xref: /linux/include/linux/sched.h (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * Define 'struct task_struct' and provide the main scheduler
6  * APIs (schedule(), wakeup variants, etc.)
7  */
8 
9 #include <uapi/linux/sched.h>
10 
11 #include <asm/current.h>
12 
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29 
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55 
56 /*
57  * Task state bitmask. NOTE! These bits are also
58  * encoded in fs/proc/array.c: get_task_state().
59  *
60  * We have two separate sets of flags: task->state
61  * is about runnability, while task->exit_state are
62  * about the task exiting. Confusing, but this way
63  * modifying one set can't modify the other one by
64  * mistake.
65  */
66 
67 /* Used in tsk->state: */
68 #define TASK_RUNNING			0x0000
69 #define TASK_INTERRUPTIBLE		0x0001
70 #define TASK_UNINTERRUPTIBLE		0x0002
71 #define __TASK_STOPPED			0x0004
72 #define __TASK_TRACED			0x0008
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD			0x0010
75 #define EXIT_ZOMBIE			0x0020
76 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_PARKED			0x0040
79 #define TASK_DEAD			0x0080
80 #define TASK_WAKEKILL			0x0100
81 #define TASK_WAKING			0x0200
82 #define TASK_NOLOAD			0x0400
83 #define TASK_NEW			0x0800
84 #define TASK_STATE_MAX			0x1000
85 
86 /* Convenience macros for the sake of set_current_state: */
87 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
88 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
89 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
90 
91 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
92 
93 /* Convenience macros for the sake of wake_up(): */
94 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
95 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
96 
97 /* get_task_state(): */
98 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
99 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
100 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
101 					 TASK_PARKED)
102 
103 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
104 
105 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
106 
107 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
108 
109 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
110 					 (task->flags & PF_FROZEN) == 0 && \
111 					 (task->state & TASK_NOLOAD) == 0)
112 
113 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
114 
115 #define __set_current_state(state_value)			\
116 	do {							\
117 		current->task_state_change = _THIS_IP_;		\
118 		current->state = (state_value);			\
119 	} while (0)
120 #define set_current_state(state_value)				\
121 	do {							\
122 		current->task_state_change = _THIS_IP_;		\
123 		smp_store_mb(current->state, (state_value));	\
124 	} while (0)
125 
126 #else
127 /*
128  * set_current_state() includes a barrier so that the write of current->state
129  * is correctly serialised wrt the caller's subsequent test of whether to
130  * actually sleep:
131  *
132  *   for (;;) {
133  *	set_current_state(TASK_UNINTERRUPTIBLE);
134  *	if (!need_sleep)
135  *		break;
136  *
137  *	schedule();
138  *   }
139  *   __set_current_state(TASK_RUNNING);
140  *
141  * If the caller does not need such serialisation (because, for instance, the
142  * condition test and condition change and wakeup are under the same lock) then
143  * use __set_current_state().
144  *
145  * The above is typically ordered against the wakeup, which does:
146  *
147  *	need_sleep = false;
148  *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
149  *
150  * Where wake_up_state() (and all other wakeup primitives) imply enough
151  * barriers to order the store of the variable against wakeup.
152  *
153  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
154  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
155  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
156  *
157  * This is obviously fine, since they both store the exact same value.
158  *
159  * Also see the comments of try_to_wake_up().
160  */
161 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
162 #define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))
163 #endif
164 
165 /* Task command name length: */
166 #define TASK_COMM_LEN			16
167 
168 extern cpumask_var_t			cpu_isolated_map;
169 
170 extern void scheduler_tick(void);
171 
172 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
173 
174 extern long schedule_timeout(long timeout);
175 extern long schedule_timeout_interruptible(long timeout);
176 extern long schedule_timeout_killable(long timeout);
177 extern long schedule_timeout_uninterruptible(long timeout);
178 extern long schedule_timeout_idle(long timeout);
179 asmlinkage void schedule(void);
180 extern void schedule_preempt_disabled(void);
181 
182 extern int __must_check io_schedule_prepare(void);
183 extern void io_schedule_finish(int token);
184 extern long io_schedule_timeout(long timeout);
185 extern void io_schedule(void);
186 
187 /**
188  * struct prev_cputime - snapshot of system and user cputime
189  * @utime: time spent in user mode
190  * @stime: time spent in system mode
191  * @lock: protects the above two fields
192  *
193  * Stores previous user/system time values such that we can guarantee
194  * monotonicity.
195  */
196 struct prev_cputime {
197 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
198 	u64				utime;
199 	u64				stime;
200 	raw_spinlock_t			lock;
201 #endif
202 };
203 
204 /**
205  * struct task_cputime - collected CPU time counts
206  * @utime:		time spent in user mode, in nanoseconds
207  * @stime:		time spent in kernel mode, in nanoseconds
208  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
209  *
210  * This structure groups together three kinds of CPU time that are tracked for
211  * threads and thread groups.  Most things considering CPU time want to group
212  * these counts together and treat all three of them in parallel.
213  */
214 struct task_cputime {
215 	u64				utime;
216 	u64				stime;
217 	unsigned long long		sum_exec_runtime;
218 };
219 
220 /* Alternate field names when used on cache expirations: */
221 #define virt_exp			utime
222 #define prof_exp			stime
223 #define sched_exp			sum_exec_runtime
224 
225 enum vtime_state {
226 	/* Task is sleeping or running in a CPU with VTIME inactive: */
227 	VTIME_INACTIVE = 0,
228 	/* Task runs in userspace in a CPU with VTIME active: */
229 	VTIME_USER,
230 	/* Task runs in kernelspace in a CPU with VTIME active: */
231 	VTIME_SYS,
232 };
233 
234 struct vtime {
235 	seqcount_t		seqcount;
236 	unsigned long long	starttime;
237 	enum vtime_state	state;
238 	u64			utime;
239 	u64			stime;
240 	u64			gtime;
241 };
242 
243 struct sched_info {
244 #ifdef CONFIG_SCHED_INFO
245 	/* Cumulative counters: */
246 
247 	/* # of times we have run on this CPU: */
248 	unsigned long			pcount;
249 
250 	/* Time spent waiting on a runqueue: */
251 	unsigned long long		run_delay;
252 
253 	/* Timestamps: */
254 
255 	/* When did we last run on a CPU? */
256 	unsigned long long		last_arrival;
257 
258 	/* When were we last queued to run? */
259 	unsigned long long		last_queued;
260 
261 #endif /* CONFIG_SCHED_INFO */
262 };
263 
264 /*
265  * Integer metrics need fixed point arithmetic, e.g., sched/fair
266  * has a few: load, load_avg, util_avg, freq, and capacity.
267  *
268  * We define a basic fixed point arithmetic range, and then formalize
269  * all these metrics based on that basic range.
270  */
271 # define SCHED_FIXEDPOINT_SHIFT		10
272 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
273 
274 struct load_weight {
275 	unsigned long			weight;
276 	u32				inv_weight;
277 };
278 
279 /*
280  * The load_avg/util_avg accumulates an infinite geometric series
281  * (see __update_load_avg() in kernel/sched/fair.c).
282  *
283  * [load_avg definition]
284  *
285  *   load_avg = runnable% * scale_load_down(load)
286  *
287  * where runnable% is the time ratio that a sched_entity is runnable.
288  * For cfs_rq, it is the aggregated load_avg of all runnable and
289  * blocked sched_entities.
290  *
291  * load_avg may also take frequency scaling into account:
292  *
293  *   load_avg = runnable% * scale_load_down(load) * freq%
294  *
295  * where freq% is the CPU frequency normalized to the highest frequency.
296  *
297  * [util_avg definition]
298  *
299  *   util_avg = running% * SCHED_CAPACITY_SCALE
300  *
301  * where running% is the time ratio that a sched_entity is running on
302  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
303  * and blocked sched_entities.
304  *
305  * util_avg may also factor frequency scaling and CPU capacity scaling:
306  *
307  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
308  *
309  * where freq% is the same as above, and capacity% is the CPU capacity
310  * normalized to the greatest capacity (due to uarch differences, etc).
311  *
312  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
313  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
314  * we therefore scale them to as large a range as necessary. This is for
315  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
316  *
317  * [Overflow issue]
318  *
319  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
320  * with the highest load (=88761), always runnable on a single cfs_rq,
321  * and should not overflow as the number already hits PID_MAX_LIMIT.
322  *
323  * For all other cases (including 32-bit kernels), struct load_weight's
324  * weight will overflow first before we do, because:
325  *
326  *    Max(load_avg) <= Max(load.weight)
327  *
328  * Then it is the load_weight's responsibility to consider overflow
329  * issues.
330  */
331 struct sched_avg {
332 	u64				last_update_time;
333 	u64				load_sum;
334 	u32				util_sum;
335 	u32				period_contrib;
336 	unsigned long			load_avg;
337 	unsigned long			util_avg;
338 };
339 
340 struct sched_statistics {
341 #ifdef CONFIG_SCHEDSTATS
342 	u64				wait_start;
343 	u64				wait_max;
344 	u64				wait_count;
345 	u64				wait_sum;
346 	u64				iowait_count;
347 	u64				iowait_sum;
348 
349 	u64				sleep_start;
350 	u64				sleep_max;
351 	s64				sum_sleep_runtime;
352 
353 	u64				block_start;
354 	u64				block_max;
355 	u64				exec_max;
356 	u64				slice_max;
357 
358 	u64				nr_migrations_cold;
359 	u64				nr_failed_migrations_affine;
360 	u64				nr_failed_migrations_running;
361 	u64				nr_failed_migrations_hot;
362 	u64				nr_forced_migrations;
363 
364 	u64				nr_wakeups;
365 	u64				nr_wakeups_sync;
366 	u64				nr_wakeups_migrate;
367 	u64				nr_wakeups_local;
368 	u64				nr_wakeups_remote;
369 	u64				nr_wakeups_affine;
370 	u64				nr_wakeups_affine_attempts;
371 	u64				nr_wakeups_passive;
372 	u64				nr_wakeups_idle;
373 #endif
374 };
375 
376 struct sched_entity {
377 	/* For load-balancing: */
378 	struct load_weight		load;
379 	struct rb_node			run_node;
380 	struct list_head		group_node;
381 	unsigned int			on_rq;
382 
383 	u64				exec_start;
384 	u64				sum_exec_runtime;
385 	u64				vruntime;
386 	u64				prev_sum_exec_runtime;
387 
388 	u64				nr_migrations;
389 
390 	struct sched_statistics		statistics;
391 
392 #ifdef CONFIG_FAIR_GROUP_SCHED
393 	int				depth;
394 	struct sched_entity		*parent;
395 	/* rq on which this entity is (to be) queued: */
396 	struct cfs_rq			*cfs_rq;
397 	/* rq "owned" by this entity/group: */
398 	struct cfs_rq			*my_q;
399 #endif
400 
401 #ifdef CONFIG_SMP
402 	/*
403 	 * Per entity load average tracking.
404 	 *
405 	 * Put into separate cache line so it does not
406 	 * collide with read-mostly values above.
407 	 */
408 	struct sched_avg		avg ____cacheline_aligned_in_smp;
409 #endif
410 };
411 
412 struct sched_rt_entity {
413 	struct list_head		run_list;
414 	unsigned long			timeout;
415 	unsigned long			watchdog_stamp;
416 	unsigned int			time_slice;
417 	unsigned short			on_rq;
418 	unsigned short			on_list;
419 
420 	struct sched_rt_entity		*back;
421 #ifdef CONFIG_RT_GROUP_SCHED
422 	struct sched_rt_entity		*parent;
423 	/* rq on which this entity is (to be) queued: */
424 	struct rt_rq			*rt_rq;
425 	/* rq "owned" by this entity/group: */
426 	struct rt_rq			*my_q;
427 #endif
428 } __randomize_layout;
429 
430 struct sched_dl_entity {
431 	struct rb_node			rb_node;
432 
433 	/*
434 	 * Original scheduling parameters. Copied here from sched_attr
435 	 * during sched_setattr(), they will remain the same until
436 	 * the next sched_setattr().
437 	 */
438 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
439 	u64				dl_deadline;	/* Relative deadline of each instance	*/
440 	u64				dl_period;	/* Separation of two instances (period) */
441 	u64				dl_bw;		/* dl_runtime / dl_period		*/
442 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
443 
444 	/*
445 	 * Actual scheduling parameters. Initialized with the values above,
446 	 * they are continously updated during task execution. Note that
447 	 * the remaining runtime could be < 0 in case we are in overrun.
448 	 */
449 	s64				runtime;	/* Remaining runtime for this instance	*/
450 	u64				deadline;	/* Absolute deadline for this instance	*/
451 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
452 
453 	/*
454 	 * Some bool flags:
455 	 *
456 	 * @dl_throttled tells if we exhausted the runtime. If so, the
457 	 * task has to wait for a replenishment to be performed at the
458 	 * next firing of dl_timer.
459 	 *
460 	 * @dl_boosted tells if we are boosted due to DI. If so we are
461 	 * outside bandwidth enforcement mechanism (but only until we
462 	 * exit the critical section);
463 	 *
464 	 * @dl_yielded tells if task gave up the CPU before consuming
465 	 * all its available runtime during the last job.
466 	 *
467 	 * @dl_non_contending tells if the task is inactive while still
468 	 * contributing to the active utilization. In other words, it
469 	 * indicates if the inactive timer has been armed and its handler
470 	 * has not been executed yet. This flag is useful to avoid race
471 	 * conditions between the inactive timer handler and the wakeup
472 	 * code.
473 	 */
474 	int				dl_throttled;
475 	int				dl_boosted;
476 	int				dl_yielded;
477 	int				dl_non_contending;
478 
479 	/*
480 	 * Bandwidth enforcement timer. Each -deadline task has its
481 	 * own bandwidth to be enforced, thus we need one timer per task.
482 	 */
483 	struct hrtimer			dl_timer;
484 
485 	/*
486 	 * Inactive timer, responsible for decreasing the active utilization
487 	 * at the "0-lag time". When a -deadline task blocks, it contributes
488 	 * to GRUB's active utilization until the "0-lag time", hence a
489 	 * timer is needed to decrease the active utilization at the correct
490 	 * time.
491 	 */
492 	struct hrtimer inactive_timer;
493 };
494 
495 union rcu_special {
496 	struct {
497 		u8			blocked;
498 		u8			need_qs;
499 		u8			exp_need_qs;
500 
501 		/* Otherwise the compiler can store garbage here: */
502 		u8			pad;
503 	} b; /* Bits. */
504 	u32 s; /* Set of bits. */
505 };
506 
507 enum perf_event_task_context {
508 	perf_invalid_context = -1,
509 	perf_hw_context = 0,
510 	perf_sw_context,
511 	perf_nr_task_contexts,
512 };
513 
514 struct wake_q_node {
515 	struct wake_q_node *next;
516 };
517 
518 struct task_struct {
519 #ifdef CONFIG_THREAD_INFO_IN_TASK
520 	/*
521 	 * For reasons of header soup (see current_thread_info()), this
522 	 * must be the first element of task_struct.
523 	 */
524 	struct thread_info		thread_info;
525 #endif
526 	/* -1 unrunnable, 0 runnable, >0 stopped: */
527 	volatile long			state;
528 
529 	/*
530 	 * This begins the randomizable portion of task_struct. Only
531 	 * scheduling-critical items should be added above here.
532 	 */
533 	randomized_struct_fields_start
534 
535 	void				*stack;
536 	atomic_t			usage;
537 	/* Per task flags (PF_*), defined further below: */
538 	unsigned int			flags;
539 	unsigned int			ptrace;
540 
541 #ifdef CONFIG_SMP
542 	struct llist_node		wake_entry;
543 	int				on_cpu;
544 #ifdef CONFIG_THREAD_INFO_IN_TASK
545 	/* Current CPU: */
546 	unsigned int			cpu;
547 #endif
548 	unsigned int			wakee_flips;
549 	unsigned long			wakee_flip_decay_ts;
550 	struct task_struct		*last_wakee;
551 
552 	int				wake_cpu;
553 #endif
554 	int				on_rq;
555 
556 	int				prio;
557 	int				static_prio;
558 	int				normal_prio;
559 	unsigned int			rt_priority;
560 
561 	const struct sched_class	*sched_class;
562 	struct sched_entity		se;
563 	struct sched_rt_entity		rt;
564 #ifdef CONFIG_CGROUP_SCHED
565 	struct task_group		*sched_task_group;
566 #endif
567 	struct sched_dl_entity		dl;
568 
569 #ifdef CONFIG_PREEMPT_NOTIFIERS
570 	/* List of struct preempt_notifier: */
571 	struct hlist_head		preempt_notifiers;
572 #endif
573 
574 #ifdef CONFIG_BLK_DEV_IO_TRACE
575 	unsigned int			btrace_seq;
576 #endif
577 
578 	unsigned int			policy;
579 	int				nr_cpus_allowed;
580 	cpumask_t			cpus_allowed;
581 
582 #ifdef CONFIG_PREEMPT_RCU
583 	int				rcu_read_lock_nesting;
584 	union rcu_special		rcu_read_unlock_special;
585 	struct list_head		rcu_node_entry;
586 	struct rcu_node			*rcu_blocked_node;
587 #endif /* #ifdef CONFIG_PREEMPT_RCU */
588 
589 #ifdef CONFIG_TASKS_RCU
590 	unsigned long			rcu_tasks_nvcsw;
591 	u8				rcu_tasks_holdout;
592 	u8				rcu_tasks_idx;
593 	int				rcu_tasks_idle_cpu;
594 	struct list_head		rcu_tasks_holdout_list;
595 #endif /* #ifdef CONFIG_TASKS_RCU */
596 
597 	struct sched_info		sched_info;
598 
599 	struct list_head		tasks;
600 #ifdef CONFIG_SMP
601 	struct plist_node		pushable_tasks;
602 	struct rb_node			pushable_dl_tasks;
603 #endif
604 
605 	struct mm_struct		*mm;
606 	struct mm_struct		*active_mm;
607 
608 	/* Per-thread vma caching: */
609 	struct vmacache			vmacache;
610 
611 #ifdef SPLIT_RSS_COUNTING
612 	struct task_rss_stat		rss_stat;
613 #endif
614 	int				exit_state;
615 	int				exit_code;
616 	int				exit_signal;
617 	/* The signal sent when the parent dies: */
618 	int				pdeath_signal;
619 	/* JOBCTL_*, siglock protected: */
620 	unsigned long			jobctl;
621 
622 	/* Used for emulating ABI behavior of previous Linux versions: */
623 	unsigned int			personality;
624 
625 	/* Scheduler bits, serialized by scheduler locks: */
626 	unsigned			sched_reset_on_fork:1;
627 	unsigned			sched_contributes_to_load:1;
628 	unsigned			sched_migrated:1;
629 	unsigned			sched_remote_wakeup:1;
630 	/* Force alignment to the next boundary: */
631 	unsigned			:0;
632 
633 	/* Unserialized, strictly 'current' */
634 
635 	/* Bit to tell LSMs we're in execve(): */
636 	unsigned			in_execve:1;
637 	unsigned			in_iowait:1;
638 #ifndef TIF_RESTORE_SIGMASK
639 	unsigned			restore_sigmask:1;
640 #endif
641 #ifdef CONFIG_MEMCG
642 	unsigned			memcg_may_oom:1;
643 #ifndef CONFIG_SLOB
644 	unsigned			memcg_kmem_skip_account:1;
645 #endif
646 #endif
647 #ifdef CONFIG_COMPAT_BRK
648 	unsigned			brk_randomized:1;
649 #endif
650 #ifdef CONFIG_CGROUPS
651 	/* disallow userland-initiated cgroup migration */
652 	unsigned			no_cgroup_migration:1;
653 #endif
654 
655 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
656 
657 	struct restart_block		restart_block;
658 
659 	pid_t				pid;
660 	pid_t				tgid;
661 
662 #ifdef CONFIG_CC_STACKPROTECTOR
663 	/* Canary value for the -fstack-protector GCC feature: */
664 	unsigned long			stack_canary;
665 #endif
666 	/*
667 	 * Pointers to the (original) parent process, youngest child, younger sibling,
668 	 * older sibling, respectively.  (p->father can be replaced with
669 	 * p->real_parent->pid)
670 	 */
671 
672 	/* Real parent process: */
673 	struct task_struct __rcu	*real_parent;
674 
675 	/* Recipient of SIGCHLD, wait4() reports: */
676 	struct task_struct __rcu	*parent;
677 
678 	/*
679 	 * Children/sibling form the list of natural children:
680 	 */
681 	struct list_head		children;
682 	struct list_head		sibling;
683 	struct task_struct		*group_leader;
684 
685 	/*
686 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
687 	 *
688 	 * This includes both natural children and PTRACE_ATTACH targets.
689 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
690 	 */
691 	struct list_head		ptraced;
692 	struct list_head		ptrace_entry;
693 
694 	/* PID/PID hash table linkage. */
695 	struct pid_link			pids[PIDTYPE_MAX];
696 	struct list_head		thread_group;
697 	struct list_head		thread_node;
698 
699 	struct completion		*vfork_done;
700 
701 	/* CLONE_CHILD_SETTID: */
702 	int __user			*set_child_tid;
703 
704 	/* CLONE_CHILD_CLEARTID: */
705 	int __user			*clear_child_tid;
706 
707 	u64				utime;
708 	u64				stime;
709 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
710 	u64				utimescaled;
711 	u64				stimescaled;
712 #endif
713 	u64				gtime;
714 	struct prev_cputime		prev_cputime;
715 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
716 	struct vtime			vtime;
717 #endif
718 
719 #ifdef CONFIG_NO_HZ_FULL
720 	atomic_t			tick_dep_mask;
721 #endif
722 	/* Context switch counts: */
723 	unsigned long			nvcsw;
724 	unsigned long			nivcsw;
725 
726 	/* Monotonic time in nsecs: */
727 	u64				start_time;
728 
729 	/* Boot based time in nsecs: */
730 	u64				real_start_time;
731 
732 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
733 	unsigned long			min_flt;
734 	unsigned long			maj_flt;
735 
736 #ifdef CONFIG_POSIX_TIMERS
737 	struct task_cputime		cputime_expires;
738 	struct list_head		cpu_timers[3];
739 #endif
740 
741 	/* Process credentials: */
742 
743 	/* Tracer's credentials at attach: */
744 	const struct cred __rcu		*ptracer_cred;
745 
746 	/* Objective and real subjective task credentials (COW): */
747 	const struct cred __rcu		*real_cred;
748 
749 	/* Effective (overridable) subjective task credentials (COW): */
750 	const struct cred __rcu		*cred;
751 
752 	/*
753 	 * executable name, excluding path.
754 	 *
755 	 * - normally initialized setup_new_exec()
756 	 * - access it with [gs]et_task_comm()
757 	 * - lock it with task_lock()
758 	 */
759 	char				comm[TASK_COMM_LEN];
760 
761 	struct nameidata		*nameidata;
762 
763 #ifdef CONFIG_SYSVIPC
764 	struct sysv_sem			sysvsem;
765 	struct sysv_shm			sysvshm;
766 #endif
767 #ifdef CONFIG_DETECT_HUNG_TASK
768 	unsigned long			last_switch_count;
769 #endif
770 	/* Filesystem information: */
771 	struct fs_struct		*fs;
772 
773 	/* Open file information: */
774 	struct files_struct		*files;
775 
776 	/* Namespaces: */
777 	struct nsproxy			*nsproxy;
778 
779 	/* Signal handlers: */
780 	struct signal_struct		*signal;
781 	struct sighand_struct		*sighand;
782 	sigset_t			blocked;
783 	sigset_t			real_blocked;
784 	/* Restored if set_restore_sigmask() was used: */
785 	sigset_t			saved_sigmask;
786 	struct sigpending		pending;
787 	unsigned long			sas_ss_sp;
788 	size_t				sas_ss_size;
789 	unsigned int			sas_ss_flags;
790 
791 	struct callback_head		*task_works;
792 
793 	struct audit_context		*audit_context;
794 #ifdef CONFIG_AUDITSYSCALL
795 	kuid_t				loginuid;
796 	unsigned int			sessionid;
797 #endif
798 	struct seccomp			seccomp;
799 
800 	/* Thread group tracking: */
801 	u32				parent_exec_id;
802 	u32				self_exec_id;
803 
804 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
805 	spinlock_t			alloc_lock;
806 
807 	/* Protection of the PI data structures: */
808 	raw_spinlock_t			pi_lock;
809 
810 	struct wake_q_node		wake_q;
811 
812 #ifdef CONFIG_RT_MUTEXES
813 	/* PI waiters blocked on a rt_mutex held by this task: */
814 	struct rb_root_cached		pi_waiters;
815 	/* Updated under owner's pi_lock and rq lock */
816 	struct task_struct		*pi_top_task;
817 	/* Deadlock detection and priority inheritance handling: */
818 	struct rt_mutex_waiter		*pi_blocked_on;
819 #endif
820 
821 #ifdef CONFIG_DEBUG_MUTEXES
822 	/* Mutex deadlock detection: */
823 	struct mutex_waiter		*blocked_on;
824 #endif
825 
826 #ifdef CONFIG_TRACE_IRQFLAGS
827 	unsigned int			irq_events;
828 	unsigned long			hardirq_enable_ip;
829 	unsigned long			hardirq_disable_ip;
830 	unsigned int			hardirq_enable_event;
831 	unsigned int			hardirq_disable_event;
832 	int				hardirqs_enabled;
833 	int				hardirq_context;
834 	unsigned long			softirq_disable_ip;
835 	unsigned long			softirq_enable_ip;
836 	unsigned int			softirq_disable_event;
837 	unsigned int			softirq_enable_event;
838 	int				softirqs_enabled;
839 	int				softirq_context;
840 #endif
841 
842 #ifdef CONFIG_LOCKDEP
843 # define MAX_LOCK_DEPTH			48UL
844 	u64				curr_chain_key;
845 	int				lockdep_depth;
846 	unsigned int			lockdep_recursion;
847 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
848 #endif
849 
850 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
851 #define MAX_XHLOCKS_NR 64UL
852 	struct hist_lock *xhlocks; /* Crossrelease history locks */
853 	unsigned int xhlock_idx;
854 	/* For restoring at history boundaries */
855 	unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
856 	unsigned int hist_id;
857 	/* For overwrite check at each context exit */
858 	unsigned int hist_id_save[XHLOCK_CTX_NR];
859 #endif
860 
861 #ifdef CONFIG_UBSAN
862 	unsigned int			in_ubsan;
863 #endif
864 
865 	/* Journalling filesystem info: */
866 	void				*journal_info;
867 
868 	/* Stacked block device info: */
869 	struct bio_list			*bio_list;
870 
871 #ifdef CONFIG_BLOCK
872 	/* Stack plugging: */
873 	struct blk_plug			*plug;
874 #endif
875 
876 	/* VM state: */
877 	struct reclaim_state		*reclaim_state;
878 
879 	struct backing_dev_info		*backing_dev_info;
880 
881 	struct io_context		*io_context;
882 
883 	/* Ptrace state: */
884 	unsigned long			ptrace_message;
885 	siginfo_t			*last_siginfo;
886 
887 	struct task_io_accounting	ioac;
888 #ifdef CONFIG_TASK_XACCT
889 	/* Accumulated RSS usage: */
890 	u64				acct_rss_mem1;
891 	/* Accumulated virtual memory usage: */
892 	u64				acct_vm_mem1;
893 	/* stime + utime since last update: */
894 	u64				acct_timexpd;
895 #endif
896 #ifdef CONFIG_CPUSETS
897 	/* Protected by ->alloc_lock: */
898 	nodemask_t			mems_allowed;
899 	/* Seqence number to catch updates: */
900 	seqcount_t			mems_allowed_seq;
901 	int				cpuset_mem_spread_rotor;
902 	int				cpuset_slab_spread_rotor;
903 #endif
904 #ifdef CONFIG_CGROUPS
905 	/* Control Group info protected by css_set_lock: */
906 	struct css_set __rcu		*cgroups;
907 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
908 	struct list_head		cg_list;
909 #endif
910 #ifdef CONFIG_INTEL_RDT
911 	u32				closid;
912 	u32				rmid;
913 #endif
914 #ifdef CONFIG_FUTEX
915 	struct robust_list_head __user	*robust_list;
916 #ifdef CONFIG_COMPAT
917 	struct compat_robust_list_head __user *compat_robust_list;
918 #endif
919 	struct list_head		pi_state_list;
920 	struct futex_pi_state		*pi_state_cache;
921 #endif
922 #ifdef CONFIG_PERF_EVENTS
923 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
924 	struct mutex			perf_event_mutex;
925 	struct list_head		perf_event_list;
926 #endif
927 #ifdef CONFIG_DEBUG_PREEMPT
928 	unsigned long			preempt_disable_ip;
929 #endif
930 #ifdef CONFIG_NUMA
931 	/* Protected by alloc_lock: */
932 	struct mempolicy		*mempolicy;
933 	short				il_prev;
934 	short				pref_node_fork;
935 #endif
936 #ifdef CONFIG_NUMA_BALANCING
937 	int				numa_scan_seq;
938 	unsigned int			numa_scan_period;
939 	unsigned int			numa_scan_period_max;
940 	int				numa_preferred_nid;
941 	unsigned long			numa_migrate_retry;
942 	/* Migration stamp: */
943 	u64				node_stamp;
944 	u64				last_task_numa_placement;
945 	u64				last_sum_exec_runtime;
946 	struct callback_head		numa_work;
947 
948 	struct list_head		numa_entry;
949 	struct numa_group		*numa_group;
950 
951 	/*
952 	 * numa_faults is an array split into four regions:
953 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
954 	 * in this precise order.
955 	 *
956 	 * faults_memory: Exponential decaying average of faults on a per-node
957 	 * basis. Scheduling placement decisions are made based on these
958 	 * counts. The values remain static for the duration of a PTE scan.
959 	 * faults_cpu: Track the nodes the process was running on when a NUMA
960 	 * hinting fault was incurred.
961 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
962 	 * during the current scan window. When the scan completes, the counts
963 	 * in faults_memory and faults_cpu decay and these values are copied.
964 	 */
965 	unsigned long			*numa_faults;
966 	unsigned long			total_numa_faults;
967 
968 	/*
969 	 * numa_faults_locality tracks if faults recorded during the last
970 	 * scan window were remote/local or failed to migrate. The task scan
971 	 * period is adapted based on the locality of the faults with different
972 	 * weights depending on whether they were shared or private faults
973 	 */
974 	unsigned long			numa_faults_locality[3];
975 
976 	unsigned long			numa_pages_migrated;
977 #endif /* CONFIG_NUMA_BALANCING */
978 
979 	struct tlbflush_unmap_batch	tlb_ubc;
980 
981 	struct rcu_head			rcu;
982 
983 	/* Cache last used pipe for splice(): */
984 	struct pipe_inode_info		*splice_pipe;
985 
986 	struct page_frag		task_frag;
987 
988 #ifdef CONFIG_TASK_DELAY_ACCT
989 	struct task_delay_info		*delays;
990 #endif
991 
992 #ifdef CONFIG_FAULT_INJECTION
993 	int				make_it_fail;
994 	unsigned int			fail_nth;
995 #endif
996 	/*
997 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
998 	 * balance_dirty_pages() for a dirty throttling pause:
999 	 */
1000 	int				nr_dirtied;
1001 	int				nr_dirtied_pause;
1002 	/* Start of a write-and-pause period: */
1003 	unsigned long			dirty_paused_when;
1004 
1005 #ifdef CONFIG_LATENCYTOP
1006 	int				latency_record_count;
1007 	struct latency_record		latency_record[LT_SAVECOUNT];
1008 #endif
1009 	/*
1010 	 * Time slack values; these are used to round up poll() and
1011 	 * select() etc timeout values. These are in nanoseconds.
1012 	 */
1013 	u64				timer_slack_ns;
1014 	u64				default_timer_slack_ns;
1015 
1016 #ifdef CONFIG_KASAN
1017 	unsigned int			kasan_depth;
1018 #endif
1019 
1020 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1021 	/* Index of current stored address in ret_stack: */
1022 	int				curr_ret_stack;
1023 
1024 	/* Stack of return addresses for return function tracing: */
1025 	struct ftrace_ret_stack		*ret_stack;
1026 
1027 	/* Timestamp for last schedule: */
1028 	unsigned long long		ftrace_timestamp;
1029 
1030 	/*
1031 	 * Number of functions that haven't been traced
1032 	 * because of depth overrun:
1033 	 */
1034 	atomic_t			trace_overrun;
1035 
1036 	/* Pause tracing: */
1037 	atomic_t			tracing_graph_pause;
1038 #endif
1039 
1040 #ifdef CONFIG_TRACING
1041 	/* State flags for use by tracers: */
1042 	unsigned long			trace;
1043 
1044 	/* Bitmask and counter of trace recursion: */
1045 	unsigned long			trace_recursion;
1046 #endif /* CONFIG_TRACING */
1047 
1048 #ifdef CONFIG_KCOV
1049 	/* Coverage collection mode enabled for this task (0 if disabled): */
1050 	enum kcov_mode			kcov_mode;
1051 
1052 	/* Size of the kcov_area: */
1053 	unsigned int			kcov_size;
1054 
1055 	/* Buffer for coverage collection: */
1056 	void				*kcov_area;
1057 
1058 	/* KCOV descriptor wired with this task or NULL: */
1059 	struct kcov			*kcov;
1060 #endif
1061 
1062 #ifdef CONFIG_MEMCG
1063 	struct mem_cgroup		*memcg_in_oom;
1064 	gfp_t				memcg_oom_gfp_mask;
1065 	int				memcg_oom_order;
1066 
1067 	/* Number of pages to reclaim on returning to userland: */
1068 	unsigned int			memcg_nr_pages_over_high;
1069 #endif
1070 
1071 #ifdef CONFIG_UPROBES
1072 	struct uprobe_task		*utask;
1073 #endif
1074 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1075 	unsigned int			sequential_io;
1076 	unsigned int			sequential_io_avg;
1077 #endif
1078 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1079 	unsigned long			task_state_change;
1080 #endif
1081 	int				pagefault_disabled;
1082 #ifdef CONFIG_MMU
1083 	struct task_struct		*oom_reaper_list;
1084 #endif
1085 #ifdef CONFIG_VMAP_STACK
1086 	struct vm_struct		*stack_vm_area;
1087 #endif
1088 #ifdef CONFIG_THREAD_INFO_IN_TASK
1089 	/* A live task holds one reference: */
1090 	atomic_t			stack_refcount;
1091 #endif
1092 #ifdef CONFIG_LIVEPATCH
1093 	int patch_state;
1094 #endif
1095 #ifdef CONFIG_SECURITY
1096 	/* Used by LSM modules for access restriction: */
1097 	void				*security;
1098 #endif
1099 
1100 	/*
1101 	 * New fields for task_struct should be added above here, so that
1102 	 * they are included in the randomized portion of task_struct.
1103 	 */
1104 	randomized_struct_fields_end
1105 
1106 	/* CPU-specific state of this task: */
1107 	struct thread_struct		thread;
1108 
1109 	/*
1110 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1111 	 * structure.  It *MUST* be at the end of 'task_struct'.
1112 	 *
1113 	 * Do not put anything below here!
1114 	 */
1115 };
1116 
1117 static inline struct pid *task_pid(struct task_struct *task)
1118 {
1119 	return task->pids[PIDTYPE_PID].pid;
1120 }
1121 
1122 static inline struct pid *task_tgid(struct task_struct *task)
1123 {
1124 	return task->group_leader->pids[PIDTYPE_PID].pid;
1125 }
1126 
1127 /*
1128  * Without tasklist or RCU lock it is not safe to dereference
1129  * the result of task_pgrp/task_session even if task == current,
1130  * we can race with another thread doing sys_setsid/sys_setpgid.
1131  */
1132 static inline struct pid *task_pgrp(struct task_struct *task)
1133 {
1134 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1135 }
1136 
1137 static inline struct pid *task_session(struct task_struct *task)
1138 {
1139 	return task->group_leader->pids[PIDTYPE_SID].pid;
1140 }
1141 
1142 /*
1143  * the helpers to get the task's different pids as they are seen
1144  * from various namespaces
1145  *
1146  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1147  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1148  *                     current.
1149  * task_xid_nr_ns()  : id seen from the ns specified;
1150  *
1151  * see also pid_nr() etc in include/linux/pid.h
1152  */
1153 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1154 
1155 static inline pid_t task_pid_nr(struct task_struct *tsk)
1156 {
1157 	return tsk->pid;
1158 }
1159 
1160 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1161 {
1162 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1163 }
1164 
1165 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1166 {
1167 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1168 }
1169 
1170 
1171 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1172 {
1173 	return tsk->tgid;
1174 }
1175 
1176 /**
1177  * pid_alive - check that a task structure is not stale
1178  * @p: Task structure to be checked.
1179  *
1180  * Test if a process is not yet dead (at most zombie state)
1181  * If pid_alive fails, then pointers within the task structure
1182  * can be stale and must not be dereferenced.
1183  *
1184  * Return: 1 if the process is alive. 0 otherwise.
1185  */
1186 static inline int pid_alive(const struct task_struct *p)
1187 {
1188 	return p->pids[PIDTYPE_PID].pid != NULL;
1189 }
1190 
1191 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1192 {
1193 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1194 }
1195 
1196 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1197 {
1198 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1199 }
1200 
1201 
1202 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1203 {
1204 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1205 }
1206 
1207 static inline pid_t task_session_vnr(struct task_struct *tsk)
1208 {
1209 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1210 }
1211 
1212 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1213 {
1214 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1215 }
1216 
1217 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1218 {
1219 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1220 }
1221 
1222 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1223 {
1224 	pid_t pid = 0;
1225 
1226 	rcu_read_lock();
1227 	if (pid_alive(tsk))
1228 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1229 	rcu_read_unlock();
1230 
1231 	return pid;
1232 }
1233 
1234 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1235 {
1236 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1237 }
1238 
1239 /* Obsolete, do not use: */
1240 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1241 {
1242 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1243 }
1244 
1245 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1246 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1247 
1248 static inline unsigned int __get_task_state(struct task_struct *tsk)
1249 {
1250 	unsigned int tsk_state = READ_ONCE(tsk->state);
1251 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1252 
1253 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1254 
1255 	if (tsk_state == TASK_IDLE)
1256 		state = TASK_REPORT_IDLE;
1257 
1258 	return fls(state);
1259 }
1260 
1261 static inline char __task_state_to_char(unsigned int state)
1262 {
1263 	static const char state_char[] = "RSDTtXZPI";
1264 
1265 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1266 
1267 	return state_char[state];
1268 }
1269 
1270 static inline char task_state_to_char(struct task_struct *tsk)
1271 {
1272 	return __task_state_to_char(__get_task_state(tsk));
1273 }
1274 
1275 /**
1276  * is_global_init - check if a task structure is init. Since init
1277  * is free to have sub-threads we need to check tgid.
1278  * @tsk: Task structure to be checked.
1279  *
1280  * Check if a task structure is the first user space task the kernel created.
1281  *
1282  * Return: 1 if the task structure is init. 0 otherwise.
1283  */
1284 static inline int is_global_init(struct task_struct *tsk)
1285 {
1286 	return task_tgid_nr(tsk) == 1;
1287 }
1288 
1289 extern struct pid *cad_pid;
1290 
1291 /*
1292  * Per process flags
1293  */
1294 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1295 #define PF_EXITING		0x00000004	/* Getting shut down */
1296 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1297 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1298 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1299 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1300 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1301 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1302 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1303 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1304 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1305 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1306 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1307 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1308 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1309 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1310 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1311 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1312 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1313 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1314 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1315 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1316 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1317 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1318 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1319 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1320 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1321 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1322 
1323 /*
1324  * Only the _current_ task can read/write to tsk->flags, but other
1325  * tasks can access tsk->flags in readonly mode for example
1326  * with tsk_used_math (like during threaded core dumping).
1327  * There is however an exception to this rule during ptrace
1328  * or during fork: the ptracer task is allowed to write to the
1329  * child->flags of its traced child (same goes for fork, the parent
1330  * can write to the child->flags), because we're guaranteed the
1331  * child is not running and in turn not changing child->flags
1332  * at the same time the parent does it.
1333  */
1334 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1335 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1336 #define clear_used_math()			clear_stopped_child_used_math(current)
1337 #define set_used_math()				set_stopped_child_used_math(current)
1338 
1339 #define conditional_stopped_child_used_math(condition, child) \
1340 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1341 
1342 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1343 
1344 #define copy_to_stopped_child_used_math(child) \
1345 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1346 
1347 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1348 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1349 #define used_math()				tsk_used_math(current)
1350 
1351 static inline bool is_percpu_thread(void)
1352 {
1353 #ifdef CONFIG_SMP
1354 	return (current->flags & PF_NO_SETAFFINITY) &&
1355 		(current->nr_cpus_allowed  == 1);
1356 #else
1357 	return true;
1358 #endif
1359 }
1360 
1361 /* Per-process atomic flags. */
1362 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1363 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1364 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1365 
1366 
1367 #define TASK_PFA_TEST(name, func)					\
1368 	static inline bool task_##func(struct task_struct *p)		\
1369 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1370 
1371 #define TASK_PFA_SET(name, func)					\
1372 	static inline void task_set_##func(struct task_struct *p)	\
1373 	{ set_bit(PFA_##name, &p->atomic_flags); }
1374 
1375 #define TASK_PFA_CLEAR(name, func)					\
1376 	static inline void task_clear_##func(struct task_struct *p)	\
1377 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1378 
1379 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1380 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1381 
1382 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1383 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1384 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1385 
1386 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1387 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1388 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1389 
1390 static inline void
1391 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1392 {
1393 	current->flags &= ~flags;
1394 	current->flags |= orig_flags & flags;
1395 }
1396 
1397 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1398 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1399 #ifdef CONFIG_SMP
1400 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1401 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1402 #else
1403 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1404 {
1405 }
1406 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1407 {
1408 	if (!cpumask_test_cpu(0, new_mask))
1409 		return -EINVAL;
1410 	return 0;
1411 }
1412 #endif
1413 
1414 #ifndef cpu_relax_yield
1415 #define cpu_relax_yield() cpu_relax()
1416 #endif
1417 
1418 extern int yield_to(struct task_struct *p, bool preempt);
1419 extern void set_user_nice(struct task_struct *p, long nice);
1420 extern int task_prio(const struct task_struct *p);
1421 
1422 /**
1423  * task_nice - return the nice value of a given task.
1424  * @p: the task in question.
1425  *
1426  * Return: The nice value [ -20 ... 0 ... 19 ].
1427  */
1428 static inline int task_nice(const struct task_struct *p)
1429 {
1430 	return PRIO_TO_NICE((p)->static_prio);
1431 }
1432 
1433 extern int can_nice(const struct task_struct *p, const int nice);
1434 extern int task_curr(const struct task_struct *p);
1435 extern int idle_cpu(int cpu);
1436 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1437 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1438 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1439 extern struct task_struct *idle_task(int cpu);
1440 
1441 /**
1442  * is_idle_task - is the specified task an idle task?
1443  * @p: the task in question.
1444  *
1445  * Return: 1 if @p is an idle task. 0 otherwise.
1446  */
1447 static inline bool is_idle_task(const struct task_struct *p)
1448 {
1449 	return !!(p->flags & PF_IDLE);
1450 }
1451 
1452 extern struct task_struct *curr_task(int cpu);
1453 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1454 
1455 void yield(void);
1456 
1457 union thread_union {
1458 #ifndef CONFIG_THREAD_INFO_IN_TASK
1459 	struct thread_info thread_info;
1460 #endif
1461 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1462 };
1463 
1464 #ifdef CONFIG_THREAD_INFO_IN_TASK
1465 static inline struct thread_info *task_thread_info(struct task_struct *task)
1466 {
1467 	return &task->thread_info;
1468 }
1469 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1470 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1471 #endif
1472 
1473 /*
1474  * find a task by one of its numerical ids
1475  *
1476  * find_task_by_pid_ns():
1477  *      finds a task by its pid in the specified namespace
1478  * find_task_by_vpid():
1479  *      finds a task by its virtual pid
1480  *
1481  * see also find_vpid() etc in include/linux/pid.h
1482  */
1483 
1484 extern struct task_struct *find_task_by_vpid(pid_t nr);
1485 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1486 
1487 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1488 extern int wake_up_process(struct task_struct *tsk);
1489 extern void wake_up_new_task(struct task_struct *tsk);
1490 
1491 #ifdef CONFIG_SMP
1492 extern void kick_process(struct task_struct *tsk);
1493 #else
1494 static inline void kick_process(struct task_struct *tsk) { }
1495 #endif
1496 
1497 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1498 
1499 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1500 {
1501 	__set_task_comm(tsk, from, false);
1502 }
1503 
1504 extern char *get_task_comm(char *to, struct task_struct *tsk);
1505 
1506 #ifdef CONFIG_SMP
1507 void scheduler_ipi(void);
1508 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1509 #else
1510 static inline void scheduler_ipi(void) { }
1511 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1512 {
1513 	return 1;
1514 }
1515 #endif
1516 
1517 /*
1518  * Set thread flags in other task's structures.
1519  * See asm/thread_info.h for TIF_xxxx flags available:
1520  */
1521 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1522 {
1523 	set_ti_thread_flag(task_thread_info(tsk), flag);
1524 }
1525 
1526 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1527 {
1528 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1529 }
1530 
1531 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1532 {
1533 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1534 }
1535 
1536 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1537 {
1538 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1539 }
1540 
1541 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1542 {
1543 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1544 }
1545 
1546 static inline void set_tsk_need_resched(struct task_struct *tsk)
1547 {
1548 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1549 }
1550 
1551 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1552 {
1553 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1554 }
1555 
1556 static inline int test_tsk_need_resched(struct task_struct *tsk)
1557 {
1558 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1559 }
1560 
1561 /*
1562  * cond_resched() and cond_resched_lock(): latency reduction via
1563  * explicit rescheduling in places that are safe. The return
1564  * value indicates whether a reschedule was done in fact.
1565  * cond_resched_lock() will drop the spinlock before scheduling,
1566  * cond_resched_softirq() will enable bhs before scheduling.
1567  */
1568 #ifndef CONFIG_PREEMPT
1569 extern int _cond_resched(void);
1570 #else
1571 static inline int _cond_resched(void) { return 0; }
1572 #endif
1573 
1574 #define cond_resched() ({			\
1575 	___might_sleep(__FILE__, __LINE__, 0);	\
1576 	_cond_resched();			\
1577 })
1578 
1579 extern int __cond_resched_lock(spinlock_t *lock);
1580 
1581 #define cond_resched_lock(lock) ({				\
1582 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1583 	__cond_resched_lock(lock);				\
1584 })
1585 
1586 extern int __cond_resched_softirq(void);
1587 
1588 #define cond_resched_softirq() ({					\
1589 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1590 	__cond_resched_softirq();					\
1591 })
1592 
1593 static inline void cond_resched_rcu(void)
1594 {
1595 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1596 	rcu_read_unlock();
1597 	cond_resched();
1598 	rcu_read_lock();
1599 #endif
1600 }
1601 
1602 /*
1603  * Does a critical section need to be broken due to another
1604  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1605  * but a general need for low latency)
1606  */
1607 static inline int spin_needbreak(spinlock_t *lock)
1608 {
1609 #ifdef CONFIG_PREEMPT
1610 	return spin_is_contended(lock);
1611 #else
1612 	return 0;
1613 #endif
1614 }
1615 
1616 static __always_inline bool need_resched(void)
1617 {
1618 	return unlikely(tif_need_resched());
1619 }
1620 
1621 /*
1622  * Wrappers for p->thread_info->cpu access. No-op on UP.
1623  */
1624 #ifdef CONFIG_SMP
1625 
1626 static inline unsigned int task_cpu(const struct task_struct *p)
1627 {
1628 #ifdef CONFIG_THREAD_INFO_IN_TASK
1629 	return p->cpu;
1630 #else
1631 	return task_thread_info(p)->cpu;
1632 #endif
1633 }
1634 
1635 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1636 
1637 #else
1638 
1639 static inline unsigned int task_cpu(const struct task_struct *p)
1640 {
1641 	return 0;
1642 }
1643 
1644 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1645 {
1646 }
1647 
1648 #endif /* CONFIG_SMP */
1649 
1650 /*
1651  * In order to reduce various lock holder preemption latencies provide an
1652  * interface to see if a vCPU is currently running or not.
1653  *
1654  * This allows us to terminate optimistic spin loops and block, analogous to
1655  * the native optimistic spin heuristic of testing if the lock owner task is
1656  * running or not.
1657  */
1658 #ifndef vcpu_is_preempted
1659 # define vcpu_is_preempted(cpu)	false
1660 #endif
1661 
1662 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1663 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1664 
1665 #ifndef TASK_SIZE_OF
1666 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1667 #endif
1668 
1669 #endif
1670