1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/compiler.h> 74 #include <linux/completion.h> 75 #include <linux/pid.h> 76 #include <linux/percpu.h> 77 #include <linux/topology.h> 78 #include <linux/proportions.h> 79 #include <linux/seccomp.h> 80 #include <linux/rcupdate.h> 81 #include <linux/rculist.h> 82 #include <linux/rtmutex.h> 83 84 #include <linux/time.h> 85 #include <linux/param.h> 86 #include <linux/resource.h> 87 #include <linux/timer.h> 88 #include <linux/hrtimer.h> 89 #include <linux/task_io_accounting.h> 90 #include <linux/latencytop.h> 91 #include <linux/cred.h> 92 #include <linux/llist.h> 93 #include <linux/uidgid.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 struct blk_plug; 104 105 /* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111 /* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121 extern unsigned long avenrun[]; /* Load averages */ 122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124 #define FSHIFT 11 /* nr of bits of precision */ 125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 129 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131 #define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136 extern unsigned long total_forks; 137 extern int nr_threads; 138 DECLARE_PER_CPU(unsigned long, process_counts); 139 extern int nr_processes(void); 140 extern unsigned long nr_running(void); 141 extern unsigned long nr_uninterruptible(void); 142 extern unsigned long nr_iowait(void); 143 extern unsigned long nr_iowait_cpu(int cpu); 144 extern unsigned long this_cpu_load(void); 145 146 147 extern void calc_global_load(unsigned long ticks); 148 extern void update_cpu_load_nohz(void); 149 150 extern unsigned long get_parent_ip(unsigned long addr); 151 152 struct seq_file; 153 struct cfs_rq; 154 struct task_group; 155 #ifdef CONFIG_SCHED_DEBUG 156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 157 extern void proc_sched_set_task(struct task_struct *p); 158 extern void 159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 160 #else 161 static inline void 162 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 163 { 164 } 165 static inline void proc_sched_set_task(struct task_struct *p) 166 { 167 } 168 static inline void 169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 170 { 171 } 172 #endif 173 174 /* 175 * Task state bitmask. NOTE! These bits are also 176 * encoded in fs/proc/array.c: get_task_state(). 177 * 178 * We have two separate sets of flags: task->state 179 * is about runnability, while task->exit_state are 180 * about the task exiting. Confusing, but this way 181 * modifying one set can't modify the other one by 182 * mistake. 183 */ 184 #define TASK_RUNNING 0 185 #define TASK_INTERRUPTIBLE 1 186 #define TASK_UNINTERRUPTIBLE 2 187 #define __TASK_STOPPED 4 188 #define __TASK_TRACED 8 189 /* in tsk->exit_state */ 190 #define EXIT_ZOMBIE 16 191 #define EXIT_DEAD 32 192 /* in tsk->state again */ 193 #define TASK_DEAD 64 194 #define TASK_WAKEKILL 128 195 #define TASK_WAKING 256 196 #define TASK_STATE_MAX 512 197 198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 199 200 extern char ___assert_task_state[1 - 2*!!( 201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 202 203 /* Convenience macros for the sake of set_task_state */ 204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 207 208 /* Convenience macros for the sake of wake_up */ 209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 211 212 /* get_task_state() */ 213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 215 __TASK_TRACED) 216 217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 219 #define task_is_dead(task) ((task)->exit_state != 0) 220 #define task_is_stopped_or_traced(task) \ 221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 222 #define task_contributes_to_load(task) \ 223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 224 (task->flags & PF_FROZEN) == 0) 225 226 #define __set_task_state(tsk, state_value) \ 227 do { (tsk)->state = (state_value); } while (0) 228 #define set_task_state(tsk, state_value) \ 229 set_mb((tsk)->state, (state_value)) 230 231 /* 232 * set_current_state() includes a barrier so that the write of current->state 233 * is correctly serialised wrt the caller's subsequent test of whether to 234 * actually sleep: 235 * 236 * set_current_state(TASK_UNINTERRUPTIBLE); 237 * if (do_i_need_to_sleep()) 238 * schedule(); 239 * 240 * If the caller does not need such serialisation then use __set_current_state() 241 */ 242 #define __set_current_state(state_value) \ 243 do { current->state = (state_value); } while (0) 244 #define set_current_state(state_value) \ 245 set_mb(current->state, (state_value)) 246 247 /* Task command name length */ 248 #define TASK_COMM_LEN 16 249 250 #include <linux/spinlock.h> 251 252 /* 253 * This serializes "schedule()" and also protects 254 * the run-queue from deletions/modifications (but 255 * _adding_ to the beginning of the run-queue has 256 * a separate lock). 257 */ 258 extern rwlock_t tasklist_lock; 259 extern spinlock_t mmlist_lock; 260 261 struct task_struct; 262 263 #ifdef CONFIG_PROVE_RCU 264 extern int lockdep_tasklist_lock_is_held(void); 265 #endif /* #ifdef CONFIG_PROVE_RCU */ 266 267 extern void sched_init(void); 268 extern void sched_init_smp(void); 269 extern asmlinkage void schedule_tail(struct task_struct *prev); 270 extern void init_idle(struct task_struct *idle, int cpu); 271 extern void init_idle_bootup_task(struct task_struct *idle); 272 273 extern int runqueue_is_locked(int cpu); 274 275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 276 extern void select_nohz_load_balancer(int stop_tick); 277 extern void set_cpu_sd_state_idle(void); 278 extern int get_nohz_timer_target(void); 279 #else 280 static inline void select_nohz_load_balancer(int stop_tick) { } 281 static inline void set_cpu_sd_state_idle(void) { } 282 #endif 283 284 /* 285 * Only dump TASK_* tasks. (0 for all tasks) 286 */ 287 extern void show_state_filter(unsigned long state_filter); 288 289 static inline void show_state(void) 290 { 291 show_state_filter(0); 292 } 293 294 extern void show_regs(struct pt_regs *); 295 296 /* 297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 298 * task), SP is the stack pointer of the first frame that should be shown in the back 299 * trace (or NULL if the entire call-chain of the task should be shown). 300 */ 301 extern void show_stack(struct task_struct *task, unsigned long *sp); 302 303 void io_schedule(void); 304 long io_schedule_timeout(long timeout); 305 306 extern void cpu_init (void); 307 extern void trap_init(void); 308 extern void update_process_times(int user); 309 extern void scheduler_tick(void); 310 311 extern void sched_show_task(struct task_struct *p); 312 313 #ifdef CONFIG_LOCKUP_DETECTOR 314 extern void touch_softlockup_watchdog(void); 315 extern void touch_softlockup_watchdog_sync(void); 316 extern void touch_all_softlockup_watchdogs(void); 317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 318 void __user *buffer, 319 size_t *lenp, loff_t *ppos); 320 extern unsigned int softlockup_panic; 321 void lockup_detector_init(void); 322 #else 323 static inline void touch_softlockup_watchdog(void) 324 { 325 } 326 static inline void touch_softlockup_watchdog_sync(void) 327 { 328 } 329 static inline void touch_all_softlockup_watchdogs(void) 330 { 331 } 332 static inline void lockup_detector_init(void) 333 { 334 } 335 #endif 336 337 #ifdef CONFIG_DETECT_HUNG_TASK 338 extern unsigned int sysctl_hung_task_panic; 339 extern unsigned long sysctl_hung_task_check_count; 340 extern unsigned long sysctl_hung_task_timeout_secs; 341 extern unsigned long sysctl_hung_task_warnings; 342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 343 void __user *buffer, 344 size_t *lenp, loff_t *ppos); 345 #else 346 /* Avoid need for ifdefs elsewhere in the code */ 347 enum { sysctl_hung_task_timeout_secs = 0 }; 348 #endif 349 350 /* Attach to any functions which should be ignored in wchan output. */ 351 #define __sched __attribute__((__section__(".sched.text"))) 352 353 /* Linker adds these: start and end of __sched functions */ 354 extern char __sched_text_start[], __sched_text_end[]; 355 356 /* Is this address in the __sched functions? */ 357 extern int in_sched_functions(unsigned long addr); 358 359 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 360 extern signed long schedule_timeout(signed long timeout); 361 extern signed long schedule_timeout_interruptible(signed long timeout); 362 extern signed long schedule_timeout_killable(signed long timeout); 363 extern signed long schedule_timeout_uninterruptible(signed long timeout); 364 asmlinkage void schedule(void); 365 extern void schedule_preempt_disabled(void); 366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 367 368 struct nsproxy; 369 struct user_namespace; 370 371 /* 372 * Default maximum number of active map areas, this limits the number of vmas 373 * per mm struct. Users can overwrite this number by sysctl but there is a 374 * problem. 375 * 376 * When a program's coredump is generated as ELF format, a section is created 377 * per a vma. In ELF, the number of sections is represented in unsigned short. 378 * This means the number of sections should be smaller than 65535 at coredump. 379 * Because the kernel adds some informative sections to a image of program at 380 * generating coredump, we need some margin. The number of extra sections is 381 * 1-3 now and depends on arch. We use "5" as safe margin, here. 382 */ 383 #define MAPCOUNT_ELF_CORE_MARGIN (5) 384 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 385 386 extern int sysctl_max_map_count; 387 388 #include <linux/aio.h> 389 390 #ifdef CONFIG_MMU 391 extern void arch_pick_mmap_layout(struct mm_struct *mm); 392 extern unsigned long 393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 394 unsigned long, unsigned long); 395 extern unsigned long 396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 397 unsigned long len, unsigned long pgoff, 398 unsigned long flags); 399 extern void arch_unmap_area(struct mm_struct *, unsigned long); 400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 401 #else 402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 403 #endif 404 405 406 extern void set_dumpable(struct mm_struct *mm, int value); 407 extern int get_dumpable(struct mm_struct *mm); 408 409 /* get/set_dumpable() values */ 410 #define SUID_DUMPABLE_DISABLED 0 411 #define SUID_DUMPABLE_ENABLED 1 412 #define SUID_DUMPABLE_SAFE 2 413 414 /* mm flags */ 415 /* dumpable bits */ 416 #define MMF_DUMPABLE 0 /* core dump is permitted */ 417 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 418 419 #define MMF_DUMPABLE_BITS 2 420 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 421 422 /* coredump filter bits */ 423 #define MMF_DUMP_ANON_PRIVATE 2 424 #define MMF_DUMP_ANON_SHARED 3 425 #define MMF_DUMP_MAPPED_PRIVATE 4 426 #define MMF_DUMP_MAPPED_SHARED 5 427 #define MMF_DUMP_ELF_HEADERS 6 428 #define MMF_DUMP_HUGETLB_PRIVATE 7 429 #define MMF_DUMP_HUGETLB_SHARED 8 430 431 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 432 #define MMF_DUMP_FILTER_BITS 7 433 #define MMF_DUMP_FILTER_MASK \ 434 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 435 #define MMF_DUMP_FILTER_DEFAULT \ 436 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 437 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 438 439 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 440 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 441 #else 442 # define MMF_DUMP_MASK_DEFAULT_ELF 0 443 #endif 444 /* leave room for more dump flags */ 445 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 446 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 447 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 448 449 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 450 451 struct sighand_struct { 452 atomic_t count; 453 struct k_sigaction action[_NSIG]; 454 spinlock_t siglock; 455 wait_queue_head_t signalfd_wqh; 456 }; 457 458 struct pacct_struct { 459 int ac_flag; 460 long ac_exitcode; 461 unsigned long ac_mem; 462 cputime_t ac_utime, ac_stime; 463 unsigned long ac_minflt, ac_majflt; 464 }; 465 466 struct cpu_itimer { 467 cputime_t expires; 468 cputime_t incr; 469 u32 error; 470 u32 incr_error; 471 }; 472 473 /** 474 * struct task_cputime - collected CPU time counts 475 * @utime: time spent in user mode, in &cputime_t units 476 * @stime: time spent in kernel mode, in &cputime_t units 477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 478 * 479 * This structure groups together three kinds of CPU time that are 480 * tracked for threads and thread groups. Most things considering 481 * CPU time want to group these counts together and treat all three 482 * of them in parallel. 483 */ 484 struct task_cputime { 485 cputime_t utime; 486 cputime_t stime; 487 unsigned long long sum_exec_runtime; 488 }; 489 /* Alternate field names when used to cache expirations. */ 490 #define prof_exp stime 491 #define virt_exp utime 492 #define sched_exp sum_exec_runtime 493 494 #define INIT_CPUTIME \ 495 (struct task_cputime) { \ 496 .utime = 0, \ 497 .stime = 0, \ 498 .sum_exec_runtime = 0, \ 499 } 500 501 /* 502 * Disable preemption until the scheduler is running. 503 * Reset by start_kernel()->sched_init()->init_idle(). 504 * 505 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 506 * before the scheduler is active -- see should_resched(). 507 */ 508 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 509 510 /** 511 * struct thread_group_cputimer - thread group interval timer counts 512 * @cputime: thread group interval timers. 513 * @running: non-zero when there are timers running and 514 * @cputime receives updates. 515 * @lock: lock for fields in this struct. 516 * 517 * This structure contains the version of task_cputime, above, that is 518 * used for thread group CPU timer calculations. 519 */ 520 struct thread_group_cputimer { 521 struct task_cputime cputime; 522 int running; 523 raw_spinlock_t lock; 524 }; 525 526 #include <linux/rwsem.h> 527 struct autogroup; 528 529 /* 530 * NOTE! "signal_struct" does not have its own 531 * locking, because a shared signal_struct always 532 * implies a shared sighand_struct, so locking 533 * sighand_struct is always a proper superset of 534 * the locking of signal_struct. 535 */ 536 struct signal_struct { 537 atomic_t sigcnt; 538 atomic_t live; 539 int nr_threads; 540 541 wait_queue_head_t wait_chldexit; /* for wait4() */ 542 543 /* current thread group signal load-balancing target: */ 544 struct task_struct *curr_target; 545 546 /* shared signal handling: */ 547 struct sigpending shared_pending; 548 549 /* thread group exit support */ 550 int group_exit_code; 551 /* overloaded: 552 * - notify group_exit_task when ->count is equal to notify_count 553 * - everyone except group_exit_task is stopped during signal delivery 554 * of fatal signals, group_exit_task processes the signal. 555 */ 556 int notify_count; 557 struct task_struct *group_exit_task; 558 559 /* thread group stop support, overloads group_exit_code too */ 560 int group_stop_count; 561 unsigned int flags; /* see SIGNAL_* flags below */ 562 563 /* 564 * PR_SET_CHILD_SUBREAPER marks a process, like a service 565 * manager, to re-parent orphan (double-forking) child processes 566 * to this process instead of 'init'. The service manager is 567 * able to receive SIGCHLD signals and is able to investigate 568 * the process until it calls wait(). All children of this 569 * process will inherit a flag if they should look for a 570 * child_subreaper process at exit. 571 */ 572 unsigned int is_child_subreaper:1; 573 unsigned int has_child_subreaper:1; 574 575 /* POSIX.1b Interval Timers */ 576 struct list_head posix_timers; 577 578 /* ITIMER_REAL timer for the process */ 579 struct hrtimer real_timer; 580 struct pid *leader_pid; 581 ktime_t it_real_incr; 582 583 /* 584 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 585 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 586 * values are defined to 0 and 1 respectively 587 */ 588 struct cpu_itimer it[2]; 589 590 /* 591 * Thread group totals for process CPU timers. 592 * See thread_group_cputimer(), et al, for details. 593 */ 594 struct thread_group_cputimer cputimer; 595 596 /* Earliest-expiration cache. */ 597 struct task_cputime cputime_expires; 598 599 struct list_head cpu_timers[3]; 600 601 struct pid *tty_old_pgrp; 602 603 /* boolean value for session group leader */ 604 int leader; 605 606 struct tty_struct *tty; /* NULL if no tty */ 607 608 #ifdef CONFIG_SCHED_AUTOGROUP 609 struct autogroup *autogroup; 610 #endif 611 /* 612 * Cumulative resource counters for dead threads in the group, 613 * and for reaped dead child processes forked by this group. 614 * Live threads maintain their own counters and add to these 615 * in __exit_signal, except for the group leader. 616 */ 617 cputime_t utime, stime, cutime, cstime; 618 cputime_t gtime; 619 cputime_t cgtime; 620 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 621 cputime_t prev_utime, prev_stime; 622 #endif 623 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 624 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 625 unsigned long inblock, oublock, cinblock, coublock; 626 unsigned long maxrss, cmaxrss; 627 struct task_io_accounting ioac; 628 629 /* 630 * Cumulative ns of schedule CPU time fo dead threads in the 631 * group, not including a zombie group leader, (This only differs 632 * from jiffies_to_ns(utime + stime) if sched_clock uses something 633 * other than jiffies.) 634 */ 635 unsigned long long sum_sched_runtime; 636 637 /* 638 * We don't bother to synchronize most readers of this at all, 639 * because there is no reader checking a limit that actually needs 640 * to get both rlim_cur and rlim_max atomically, and either one 641 * alone is a single word that can safely be read normally. 642 * getrlimit/setrlimit use task_lock(current->group_leader) to 643 * protect this instead of the siglock, because they really 644 * have no need to disable irqs. 645 */ 646 struct rlimit rlim[RLIM_NLIMITS]; 647 648 #ifdef CONFIG_BSD_PROCESS_ACCT 649 struct pacct_struct pacct; /* per-process accounting information */ 650 #endif 651 #ifdef CONFIG_TASKSTATS 652 struct taskstats *stats; 653 #endif 654 #ifdef CONFIG_AUDIT 655 unsigned audit_tty; 656 struct tty_audit_buf *tty_audit_buf; 657 #endif 658 #ifdef CONFIG_CGROUPS 659 /* 660 * group_rwsem prevents new tasks from entering the threadgroup and 661 * member tasks from exiting,a more specifically, setting of 662 * PF_EXITING. fork and exit paths are protected with this rwsem 663 * using threadgroup_change_begin/end(). Users which require 664 * threadgroup to remain stable should use threadgroup_[un]lock() 665 * which also takes care of exec path. Currently, cgroup is the 666 * only user. 667 */ 668 struct rw_semaphore group_rwsem; 669 #endif 670 671 int oom_adj; /* OOM kill score adjustment (bit shift) */ 672 int oom_score_adj; /* OOM kill score adjustment */ 673 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 674 * Only settable by CAP_SYS_RESOURCE. */ 675 676 struct mutex cred_guard_mutex; /* guard against foreign influences on 677 * credential calculations 678 * (notably. ptrace) */ 679 }; 680 681 /* Context switch must be unlocked if interrupts are to be enabled */ 682 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 683 # define __ARCH_WANT_UNLOCKED_CTXSW 684 #endif 685 686 /* 687 * Bits in flags field of signal_struct. 688 */ 689 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 690 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 691 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 692 /* 693 * Pending notifications to parent. 694 */ 695 #define SIGNAL_CLD_STOPPED 0x00000010 696 #define SIGNAL_CLD_CONTINUED 0x00000020 697 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 698 699 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 700 701 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 702 static inline int signal_group_exit(const struct signal_struct *sig) 703 { 704 return (sig->flags & SIGNAL_GROUP_EXIT) || 705 (sig->group_exit_task != NULL); 706 } 707 708 /* 709 * Some day this will be a full-fledged user tracking system.. 710 */ 711 struct user_struct { 712 atomic_t __count; /* reference count */ 713 atomic_t processes; /* How many processes does this user have? */ 714 atomic_t files; /* How many open files does this user have? */ 715 atomic_t sigpending; /* How many pending signals does this user have? */ 716 #ifdef CONFIG_INOTIFY_USER 717 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 718 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 719 #endif 720 #ifdef CONFIG_FANOTIFY 721 atomic_t fanotify_listeners; 722 #endif 723 #ifdef CONFIG_EPOLL 724 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 725 #endif 726 #ifdef CONFIG_POSIX_MQUEUE 727 /* protected by mq_lock */ 728 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 729 #endif 730 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 731 732 #ifdef CONFIG_KEYS 733 struct key *uid_keyring; /* UID specific keyring */ 734 struct key *session_keyring; /* UID's default session keyring */ 735 #endif 736 737 /* Hash table maintenance information */ 738 struct hlist_node uidhash_node; 739 kuid_t uid; 740 741 #ifdef CONFIG_PERF_EVENTS 742 atomic_long_t locked_vm; 743 #endif 744 }; 745 746 extern int uids_sysfs_init(void); 747 748 extern struct user_struct *find_user(kuid_t); 749 750 extern struct user_struct root_user; 751 #define INIT_USER (&root_user) 752 753 754 struct backing_dev_info; 755 struct reclaim_state; 756 757 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 758 struct sched_info { 759 /* cumulative counters */ 760 unsigned long pcount; /* # of times run on this cpu */ 761 unsigned long long run_delay; /* time spent waiting on a runqueue */ 762 763 /* timestamps */ 764 unsigned long long last_arrival,/* when we last ran on a cpu */ 765 last_queued; /* when we were last queued to run */ 766 }; 767 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 768 769 #ifdef CONFIG_TASK_DELAY_ACCT 770 struct task_delay_info { 771 spinlock_t lock; 772 unsigned int flags; /* Private per-task flags */ 773 774 /* For each stat XXX, add following, aligned appropriately 775 * 776 * struct timespec XXX_start, XXX_end; 777 * u64 XXX_delay; 778 * u32 XXX_count; 779 * 780 * Atomicity of updates to XXX_delay, XXX_count protected by 781 * single lock above (split into XXX_lock if contention is an issue). 782 */ 783 784 /* 785 * XXX_count is incremented on every XXX operation, the delay 786 * associated with the operation is added to XXX_delay. 787 * XXX_delay contains the accumulated delay time in nanoseconds. 788 */ 789 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 790 u64 blkio_delay; /* wait for sync block io completion */ 791 u64 swapin_delay; /* wait for swapin block io completion */ 792 u32 blkio_count; /* total count of the number of sync block */ 793 /* io operations performed */ 794 u32 swapin_count; /* total count of the number of swapin block */ 795 /* io operations performed */ 796 797 struct timespec freepages_start, freepages_end; 798 u64 freepages_delay; /* wait for memory reclaim */ 799 u32 freepages_count; /* total count of memory reclaim */ 800 }; 801 #endif /* CONFIG_TASK_DELAY_ACCT */ 802 803 static inline int sched_info_on(void) 804 { 805 #ifdef CONFIG_SCHEDSTATS 806 return 1; 807 #elif defined(CONFIG_TASK_DELAY_ACCT) 808 extern int delayacct_on; 809 return delayacct_on; 810 #else 811 return 0; 812 #endif 813 } 814 815 enum cpu_idle_type { 816 CPU_IDLE, 817 CPU_NOT_IDLE, 818 CPU_NEWLY_IDLE, 819 CPU_MAX_IDLE_TYPES 820 }; 821 822 /* 823 * Increase resolution of nice-level calculations for 64-bit architectures. 824 * The extra resolution improves shares distribution and load balancing of 825 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 826 * hierarchies, especially on larger systems. This is not a user-visible change 827 * and does not change the user-interface for setting shares/weights. 828 * 829 * We increase resolution only if we have enough bits to allow this increased 830 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 831 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 832 * increased costs. 833 */ 834 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 835 # define SCHED_LOAD_RESOLUTION 10 836 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 837 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 838 #else 839 # define SCHED_LOAD_RESOLUTION 0 840 # define scale_load(w) (w) 841 # define scale_load_down(w) (w) 842 #endif 843 844 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 845 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 846 847 /* 848 * Increase resolution of cpu_power calculations 849 */ 850 #define SCHED_POWER_SHIFT 10 851 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 852 853 /* 854 * sched-domains (multiprocessor balancing) declarations: 855 */ 856 #ifdef CONFIG_SMP 857 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 858 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 859 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 860 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 861 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 862 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 863 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 864 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 865 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 866 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 867 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 868 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 869 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 870 871 extern int __weak arch_sd_sibiling_asym_packing(void); 872 873 struct sched_group_power { 874 atomic_t ref; 875 /* 876 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 877 * single CPU. 878 */ 879 unsigned int power, power_orig; 880 unsigned long next_update; 881 /* 882 * Number of busy cpus in this group. 883 */ 884 atomic_t nr_busy_cpus; 885 886 unsigned long cpumask[0]; /* iteration mask */ 887 }; 888 889 struct sched_group { 890 struct sched_group *next; /* Must be a circular list */ 891 atomic_t ref; 892 893 unsigned int group_weight; 894 struct sched_group_power *sgp; 895 896 /* 897 * The CPUs this group covers. 898 * 899 * NOTE: this field is variable length. (Allocated dynamically 900 * by attaching extra space to the end of the structure, 901 * depending on how many CPUs the kernel has booted up with) 902 */ 903 unsigned long cpumask[0]; 904 }; 905 906 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 907 { 908 return to_cpumask(sg->cpumask); 909 } 910 911 /* 912 * cpumask masking which cpus in the group are allowed to iterate up the domain 913 * tree. 914 */ 915 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 916 { 917 return to_cpumask(sg->sgp->cpumask); 918 } 919 920 /** 921 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 922 * @group: The group whose first cpu is to be returned. 923 */ 924 static inline unsigned int group_first_cpu(struct sched_group *group) 925 { 926 return cpumask_first(sched_group_cpus(group)); 927 } 928 929 struct sched_domain_attr { 930 int relax_domain_level; 931 }; 932 933 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 934 .relax_domain_level = -1, \ 935 } 936 937 extern int sched_domain_level_max; 938 939 struct sched_domain { 940 /* These fields must be setup */ 941 struct sched_domain *parent; /* top domain must be null terminated */ 942 struct sched_domain *child; /* bottom domain must be null terminated */ 943 struct sched_group *groups; /* the balancing groups of the domain */ 944 unsigned long min_interval; /* Minimum balance interval ms */ 945 unsigned long max_interval; /* Maximum balance interval ms */ 946 unsigned int busy_factor; /* less balancing by factor if busy */ 947 unsigned int imbalance_pct; /* No balance until over watermark */ 948 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 949 unsigned int busy_idx; 950 unsigned int idle_idx; 951 unsigned int newidle_idx; 952 unsigned int wake_idx; 953 unsigned int forkexec_idx; 954 unsigned int smt_gain; 955 int flags; /* See SD_* */ 956 int level; 957 958 /* Runtime fields. */ 959 unsigned long last_balance; /* init to jiffies. units in jiffies */ 960 unsigned int balance_interval; /* initialise to 1. units in ms. */ 961 unsigned int nr_balance_failed; /* initialise to 0 */ 962 963 u64 last_update; 964 965 #ifdef CONFIG_SCHEDSTATS 966 /* load_balance() stats */ 967 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 968 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 970 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 971 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 972 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 973 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 974 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 975 976 /* Active load balancing */ 977 unsigned int alb_count; 978 unsigned int alb_failed; 979 unsigned int alb_pushed; 980 981 /* SD_BALANCE_EXEC stats */ 982 unsigned int sbe_count; 983 unsigned int sbe_balanced; 984 unsigned int sbe_pushed; 985 986 /* SD_BALANCE_FORK stats */ 987 unsigned int sbf_count; 988 unsigned int sbf_balanced; 989 unsigned int sbf_pushed; 990 991 /* try_to_wake_up() stats */ 992 unsigned int ttwu_wake_remote; 993 unsigned int ttwu_move_affine; 994 unsigned int ttwu_move_balance; 995 #endif 996 #ifdef CONFIG_SCHED_DEBUG 997 char *name; 998 #endif 999 union { 1000 void *private; /* used during construction */ 1001 struct rcu_head rcu; /* used during destruction */ 1002 }; 1003 1004 unsigned int span_weight; 1005 /* 1006 * Span of all CPUs in this domain. 1007 * 1008 * NOTE: this field is variable length. (Allocated dynamically 1009 * by attaching extra space to the end of the structure, 1010 * depending on how many CPUs the kernel has booted up with) 1011 */ 1012 unsigned long span[0]; 1013 }; 1014 1015 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1016 { 1017 return to_cpumask(sd->span); 1018 } 1019 1020 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1021 struct sched_domain_attr *dattr_new); 1022 1023 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1024 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1025 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1026 1027 /* Test a flag in parent sched domain */ 1028 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1029 { 1030 if (sd->parent && (sd->parent->flags & flag)) 1031 return 1; 1032 1033 return 0; 1034 } 1035 1036 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1037 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1038 1039 bool cpus_share_cache(int this_cpu, int that_cpu); 1040 1041 #else /* CONFIG_SMP */ 1042 1043 struct sched_domain_attr; 1044 1045 static inline void 1046 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1047 struct sched_domain_attr *dattr_new) 1048 { 1049 } 1050 1051 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1052 { 1053 return true; 1054 } 1055 1056 #endif /* !CONFIG_SMP */ 1057 1058 1059 struct io_context; /* See blkdev.h */ 1060 1061 1062 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1063 extern void prefetch_stack(struct task_struct *t); 1064 #else 1065 static inline void prefetch_stack(struct task_struct *t) { } 1066 #endif 1067 1068 struct audit_context; /* See audit.c */ 1069 struct mempolicy; 1070 struct pipe_inode_info; 1071 struct uts_namespace; 1072 1073 struct rq; 1074 struct sched_domain; 1075 1076 /* 1077 * wake flags 1078 */ 1079 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1080 #define WF_FORK 0x02 /* child wakeup after fork */ 1081 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1082 1083 #define ENQUEUE_WAKEUP 1 1084 #define ENQUEUE_HEAD 2 1085 #ifdef CONFIG_SMP 1086 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1087 #else 1088 #define ENQUEUE_WAKING 0 1089 #endif 1090 1091 #define DEQUEUE_SLEEP 1 1092 1093 struct sched_class { 1094 const struct sched_class *next; 1095 1096 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1097 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1098 void (*yield_task) (struct rq *rq); 1099 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1100 1101 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1102 1103 struct task_struct * (*pick_next_task) (struct rq *rq); 1104 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1105 1106 #ifdef CONFIG_SMP 1107 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1108 1109 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1110 void (*post_schedule) (struct rq *this_rq); 1111 void (*task_waking) (struct task_struct *task); 1112 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1113 1114 void (*set_cpus_allowed)(struct task_struct *p, 1115 const struct cpumask *newmask); 1116 1117 void (*rq_online)(struct rq *rq); 1118 void (*rq_offline)(struct rq *rq); 1119 #endif 1120 1121 void (*set_curr_task) (struct rq *rq); 1122 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1123 void (*task_fork) (struct task_struct *p); 1124 1125 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1126 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1127 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1128 int oldprio); 1129 1130 unsigned int (*get_rr_interval) (struct rq *rq, 1131 struct task_struct *task); 1132 1133 #ifdef CONFIG_FAIR_GROUP_SCHED 1134 void (*task_move_group) (struct task_struct *p, int on_rq); 1135 #endif 1136 }; 1137 1138 struct load_weight { 1139 unsigned long weight, inv_weight; 1140 }; 1141 1142 #ifdef CONFIG_SCHEDSTATS 1143 struct sched_statistics { 1144 u64 wait_start; 1145 u64 wait_max; 1146 u64 wait_count; 1147 u64 wait_sum; 1148 u64 iowait_count; 1149 u64 iowait_sum; 1150 1151 u64 sleep_start; 1152 u64 sleep_max; 1153 s64 sum_sleep_runtime; 1154 1155 u64 block_start; 1156 u64 block_max; 1157 u64 exec_max; 1158 u64 slice_max; 1159 1160 u64 nr_migrations_cold; 1161 u64 nr_failed_migrations_affine; 1162 u64 nr_failed_migrations_running; 1163 u64 nr_failed_migrations_hot; 1164 u64 nr_forced_migrations; 1165 1166 u64 nr_wakeups; 1167 u64 nr_wakeups_sync; 1168 u64 nr_wakeups_migrate; 1169 u64 nr_wakeups_local; 1170 u64 nr_wakeups_remote; 1171 u64 nr_wakeups_affine; 1172 u64 nr_wakeups_affine_attempts; 1173 u64 nr_wakeups_passive; 1174 u64 nr_wakeups_idle; 1175 }; 1176 #endif 1177 1178 struct sched_entity { 1179 struct load_weight load; /* for load-balancing */ 1180 struct rb_node run_node; 1181 struct list_head group_node; 1182 unsigned int on_rq; 1183 1184 u64 exec_start; 1185 u64 sum_exec_runtime; 1186 u64 vruntime; 1187 u64 prev_sum_exec_runtime; 1188 1189 u64 nr_migrations; 1190 1191 #ifdef CONFIG_SCHEDSTATS 1192 struct sched_statistics statistics; 1193 #endif 1194 1195 #ifdef CONFIG_FAIR_GROUP_SCHED 1196 struct sched_entity *parent; 1197 /* rq on which this entity is (to be) queued: */ 1198 struct cfs_rq *cfs_rq; 1199 /* rq "owned" by this entity/group: */ 1200 struct cfs_rq *my_q; 1201 #endif 1202 }; 1203 1204 struct sched_rt_entity { 1205 struct list_head run_list; 1206 unsigned long timeout; 1207 unsigned int time_slice; 1208 1209 struct sched_rt_entity *back; 1210 #ifdef CONFIG_RT_GROUP_SCHED 1211 struct sched_rt_entity *parent; 1212 /* rq on which this entity is (to be) queued: */ 1213 struct rt_rq *rt_rq; 1214 /* rq "owned" by this entity/group: */ 1215 struct rt_rq *my_q; 1216 #endif 1217 }; 1218 1219 /* 1220 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1221 * Timeslices get refilled after they expire. 1222 */ 1223 #define RR_TIMESLICE (100 * HZ / 1000) 1224 1225 struct rcu_node; 1226 1227 enum perf_event_task_context { 1228 perf_invalid_context = -1, 1229 perf_hw_context = 0, 1230 perf_sw_context, 1231 perf_nr_task_contexts, 1232 }; 1233 1234 struct task_struct { 1235 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1236 void *stack; 1237 atomic_t usage; 1238 unsigned int flags; /* per process flags, defined below */ 1239 unsigned int ptrace; 1240 1241 #ifdef CONFIG_SMP 1242 struct llist_node wake_entry; 1243 int on_cpu; 1244 #endif 1245 int on_rq; 1246 1247 int prio, static_prio, normal_prio; 1248 unsigned int rt_priority; 1249 const struct sched_class *sched_class; 1250 struct sched_entity se; 1251 struct sched_rt_entity rt; 1252 #ifdef CONFIG_CGROUP_SCHED 1253 struct task_group *sched_task_group; 1254 #endif 1255 1256 #ifdef CONFIG_PREEMPT_NOTIFIERS 1257 /* list of struct preempt_notifier: */ 1258 struct hlist_head preempt_notifiers; 1259 #endif 1260 1261 /* 1262 * fpu_counter contains the number of consecutive context switches 1263 * that the FPU is used. If this is over a threshold, the lazy fpu 1264 * saving becomes unlazy to save the trap. This is an unsigned char 1265 * so that after 256 times the counter wraps and the behavior turns 1266 * lazy again; this to deal with bursty apps that only use FPU for 1267 * a short time 1268 */ 1269 unsigned char fpu_counter; 1270 #ifdef CONFIG_BLK_DEV_IO_TRACE 1271 unsigned int btrace_seq; 1272 #endif 1273 1274 unsigned int policy; 1275 int nr_cpus_allowed; 1276 cpumask_t cpus_allowed; 1277 1278 #ifdef CONFIG_PREEMPT_RCU 1279 int rcu_read_lock_nesting; 1280 char rcu_read_unlock_special; 1281 struct list_head rcu_node_entry; 1282 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1283 #ifdef CONFIG_TREE_PREEMPT_RCU 1284 struct rcu_node *rcu_blocked_node; 1285 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1286 #ifdef CONFIG_RCU_BOOST 1287 struct rt_mutex *rcu_boost_mutex; 1288 #endif /* #ifdef CONFIG_RCU_BOOST */ 1289 1290 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1291 struct sched_info sched_info; 1292 #endif 1293 1294 struct list_head tasks; 1295 #ifdef CONFIG_SMP 1296 struct plist_node pushable_tasks; 1297 #endif 1298 1299 struct mm_struct *mm, *active_mm; 1300 #ifdef CONFIG_COMPAT_BRK 1301 unsigned brk_randomized:1; 1302 #endif 1303 #if defined(SPLIT_RSS_COUNTING) 1304 struct task_rss_stat rss_stat; 1305 #endif 1306 /* task state */ 1307 int exit_state; 1308 int exit_code, exit_signal; 1309 int pdeath_signal; /* The signal sent when the parent dies */ 1310 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1311 /* ??? */ 1312 unsigned int personality; 1313 unsigned did_exec:1; 1314 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1315 * execve */ 1316 unsigned in_iowait:1; 1317 1318 /* task may not gain privileges */ 1319 unsigned no_new_privs:1; 1320 1321 /* Revert to default priority/policy when forking */ 1322 unsigned sched_reset_on_fork:1; 1323 unsigned sched_contributes_to_load:1; 1324 1325 pid_t pid; 1326 pid_t tgid; 1327 1328 #ifdef CONFIG_CC_STACKPROTECTOR 1329 /* Canary value for the -fstack-protector gcc feature */ 1330 unsigned long stack_canary; 1331 #endif 1332 /* 1333 * pointers to (original) parent process, youngest child, younger sibling, 1334 * older sibling, respectively. (p->father can be replaced with 1335 * p->real_parent->pid) 1336 */ 1337 struct task_struct __rcu *real_parent; /* real parent process */ 1338 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1339 /* 1340 * children/sibling forms the list of my natural children 1341 */ 1342 struct list_head children; /* list of my children */ 1343 struct list_head sibling; /* linkage in my parent's children list */ 1344 struct task_struct *group_leader; /* threadgroup leader */ 1345 1346 /* 1347 * ptraced is the list of tasks this task is using ptrace on. 1348 * This includes both natural children and PTRACE_ATTACH targets. 1349 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1350 */ 1351 struct list_head ptraced; 1352 struct list_head ptrace_entry; 1353 1354 /* PID/PID hash table linkage. */ 1355 struct pid_link pids[PIDTYPE_MAX]; 1356 struct list_head thread_group; 1357 1358 struct completion *vfork_done; /* for vfork() */ 1359 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1360 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1361 1362 cputime_t utime, stime, utimescaled, stimescaled; 1363 cputime_t gtime; 1364 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1365 cputime_t prev_utime, prev_stime; 1366 #endif 1367 unsigned long nvcsw, nivcsw; /* context switch counts */ 1368 struct timespec start_time; /* monotonic time */ 1369 struct timespec real_start_time; /* boot based time */ 1370 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1371 unsigned long min_flt, maj_flt; 1372 1373 struct task_cputime cputime_expires; 1374 struct list_head cpu_timers[3]; 1375 1376 /* process credentials */ 1377 const struct cred __rcu *real_cred; /* objective and real subjective task 1378 * credentials (COW) */ 1379 const struct cred __rcu *cred; /* effective (overridable) subjective task 1380 * credentials (COW) */ 1381 char comm[TASK_COMM_LEN]; /* executable name excluding path 1382 - access with [gs]et_task_comm (which lock 1383 it with task_lock()) 1384 - initialized normally by setup_new_exec */ 1385 /* file system info */ 1386 int link_count, total_link_count; 1387 #ifdef CONFIG_SYSVIPC 1388 /* ipc stuff */ 1389 struct sysv_sem sysvsem; 1390 #endif 1391 #ifdef CONFIG_DETECT_HUNG_TASK 1392 /* hung task detection */ 1393 unsigned long last_switch_count; 1394 #endif 1395 /* CPU-specific state of this task */ 1396 struct thread_struct thread; 1397 /* filesystem information */ 1398 struct fs_struct *fs; 1399 /* open file information */ 1400 struct files_struct *files; 1401 /* namespaces */ 1402 struct nsproxy *nsproxy; 1403 /* signal handlers */ 1404 struct signal_struct *signal; 1405 struct sighand_struct *sighand; 1406 1407 sigset_t blocked, real_blocked; 1408 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1409 struct sigpending pending; 1410 1411 unsigned long sas_ss_sp; 1412 size_t sas_ss_size; 1413 int (*notifier)(void *priv); 1414 void *notifier_data; 1415 sigset_t *notifier_mask; 1416 struct callback_head *task_works; 1417 1418 struct audit_context *audit_context; 1419 #ifdef CONFIG_AUDITSYSCALL 1420 uid_t loginuid; 1421 unsigned int sessionid; 1422 #endif 1423 struct seccomp seccomp; 1424 1425 /* Thread group tracking */ 1426 u32 parent_exec_id; 1427 u32 self_exec_id; 1428 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1429 * mempolicy */ 1430 spinlock_t alloc_lock; 1431 1432 /* Protection of the PI data structures: */ 1433 raw_spinlock_t pi_lock; 1434 1435 #ifdef CONFIG_RT_MUTEXES 1436 /* PI waiters blocked on a rt_mutex held by this task */ 1437 struct plist_head pi_waiters; 1438 /* Deadlock detection and priority inheritance handling */ 1439 struct rt_mutex_waiter *pi_blocked_on; 1440 #endif 1441 1442 #ifdef CONFIG_DEBUG_MUTEXES 1443 /* mutex deadlock detection */ 1444 struct mutex_waiter *blocked_on; 1445 #endif 1446 #ifdef CONFIG_TRACE_IRQFLAGS 1447 unsigned int irq_events; 1448 unsigned long hardirq_enable_ip; 1449 unsigned long hardirq_disable_ip; 1450 unsigned int hardirq_enable_event; 1451 unsigned int hardirq_disable_event; 1452 int hardirqs_enabled; 1453 int hardirq_context; 1454 unsigned long softirq_disable_ip; 1455 unsigned long softirq_enable_ip; 1456 unsigned int softirq_disable_event; 1457 unsigned int softirq_enable_event; 1458 int softirqs_enabled; 1459 int softirq_context; 1460 #endif 1461 #ifdef CONFIG_LOCKDEP 1462 # define MAX_LOCK_DEPTH 48UL 1463 u64 curr_chain_key; 1464 int lockdep_depth; 1465 unsigned int lockdep_recursion; 1466 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1467 gfp_t lockdep_reclaim_gfp; 1468 #endif 1469 1470 /* journalling filesystem info */ 1471 void *journal_info; 1472 1473 /* stacked block device info */ 1474 struct bio_list *bio_list; 1475 1476 #ifdef CONFIG_BLOCK 1477 /* stack plugging */ 1478 struct blk_plug *plug; 1479 #endif 1480 1481 /* VM state */ 1482 struct reclaim_state *reclaim_state; 1483 1484 struct backing_dev_info *backing_dev_info; 1485 1486 struct io_context *io_context; 1487 1488 unsigned long ptrace_message; 1489 siginfo_t *last_siginfo; /* For ptrace use. */ 1490 struct task_io_accounting ioac; 1491 #if defined(CONFIG_TASK_XACCT) 1492 u64 acct_rss_mem1; /* accumulated rss usage */ 1493 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1494 cputime_t acct_timexpd; /* stime + utime since last update */ 1495 #endif 1496 #ifdef CONFIG_CPUSETS 1497 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1498 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1499 int cpuset_mem_spread_rotor; 1500 int cpuset_slab_spread_rotor; 1501 #endif 1502 #ifdef CONFIG_CGROUPS 1503 /* Control Group info protected by css_set_lock */ 1504 struct css_set __rcu *cgroups; 1505 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1506 struct list_head cg_list; 1507 #endif 1508 #ifdef CONFIG_FUTEX 1509 struct robust_list_head __user *robust_list; 1510 #ifdef CONFIG_COMPAT 1511 struct compat_robust_list_head __user *compat_robust_list; 1512 #endif 1513 struct list_head pi_state_list; 1514 struct futex_pi_state *pi_state_cache; 1515 #endif 1516 #ifdef CONFIG_PERF_EVENTS 1517 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1518 struct mutex perf_event_mutex; 1519 struct list_head perf_event_list; 1520 #endif 1521 #ifdef CONFIG_NUMA 1522 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1523 short il_next; 1524 short pref_node_fork; 1525 #endif 1526 struct rcu_head rcu; 1527 1528 /* 1529 * cache last used pipe for splice 1530 */ 1531 struct pipe_inode_info *splice_pipe; 1532 #ifdef CONFIG_TASK_DELAY_ACCT 1533 struct task_delay_info *delays; 1534 #endif 1535 #ifdef CONFIG_FAULT_INJECTION 1536 int make_it_fail; 1537 #endif 1538 /* 1539 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1540 * balance_dirty_pages() for some dirty throttling pause 1541 */ 1542 int nr_dirtied; 1543 int nr_dirtied_pause; 1544 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1545 1546 #ifdef CONFIG_LATENCYTOP 1547 int latency_record_count; 1548 struct latency_record latency_record[LT_SAVECOUNT]; 1549 #endif 1550 /* 1551 * time slack values; these are used to round up poll() and 1552 * select() etc timeout values. These are in nanoseconds. 1553 */ 1554 unsigned long timer_slack_ns; 1555 unsigned long default_timer_slack_ns; 1556 1557 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1558 /* Index of current stored address in ret_stack */ 1559 int curr_ret_stack; 1560 /* Stack of return addresses for return function tracing */ 1561 struct ftrace_ret_stack *ret_stack; 1562 /* time stamp for last schedule */ 1563 unsigned long long ftrace_timestamp; 1564 /* 1565 * Number of functions that haven't been traced 1566 * because of depth overrun. 1567 */ 1568 atomic_t trace_overrun; 1569 /* Pause for the tracing */ 1570 atomic_t tracing_graph_pause; 1571 #endif 1572 #ifdef CONFIG_TRACING 1573 /* state flags for use by tracers */ 1574 unsigned long trace; 1575 /* bitmask and counter of trace recursion */ 1576 unsigned long trace_recursion; 1577 #endif /* CONFIG_TRACING */ 1578 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1579 struct memcg_batch_info { 1580 int do_batch; /* incremented when batch uncharge started */ 1581 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1582 unsigned long nr_pages; /* uncharged usage */ 1583 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1584 } memcg_batch; 1585 #endif 1586 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1587 atomic_t ptrace_bp_refcnt; 1588 #endif 1589 #ifdef CONFIG_UPROBES 1590 struct uprobe_task *utask; 1591 #endif 1592 }; 1593 1594 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1595 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1596 1597 /* 1598 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1599 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1600 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1601 * values are inverted: lower p->prio value means higher priority. 1602 * 1603 * The MAX_USER_RT_PRIO value allows the actual maximum 1604 * RT priority to be separate from the value exported to 1605 * user-space. This allows kernel threads to set their 1606 * priority to a value higher than any user task. Note: 1607 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1608 */ 1609 1610 #define MAX_USER_RT_PRIO 100 1611 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1612 1613 #define MAX_PRIO (MAX_RT_PRIO + 40) 1614 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1615 1616 static inline int rt_prio(int prio) 1617 { 1618 if (unlikely(prio < MAX_RT_PRIO)) 1619 return 1; 1620 return 0; 1621 } 1622 1623 static inline int rt_task(struct task_struct *p) 1624 { 1625 return rt_prio(p->prio); 1626 } 1627 1628 static inline struct pid *task_pid(struct task_struct *task) 1629 { 1630 return task->pids[PIDTYPE_PID].pid; 1631 } 1632 1633 static inline struct pid *task_tgid(struct task_struct *task) 1634 { 1635 return task->group_leader->pids[PIDTYPE_PID].pid; 1636 } 1637 1638 /* 1639 * Without tasklist or rcu lock it is not safe to dereference 1640 * the result of task_pgrp/task_session even if task == current, 1641 * we can race with another thread doing sys_setsid/sys_setpgid. 1642 */ 1643 static inline struct pid *task_pgrp(struct task_struct *task) 1644 { 1645 return task->group_leader->pids[PIDTYPE_PGID].pid; 1646 } 1647 1648 static inline struct pid *task_session(struct task_struct *task) 1649 { 1650 return task->group_leader->pids[PIDTYPE_SID].pid; 1651 } 1652 1653 struct pid_namespace; 1654 1655 /* 1656 * the helpers to get the task's different pids as they are seen 1657 * from various namespaces 1658 * 1659 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1660 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1661 * current. 1662 * task_xid_nr_ns() : id seen from the ns specified; 1663 * 1664 * set_task_vxid() : assigns a virtual id to a task; 1665 * 1666 * see also pid_nr() etc in include/linux/pid.h 1667 */ 1668 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1669 struct pid_namespace *ns); 1670 1671 static inline pid_t task_pid_nr(struct task_struct *tsk) 1672 { 1673 return tsk->pid; 1674 } 1675 1676 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1677 struct pid_namespace *ns) 1678 { 1679 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1680 } 1681 1682 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1683 { 1684 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1685 } 1686 1687 1688 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1689 { 1690 return tsk->tgid; 1691 } 1692 1693 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1694 1695 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1696 { 1697 return pid_vnr(task_tgid(tsk)); 1698 } 1699 1700 1701 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1702 struct pid_namespace *ns) 1703 { 1704 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1705 } 1706 1707 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1708 { 1709 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1710 } 1711 1712 1713 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1714 struct pid_namespace *ns) 1715 { 1716 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1717 } 1718 1719 static inline pid_t task_session_vnr(struct task_struct *tsk) 1720 { 1721 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1722 } 1723 1724 /* obsolete, do not use */ 1725 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1726 { 1727 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1728 } 1729 1730 /** 1731 * pid_alive - check that a task structure is not stale 1732 * @p: Task structure to be checked. 1733 * 1734 * Test if a process is not yet dead (at most zombie state) 1735 * If pid_alive fails, then pointers within the task structure 1736 * can be stale and must not be dereferenced. 1737 */ 1738 static inline int pid_alive(struct task_struct *p) 1739 { 1740 return p->pids[PIDTYPE_PID].pid != NULL; 1741 } 1742 1743 /** 1744 * is_global_init - check if a task structure is init 1745 * @tsk: Task structure to be checked. 1746 * 1747 * Check if a task structure is the first user space task the kernel created. 1748 */ 1749 static inline int is_global_init(struct task_struct *tsk) 1750 { 1751 return tsk->pid == 1; 1752 } 1753 1754 /* 1755 * is_container_init: 1756 * check whether in the task is init in its own pid namespace. 1757 */ 1758 extern int is_container_init(struct task_struct *tsk); 1759 1760 extern struct pid *cad_pid; 1761 1762 extern void free_task(struct task_struct *tsk); 1763 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1764 1765 extern void __put_task_struct(struct task_struct *t); 1766 1767 static inline void put_task_struct(struct task_struct *t) 1768 { 1769 if (atomic_dec_and_test(&t->usage)) 1770 __put_task_struct(t); 1771 } 1772 1773 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1774 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1775 1776 /* 1777 * Per process flags 1778 */ 1779 #define PF_EXITING 0x00000004 /* getting shut down */ 1780 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1781 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1782 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1783 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1784 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1785 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1786 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1787 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1788 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1789 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1790 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1791 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1792 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1793 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1794 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1795 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1796 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1797 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1798 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1799 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1800 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1801 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1802 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1803 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1804 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1805 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1806 1807 /* 1808 * Only the _current_ task can read/write to tsk->flags, but other 1809 * tasks can access tsk->flags in readonly mode for example 1810 * with tsk_used_math (like during threaded core dumping). 1811 * There is however an exception to this rule during ptrace 1812 * or during fork: the ptracer task is allowed to write to the 1813 * child->flags of its traced child (same goes for fork, the parent 1814 * can write to the child->flags), because we're guaranteed the 1815 * child is not running and in turn not changing child->flags 1816 * at the same time the parent does it. 1817 */ 1818 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1819 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1820 #define clear_used_math() clear_stopped_child_used_math(current) 1821 #define set_used_math() set_stopped_child_used_math(current) 1822 #define conditional_stopped_child_used_math(condition, child) \ 1823 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1824 #define conditional_used_math(condition) \ 1825 conditional_stopped_child_used_math(condition, current) 1826 #define copy_to_stopped_child_used_math(child) \ 1827 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1828 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1829 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1830 #define used_math() tsk_used_math(current) 1831 1832 /* 1833 * task->jobctl flags 1834 */ 1835 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1836 1837 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1838 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1839 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1840 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1841 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1842 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1843 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1844 1845 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1846 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1847 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1848 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1849 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1850 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1851 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1852 1853 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1854 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1855 1856 extern bool task_set_jobctl_pending(struct task_struct *task, 1857 unsigned int mask); 1858 extern void task_clear_jobctl_trapping(struct task_struct *task); 1859 extern void task_clear_jobctl_pending(struct task_struct *task, 1860 unsigned int mask); 1861 1862 #ifdef CONFIG_PREEMPT_RCU 1863 1864 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1865 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1866 1867 static inline void rcu_copy_process(struct task_struct *p) 1868 { 1869 p->rcu_read_lock_nesting = 0; 1870 p->rcu_read_unlock_special = 0; 1871 #ifdef CONFIG_TREE_PREEMPT_RCU 1872 p->rcu_blocked_node = NULL; 1873 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1874 #ifdef CONFIG_RCU_BOOST 1875 p->rcu_boost_mutex = NULL; 1876 #endif /* #ifdef CONFIG_RCU_BOOST */ 1877 INIT_LIST_HEAD(&p->rcu_node_entry); 1878 } 1879 1880 #else 1881 1882 static inline void rcu_copy_process(struct task_struct *p) 1883 { 1884 } 1885 1886 #endif 1887 1888 static inline void tsk_restore_flags(struct task_struct *task, 1889 unsigned long orig_flags, unsigned long flags) 1890 { 1891 task->flags &= ~flags; 1892 task->flags |= orig_flags & flags; 1893 } 1894 1895 #ifdef CONFIG_SMP 1896 extern void do_set_cpus_allowed(struct task_struct *p, 1897 const struct cpumask *new_mask); 1898 1899 extern int set_cpus_allowed_ptr(struct task_struct *p, 1900 const struct cpumask *new_mask); 1901 #else 1902 static inline void do_set_cpus_allowed(struct task_struct *p, 1903 const struct cpumask *new_mask) 1904 { 1905 } 1906 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1907 const struct cpumask *new_mask) 1908 { 1909 if (!cpumask_test_cpu(0, new_mask)) 1910 return -EINVAL; 1911 return 0; 1912 } 1913 #endif 1914 1915 #ifdef CONFIG_NO_HZ 1916 void calc_load_enter_idle(void); 1917 void calc_load_exit_idle(void); 1918 #else 1919 static inline void calc_load_enter_idle(void) { } 1920 static inline void calc_load_exit_idle(void) { } 1921 #endif /* CONFIG_NO_HZ */ 1922 1923 #ifndef CONFIG_CPUMASK_OFFSTACK 1924 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1925 { 1926 return set_cpus_allowed_ptr(p, &new_mask); 1927 } 1928 #endif 1929 1930 /* 1931 * Do not use outside of architecture code which knows its limitations. 1932 * 1933 * sched_clock() has no promise of monotonicity or bounded drift between 1934 * CPUs, use (which you should not) requires disabling IRQs. 1935 * 1936 * Please use one of the three interfaces below. 1937 */ 1938 extern unsigned long long notrace sched_clock(void); 1939 /* 1940 * See the comment in kernel/sched/clock.c 1941 */ 1942 extern u64 cpu_clock(int cpu); 1943 extern u64 local_clock(void); 1944 extern u64 sched_clock_cpu(int cpu); 1945 1946 1947 extern void sched_clock_init(void); 1948 1949 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1950 static inline void sched_clock_tick(void) 1951 { 1952 } 1953 1954 static inline void sched_clock_idle_sleep_event(void) 1955 { 1956 } 1957 1958 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1959 { 1960 } 1961 #else 1962 /* 1963 * Architectures can set this to 1 if they have specified 1964 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1965 * but then during bootup it turns out that sched_clock() 1966 * is reliable after all: 1967 */ 1968 extern int sched_clock_stable; 1969 1970 extern void sched_clock_tick(void); 1971 extern void sched_clock_idle_sleep_event(void); 1972 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1973 #endif 1974 1975 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1976 /* 1977 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1978 * The reason for this explicit opt-in is not to have perf penalty with 1979 * slow sched_clocks. 1980 */ 1981 extern void enable_sched_clock_irqtime(void); 1982 extern void disable_sched_clock_irqtime(void); 1983 #else 1984 static inline void enable_sched_clock_irqtime(void) {} 1985 static inline void disable_sched_clock_irqtime(void) {} 1986 #endif 1987 1988 extern unsigned long long 1989 task_sched_runtime(struct task_struct *task); 1990 1991 /* sched_exec is called by processes performing an exec */ 1992 #ifdef CONFIG_SMP 1993 extern void sched_exec(void); 1994 #else 1995 #define sched_exec() {} 1996 #endif 1997 1998 extern void sched_clock_idle_sleep_event(void); 1999 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2000 2001 #ifdef CONFIG_HOTPLUG_CPU 2002 extern void idle_task_exit(void); 2003 #else 2004 static inline void idle_task_exit(void) {} 2005 #endif 2006 2007 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2008 extern void wake_up_idle_cpu(int cpu); 2009 #else 2010 static inline void wake_up_idle_cpu(int cpu) { } 2011 #endif 2012 2013 extern unsigned int sysctl_sched_latency; 2014 extern unsigned int sysctl_sched_min_granularity; 2015 extern unsigned int sysctl_sched_wakeup_granularity; 2016 extern unsigned int sysctl_sched_child_runs_first; 2017 2018 enum sched_tunable_scaling { 2019 SCHED_TUNABLESCALING_NONE, 2020 SCHED_TUNABLESCALING_LOG, 2021 SCHED_TUNABLESCALING_LINEAR, 2022 SCHED_TUNABLESCALING_END, 2023 }; 2024 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2025 2026 #ifdef CONFIG_SCHED_DEBUG 2027 extern unsigned int sysctl_sched_migration_cost; 2028 extern unsigned int sysctl_sched_nr_migrate; 2029 extern unsigned int sysctl_sched_time_avg; 2030 extern unsigned int sysctl_timer_migration; 2031 extern unsigned int sysctl_sched_shares_window; 2032 2033 int sched_proc_update_handler(struct ctl_table *table, int write, 2034 void __user *buffer, size_t *length, 2035 loff_t *ppos); 2036 #endif 2037 #ifdef CONFIG_SCHED_DEBUG 2038 static inline unsigned int get_sysctl_timer_migration(void) 2039 { 2040 return sysctl_timer_migration; 2041 } 2042 #else 2043 static inline unsigned int get_sysctl_timer_migration(void) 2044 { 2045 return 1; 2046 } 2047 #endif 2048 extern unsigned int sysctl_sched_rt_period; 2049 extern int sysctl_sched_rt_runtime; 2050 2051 int sched_rt_handler(struct ctl_table *table, int write, 2052 void __user *buffer, size_t *lenp, 2053 loff_t *ppos); 2054 2055 #ifdef CONFIG_SCHED_AUTOGROUP 2056 extern unsigned int sysctl_sched_autogroup_enabled; 2057 2058 extern void sched_autogroup_create_attach(struct task_struct *p); 2059 extern void sched_autogroup_detach(struct task_struct *p); 2060 extern void sched_autogroup_fork(struct signal_struct *sig); 2061 extern void sched_autogroup_exit(struct signal_struct *sig); 2062 #ifdef CONFIG_PROC_FS 2063 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2064 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2065 #endif 2066 #else 2067 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2068 static inline void sched_autogroup_detach(struct task_struct *p) { } 2069 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2070 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2071 #endif 2072 2073 #ifdef CONFIG_CFS_BANDWIDTH 2074 extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2075 #endif 2076 2077 #ifdef CONFIG_RT_MUTEXES 2078 extern int rt_mutex_getprio(struct task_struct *p); 2079 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2080 extern void rt_mutex_adjust_pi(struct task_struct *p); 2081 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2082 { 2083 return tsk->pi_blocked_on != NULL; 2084 } 2085 #else 2086 static inline int rt_mutex_getprio(struct task_struct *p) 2087 { 2088 return p->normal_prio; 2089 } 2090 # define rt_mutex_adjust_pi(p) do { } while (0) 2091 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2092 { 2093 return false; 2094 } 2095 #endif 2096 2097 extern bool yield_to(struct task_struct *p, bool preempt); 2098 extern void set_user_nice(struct task_struct *p, long nice); 2099 extern int task_prio(const struct task_struct *p); 2100 extern int task_nice(const struct task_struct *p); 2101 extern int can_nice(const struct task_struct *p, const int nice); 2102 extern int task_curr(const struct task_struct *p); 2103 extern int idle_cpu(int cpu); 2104 extern int sched_setscheduler(struct task_struct *, int, 2105 const struct sched_param *); 2106 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2107 const struct sched_param *); 2108 extern struct task_struct *idle_task(int cpu); 2109 /** 2110 * is_idle_task - is the specified task an idle task? 2111 * @p: the task in question. 2112 */ 2113 static inline bool is_idle_task(const struct task_struct *p) 2114 { 2115 return p->pid == 0; 2116 } 2117 extern struct task_struct *curr_task(int cpu); 2118 extern void set_curr_task(int cpu, struct task_struct *p); 2119 2120 void yield(void); 2121 2122 /* 2123 * The default (Linux) execution domain. 2124 */ 2125 extern struct exec_domain default_exec_domain; 2126 2127 union thread_union { 2128 struct thread_info thread_info; 2129 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2130 }; 2131 2132 #ifndef __HAVE_ARCH_KSTACK_END 2133 static inline int kstack_end(void *addr) 2134 { 2135 /* Reliable end of stack detection: 2136 * Some APM bios versions misalign the stack 2137 */ 2138 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2139 } 2140 #endif 2141 2142 extern union thread_union init_thread_union; 2143 extern struct task_struct init_task; 2144 2145 extern struct mm_struct init_mm; 2146 2147 extern struct pid_namespace init_pid_ns; 2148 2149 /* 2150 * find a task by one of its numerical ids 2151 * 2152 * find_task_by_pid_ns(): 2153 * finds a task by its pid in the specified namespace 2154 * find_task_by_vpid(): 2155 * finds a task by its virtual pid 2156 * 2157 * see also find_vpid() etc in include/linux/pid.h 2158 */ 2159 2160 extern struct task_struct *find_task_by_vpid(pid_t nr); 2161 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2162 struct pid_namespace *ns); 2163 2164 extern void __set_special_pids(struct pid *pid); 2165 2166 /* per-UID process charging. */ 2167 extern struct user_struct * alloc_uid(kuid_t); 2168 static inline struct user_struct *get_uid(struct user_struct *u) 2169 { 2170 atomic_inc(&u->__count); 2171 return u; 2172 } 2173 extern void free_uid(struct user_struct *); 2174 2175 #include <asm/current.h> 2176 2177 extern void xtime_update(unsigned long ticks); 2178 2179 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2180 extern int wake_up_process(struct task_struct *tsk); 2181 extern void wake_up_new_task(struct task_struct *tsk); 2182 #ifdef CONFIG_SMP 2183 extern void kick_process(struct task_struct *tsk); 2184 #else 2185 static inline void kick_process(struct task_struct *tsk) { } 2186 #endif 2187 extern void sched_fork(struct task_struct *p); 2188 extern void sched_dead(struct task_struct *p); 2189 2190 extern void proc_caches_init(void); 2191 extern void flush_signals(struct task_struct *); 2192 extern void __flush_signals(struct task_struct *); 2193 extern void ignore_signals(struct task_struct *); 2194 extern void flush_signal_handlers(struct task_struct *, int force_default); 2195 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2196 2197 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2198 { 2199 unsigned long flags; 2200 int ret; 2201 2202 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2203 ret = dequeue_signal(tsk, mask, info); 2204 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2205 2206 return ret; 2207 } 2208 2209 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2210 sigset_t *mask); 2211 extern void unblock_all_signals(void); 2212 extern void release_task(struct task_struct * p); 2213 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2214 extern int force_sigsegv(int, struct task_struct *); 2215 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2216 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2217 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2218 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2219 const struct cred *, u32); 2220 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2221 extern int kill_pid(struct pid *pid, int sig, int priv); 2222 extern int kill_proc_info(int, struct siginfo *, pid_t); 2223 extern __must_check bool do_notify_parent(struct task_struct *, int); 2224 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2225 extern void force_sig(int, struct task_struct *); 2226 extern int send_sig(int, struct task_struct *, int); 2227 extern int zap_other_threads(struct task_struct *p); 2228 extern struct sigqueue *sigqueue_alloc(void); 2229 extern void sigqueue_free(struct sigqueue *); 2230 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2231 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2232 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2233 2234 static inline void restore_saved_sigmask(void) 2235 { 2236 if (test_and_clear_restore_sigmask()) 2237 __set_current_blocked(¤t->saved_sigmask); 2238 } 2239 2240 static inline sigset_t *sigmask_to_save(void) 2241 { 2242 sigset_t *res = ¤t->blocked; 2243 if (unlikely(test_restore_sigmask())) 2244 res = ¤t->saved_sigmask; 2245 return res; 2246 } 2247 2248 static inline int kill_cad_pid(int sig, int priv) 2249 { 2250 return kill_pid(cad_pid, sig, priv); 2251 } 2252 2253 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2254 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2255 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2256 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2257 2258 /* 2259 * True if we are on the alternate signal stack. 2260 */ 2261 static inline int on_sig_stack(unsigned long sp) 2262 { 2263 #ifdef CONFIG_STACK_GROWSUP 2264 return sp >= current->sas_ss_sp && 2265 sp - current->sas_ss_sp < current->sas_ss_size; 2266 #else 2267 return sp > current->sas_ss_sp && 2268 sp - current->sas_ss_sp <= current->sas_ss_size; 2269 #endif 2270 } 2271 2272 static inline int sas_ss_flags(unsigned long sp) 2273 { 2274 return (current->sas_ss_size == 0 ? SS_DISABLE 2275 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2276 } 2277 2278 /* 2279 * Routines for handling mm_structs 2280 */ 2281 extern struct mm_struct * mm_alloc(void); 2282 2283 /* mmdrop drops the mm and the page tables */ 2284 extern void __mmdrop(struct mm_struct *); 2285 static inline void mmdrop(struct mm_struct * mm) 2286 { 2287 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2288 __mmdrop(mm); 2289 } 2290 2291 /* mmput gets rid of the mappings and all user-space */ 2292 extern void mmput(struct mm_struct *); 2293 /* Grab a reference to a task's mm, if it is not already going away */ 2294 extern struct mm_struct *get_task_mm(struct task_struct *task); 2295 /* 2296 * Grab a reference to a task's mm, if it is not already going away 2297 * and ptrace_may_access with the mode parameter passed to it 2298 * succeeds. 2299 */ 2300 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2301 /* Remove the current tasks stale references to the old mm_struct */ 2302 extern void mm_release(struct task_struct *, struct mm_struct *); 2303 /* Allocate a new mm structure and copy contents from tsk->mm */ 2304 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2305 2306 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2307 struct task_struct *, struct pt_regs *); 2308 extern void flush_thread(void); 2309 extern void exit_thread(void); 2310 2311 extern void exit_files(struct task_struct *); 2312 extern void __cleanup_sighand(struct sighand_struct *); 2313 2314 extern void exit_itimers(struct signal_struct *); 2315 extern void flush_itimer_signals(void); 2316 2317 extern void do_group_exit(int); 2318 2319 extern void daemonize(const char *, ...); 2320 extern int allow_signal(int); 2321 extern int disallow_signal(int); 2322 2323 extern int do_execve(const char *, 2324 const char __user * const __user *, 2325 const char __user * const __user *, struct pt_regs *); 2326 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2327 struct task_struct *fork_idle(int); 2328 2329 extern void set_task_comm(struct task_struct *tsk, char *from); 2330 extern char *get_task_comm(char *to, struct task_struct *tsk); 2331 2332 #ifdef CONFIG_SMP 2333 void scheduler_ipi(void); 2334 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2335 #else 2336 static inline void scheduler_ipi(void) { } 2337 static inline unsigned long wait_task_inactive(struct task_struct *p, 2338 long match_state) 2339 { 2340 return 1; 2341 } 2342 #endif 2343 2344 #define next_task(p) \ 2345 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2346 2347 #define for_each_process(p) \ 2348 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2349 2350 extern bool current_is_single_threaded(void); 2351 2352 /* 2353 * Careful: do_each_thread/while_each_thread is a double loop so 2354 * 'break' will not work as expected - use goto instead. 2355 */ 2356 #define do_each_thread(g, t) \ 2357 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2358 2359 #define while_each_thread(g, t) \ 2360 while ((t = next_thread(t)) != g) 2361 2362 static inline int get_nr_threads(struct task_struct *tsk) 2363 { 2364 return tsk->signal->nr_threads; 2365 } 2366 2367 static inline bool thread_group_leader(struct task_struct *p) 2368 { 2369 return p->exit_signal >= 0; 2370 } 2371 2372 /* Do to the insanities of de_thread it is possible for a process 2373 * to have the pid of the thread group leader without actually being 2374 * the thread group leader. For iteration through the pids in proc 2375 * all we care about is that we have a task with the appropriate 2376 * pid, we don't actually care if we have the right task. 2377 */ 2378 static inline int has_group_leader_pid(struct task_struct *p) 2379 { 2380 return p->pid == p->tgid; 2381 } 2382 2383 static inline 2384 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2385 { 2386 return p1->tgid == p2->tgid; 2387 } 2388 2389 static inline struct task_struct *next_thread(const struct task_struct *p) 2390 { 2391 return list_entry_rcu(p->thread_group.next, 2392 struct task_struct, thread_group); 2393 } 2394 2395 static inline int thread_group_empty(struct task_struct *p) 2396 { 2397 return list_empty(&p->thread_group); 2398 } 2399 2400 #define delay_group_leader(p) \ 2401 (thread_group_leader(p) && !thread_group_empty(p)) 2402 2403 /* 2404 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2405 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2406 * pins the final release of task.io_context. Also protects ->cpuset and 2407 * ->cgroup.subsys[]. And ->vfork_done. 2408 * 2409 * Nests both inside and outside of read_lock(&tasklist_lock). 2410 * It must not be nested with write_lock_irq(&tasklist_lock), 2411 * neither inside nor outside. 2412 */ 2413 static inline void task_lock(struct task_struct *p) 2414 { 2415 spin_lock(&p->alloc_lock); 2416 } 2417 2418 static inline void task_unlock(struct task_struct *p) 2419 { 2420 spin_unlock(&p->alloc_lock); 2421 } 2422 2423 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2424 unsigned long *flags); 2425 2426 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2427 unsigned long *flags) 2428 { 2429 struct sighand_struct *ret; 2430 2431 ret = __lock_task_sighand(tsk, flags); 2432 (void)__cond_lock(&tsk->sighand->siglock, ret); 2433 return ret; 2434 } 2435 2436 static inline void unlock_task_sighand(struct task_struct *tsk, 2437 unsigned long *flags) 2438 { 2439 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2440 } 2441 2442 #ifdef CONFIG_CGROUPS 2443 static inline void threadgroup_change_begin(struct task_struct *tsk) 2444 { 2445 down_read(&tsk->signal->group_rwsem); 2446 } 2447 static inline void threadgroup_change_end(struct task_struct *tsk) 2448 { 2449 up_read(&tsk->signal->group_rwsem); 2450 } 2451 2452 /** 2453 * threadgroup_lock - lock threadgroup 2454 * @tsk: member task of the threadgroup to lock 2455 * 2456 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2457 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2458 * perform exec. This is useful for cases where the threadgroup needs to 2459 * stay stable across blockable operations. 2460 * 2461 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2462 * synchronization. While held, no new task will be added to threadgroup 2463 * and no existing live task will have its PF_EXITING set. 2464 * 2465 * During exec, a task goes and puts its thread group through unusual 2466 * changes. After de-threading, exclusive access is assumed to resources 2467 * which are usually shared by tasks in the same group - e.g. sighand may 2468 * be replaced with a new one. Also, the exec'ing task takes over group 2469 * leader role including its pid. Exclude these changes while locked by 2470 * grabbing cred_guard_mutex which is used to synchronize exec path. 2471 */ 2472 static inline void threadgroup_lock(struct task_struct *tsk) 2473 { 2474 /* 2475 * exec uses exit for de-threading nesting group_rwsem inside 2476 * cred_guard_mutex. Grab cred_guard_mutex first. 2477 */ 2478 mutex_lock(&tsk->signal->cred_guard_mutex); 2479 down_write(&tsk->signal->group_rwsem); 2480 } 2481 2482 /** 2483 * threadgroup_unlock - unlock threadgroup 2484 * @tsk: member task of the threadgroup to unlock 2485 * 2486 * Reverse threadgroup_lock(). 2487 */ 2488 static inline void threadgroup_unlock(struct task_struct *tsk) 2489 { 2490 up_write(&tsk->signal->group_rwsem); 2491 mutex_unlock(&tsk->signal->cred_guard_mutex); 2492 } 2493 #else 2494 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2495 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2496 static inline void threadgroup_lock(struct task_struct *tsk) {} 2497 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2498 #endif 2499 2500 #ifndef __HAVE_THREAD_FUNCTIONS 2501 2502 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2503 #define task_stack_page(task) ((task)->stack) 2504 2505 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2506 { 2507 *task_thread_info(p) = *task_thread_info(org); 2508 task_thread_info(p)->task = p; 2509 } 2510 2511 static inline unsigned long *end_of_stack(struct task_struct *p) 2512 { 2513 return (unsigned long *)(task_thread_info(p) + 1); 2514 } 2515 2516 #endif 2517 2518 static inline int object_is_on_stack(void *obj) 2519 { 2520 void *stack = task_stack_page(current); 2521 2522 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2523 } 2524 2525 extern void thread_info_cache_init(void); 2526 2527 #ifdef CONFIG_DEBUG_STACK_USAGE 2528 static inline unsigned long stack_not_used(struct task_struct *p) 2529 { 2530 unsigned long *n = end_of_stack(p); 2531 2532 do { /* Skip over canary */ 2533 n++; 2534 } while (!*n); 2535 2536 return (unsigned long)n - (unsigned long)end_of_stack(p); 2537 } 2538 #endif 2539 2540 /* set thread flags in other task's structures 2541 * - see asm/thread_info.h for TIF_xxxx flags available 2542 */ 2543 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2544 { 2545 set_ti_thread_flag(task_thread_info(tsk), flag); 2546 } 2547 2548 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2549 { 2550 clear_ti_thread_flag(task_thread_info(tsk), flag); 2551 } 2552 2553 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2554 { 2555 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2556 } 2557 2558 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2559 { 2560 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2561 } 2562 2563 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2564 { 2565 return test_ti_thread_flag(task_thread_info(tsk), flag); 2566 } 2567 2568 static inline void set_tsk_need_resched(struct task_struct *tsk) 2569 { 2570 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2571 } 2572 2573 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2574 { 2575 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2576 } 2577 2578 static inline int test_tsk_need_resched(struct task_struct *tsk) 2579 { 2580 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2581 } 2582 2583 static inline int restart_syscall(void) 2584 { 2585 set_tsk_thread_flag(current, TIF_SIGPENDING); 2586 return -ERESTARTNOINTR; 2587 } 2588 2589 static inline int signal_pending(struct task_struct *p) 2590 { 2591 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2592 } 2593 2594 static inline int __fatal_signal_pending(struct task_struct *p) 2595 { 2596 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2597 } 2598 2599 static inline int fatal_signal_pending(struct task_struct *p) 2600 { 2601 return signal_pending(p) && __fatal_signal_pending(p); 2602 } 2603 2604 static inline int signal_pending_state(long state, struct task_struct *p) 2605 { 2606 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2607 return 0; 2608 if (!signal_pending(p)) 2609 return 0; 2610 2611 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2612 } 2613 2614 static inline int need_resched(void) 2615 { 2616 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2617 } 2618 2619 /* 2620 * cond_resched() and cond_resched_lock(): latency reduction via 2621 * explicit rescheduling in places that are safe. The return 2622 * value indicates whether a reschedule was done in fact. 2623 * cond_resched_lock() will drop the spinlock before scheduling, 2624 * cond_resched_softirq() will enable bhs before scheduling. 2625 */ 2626 extern int _cond_resched(void); 2627 2628 #define cond_resched() ({ \ 2629 __might_sleep(__FILE__, __LINE__, 0); \ 2630 _cond_resched(); \ 2631 }) 2632 2633 extern int __cond_resched_lock(spinlock_t *lock); 2634 2635 #ifdef CONFIG_PREEMPT_COUNT 2636 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2637 #else 2638 #define PREEMPT_LOCK_OFFSET 0 2639 #endif 2640 2641 #define cond_resched_lock(lock) ({ \ 2642 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2643 __cond_resched_lock(lock); \ 2644 }) 2645 2646 extern int __cond_resched_softirq(void); 2647 2648 #define cond_resched_softirq() ({ \ 2649 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2650 __cond_resched_softirq(); \ 2651 }) 2652 2653 /* 2654 * Does a critical section need to be broken due to another 2655 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2656 * but a general need for low latency) 2657 */ 2658 static inline int spin_needbreak(spinlock_t *lock) 2659 { 2660 #ifdef CONFIG_PREEMPT 2661 return spin_is_contended(lock); 2662 #else 2663 return 0; 2664 #endif 2665 } 2666 2667 /* 2668 * Thread group CPU time accounting. 2669 */ 2670 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2671 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2672 2673 static inline void thread_group_cputime_init(struct signal_struct *sig) 2674 { 2675 raw_spin_lock_init(&sig->cputimer.lock); 2676 } 2677 2678 /* 2679 * Reevaluate whether the task has signals pending delivery. 2680 * Wake the task if so. 2681 * This is required every time the blocked sigset_t changes. 2682 * callers must hold sighand->siglock. 2683 */ 2684 extern void recalc_sigpending_and_wake(struct task_struct *t); 2685 extern void recalc_sigpending(void); 2686 2687 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2688 2689 /* 2690 * Wrappers for p->thread_info->cpu access. No-op on UP. 2691 */ 2692 #ifdef CONFIG_SMP 2693 2694 static inline unsigned int task_cpu(const struct task_struct *p) 2695 { 2696 return task_thread_info(p)->cpu; 2697 } 2698 2699 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2700 2701 #else 2702 2703 static inline unsigned int task_cpu(const struct task_struct *p) 2704 { 2705 return 0; 2706 } 2707 2708 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2709 { 2710 } 2711 2712 #endif /* CONFIG_SMP */ 2713 2714 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2715 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2716 2717 extern void normalize_rt_tasks(void); 2718 2719 #ifdef CONFIG_CGROUP_SCHED 2720 2721 extern struct task_group root_task_group; 2722 2723 extern struct task_group *sched_create_group(struct task_group *parent); 2724 extern void sched_destroy_group(struct task_group *tg); 2725 extern void sched_move_task(struct task_struct *tsk); 2726 #ifdef CONFIG_FAIR_GROUP_SCHED 2727 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2728 extern unsigned long sched_group_shares(struct task_group *tg); 2729 #endif 2730 #ifdef CONFIG_RT_GROUP_SCHED 2731 extern int sched_group_set_rt_runtime(struct task_group *tg, 2732 long rt_runtime_us); 2733 extern long sched_group_rt_runtime(struct task_group *tg); 2734 extern int sched_group_set_rt_period(struct task_group *tg, 2735 long rt_period_us); 2736 extern long sched_group_rt_period(struct task_group *tg); 2737 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2738 #endif 2739 #endif /* CONFIG_CGROUP_SCHED */ 2740 2741 extern int task_can_switch_user(struct user_struct *up, 2742 struct task_struct *tsk); 2743 2744 #ifdef CONFIG_TASK_XACCT 2745 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2746 { 2747 tsk->ioac.rchar += amt; 2748 } 2749 2750 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2751 { 2752 tsk->ioac.wchar += amt; 2753 } 2754 2755 static inline void inc_syscr(struct task_struct *tsk) 2756 { 2757 tsk->ioac.syscr++; 2758 } 2759 2760 static inline void inc_syscw(struct task_struct *tsk) 2761 { 2762 tsk->ioac.syscw++; 2763 } 2764 #else 2765 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2766 { 2767 } 2768 2769 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2770 { 2771 } 2772 2773 static inline void inc_syscr(struct task_struct *tsk) 2774 { 2775 } 2776 2777 static inline void inc_syscw(struct task_struct *tsk) 2778 { 2779 } 2780 #endif 2781 2782 #ifndef TASK_SIZE_OF 2783 #define TASK_SIZE_OF(tsk) TASK_SIZE 2784 #endif 2785 2786 #ifdef CONFIG_MM_OWNER 2787 extern void mm_update_next_owner(struct mm_struct *mm); 2788 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2789 #else 2790 static inline void mm_update_next_owner(struct mm_struct *mm) 2791 { 2792 } 2793 2794 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2795 { 2796 } 2797 #endif /* CONFIG_MM_OWNER */ 2798 2799 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2800 unsigned int limit) 2801 { 2802 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2803 } 2804 2805 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2806 unsigned int limit) 2807 { 2808 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2809 } 2810 2811 static inline unsigned long rlimit(unsigned int limit) 2812 { 2813 return task_rlimit(current, limit); 2814 } 2815 2816 static inline unsigned long rlimit_max(unsigned int limit) 2817 { 2818 return task_rlimit_max(current, limit); 2819 } 2820 2821 #endif /* __KERNEL__ */ 2822 2823 #endif 2824