xref: /linux/include/linux/sched.h (revision 95298d63c67673c654c08952672d016212b26054)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/mm_types_task.h>
31 #include <linux/task_io_accounting.h>
32 #include <linux/posix-timers.h>
33 #include <linux/rseq.h>
34 #include <linux/kcsan.h>
35 
36 /* task_struct member predeclarations (sorted alphabetically): */
37 struct audit_context;
38 struct backing_dev_info;
39 struct bio_list;
40 struct blk_plug;
41 struct capture_control;
42 struct cfs_rq;
43 struct fs_struct;
44 struct futex_pi_state;
45 struct io_context;
46 struct mempolicy;
47 struct nameidata;
48 struct nsproxy;
49 struct perf_event_context;
50 struct pid_namespace;
51 struct pipe_inode_info;
52 struct rcu_node;
53 struct reclaim_state;
54 struct robust_list_head;
55 struct root_domain;
56 struct rq;
57 struct sched_attr;
58 struct sched_param;
59 struct seq_file;
60 struct sighand_struct;
61 struct signal_struct;
62 struct task_delay_info;
63 struct task_group;
64 
65 /*
66  * Task state bitmask. NOTE! These bits are also
67  * encoded in fs/proc/array.c: get_task_state().
68  *
69  * We have two separate sets of flags: task->state
70  * is about runnability, while task->exit_state are
71  * about the task exiting. Confusing, but this way
72  * modifying one set can't modify the other one by
73  * mistake.
74  */
75 
76 /* Used in tsk->state: */
77 #define TASK_RUNNING			0x0000
78 #define TASK_INTERRUPTIBLE		0x0001
79 #define TASK_UNINTERRUPTIBLE		0x0002
80 #define __TASK_STOPPED			0x0004
81 #define __TASK_TRACED			0x0008
82 /* Used in tsk->exit_state: */
83 #define EXIT_DEAD			0x0010
84 #define EXIT_ZOMBIE			0x0020
85 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
86 /* Used in tsk->state again: */
87 #define TASK_PARKED			0x0040
88 #define TASK_DEAD			0x0080
89 #define TASK_WAKEKILL			0x0100
90 #define TASK_WAKING			0x0200
91 #define TASK_NOLOAD			0x0400
92 #define TASK_NEW			0x0800
93 #define TASK_STATE_MAX			0x1000
94 
95 /* Convenience macros for the sake of set_current_state: */
96 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
97 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
98 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
99 
100 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
101 
102 /* Convenience macros for the sake of wake_up(): */
103 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
104 
105 /* get_task_state(): */
106 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
107 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
108 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
109 					 TASK_PARKED)
110 
111 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
112 
113 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
114 
115 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
116 
117 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
118 					 (task->flags & PF_FROZEN) == 0 && \
119 					 (task->state & TASK_NOLOAD) == 0)
120 
121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
122 
123 /*
124  * Special states are those that do not use the normal wait-loop pattern. See
125  * the comment with set_special_state().
126  */
127 #define is_special_task_state(state)				\
128 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
129 
130 #define __set_current_state(state_value)			\
131 	do {							\
132 		WARN_ON_ONCE(is_special_task_state(state_value));\
133 		current->task_state_change = _THIS_IP_;		\
134 		current->state = (state_value);			\
135 	} while (0)
136 
137 #define set_current_state(state_value)				\
138 	do {							\
139 		WARN_ON_ONCE(is_special_task_state(state_value));\
140 		current->task_state_change = _THIS_IP_;		\
141 		smp_store_mb(current->state, (state_value));	\
142 	} while (0)
143 
144 #define set_special_state(state_value)					\
145 	do {								\
146 		unsigned long flags; /* may shadow */			\
147 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
148 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
149 		current->task_state_change = _THIS_IP_;			\
150 		current->state = (state_value);				\
151 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
152 	} while (0)
153 #else
154 /*
155  * set_current_state() includes a barrier so that the write of current->state
156  * is correctly serialised wrt the caller's subsequent test of whether to
157  * actually sleep:
158  *
159  *   for (;;) {
160  *	set_current_state(TASK_UNINTERRUPTIBLE);
161  *	if (!need_sleep)
162  *		break;
163  *
164  *	schedule();
165  *   }
166  *   __set_current_state(TASK_RUNNING);
167  *
168  * If the caller does not need such serialisation (because, for instance, the
169  * condition test and condition change and wakeup are under the same lock) then
170  * use __set_current_state().
171  *
172  * The above is typically ordered against the wakeup, which does:
173  *
174  *   need_sleep = false;
175  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
176  *
177  * where wake_up_state() executes a full memory barrier before accessing the
178  * task state.
179  *
180  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
181  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
182  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
183  *
184  * However, with slightly different timing the wakeup TASK_RUNNING store can
185  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
186  * a problem either because that will result in one extra go around the loop
187  * and our @cond test will save the day.
188  *
189  * Also see the comments of try_to_wake_up().
190  */
191 #define __set_current_state(state_value)				\
192 	current->state = (state_value)
193 
194 #define set_current_state(state_value)					\
195 	smp_store_mb(current->state, (state_value))
196 
197 /*
198  * set_special_state() should be used for those states when the blocking task
199  * can not use the regular condition based wait-loop. In that case we must
200  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
201  * will not collide with our state change.
202  */
203 #define set_special_state(state_value)					\
204 	do {								\
205 		unsigned long flags; /* may shadow */			\
206 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
207 		current->state = (state_value);				\
208 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
209 	} while (0)
210 
211 #endif
212 
213 /* Task command name length: */
214 #define TASK_COMM_LEN			16
215 
216 extern void scheduler_tick(void);
217 
218 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
219 
220 extern long schedule_timeout(long timeout);
221 extern long schedule_timeout_interruptible(long timeout);
222 extern long schedule_timeout_killable(long timeout);
223 extern long schedule_timeout_uninterruptible(long timeout);
224 extern long schedule_timeout_idle(long timeout);
225 asmlinkage void schedule(void);
226 extern void schedule_preempt_disabled(void);
227 asmlinkage void preempt_schedule_irq(void);
228 
229 extern int __must_check io_schedule_prepare(void);
230 extern void io_schedule_finish(int token);
231 extern long io_schedule_timeout(long timeout);
232 extern void io_schedule(void);
233 
234 /**
235  * struct prev_cputime - snapshot of system and user cputime
236  * @utime: time spent in user mode
237  * @stime: time spent in system mode
238  * @lock: protects the above two fields
239  *
240  * Stores previous user/system time values such that we can guarantee
241  * monotonicity.
242  */
243 struct prev_cputime {
244 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
245 	u64				utime;
246 	u64				stime;
247 	raw_spinlock_t			lock;
248 #endif
249 };
250 
251 enum vtime_state {
252 	/* Task is sleeping or running in a CPU with VTIME inactive: */
253 	VTIME_INACTIVE = 0,
254 	/* Task is idle */
255 	VTIME_IDLE,
256 	/* Task runs in kernelspace in a CPU with VTIME active: */
257 	VTIME_SYS,
258 	/* Task runs in userspace in a CPU with VTIME active: */
259 	VTIME_USER,
260 	/* Task runs as guests in a CPU with VTIME active: */
261 	VTIME_GUEST,
262 };
263 
264 struct vtime {
265 	seqcount_t		seqcount;
266 	unsigned long long	starttime;
267 	enum vtime_state	state;
268 	unsigned int		cpu;
269 	u64			utime;
270 	u64			stime;
271 	u64			gtime;
272 };
273 
274 /*
275  * Utilization clamp constraints.
276  * @UCLAMP_MIN:	Minimum utilization
277  * @UCLAMP_MAX:	Maximum utilization
278  * @UCLAMP_CNT:	Utilization clamp constraints count
279  */
280 enum uclamp_id {
281 	UCLAMP_MIN = 0,
282 	UCLAMP_MAX,
283 	UCLAMP_CNT
284 };
285 
286 #ifdef CONFIG_SMP
287 extern struct root_domain def_root_domain;
288 extern struct mutex sched_domains_mutex;
289 #endif
290 
291 struct sched_info {
292 #ifdef CONFIG_SCHED_INFO
293 	/* Cumulative counters: */
294 
295 	/* # of times we have run on this CPU: */
296 	unsigned long			pcount;
297 
298 	/* Time spent waiting on a runqueue: */
299 	unsigned long long		run_delay;
300 
301 	/* Timestamps: */
302 
303 	/* When did we last run on a CPU? */
304 	unsigned long long		last_arrival;
305 
306 	/* When were we last queued to run? */
307 	unsigned long long		last_queued;
308 
309 #endif /* CONFIG_SCHED_INFO */
310 };
311 
312 /*
313  * Integer metrics need fixed point arithmetic, e.g., sched/fair
314  * has a few: load, load_avg, util_avg, freq, and capacity.
315  *
316  * We define a basic fixed point arithmetic range, and then formalize
317  * all these metrics based on that basic range.
318  */
319 # define SCHED_FIXEDPOINT_SHIFT		10
320 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
321 
322 /* Increase resolution of cpu_capacity calculations */
323 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
324 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
325 
326 struct load_weight {
327 	unsigned long			weight;
328 	u32				inv_weight;
329 };
330 
331 /**
332  * struct util_est - Estimation utilization of FAIR tasks
333  * @enqueued: instantaneous estimated utilization of a task/cpu
334  * @ewma:     the Exponential Weighted Moving Average (EWMA)
335  *            utilization of a task
336  *
337  * Support data structure to track an Exponential Weighted Moving Average
338  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
339  * average each time a task completes an activation. Sample's weight is chosen
340  * so that the EWMA will be relatively insensitive to transient changes to the
341  * task's workload.
342  *
343  * The enqueued attribute has a slightly different meaning for tasks and cpus:
344  * - task:   the task's util_avg at last task dequeue time
345  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
346  * Thus, the util_est.enqueued of a task represents the contribution on the
347  * estimated utilization of the CPU where that task is currently enqueued.
348  *
349  * Only for tasks we track a moving average of the past instantaneous
350  * estimated utilization. This allows to absorb sporadic drops in utilization
351  * of an otherwise almost periodic task.
352  */
353 struct util_est {
354 	unsigned int			enqueued;
355 	unsigned int			ewma;
356 #define UTIL_EST_WEIGHT_SHIFT		2
357 } __attribute__((__aligned__(sizeof(u64))));
358 
359 /*
360  * The load/runnable/util_avg accumulates an infinite geometric series
361  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
362  *
363  * [load_avg definition]
364  *
365  *   load_avg = runnable% * scale_load_down(load)
366  *
367  * [runnable_avg definition]
368  *
369  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
370  *
371  * [util_avg definition]
372  *
373  *   util_avg = running% * SCHED_CAPACITY_SCALE
374  *
375  * where runnable% is the time ratio that a sched_entity is runnable and
376  * running% the time ratio that a sched_entity is running.
377  *
378  * For cfs_rq, they are the aggregated values of all runnable and blocked
379  * sched_entities.
380  *
381  * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
382  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
383  * for computing those signals (see update_rq_clock_pelt())
384  *
385  * N.B., the above ratios (runnable% and running%) themselves are in the
386  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
387  * to as large a range as necessary. This is for example reflected by
388  * util_avg's SCHED_CAPACITY_SCALE.
389  *
390  * [Overflow issue]
391  *
392  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
393  * with the highest load (=88761), always runnable on a single cfs_rq,
394  * and should not overflow as the number already hits PID_MAX_LIMIT.
395  *
396  * For all other cases (including 32-bit kernels), struct load_weight's
397  * weight will overflow first before we do, because:
398  *
399  *    Max(load_avg) <= Max(load.weight)
400  *
401  * Then it is the load_weight's responsibility to consider overflow
402  * issues.
403  */
404 struct sched_avg {
405 	u64				last_update_time;
406 	u64				load_sum;
407 	u64				runnable_sum;
408 	u32				util_sum;
409 	u32				period_contrib;
410 	unsigned long			load_avg;
411 	unsigned long			runnable_avg;
412 	unsigned long			util_avg;
413 	struct util_est			util_est;
414 } ____cacheline_aligned;
415 
416 struct sched_statistics {
417 #ifdef CONFIG_SCHEDSTATS
418 	u64				wait_start;
419 	u64				wait_max;
420 	u64				wait_count;
421 	u64				wait_sum;
422 	u64				iowait_count;
423 	u64				iowait_sum;
424 
425 	u64				sleep_start;
426 	u64				sleep_max;
427 	s64				sum_sleep_runtime;
428 
429 	u64				block_start;
430 	u64				block_max;
431 	u64				exec_max;
432 	u64				slice_max;
433 
434 	u64				nr_migrations_cold;
435 	u64				nr_failed_migrations_affine;
436 	u64				nr_failed_migrations_running;
437 	u64				nr_failed_migrations_hot;
438 	u64				nr_forced_migrations;
439 
440 	u64				nr_wakeups;
441 	u64				nr_wakeups_sync;
442 	u64				nr_wakeups_migrate;
443 	u64				nr_wakeups_local;
444 	u64				nr_wakeups_remote;
445 	u64				nr_wakeups_affine;
446 	u64				nr_wakeups_affine_attempts;
447 	u64				nr_wakeups_passive;
448 	u64				nr_wakeups_idle;
449 #endif
450 };
451 
452 struct sched_entity {
453 	/* For load-balancing: */
454 	struct load_weight		load;
455 	struct rb_node			run_node;
456 	struct list_head		group_node;
457 	unsigned int			on_rq;
458 
459 	u64				exec_start;
460 	u64				sum_exec_runtime;
461 	u64				vruntime;
462 	u64				prev_sum_exec_runtime;
463 
464 	u64				nr_migrations;
465 
466 	struct sched_statistics		statistics;
467 
468 #ifdef CONFIG_FAIR_GROUP_SCHED
469 	int				depth;
470 	struct sched_entity		*parent;
471 	/* rq on which this entity is (to be) queued: */
472 	struct cfs_rq			*cfs_rq;
473 	/* rq "owned" by this entity/group: */
474 	struct cfs_rq			*my_q;
475 	/* cached value of my_q->h_nr_running */
476 	unsigned long			runnable_weight;
477 #endif
478 
479 #ifdef CONFIG_SMP
480 	/*
481 	 * Per entity load average tracking.
482 	 *
483 	 * Put into separate cache line so it does not
484 	 * collide with read-mostly values above.
485 	 */
486 	struct sched_avg		avg;
487 #endif
488 };
489 
490 struct sched_rt_entity {
491 	struct list_head		run_list;
492 	unsigned long			timeout;
493 	unsigned long			watchdog_stamp;
494 	unsigned int			time_slice;
495 	unsigned short			on_rq;
496 	unsigned short			on_list;
497 
498 	struct sched_rt_entity		*back;
499 #ifdef CONFIG_RT_GROUP_SCHED
500 	struct sched_rt_entity		*parent;
501 	/* rq on which this entity is (to be) queued: */
502 	struct rt_rq			*rt_rq;
503 	/* rq "owned" by this entity/group: */
504 	struct rt_rq			*my_q;
505 #endif
506 } __randomize_layout;
507 
508 struct sched_dl_entity {
509 	struct rb_node			rb_node;
510 
511 	/*
512 	 * Original scheduling parameters. Copied here from sched_attr
513 	 * during sched_setattr(), they will remain the same until
514 	 * the next sched_setattr().
515 	 */
516 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
517 	u64				dl_deadline;	/* Relative deadline of each instance	*/
518 	u64				dl_period;	/* Separation of two instances (period) */
519 	u64				dl_bw;		/* dl_runtime / dl_period		*/
520 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
521 
522 	/*
523 	 * Actual scheduling parameters. Initialized with the values above,
524 	 * they are continuously updated during task execution. Note that
525 	 * the remaining runtime could be < 0 in case we are in overrun.
526 	 */
527 	s64				runtime;	/* Remaining runtime for this instance	*/
528 	u64				deadline;	/* Absolute deadline for this instance	*/
529 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
530 
531 	/*
532 	 * Some bool flags:
533 	 *
534 	 * @dl_throttled tells if we exhausted the runtime. If so, the
535 	 * task has to wait for a replenishment to be performed at the
536 	 * next firing of dl_timer.
537 	 *
538 	 * @dl_boosted tells if we are boosted due to DI. If so we are
539 	 * outside bandwidth enforcement mechanism (but only until we
540 	 * exit the critical section);
541 	 *
542 	 * @dl_yielded tells if task gave up the CPU before consuming
543 	 * all its available runtime during the last job.
544 	 *
545 	 * @dl_non_contending tells if the task is inactive while still
546 	 * contributing to the active utilization. In other words, it
547 	 * indicates if the inactive timer has been armed and its handler
548 	 * has not been executed yet. This flag is useful to avoid race
549 	 * conditions between the inactive timer handler and the wakeup
550 	 * code.
551 	 *
552 	 * @dl_overrun tells if the task asked to be informed about runtime
553 	 * overruns.
554 	 */
555 	unsigned int			dl_throttled      : 1;
556 	unsigned int			dl_boosted        : 1;
557 	unsigned int			dl_yielded        : 1;
558 	unsigned int			dl_non_contending : 1;
559 	unsigned int			dl_overrun	  : 1;
560 
561 	/*
562 	 * Bandwidth enforcement timer. Each -deadline task has its
563 	 * own bandwidth to be enforced, thus we need one timer per task.
564 	 */
565 	struct hrtimer			dl_timer;
566 
567 	/*
568 	 * Inactive timer, responsible for decreasing the active utilization
569 	 * at the "0-lag time". When a -deadline task blocks, it contributes
570 	 * to GRUB's active utilization until the "0-lag time", hence a
571 	 * timer is needed to decrease the active utilization at the correct
572 	 * time.
573 	 */
574 	struct hrtimer inactive_timer;
575 };
576 
577 #ifdef CONFIG_UCLAMP_TASK
578 /* Number of utilization clamp buckets (shorter alias) */
579 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
580 
581 /*
582  * Utilization clamp for a scheduling entity
583  * @value:		clamp value "assigned" to a se
584  * @bucket_id:		bucket index corresponding to the "assigned" value
585  * @active:		the se is currently refcounted in a rq's bucket
586  * @user_defined:	the requested clamp value comes from user-space
587  *
588  * The bucket_id is the index of the clamp bucket matching the clamp value
589  * which is pre-computed and stored to avoid expensive integer divisions from
590  * the fast path.
591  *
592  * The active bit is set whenever a task has got an "effective" value assigned,
593  * which can be different from the clamp value "requested" from user-space.
594  * This allows to know a task is refcounted in the rq's bucket corresponding
595  * to the "effective" bucket_id.
596  *
597  * The user_defined bit is set whenever a task has got a task-specific clamp
598  * value requested from userspace, i.e. the system defaults apply to this task
599  * just as a restriction. This allows to relax default clamps when a less
600  * restrictive task-specific value has been requested, thus allowing to
601  * implement a "nice" semantic. For example, a task running with a 20%
602  * default boost can still drop its own boosting to 0%.
603  */
604 struct uclamp_se {
605 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
606 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
607 	unsigned int active		: 1;
608 	unsigned int user_defined	: 1;
609 };
610 #endif /* CONFIG_UCLAMP_TASK */
611 
612 union rcu_special {
613 	struct {
614 		u8			blocked;
615 		u8			need_qs;
616 		u8			exp_hint; /* Hint for performance. */
617 		u8			need_mb; /* Readers need smp_mb(). */
618 	} b; /* Bits. */
619 	u32 s; /* Set of bits. */
620 };
621 
622 enum perf_event_task_context {
623 	perf_invalid_context = -1,
624 	perf_hw_context = 0,
625 	perf_sw_context,
626 	perf_nr_task_contexts,
627 };
628 
629 struct wake_q_node {
630 	struct wake_q_node *next;
631 };
632 
633 struct task_struct {
634 #ifdef CONFIG_THREAD_INFO_IN_TASK
635 	/*
636 	 * For reasons of header soup (see current_thread_info()), this
637 	 * must be the first element of task_struct.
638 	 */
639 	struct thread_info		thread_info;
640 #endif
641 	/* -1 unrunnable, 0 runnable, >0 stopped: */
642 	volatile long			state;
643 
644 	/*
645 	 * This begins the randomizable portion of task_struct. Only
646 	 * scheduling-critical items should be added above here.
647 	 */
648 	randomized_struct_fields_start
649 
650 	void				*stack;
651 	refcount_t			usage;
652 	/* Per task flags (PF_*), defined further below: */
653 	unsigned int			flags;
654 	unsigned int			ptrace;
655 
656 #ifdef CONFIG_SMP
657 	struct llist_node		wake_entry;
658 	unsigned int			wake_entry_type;
659 	int				on_cpu;
660 #ifdef CONFIG_THREAD_INFO_IN_TASK
661 	/* Current CPU: */
662 	unsigned int			cpu;
663 #endif
664 	unsigned int			wakee_flips;
665 	unsigned long			wakee_flip_decay_ts;
666 	struct task_struct		*last_wakee;
667 
668 	/*
669 	 * recent_used_cpu is initially set as the last CPU used by a task
670 	 * that wakes affine another task. Waker/wakee relationships can
671 	 * push tasks around a CPU where each wakeup moves to the next one.
672 	 * Tracking a recently used CPU allows a quick search for a recently
673 	 * used CPU that may be idle.
674 	 */
675 	int				recent_used_cpu;
676 	int				wake_cpu;
677 #endif
678 	int				on_rq;
679 
680 	int				prio;
681 	int				static_prio;
682 	int				normal_prio;
683 	unsigned int			rt_priority;
684 
685 	const struct sched_class	*sched_class;
686 	struct sched_entity		se;
687 	struct sched_rt_entity		rt;
688 #ifdef CONFIG_CGROUP_SCHED
689 	struct task_group		*sched_task_group;
690 #endif
691 	struct sched_dl_entity		dl;
692 
693 #ifdef CONFIG_UCLAMP_TASK
694 	/* Clamp values requested for a scheduling entity */
695 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
696 	/* Effective clamp values used for a scheduling entity */
697 	struct uclamp_se		uclamp[UCLAMP_CNT];
698 #endif
699 
700 #ifdef CONFIG_PREEMPT_NOTIFIERS
701 	/* List of struct preempt_notifier: */
702 	struct hlist_head		preempt_notifiers;
703 #endif
704 
705 #ifdef CONFIG_BLK_DEV_IO_TRACE
706 	unsigned int			btrace_seq;
707 #endif
708 
709 	unsigned int			policy;
710 	int				nr_cpus_allowed;
711 	const cpumask_t			*cpus_ptr;
712 	cpumask_t			cpus_mask;
713 
714 #ifdef CONFIG_PREEMPT_RCU
715 	int				rcu_read_lock_nesting;
716 	union rcu_special		rcu_read_unlock_special;
717 	struct list_head		rcu_node_entry;
718 	struct rcu_node			*rcu_blocked_node;
719 #endif /* #ifdef CONFIG_PREEMPT_RCU */
720 
721 #ifdef CONFIG_TASKS_RCU
722 	unsigned long			rcu_tasks_nvcsw;
723 	u8				rcu_tasks_holdout;
724 	u8				rcu_tasks_idx;
725 	int				rcu_tasks_idle_cpu;
726 	struct list_head		rcu_tasks_holdout_list;
727 #endif /* #ifdef CONFIG_TASKS_RCU */
728 
729 #ifdef CONFIG_TASKS_TRACE_RCU
730 	int				trc_reader_nesting;
731 	int				trc_ipi_to_cpu;
732 	union rcu_special		trc_reader_special;
733 	bool				trc_reader_checked;
734 	struct list_head		trc_holdout_list;
735 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
736 
737 	struct sched_info		sched_info;
738 
739 	struct list_head		tasks;
740 #ifdef CONFIG_SMP
741 	struct plist_node		pushable_tasks;
742 	struct rb_node			pushable_dl_tasks;
743 #endif
744 
745 	struct mm_struct		*mm;
746 	struct mm_struct		*active_mm;
747 
748 	/* Per-thread vma caching: */
749 	struct vmacache			vmacache;
750 
751 #ifdef SPLIT_RSS_COUNTING
752 	struct task_rss_stat		rss_stat;
753 #endif
754 	int				exit_state;
755 	int				exit_code;
756 	int				exit_signal;
757 	/* The signal sent when the parent dies: */
758 	int				pdeath_signal;
759 	/* JOBCTL_*, siglock protected: */
760 	unsigned long			jobctl;
761 
762 	/* Used for emulating ABI behavior of previous Linux versions: */
763 	unsigned int			personality;
764 
765 	/* Scheduler bits, serialized by scheduler locks: */
766 	unsigned			sched_reset_on_fork:1;
767 	unsigned			sched_contributes_to_load:1;
768 	unsigned			sched_migrated:1;
769 	unsigned			sched_remote_wakeup:1;
770 #ifdef CONFIG_PSI
771 	unsigned			sched_psi_wake_requeue:1;
772 #endif
773 
774 	/* Force alignment to the next boundary: */
775 	unsigned			:0;
776 
777 	/* Unserialized, strictly 'current' */
778 
779 	/* Bit to tell LSMs we're in execve(): */
780 	unsigned			in_execve:1;
781 	unsigned			in_iowait:1;
782 #ifndef TIF_RESTORE_SIGMASK
783 	unsigned			restore_sigmask:1;
784 #endif
785 #ifdef CONFIG_MEMCG
786 	unsigned			in_user_fault:1;
787 #endif
788 #ifdef CONFIG_COMPAT_BRK
789 	unsigned			brk_randomized:1;
790 #endif
791 #ifdef CONFIG_CGROUPS
792 	/* disallow userland-initiated cgroup migration */
793 	unsigned			no_cgroup_migration:1;
794 	/* task is frozen/stopped (used by the cgroup freezer) */
795 	unsigned			frozen:1;
796 #endif
797 #ifdef CONFIG_BLK_CGROUP
798 	unsigned			use_memdelay:1;
799 #endif
800 #ifdef CONFIG_PSI
801 	/* Stalled due to lack of memory */
802 	unsigned			in_memstall:1;
803 #endif
804 
805 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
806 
807 	struct restart_block		restart_block;
808 
809 	pid_t				pid;
810 	pid_t				tgid;
811 
812 #ifdef CONFIG_STACKPROTECTOR
813 	/* Canary value for the -fstack-protector GCC feature: */
814 	unsigned long			stack_canary;
815 #endif
816 	/*
817 	 * Pointers to the (original) parent process, youngest child, younger sibling,
818 	 * older sibling, respectively.  (p->father can be replaced with
819 	 * p->real_parent->pid)
820 	 */
821 
822 	/* Real parent process: */
823 	struct task_struct __rcu	*real_parent;
824 
825 	/* Recipient of SIGCHLD, wait4() reports: */
826 	struct task_struct __rcu	*parent;
827 
828 	/*
829 	 * Children/sibling form the list of natural children:
830 	 */
831 	struct list_head		children;
832 	struct list_head		sibling;
833 	struct task_struct		*group_leader;
834 
835 	/*
836 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
837 	 *
838 	 * This includes both natural children and PTRACE_ATTACH targets.
839 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
840 	 */
841 	struct list_head		ptraced;
842 	struct list_head		ptrace_entry;
843 
844 	/* PID/PID hash table linkage. */
845 	struct pid			*thread_pid;
846 	struct hlist_node		pid_links[PIDTYPE_MAX];
847 	struct list_head		thread_group;
848 	struct list_head		thread_node;
849 
850 	struct completion		*vfork_done;
851 
852 	/* CLONE_CHILD_SETTID: */
853 	int __user			*set_child_tid;
854 
855 	/* CLONE_CHILD_CLEARTID: */
856 	int __user			*clear_child_tid;
857 
858 	u64				utime;
859 	u64				stime;
860 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
861 	u64				utimescaled;
862 	u64				stimescaled;
863 #endif
864 	u64				gtime;
865 	struct prev_cputime		prev_cputime;
866 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
867 	struct vtime			vtime;
868 #endif
869 
870 #ifdef CONFIG_NO_HZ_FULL
871 	atomic_t			tick_dep_mask;
872 #endif
873 	/* Context switch counts: */
874 	unsigned long			nvcsw;
875 	unsigned long			nivcsw;
876 
877 	/* Monotonic time in nsecs: */
878 	u64				start_time;
879 
880 	/* Boot based time in nsecs: */
881 	u64				start_boottime;
882 
883 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
884 	unsigned long			min_flt;
885 	unsigned long			maj_flt;
886 
887 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
888 	struct posix_cputimers		posix_cputimers;
889 
890 	/* Process credentials: */
891 
892 	/* Tracer's credentials at attach: */
893 	const struct cred __rcu		*ptracer_cred;
894 
895 	/* Objective and real subjective task credentials (COW): */
896 	const struct cred __rcu		*real_cred;
897 
898 	/* Effective (overridable) subjective task credentials (COW): */
899 	const struct cred __rcu		*cred;
900 
901 #ifdef CONFIG_KEYS
902 	/* Cached requested key. */
903 	struct key			*cached_requested_key;
904 #endif
905 
906 	/*
907 	 * executable name, excluding path.
908 	 *
909 	 * - normally initialized setup_new_exec()
910 	 * - access it with [gs]et_task_comm()
911 	 * - lock it with task_lock()
912 	 */
913 	char				comm[TASK_COMM_LEN];
914 
915 	struct nameidata		*nameidata;
916 
917 #ifdef CONFIG_SYSVIPC
918 	struct sysv_sem			sysvsem;
919 	struct sysv_shm			sysvshm;
920 #endif
921 #ifdef CONFIG_DETECT_HUNG_TASK
922 	unsigned long			last_switch_count;
923 	unsigned long			last_switch_time;
924 #endif
925 	/* Filesystem information: */
926 	struct fs_struct		*fs;
927 
928 	/* Open file information: */
929 	struct files_struct		*files;
930 
931 	/* Namespaces: */
932 	struct nsproxy			*nsproxy;
933 
934 	/* Signal handlers: */
935 	struct signal_struct		*signal;
936 	struct sighand_struct __rcu		*sighand;
937 	sigset_t			blocked;
938 	sigset_t			real_blocked;
939 	/* Restored if set_restore_sigmask() was used: */
940 	sigset_t			saved_sigmask;
941 	struct sigpending		pending;
942 	unsigned long			sas_ss_sp;
943 	size_t				sas_ss_size;
944 	unsigned int			sas_ss_flags;
945 
946 	struct callback_head		*task_works;
947 
948 #ifdef CONFIG_AUDIT
949 #ifdef CONFIG_AUDITSYSCALL
950 	struct audit_context		*audit_context;
951 #endif
952 	kuid_t				loginuid;
953 	unsigned int			sessionid;
954 #endif
955 	struct seccomp			seccomp;
956 
957 	/* Thread group tracking: */
958 	u64				parent_exec_id;
959 	u64				self_exec_id;
960 
961 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
962 	spinlock_t			alloc_lock;
963 
964 	/* Protection of the PI data structures: */
965 	raw_spinlock_t			pi_lock;
966 
967 	struct wake_q_node		wake_q;
968 
969 #ifdef CONFIG_RT_MUTEXES
970 	/* PI waiters blocked on a rt_mutex held by this task: */
971 	struct rb_root_cached		pi_waiters;
972 	/* Updated under owner's pi_lock and rq lock */
973 	struct task_struct		*pi_top_task;
974 	/* Deadlock detection and priority inheritance handling: */
975 	struct rt_mutex_waiter		*pi_blocked_on;
976 #endif
977 
978 #ifdef CONFIG_DEBUG_MUTEXES
979 	/* Mutex deadlock detection: */
980 	struct mutex_waiter		*blocked_on;
981 #endif
982 
983 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
984 	int				non_block_count;
985 #endif
986 
987 #ifdef CONFIG_TRACE_IRQFLAGS
988 	unsigned int			irq_events;
989 	unsigned int			hardirq_threaded;
990 	unsigned long			hardirq_enable_ip;
991 	unsigned long			hardirq_disable_ip;
992 	unsigned int			hardirq_enable_event;
993 	unsigned int			hardirq_disable_event;
994 	int				hardirqs_enabled;
995 	int				hardirq_context;
996 	u64				hardirq_chain_key;
997 	unsigned long			softirq_disable_ip;
998 	unsigned long			softirq_enable_ip;
999 	unsigned int			softirq_disable_event;
1000 	unsigned int			softirq_enable_event;
1001 	int				softirqs_enabled;
1002 	int				softirq_context;
1003 	int				irq_config;
1004 #endif
1005 
1006 #ifdef CONFIG_LOCKDEP
1007 # define MAX_LOCK_DEPTH			48UL
1008 	u64				curr_chain_key;
1009 	int				lockdep_depth;
1010 	unsigned int			lockdep_recursion;
1011 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1012 #endif
1013 
1014 #ifdef CONFIG_UBSAN
1015 	unsigned int			in_ubsan;
1016 #endif
1017 
1018 	/* Journalling filesystem info: */
1019 	void				*journal_info;
1020 
1021 	/* Stacked block device info: */
1022 	struct bio_list			*bio_list;
1023 
1024 #ifdef CONFIG_BLOCK
1025 	/* Stack plugging: */
1026 	struct blk_plug			*plug;
1027 #endif
1028 
1029 	/* VM state: */
1030 	struct reclaim_state		*reclaim_state;
1031 
1032 	struct backing_dev_info		*backing_dev_info;
1033 
1034 	struct io_context		*io_context;
1035 
1036 #ifdef CONFIG_COMPACTION
1037 	struct capture_control		*capture_control;
1038 #endif
1039 	/* Ptrace state: */
1040 	unsigned long			ptrace_message;
1041 	kernel_siginfo_t		*last_siginfo;
1042 
1043 	struct task_io_accounting	ioac;
1044 #ifdef CONFIG_PSI
1045 	/* Pressure stall state */
1046 	unsigned int			psi_flags;
1047 #endif
1048 #ifdef CONFIG_TASK_XACCT
1049 	/* Accumulated RSS usage: */
1050 	u64				acct_rss_mem1;
1051 	/* Accumulated virtual memory usage: */
1052 	u64				acct_vm_mem1;
1053 	/* stime + utime since last update: */
1054 	u64				acct_timexpd;
1055 #endif
1056 #ifdef CONFIG_CPUSETS
1057 	/* Protected by ->alloc_lock: */
1058 	nodemask_t			mems_allowed;
1059 	/* Seqence number to catch updates: */
1060 	seqcount_t			mems_allowed_seq;
1061 	int				cpuset_mem_spread_rotor;
1062 	int				cpuset_slab_spread_rotor;
1063 #endif
1064 #ifdef CONFIG_CGROUPS
1065 	/* Control Group info protected by css_set_lock: */
1066 	struct css_set __rcu		*cgroups;
1067 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1068 	struct list_head		cg_list;
1069 #endif
1070 #ifdef CONFIG_X86_CPU_RESCTRL
1071 	u32				closid;
1072 	u32				rmid;
1073 #endif
1074 #ifdef CONFIG_FUTEX
1075 	struct robust_list_head __user	*robust_list;
1076 #ifdef CONFIG_COMPAT
1077 	struct compat_robust_list_head __user *compat_robust_list;
1078 #endif
1079 	struct list_head		pi_state_list;
1080 	struct futex_pi_state		*pi_state_cache;
1081 	struct mutex			futex_exit_mutex;
1082 	unsigned int			futex_state;
1083 #endif
1084 #ifdef CONFIG_PERF_EVENTS
1085 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1086 	struct mutex			perf_event_mutex;
1087 	struct list_head		perf_event_list;
1088 #endif
1089 #ifdef CONFIG_DEBUG_PREEMPT
1090 	unsigned long			preempt_disable_ip;
1091 #endif
1092 #ifdef CONFIG_NUMA
1093 	/* Protected by alloc_lock: */
1094 	struct mempolicy		*mempolicy;
1095 	short				il_prev;
1096 	short				pref_node_fork;
1097 #endif
1098 #ifdef CONFIG_NUMA_BALANCING
1099 	int				numa_scan_seq;
1100 	unsigned int			numa_scan_period;
1101 	unsigned int			numa_scan_period_max;
1102 	int				numa_preferred_nid;
1103 	unsigned long			numa_migrate_retry;
1104 	/* Migration stamp: */
1105 	u64				node_stamp;
1106 	u64				last_task_numa_placement;
1107 	u64				last_sum_exec_runtime;
1108 	struct callback_head		numa_work;
1109 
1110 	/*
1111 	 * This pointer is only modified for current in syscall and
1112 	 * pagefault context (and for tasks being destroyed), so it can be read
1113 	 * from any of the following contexts:
1114 	 *  - RCU read-side critical section
1115 	 *  - current->numa_group from everywhere
1116 	 *  - task's runqueue locked, task not running
1117 	 */
1118 	struct numa_group __rcu		*numa_group;
1119 
1120 	/*
1121 	 * numa_faults is an array split into four regions:
1122 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1123 	 * in this precise order.
1124 	 *
1125 	 * faults_memory: Exponential decaying average of faults on a per-node
1126 	 * basis. Scheduling placement decisions are made based on these
1127 	 * counts. The values remain static for the duration of a PTE scan.
1128 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1129 	 * hinting fault was incurred.
1130 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1131 	 * during the current scan window. When the scan completes, the counts
1132 	 * in faults_memory and faults_cpu decay and these values are copied.
1133 	 */
1134 	unsigned long			*numa_faults;
1135 	unsigned long			total_numa_faults;
1136 
1137 	/*
1138 	 * numa_faults_locality tracks if faults recorded during the last
1139 	 * scan window were remote/local or failed to migrate. The task scan
1140 	 * period is adapted based on the locality of the faults with different
1141 	 * weights depending on whether they were shared or private faults
1142 	 */
1143 	unsigned long			numa_faults_locality[3];
1144 
1145 	unsigned long			numa_pages_migrated;
1146 #endif /* CONFIG_NUMA_BALANCING */
1147 
1148 #ifdef CONFIG_RSEQ
1149 	struct rseq __user *rseq;
1150 	u32 rseq_sig;
1151 	/*
1152 	 * RmW on rseq_event_mask must be performed atomically
1153 	 * with respect to preemption.
1154 	 */
1155 	unsigned long rseq_event_mask;
1156 #endif
1157 
1158 	struct tlbflush_unmap_batch	tlb_ubc;
1159 
1160 	union {
1161 		refcount_t		rcu_users;
1162 		struct rcu_head		rcu;
1163 	};
1164 
1165 	/* Cache last used pipe for splice(): */
1166 	struct pipe_inode_info		*splice_pipe;
1167 
1168 	struct page_frag		task_frag;
1169 
1170 #ifdef CONFIG_TASK_DELAY_ACCT
1171 	struct task_delay_info		*delays;
1172 #endif
1173 
1174 #ifdef CONFIG_FAULT_INJECTION
1175 	int				make_it_fail;
1176 	unsigned int			fail_nth;
1177 #endif
1178 	/*
1179 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1180 	 * balance_dirty_pages() for a dirty throttling pause:
1181 	 */
1182 	int				nr_dirtied;
1183 	int				nr_dirtied_pause;
1184 	/* Start of a write-and-pause period: */
1185 	unsigned long			dirty_paused_when;
1186 
1187 #ifdef CONFIG_LATENCYTOP
1188 	int				latency_record_count;
1189 	struct latency_record		latency_record[LT_SAVECOUNT];
1190 #endif
1191 	/*
1192 	 * Time slack values; these are used to round up poll() and
1193 	 * select() etc timeout values. These are in nanoseconds.
1194 	 */
1195 	u64				timer_slack_ns;
1196 	u64				default_timer_slack_ns;
1197 
1198 #ifdef CONFIG_KASAN
1199 	unsigned int			kasan_depth;
1200 #endif
1201 #ifdef CONFIG_KCSAN
1202 	struct kcsan_ctx		kcsan_ctx;
1203 #endif
1204 
1205 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1206 	/* Index of current stored address in ret_stack: */
1207 	int				curr_ret_stack;
1208 	int				curr_ret_depth;
1209 
1210 	/* Stack of return addresses for return function tracing: */
1211 	struct ftrace_ret_stack		*ret_stack;
1212 
1213 	/* Timestamp for last schedule: */
1214 	unsigned long long		ftrace_timestamp;
1215 
1216 	/*
1217 	 * Number of functions that haven't been traced
1218 	 * because of depth overrun:
1219 	 */
1220 	atomic_t			trace_overrun;
1221 
1222 	/* Pause tracing: */
1223 	atomic_t			tracing_graph_pause;
1224 #endif
1225 
1226 #ifdef CONFIG_TRACING
1227 	/* State flags for use by tracers: */
1228 	unsigned long			trace;
1229 
1230 	/* Bitmask and counter of trace recursion: */
1231 	unsigned long			trace_recursion;
1232 #endif /* CONFIG_TRACING */
1233 
1234 #ifdef CONFIG_KCOV
1235 	/* See kernel/kcov.c for more details. */
1236 
1237 	/* Coverage collection mode enabled for this task (0 if disabled): */
1238 	unsigned int			kcov_mode;
1239 
1240 	/* Size of the kcov_area: */
1241 	unsigned int			kcov_size;
1242 
1243 	/* Buffer for coverage collection: */
1244 	void				*kcov_area;
1245 
1246 	/* KCOV descriptor wired with this task or NULL: */
1247 	struct kcov			*kcov;
1248 
1249 	/* KCOV common handle for remote coverage collection: */
1250 	u64				kcov_handle;
1251 
1252 	/* KCOV sequence number: */
1253 	int				kcov_sequence;
1254 
1255 	/* Collect coverage from softirq context: */
1256 	unsigned int			kcov_softirq;
1257 #endif
1258 
1259 #ifdef CONFIG_MEMCG
1260 	struct mem_cgroup		*memcg_in_oom;
1261 	gfp_t				memcg_oom_gfp_mask;
1262 	int				memcg_oom_order;
1263 
1264 	/* Number of pages to reclaim on returning to userland: */
1265 	unsigned int			memcg_nr_pages_over_high;
1266 
1267 	/* Used by memcontrol for targeted memcg charge: */
1268 	struct mem_cgroup		*active_memcg;
1269 #endif
1270 
1271 #ifdef CONFIG_BLK_CGROUP
1272 	struct request_queue		*throttle_queue;
1273 #endif
1274 
1275 #ifdef CONFIG_UPROBES
1276 	struct uprobe_task		*utask;
1277 #endif
1278 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1279 	unsigned int			sequential_io;
1280 	unsigned int			sequential_io_avg;
1281 #endif
1282 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1283 	unsigned long			task_state_change;
1284 #endif
1285 	int				pagefault_disabled;
1286 #ifdef CONFIG_MMU
1287 	struct task_struct		*oom_reaper_list;
1288 #endif
1289 #ifdef CONFIG_VMAP_STACK
1290 	struct vm_struct		*stack_vm_area;
1291 #endif
1292 #ifdef CONFIG_THREAD_INFO_IN_TASK
1293 	/* A live task holds one reference: */
1294 	refcount_t			stack_refcount;
1295 #endif
1296 #ifdef CONFIG_LIVEPATCH
1297 	int patch_state;
1298 #endif
1299 #ifdef CONFIG_SECURITY
1300 	/* Used by LSM modules for access restriction: */
1301 	void				*security;
1302 #endif
1303 
1304 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1305 	unsigned long			lowest_stack;
1306 	unsigned long			prev_lowest_stack;
1307 #endif
1308 
1309 #ifdef CONFIG_X86_MCE
1310 	u64				mce_addr;
1311 	__u64				mce_ripv : 1,
1312 					mce_whole_page : 1,
1313 					__mce_reserved : 62;
1314 	struct callback_head		mce_kill_me;
1315 #endif
1316 
1317 	/*
1318 	 * New fields for task_struct should be added above here, so that
1319 	 * they are included in the randomized portion of task_struct.
1320 	 */
1321 	randomized_struct_fields_end
1322 
1323 	/* CPU-specific state of this task: */
1324 	struct thread_struct		thread;
1325 
1326 	/*
1327 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1328 	 * structure.  It *MUST* be at the end of 'task_struct'.
1329 	 *
1330 	 * Do not put anything below here!
1331 	 */
1332 };
1333 
1334 static inline struct pid *task_pid(struct task_struct *task)
1335 {
1336 	return task->thread_pid;
1337 }
1338 
1339 /*
1340  * the helpers to get the task's different pids as they are seen
1341  * from various namespaces
1342  *
1343  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1344  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1345  *                     current.
1346  * task_xid_nr_ns()  : id seen from the ns specified;
1347  *
1348  * see also pid_nr() etc in include/linux/pid.h
1349  */
1350 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1351 
1352 static inline pid_t task_pid_nr(struct task_struct *tsk)
1353 {
1354 	return tsk->pid;
1355 }
1356 
1357 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1358 {
1359 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1360 }
1361 
1362 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1363 {
1364 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1365 }
1366 
1367 
1368 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1369 {
1370 	return tsk->tgid;
1371 }
1372 
1373 /**
1374  * pid_alive - check that a task structure is not stale
1375  * @p: Task structure to be checked.
1376  *
1377  * Test if a process is not yet dead (at most zombie state)
1378  * If pid_alive fails, then pointers within the task structure
1379  * can be stale and must not be dereferenced.
1380  *
1381  * Return: 1 if the process is alive. 0 otherwise.
1382  */
1383 static inline int pid_alive(const struct task_struct *p)
1384 {
1385 	return p->thread_pid != NULL;
1386 }
1387 
1388 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1389 {
1390 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1391 }
1392 
1393 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1394 {
1395 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1396 }
1397 
1398 
1399 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1400 {
1401 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1402 }
1403 
1404 static inline pid_t task_session_vnr(struct task_struct *tsk)
1405 {
1406 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1407 }
1408 
1409 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1410 {
1411 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1412 }
1413 
1414 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1415 {
1416 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1417 }
1418 
1419 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1420 {
1421 	pid_t pid = 0;
1422 
1423 	rcu_read_lock();
1424 	if (pid_alive(tsk))
1425 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1426 	rcu_read_unlock();
1427 
1428 	return pid;
1429 }
1430 
1431 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1432 {
1433 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1434 }
1435 
1436 /* Obsolete, do not use: */
1437 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1438 {
1439 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1440 }
1441 
1442 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1443 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1444 
1445 static inline unsigned int task_state_index(struct task_struct *tsk)
1446 {
1447 	unsigned int tsk_state = READ_ONCE(tsk->state);
1448 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1449 
1450 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1451 
1452 	if (tsk_state == TASK_IDLE)
1453 		state = TASK_REPORT_IDLE;
1454 
1455 	return fls(state);
1456 }
1457 
1458 static inline char task_index_to_char(unsigned int state)
1459 {
1460 	static const char state_char[] = "RSDTtXZPI";
1461 
1462 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1463 
1464 	return state_char[state];
1465 }
1466 
1467 static inline char task_state_to_char(struct task_struct *tsk)
1468 {
1469 	return task_index_to_char(task_state_index(tsk));
1470 }
1471 
1472 /**
1473  * is_global_init - check if a task structure is init. Since init
1474  * is free to have sub-threads we need to check tgid.
1475  * @tsk: Task structure to be checked.
1476  *
1477  * Check if a task structure is the first user space task the kernel created.
1478  *
1479  * Return: 1 if the task structure is init. 0 otherwise.
1480  */
1481 static inline int is_global_init(struct task_struct *tsk)
1482 {
1483 	return task_tgid_nr(tsk) == 1;
1484 }
1485 
1486 extern struct pid *cad_pid;
1487 
1488 /*
1489  * Per process flags
1490  */
1491 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1492 #define PF_EXITING		0x00000004	/* Getting shut down */
1493 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1494 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1495 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1496 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1497 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1498 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1499 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1500 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1501 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1502 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1503 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1504 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1505 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1506 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1507 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1508 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1509 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1510 						 * I am cleaning dirty pages from some other bdi. */
1511 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1512 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1513 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1514 #define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1515 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1516 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1517 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1518 #define PF_IO_WORKER		0x20000000	/* Task is an IO worker */
1519 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1520 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1521 
1522 /*
1523  * Only the _current_ task can read/write to tsk->flags, but other
1524  * tasks can access tsk->flags in readonly mode for example
1525  * with tsk_used_math (like during threaded core dumping).
1526  * There is however an exception to this rule during ptrace
1527  * or during fork: the ptracer task is allowed to write to the
1528  * child->flags of its traced child (same goes for fork, the parent
1529  * can write to the child->flags), because we're guaranteed the
1530  * child is not running and in turn not changing child->flags
1531  * at the same time the parent does it.
1532  */
1533 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1534 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1535 #define clear_used_math()			clear_stopped_child_used_math(current)
1536 #define set_used_math()				set_stopped_child_used_math(current)
1537 
1538 #define conditional_stopped_child_used_math(condition, child) \
1539 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540 
1541 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1542 
1543 #define copy_to_stopped_child_used_math(child) \
1544 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545 
1546 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1547 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1548 #define used_math()				tsk_used_math(current)
1549 
1550 static inline bool is_percpu_thread(void)
1551 {
1552 #ifdef CONFIG_SMP
1553 	return (current->flags & PF_NO_SETAFFINITY) &&
1554 		(current->nr_cpus_allowed  == 1);
1555 #else
1556 	return true;
1557 #endif
1558 }
1559 
1560 /* Per-process atomic flags. */
1561 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1562 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1563 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1564 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1565 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1566 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1567 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1568 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1569 
1570 #define TASK_PFA_TEST(name, func)					\
1571 	static inline bool task_##func(struct task_struct *p)		\
1572 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1573 
1574 #define TASK_PFA_SET(name, func)					\
1575 	static inline void task_set_##func(struct task_struct *p)	\
1576 	{ set_bit(PFA_##name, &p->atomic_flags); }
1577 
1578 #define TASK_PFA_CLEAR(name, func)					\
1579 	static inline void task_clear_##func(struct task_struct *p)	\
1580 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1581 
1582 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1583 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584 
1585 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1586 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1587 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1588 
1589 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1590 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1591 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592 
1593 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1594 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1595 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1596 
1597 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1599 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1600 
1601 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1602 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1603 
1604 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1605 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1606 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1607 
1608 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1609 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1610 
1611 static inline void
1612 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613 {
1614 	current->flags &= ~flags;
1615 	current->flags |= orig_flags & flags;
1616 }
1617 
1618 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1619 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1620 #ifdef CONFIG_SMP
1621 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1622 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1623 #else
1624 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1625 {
1626 }
1627 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1628 {
1629 	if (!cpumask_test_cpu(0, new_mask))
1630 		return -EINVAL;
1631 	return 0;
1632 }
1633 #endif
1634 
1635 extern int yield_to(struct task_struct *p, bool preempt);
1636 extern void set_user_nice(struct task_struct *p, long nice);
1637 extern int task_prio(const struct task_struct *p);
1638 
1639 /**
1640  * task_nice - return the nice value of a given task.
1641  * @p: the task in question.
1642  *
1643  * Return: The nice value [ -20 ... 0 ... 19 ].
1644  */
1645 static inline int task_nice(const struct task_struct *p)
1646 {
1647 	return PRIO_TO_NICE((p)->static_prio);
1648 }
1649 
1650 extern int can_nice(const struct task_struct *p, const int nice);
1651 extern int task_curr(const struct task_struct *p);
1652 extern int idle_cpu(int cpu);
1653 extern int available_idle_cpu(int cpu);
1654 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1655 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1656 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1657 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1658 extern struct task_struct *idle_task(int cpu);
1659 
1660 /**
1661  * is_idle_task - is the specified task an idle task?
1662  * @p: the task in question.
1663  *
1664  * Return: 1 if @p is an idle task. 0 otherwise.
1665  */
1666 static inline bool is_idle_task(const struct task_struct *p)
1667 {
1668 	return !!(p->flags & PF_IDLE);
1669 }
1670 
1671 extern struct task_struct *curr_task(int cpu);
1672 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1673 
1674 void yield(void);
1675 
1676 union thread_union {
1677 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1678 	struct task_struct task;
1679 #endif
1680 #ifndef CONFIG_THREAD_INFO_IN_TASK
1681 	struct thread_info thread_info;
1682 #endif
1683 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1684 };
1685 
1686 #ifndef CONFIG_THREAD_INFO_IN_TASK
1687 extern struct thread_info init_thread_info;
1688 #endif
1689 
1690 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1691 
1692 #ifdef CONFIG_THREAD_INFO_IN_TASK
1693 static inline struct thread_info *task_thread_info(struct task_struct *task)
1694 {
1695 	return &task->thread_info;
1696 }
1697 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1698 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1699 #endif
1700 
1701 /*
1702  * find a task by one of its numerical ids
1703  *
1704  * find_task_by_pid_ns():
1705  *      finds a task by its pid in the specified namespace
1706  * find_task_by_vpid():
1707  *      finds a task by its virtual pid
1708  *
1709  * see also find_vpid() etc in include/linux/pid.h
1710  */
1711 
1712 extern struct task_struct *find_task_by_vpid(pid_t nr);
1713 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1714 
1715 /*
1716  * find a task by its virtual pid and get the task struct
1717  */
1718 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1719 
1720 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1721 extern int wake_up_process(struct task_struct *tsk);
1722 extern void wake_up_new_task(struct task_struct *tsk);
1723 
1724 #ifdef CONFIG_SMP
1725 extern void kick_process(struct task_struct *tsk);
1726 #else
1727 static inline void kick_process(struct task_struct *tsk) { }
1728 #endif
1729 
1730 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1731 
1732 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1733 {
1734 	__set_task_comm(tsk, from, false);
1735 }
1736 
1737 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1738 #define get_task_comm(buf, tsk) ({			\
1739 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1740 	__get_task_comm(buf, sizeof(buf), tsk);		\
1741 })
1742 
1743 #ifdef CONFIG_SMP
1744 static __always_inline void scheduler_ipi(void)
1745 {
1746 	/*
1747 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1748 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1749 	 * this IPI.
1750 	 */
1751 	preempt_fold_need_resched();
1752 }
1753 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1754 #else
1755 static inline void scheduler_ipi(void) { }
1756 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1757 {
1758 	return 1;
1759 }
1760 #endif
1761 
1762 /*
1763  * Set thread flags in other task's structures.
1764  * See asm/thread_info.h for TIF_xxxx flags available:
1765  */
1766 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1767 {
1768 	set_ti_thread_flag(task_thread_info(tsk), flag);
1769 }
1770 
1771 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1772 {
1773 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1774 }
1775 
1776 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1777 					  bool value)
1778 {
1779 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1780 }
1781 
1782 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1783 {
1784 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1785 }
1786 
1787 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1788 {
1789 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1790 }
1791 
1792 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1793 {
1794 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1795 }
1796 
1797 static inline void set_tsk_need_resched(struct task_struct *tsk)
1798 {
1799 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1800 }
1801 
1802 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1803 {
1804 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1805 }
1806 
1807 static inline int test_tsk_need_resched(struct task_struct *tsk)
1808 {
1809 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1810 }
1811 
1812 /*
1813  * cond_resched() and cond_resched_lock(): latency reduction via
1814  * explicit rescheduling in places that are safe. The return
1815  * value indicates whether a reschedule was done in fact.
1816  * cond_resched_lock() will drop the spinlock before scheduling,
1817  */
1818 #ifndef CONFIG_PREEMPTION
1819 extern int _cond_resched(void);
1820 #else
1821 static inline int _cond_resched(void) { return 0; }
1822 #endif
1823 
1824 #define cond_resched() ({			\
1825 	___might_sleep(__FILE__, __LINE__, 0);	\
1826 	_cond_resched();			\
1827 })
1828 
1829 extern int __cond_resched_lock(spinlock_t *lock);
1830 
1831 #define cond_resched_lock(lock) ({				\
1832 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1833 	__cond_resched_lock(lock);				\
1834 })
1835 
1836 static inline void cond_resched_rcu(void)
1837 {
1838 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1839 	rcu_read_unlock();
1840 	cond_resched();
1841 	rcu_read_lock();
1842 #endif
1843 }
1844 
1845 /*
1846  * Does a critical section need to be broken due to another
1847  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1848  * but a general need for low latency)
1849  */
1850 static inline int spin_needbreak(spinlock_t *lock)
1851 {
1852 #ifdef CONFIG_PREEMPTION
1853 	return spin_is_contended(lock);
1854 #else
1855 	return 0;
1856 #endif
1857 }
1858 
1859 static __always_inline bool need_resched(void)
1860 {
1861 	return unlikely(tif_need_resched());
1862 }
1863 
1864 /*
1865  * Wrappers for p->thread_info->cpu access. No-op on UP.
1866  */
1867 #ifdef CONFIG_SMP
1868 
1869 static inline unsigned int task_cpu(const struct task_struct *p)
1870 {
1871 #ifdef CONFIG_THREAD_INFO_IN_TASK
1872 	return READ_ONCE(p->cpu);
1873 #else
1874 	return READ_ONCE(task_thread_info(p)->cpu);
1875 #endif
1876 }
1877 
1878 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1879 
1880 #else
1881 
1882 static inline unsigned int task_cpu(const struct task_struct *p)
1883 {
1884 	return 0;
1885 }
1886 
1887 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1888 {
1889 }
1890 
1891 #endif /* CONFIG_SMP */
1892 
1893 /*
1894  * In order to reduce various lock holder preemption latencies provide an
1895  * interface to see if a vCPU is currently running or not.
1896  *
1897  * This allows us to terminate optimistic spin loops and block, analogous to
1898  * the native optimistic spin heuristic of testing if the lock owner task is
1899  * running or not.
1900  */
1901 #ifndef vcpu_is_preempted
1902 static inline bool vcpu_is_preempted(int cpu)
1903 {
1904 	return false;
1905 }
1906 #endif
1907 
1908 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1909 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1910 
1911 #ifndef TASK_SIZE_OF
1912 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1913 #endif
1914 
1915 #ifdef CONFIG_RSEQ
1916 
1917 /*
1918  * Map the event mask on the user-space ABI enum rseq_cs_flags
1919  * for direct mask checks.
1920  */
1921 enum rseq_event_mask_bits {
1922 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1923 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1924 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1925 };
1926 
1927 enum rseq_event_mask {
1928 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1929 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1930 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1931 };
1932 
1933 static inline void rseq_set_notify_resume(struct task_struct *t)
1934 {
1935 	if (t->rseq)
1936 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1937 }
1938 
1939 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1940 
1941 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1942 					     struct pt_regs *regs)
1943 {
1944 	if (current->rseq)
1945 		__rseq_handle_notify_resume(ksig, regs);
1946 }
1947 
1948 static inline void rseq_signal_deliver(struct ksignal *ksig,
1949 				       struct pt_regs *regs)
1950 {
1951 	preempt_disable();
1952 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1953 	preempt_enable();
1954 	rseq_handle_notify_resume(ksig, regs);
1955 }
1956 
1957 /* rseq_preempt() requires preemption to be disabled. */
1958 static inline void rseq_preempt(struct task_struct *t)
1959 {
1960 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1961 	rseq_set_notify_resume(t);
1962 }
1963 
1964 /* rseq_migrate() requires preemption to be disabled. */
1965 static inline void rseq_migrate(struct task_struct *t)
1966 {
1967 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1968 	rseq_set_notify_resume(t);
1969 }
1970 
1971 /*
1972  * If parent process has a registered restartable sequences area, the
1973  * child inherits. Unregister rseq for a clone with CLONE_VM set.
1974  */
1975 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1976 {
1977 	if (clone_flags & CLONE_VM) {
1978 		t->rseq = NULL;
1979 		t->rseq_sig = 0;
1980 		t->rseq_event_mask = 0;
1981 	} else {
1982 		t->rseq = current->rseq;
1983 		t->rseq_sig = current->rseq_sig;
1984 		t->rseq_event_mask = current->rseq_event_mask;
1985 	}
1986 }
1987 
1988 static inline void rseq_execve(struct task_struct *t)
1989 {
1990 	t->rseq = NULL;
1991 	t->rseq_sig = 0;
1992 	t->rseq_event_mask = 0;
1993 }
1994 
1995 #else
1996 
1997 static inline void rseq_set_notify_resume(struct task_struct *t)
1998 {
1999 }
2000 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2001 					     struct pt_regs *regs)
2002 {
2003 }
2004 static inline void rseq_signal_deliver(struct ksignal *ksig,
2005 				       struct pt_regs *regs)
2006 {
2007 }
2008 static inline void rseq_preempt(struct task_struct *t)
2009 {
2010 }
2011 static inline void rseq_migrate(struct task_struct *t)
2012 {
2013 }
2014 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2015 {
2016 }
2017 static inline void rseq_execve(struct task_struct *t)
2018 {
2019 }
2020 
2021 #endif
2022 
2023 void __exit_umh(struct task_struct *tsk);
2024 
2025 static inline void exit_umh(struct task_struct *tsk)
2026 {
2027 	if (unlikely(tsk->flags & PF_UMH))
2028 		__exit_umh(tsk);
2029 }
2030 
2031 #ifdef CONFIG_DEBUG_RSEQ
2032 
2033 void rseq_syscall(struct pt_regs *regs);
2034 
2035 #else
2036 
2037 static inline void rseq_syscall(struct pt_regs *regs)
2038 {
2039 }
2040 
2041 #endif
2042 
2043 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2044 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2045 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2046 
2047 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2048 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2049 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2050 
2051 int sched_trace_rq_cpu(struct rq *rq);
2052 
2053 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2054 
2055 #endif
2056