 2004 static inline void rseq_signal_deliver(struct ksignal *ksig, 2005 struct pt_regs *regs) 2006 { 2007 } 2008 static inline void rseq_preempt(struct task_struct *t) 2009 { 2010 } 2011 static inline void rseq_migrate(struct task_struct *t) 2012 { 2013 } 2014 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2015 { 2016 } 2017 static inline void rseq_execve(struct task_struct *t) 2018 { 2019 } 2020 2021 #endif 2022 2023 void __exit_umh(struct task_struct *tsk); 2024 2025 static inline void exit_umh(struct task_struct *tsk) 2026 { 2027 if (unlikely(tsk->flags & PF_UMH)) 2028 __exit_umh(tsk); 2029 } 2030 2031 #ifdef CONFIG_DEBUG_RSEQ 2032 2033 void rseq_syscall(struct pt_regs *regs); 2034 2035 #else 2036 2037 static inline void rseq_syscall(struct pt_regs *regs) 2038 { 2039 } 2040 2041 #endif 2042 2043 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2044 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2045 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2046 2047 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2048 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2049 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2050 2051 int sched_trace_rq_cpu(struct rq *rq); 2052 2053 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2054 2055 #endif 2056