1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/system.h> 67 #include <asm/page.h> 68 #include <asm/ptrace.h> 69 #include <asm/cputime.h> 70 71 #include <linux/smp.h> 72 #include <linux/sem.h> 73 #include <linux/signal.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/latencytop.h> 92 #include <linux/cred.h> 93 94 #include <asm/processor.h> 95 96 struct exec_domain; 97 struct futex_pi_state; 98 struct robust_list_head; 99 struct bio_list; 100 struct fs_struct; 101 struct perf_event_context; 102 struct blk_plug; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(unsigned long ticks); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 extern int softlockup_thresh; 319 void lockup_detector_init(void); 320 #else 321 static inline void touch_softlockup_watchdog(void) 322 { 323 } 324 static inline void touch_softlockup_watchdog_sync(void) 325 { 326 } 327 static inline void touch_all_softlockup_watchdogs(void) 328 { 329 } 330 static inline void lockup_detector_init(void) 331 { 332 } 333 #endif 334 335 #ifdef CONFIG_DETECT_HUNG_TASK 336 extern unsigned int sysctl_hung_task_panic; 337 extern unsigned long sysctl_hung_task_check_count; 338 extern unsigned long sysctl_hung_task_timeout_secs; 339 extern unsigned long sysctl_hung_task_warnings; 340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 341 void __user *buffer, 342 size_t *lenp, loff_t *ppos); 343 #else 344 /* Avoid need for ifdefs elsewhere in the code */ 345 enum { sysctl_hung_task_timeout_secs = 0 }; 346 #endif 347 348 /* Attach to any functions which should be ignored in wchan output. */ 349 #define __sched __attribute__((__section__(".sched.text"))) 350 351 /* Linker adds these: start and end of __sched functions */ 352 extern char __sched_text_start[], __sched_text_end[]; 353 354 /* Is this address in the __sched functions? */ 355 extern int in_sched_functions(unsigned long addr); 356 357 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 358 extern signed long schedule_timeout(signed long timeout); 359 extern signed long schedule_timeout_interruptible(signed long timeout); 360 extern signed long schedule_timeout_killable(signed long timeout); 361 extern signed long schedule_timeout_uninterruptible(signed long timeout); 362 asmlinkage void schedule(void); 363 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 364 365 struct nsproxy; 366 struct user_namespace; 367 368 /* 369 * Default maximum number of active map areas, this limits the number of vmas 370 * per mm struct. Users can overwrite this number by sysctl but there is a 371 * problem. 372 * 373 * When a program's coredump is generated as ELF format, a section is created 374 * per a vma. In ELF, the number of sections is represented in unsigned short. 375 * This means the number of sections should be smaller than 65535 at coredump. 376 * Because the kernel adds some informative sections to a image of program at 377 * generating coredump, we need some margin. The number of extra sections is 378 * 1-3 now and depends on arch. We use "5" as safe margin, here. 379 */ 380 #define MAPCOUNT_ELF_CORE_MARGIN (5) 381 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 382 383 extern int sysctl_max_map_count; 384 385 #include <linux/aio.h> 386 387 #ifdef CONFIG_MMU 388 extern void arch_pick_mmap_layout(struct mm_struct *mm); 389 extern unsigned long 390 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 391 unsigned long, unsigned long); 392 extern unsigned long 393 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 394 unsigned long len, unsigned long pgoff, 395 unsigned long flags); 396 extern void arch_unmap_area(struct mm_struct *, unsigned long); 397 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 398 #else 399 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 400 #endif 401 402 403 extern void set_dumpable(struct mm_struct *mm, int value); 404 extern int get_dumpable(struct mm_struct *mm); 405 406 /* mm flags */ 407 /* dumpable bits */ 408 #define MMF_DUMPABLE 0 /* core dump is permitted */ 409 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 410 411 #define MMF_DUMPABLE_BITS 2 412 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 413 414 /* coredump filter bits */ 415 #define MMF_DUMP_ANON_PRIVATE 2 416 #define MMF_DUMP_ANON_SHARED 3 417 #define MMF_DUMP_MAPPED_PRIVATE 4 418 #define MMF_DUMP_MAPPED_SHARED 5 419 #define MMF_DUMP_ELF_HEADERS 6 420 #define MMF_DUMP_HUGETLB_PRIVATE 7 421 #define MMF_DUMP_HUGETLB_SHARED 8 422 423 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 424 #define MMF_DUMP_FILTER_BITS 7 425 #define MMF_DUMP_FILTER_MASK \ 426 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 427 #define MMF_DUMP_FILTER_DEFAULT \ 428 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 429 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 430 431 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 432 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 433 #else 434 # define MMF_DUMP_MASK_DEFAULT_ELF 0 435 #endif 436 /* leave room for more dump flags */ 437 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 438 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 439 440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 441 442 struct sighand_struct { 443 atomic_t count; 444 struct k_sigaction action[_NSIG]; 445 spinlock_t siglock; 446 wait_queue_head_t signalfd_wqh; 447 }; 448 449 struct pacct_struct { 450 int ac_flag; 451 long ac_exitcode; 452 unsigned long ac_mem; 453 cputime_t ac_utime, ac_stime; 454 unsigned long ac_minflt, ac_majflt; 455 }; 456 457 struct cpu_itimer { 458 cputime_t expires; 459 cputime_t incr; 460 u32 error; 461 u32 incr_error; 462 }; 463 464 /** 465 * struct task_cputime - collected CPU time counts 466 * @utime: time spent in user mode, in &cputime_t units 467 * @stime: time spent in kernel mode, in &cputime_t units 468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 469 * 470 * This structure groups together three kinds of CPU time that are 471 * tracked for threads and thread groups. Most things considering 472 * CPU time want to group these counts together and treat all three 473 * of them in parallel. 474 */ 475 struct task_cputime { 476 cputime_t utime; 477 cputime_t stime; 478 unsigned long long sum_exec_runtime; 479 }; 480 /* Alternate field names when used to cache expirations. */ 481 #define prof_exp stime 482 #define virt_exp utime 483 #define sched_exp sum_exec_runtime 484 485 #define INIT_CPUTIME \ 486 (struct task_cputime) { \ 487 .utime = cputime_zero, \ 488 .stime = cputime_zero, \ 489 .sum_exec_runtime = 0, \ 490 } 491 492 /* 493 * Disable preemption until the scheduler is running. 494 * Reset by start_kernel()->sched_init()->init_idle(). 495 * 496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 497 * before the scheduler is active -- see should_resched(). 498 */ 499 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 500 501 /** 502 * struct thread_group_cputimer - thread group interval timer counts 503 * @cputime: thread group interval timers. 504 * @running: non-zero when there are timers running and 505 * @cputime receives updates. 506 * @lock: lock for fields in this struct. 507 * 508 * This structure contains the version of task_cputime, above, that is 509 * used for thread group CPU timer calculations. 510 */ 511 struct thread_group_cputimer { 512 struct task_cputime cputime; 513 int running; 514 spinlock_t lock; 515 }; 516 517 struct autogroup; 518 519 /* 520 * NOTE! "signal_struct" does not have its own 521 * locking, because a shared signal_struct always 522 * implies a shared sighand_struct, so locking 523 * sighand_struct is always a proper superset of 524 * the locking of signal_struct. 525 */ 526 struct signal_struct { 527 atomic_t sigcnt; 528 atomic_t live; 529 int nr_threads; 530 531 wait_queue_head_t wait_chldexit; /* for wait4() */ 532 533 /* current thread group signal load-balancing target: */ 534 struct task_struct *curr_target; 535 536 /* shared signal handling: */ 537 struct sigpending shared_pending; 538 539 /* thread group exit support */ 540 int group_exit_code; 541 /* overloaded: 542 * - notify group_exit_task when ->count is equal to notify_count 543 * - everyone except group_exit_task is stopped during signal delivery 544 * of fatal signals, group_exit_task processes the signal. 545 */ 546 int notify_count; 547 struct task_struct *group_exit_task; 548 549 /* thread group stop support, overloads group_exit_code too */ 550 int group_stop_count; 551 unsigned int flags; /* see SIGNAL_* flags below */ 552 553 /* POSIX.1b Interval Timers */ 554 struct list_head posix_timers; 555 556 /* ITIMER_REAL timer for the process */ 557 struct hrtimer real_timer; 558 struct pid *leader_pid; 559 ktime_t it_real_incr; 560 561 /* 562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 564 * values are defined to 0 and 1 respectively 565 */ 566 struct cpu_itimer it[2]; 567 568 /* 569 * Thread group totals for process CPU timers. 570 * See thread_group_cputimer(), et al, for details. 571 */ 572 struct thread_group_cputimer cputimer; 573 574 /* Earliest-expiration cache. */ 575 struct task_cputime cputime_expires; 576 577 struct list_head cpu_timers[3]; 578 579 struct pid *tty_old_pgrp; 580 581 /* boolean value for session group leader */ 582 int leader; 583 584 struct tty_struct *tty; /* NULL if no tty */ 585 586 #ifdef CONFIG_SCHED_AUTOGROUP 587 struct autogroup *autogroup; 588 #endif 589 /* 590 * Cumulative resource counters for dead threads in the group, 591 * and for reaped dead child processes forked by this group. 592 * Live threads maintain their own counters and add to these 593 * in __exit_signal, except for the group leader. 594 */ 595 cputime_t utime, stime, cutime, cstime; 596 cputime_t gtime; 597 cputime_t cgtime; 598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 599 cputime_t prev_utime, prev_stime; 600 #endif 601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 603 unsigned long inblock, oublock, cinblock, coublock; 604 unsigned long maxrss, cmaxrss; 605 struct task_io_accounting ioac; 606 607 /* 608 * Cumulative ns of schedule CPU time fo dead threads in the 609 * group, not including a zombie group leader, (This only differs 610 * from jiffies_to_ns(utime + stime) if sched_clock uses something 611 * other than jiffies.) 612 */ 613 unsigned long long sum_sched_runtime; 614 615 /* 616 * We don't bother to synchronize most readers of this at all, 617 * because there is no reader checking a limit that actually needs 618 * to get both rlim_cur and rlim_max atomically, and either one 619 * alone is a single word that can safely be read normally. 620 * getrlimit/setrlimit use task_lock(current->group_leader) to 621 * protect this instead of the siglock, because they really 622 * have no need to disable irqs. 623 */ 624 struct rlimit rlim[RLIM_NLIMITS]; 625 626 #ifdef CONFIG_BSD_PROCESS_ACCT 627 struct pacct_struct pacct; /* per-process accounting information */ 628 #endif 629 #ifdef CONFIG_TASKSTATS 630 struct taskstats *stats; 631 #endif 632 #ifdef CONFIG_AUDIT 633 unsigned audit_tty; 634 struct tty_audit_buf *tty_audit_buf; 635 #endif 636 637 int oom_adj; /* OOM kill score adjustment (bit shift) */ 638 int oom_score_adj; /* OOM kill score adjustment */ 639 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 640 * Only settable by CAP_SYS_RESOURCE. */ 641 642 struct mutex cred_guard_mutex; /* guard against foreign influences on 643 * credential calculations 644 * (notably. ptrace) */ 645 }; 646 647 /* Context switch must be unlocked if interrupts are to be enabled */ 648 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 649 # define __ARCH_WANT_UNLOCKED_CTXSW 650 #endif 651 652 /* 653 * Bits in flags field of signal_struct. 654 */ 655 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 656 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 657 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 658 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 659 /* 660 * Pending notifications to parent. 661 */ 662 #define SIGNAL_CLD_STOPPED 0x00000010 663 #define SIGNAL_CLD_CONTINUED 0x00000020 664 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 665 666 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 667 668 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 669 static inline int signal_group_exit(const struct signal_struct *sig) 670 { 671 return (sig->flags & SIGNAL_GROUP_EXIT) || 672 (sig->group_exit_task != NULL); 673 } 674 675 /* 676 * Some day this will be a full-fledged user tracking system.. 677 */ 678 struct user_struct { 679 atomic_t __count; /* reference count */ 680 atomic_t processes; /* How many processes does this user have? */ 681 atomic_t files; /* How many open files does this user have? */ 682 atomic_t sigpending; /* How many pending signals does this user have? */ 683 #ifdef CONFIG_INOTIFY_USER 684 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 685 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 686 #endif 687 #ifdef CONFIG_FANOTIFY 688 atomic_t fanotify_listeners; 689 #endif 690 #ifdef CONFIG_EPOLL 691 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 692 #endif 693 #ifdef CONFIG_POSIX_MQUEUE 694 /* protected by mq_lock */ 695 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 696 #endif 697 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 698 699 #ifdef CONFIG_KEYS 700 struct key *uid_keyring; /* UID specific keyring */ 701 struct key *session_keyring; /* UID's default session keyring */ 702 #endif 703 704 /* Hash table maintenance information */ 705 struct hlist_node uidhash_node; 706 uid_t uid; 707 struct user_namespace *user_ns; 708 709 #ifdef CONFIG_PERF_EVENTS 710 atomic_long_t locked_vm; 711 #endif 712 }; 713 714 extern int uids_sysfs_init(void); 715 716 extern struct user_struct *find_user(uid_t); 717 718 extern struct user_struct root_user; 719 #define INIT_USER (&root_user) 720 721 722 struct backing_dev_info; 723 struct reclaim_state; 724 725 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 726 struct sched_info { 727 /* cumulative counters */ 728 unsigned long pcount; /* # of times run on this cpu */ 729 unsigned long long run_delay; /* time spent waiting on a runqueue */ 730 731 /* timestamps */ 732 unsigned long long last_arrival,/* when we last ran on a cpu */ 733 last_queued; /* when we were last queued to run */ 734 #ifdef CONFIG_SCHEDSTATS 735 /* BKL stats */ 736 unsigned int bkl_count; 737 #endif 738 }; 739 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 740 741 #ifdef CONFIG_TASK_DELAY_ACCT 742 struct task_delay_info { 743 spinlock_t lock; 744 unsigned int flags; /* Private per-task flags */ 745 746 /* For each stat XXX, add following, aligned appropriately 747 * 748 * struct timespec XXX_start, XXX_end; 749 * u64 XXX_delay; 750 * u32 XXX_count; 751 * 752 * Atomicity of updates to XXX_delay, XXX_count protected by 753 * single lock above (split into XXX_lock if contention is an issue). 754 */ 755 756 /* 757 * XXX_count is incremented on every XXX operation, the delay 758 * associated with the operation is added to XXX_delay. 759 * XXX_delay contains the accumulated delay time in nanoseconds. 760 */ 761 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 762 u64 blkio_delay; /* wait for sync block io completion */ 763 u64 swapin_delay; /* wait for swapin block io completion */ 764 u32 blkio_count; /* total count of the number of sync block */ 765 /* io operations performed */ 766 u32 swapin_count; /* total count of the number of swapin block */ 767 /* io operations performed */ 768 769 struct timespec freepages_start, freepages_end; 770 u64 freepages_delay; /* wait for memory reclaim */ 771 u32 freepages_count; /* total count of memory reclaim */ 772 }; 773 #endif /* CONFIG_TASK_DELAY_ACCT */ 774 775 static inline int sched_info_on(void) 776 { 777 #ifdef CONFIG_SCHEDSTATS 778 return 1; 779 #elif defined(CONFIG_TASK_DELAY_ACCT) 780 extern int delayacct_on; 781 return delayacct_on; 782 #else 783 return 0; 784 #endif 785 } 786 787 enum cpu_idle_type { 788 CPU_IDLE, 789 CPU_NOT_IDLE, 790 CPU_NEWLY_IDLE, 791 CPU_MAX_IDLE_TYPES 792 }; 793 794 /* 795 * sched-domains (multiprocessor balancing) declarations: 796 */ 797 798 /* 799 * Increase resolution of nice-level calculations: 800 */ 801 #define SCHED_LOAD_SHIFT 10 802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 803 804 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 805 806 #ifdef CONFIG_SMP 807 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 808 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 809 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 810 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 811 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 812 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 813 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 814 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 815 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 816 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 817 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 818 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 819 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 820 821 enum powersavings_balance_level { 822 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 823 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 824 * first for long running threads 825 */ 826 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 827 * cpu package for power savings 828 */ 829 MAX_POWERSAVINGS_BALANCE_LEVELS 830 }; 831 832 extern int sched_mc_power_savings, sched_smt_power_savings; 833 834 static inline int sd_balance_for_mc_power(void) 835 { 836 if (sched_smt_power_savings) 837 return SD_POWERSAVINGS_BALANCE; 838 839 if (!sched_mc_power_savings) 840 return SD_PREFER_SIBLING; 841 842 return 0; 843 } 844 845 static inline int sd_balance_for_package_power(void) 846 { 847 if (sched_mc_power_savings | sched_smt_power_savings) 848 return SD_POWERSAVINGS_BALANCE; 849 850 return SD_PREFER_SIBLING; 851 } 852 853 extern int __weak arch_sd_sibiling_asym_packing(void); 854 855 /* 856 * Optimise SD flags for power savings: 857 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. 858 * Keep default SD flags if sched_{smt,mc}_power_saving=0 859 */ 860 861 static inline int sd_power_saving_flags(void) 862 { 863 if (sched_mc_power_savings | sched_smt_power_savings) 864 return SD_BALANCE_NEWIDLE; 865 866 return 0; 867 } 868 869 struct sched_group { 870 struct sched_group *next; /* Must be a circular list */ 871 872 /* 873 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 874 * single CPU. 875 */ 876 unsigned int cpu_power, cpu_power_orig; 877 unsigned int group_weight; 878 879 /* 880 * The CPUs this group covers. 881 * 882 * NOTE: this field is variable length. (Allocated dynamically 883 * by attaching extra space to the end of the structure, 884 * depending on how many CPUs the kernel has booted up with) 885 * 886 * It is also be embedded into static data structures at build 887 * time. (See 'struct static_sched_group' in kernel/sched.c) 888 */ 889 unsigned long cpumask[0]; 890 }; 891 892 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 893 { 894 return to_cpumask(sg->cpumask); 895 } 896 897 enum sched_domain_level { 898 SD_LV_NONE = 0, 899 SD_LV_SIBLING, 900 SD_LV_MC, 901 SD_LV_BOOK, 902 SD_LV_CPU, 903 SD_LV_NODE, 904 SD_LV_ALLNODES, 905 SD_LV_MAX 906 }; 907 908 struct sched_domain_attr { 909 int relax_domain_level; 910 }; 911 912 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 913 .relax_domain_level = -1, \ 914 } 915 916 struct sched_domain { 917 /* These fields must be setup */ 918 struct sched_domain *parent; /* top domain must be null terminated */ 919 struct sched_domain *child; /* bottom domain must be null terminated */ 920 struct sched_group *groups; /* the balancing groups of the domain */ 921 unsigned long min_interval; /* Minimum balance interval ms */ 922 unsigned long max_interval; /* Maximum balance interval ms */ 923 unsigned int busy_factor; /* less balancing by factor if busy */ 924 unsigned int imbalance_pct; /* No balance until over watermark */ 925 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 926 unsigned int busy_idx; 927 unsigned int idle_idx; 928 unsigned int newidle_idx; 929 unsigned int wake_idx; 930 unsigned int forkexec_idx; 931 unsigned int smt_gain; 932 int flags; /* See SD_* */ 933 enum sched_domain_level level; 934 935 /* Runtime fields. */ 936 unsigned long last_balance; /* init to jiffies. units in jiffies */ 937 unsigned int balance_interval; /* initialise to 1. units in ms. */ 938 unsigned int nr_balance_failed; /* initialise to 0 */ 939 940 u64 last_update; 941 942 #ifdef CONFIG_SCHEDSTATS 943 /* load_balance() stats */ 944 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 945 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 946 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 947 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 948 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 949 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 950 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 951 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 952 953 /* Active load balancing */ 954 unsigned int alb_count; 955 unsigned int alb_failed; 956 unsigned int alb_pushed; 957 958 /* SD_BALANCE_EXEC stats */ 959 unsigned int sbe_count; 960 unsigned int sbe_balanced; 961 unsigned int sbe_pushed; 962 963 /* SD_BALANCE_FORK stats */ 964 unsigned int sbf_count; 965 unsigned int sbf_balanced; 966 unsigned int sbf_pushed; 967 968 /* try_to_wake_up() stats */ 969 unsigned int ttwu_wake_remote; 970 unsigned int ttwu_move_affine; 971 unsigned int ttwu_move_balance; 972 #endif 973 #ifdef CONFIG_SCHED_DEBUG 974 char *name; 975 #endif 976 977 unsigned int span_weight; 978 /* 979 * Span of all CPUs in this domain. 980 * 981 * NOTE: this field is variable length. (Allocated dynamically 982 * by attaching extra space to the end of the structure, 983 * depending on how many CPUs the kernel has booted up with) 984 * 985 * It is also be embedded into static data structures at build 986 * time. (See 'struct static_sched_domain' in kernel/sched.c) 987 */ 988 unsigned long span[0]; 989 }; 990 991 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 992 { 993 return to_cpumask(sd->span); 994 } 995 996 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 997 struct sched_domain_attr *dattr_new); 998 999 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1000 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1001 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1002 1003 /* Test a flag in parent sched domain */ 1004 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1005 { 1006 if (sd->parent && (sd->parent->flags & flag)) 1007 return 1; 1008 1009 return 0; 1010 } 1011 1012 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1013 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1014 1015 #else /* CONFIG_SMP */ 1016 1017 struct sched_domain_attr; 1018 1019 static inline void 1020 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1021 struct sched_domain_attr *dattr_new) 1022 { 1023 } 1024 #endif /* !CONFIG_SMP */ 1025 1026 1027 struct io_context; /* See blkdev.h */ 1028 1029 1030 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1031 extern void prefetch_stack(struct task_struct *t); 1032 #else 1033 static inline void prefetch_stack(struct task_struct *t) { } 1034 #endif 1035 1036 struct audit_context; /* See audit.c */ 1037 struct mempolicy; 1038 struct pipe_inode_info; 1039 struct uts_namespace; 1040 1041 struct rq; 1042 struct sched_domain; 1043 1044 /* 1045 * wake flags 1046 */ 1047 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1048 #define WF_FORK 0x02 /* child wakeup after fork */ 1049 1050 #define ENQUEUE_WAKEUP 1 1051 #define ENQUEUE_WAKING 2 1052 #define ENQUEUE_HEAD 4 1053 1054 #define DEQUEUE_SLEEP 1 1055 1056 struct sched_class { 1057 const struct sched_class *next; 1058 1059 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1060 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1061 void (*yield_task) (struct rq *rq); 1062 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1063 1064 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1065 1066 struct task_struct * (*pick_next_task) (struct rq *rq); 1067 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1068 1069 #ifdef CONFIG_SMP 1070 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1071 int sd_flag, int flags); 1072 1073 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1074 void (*post_schedule) (struct rq *this_rq); 1075 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1076 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1077 1078 void (*set_cpus_allowed)(struct task_struct *p, 1079 const struct cpumask *newmask); 1080 1081 void (*rq_online)(struct rq *rq); 1082 void (*rq_offline)(struct rq *rq); 1083 #endif 1084 1085 void (*set_curr_task) (struct rq *rq); 1086 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1087 void (*task_fork) (struct task_struct *p); 1088 1089 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1090 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1091 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1092 int oldprio); 1093 1094 unsigned int (*get_rr_interval) (struct rq *rq, 1095 struct task_struct *task); 1096 1097 #ifdef CONFIG_FAIR_GROUP_SCHED 1098 void (*task_move_group) (struct task_struct *p, int on_rq); 1099 #endif 1100 }; 1101 1102 struct load_weight { 1103 unsigned long weight, inv_weight; 1104 }; 1105 1106 #ifdef CONFIG_SCHEDSTATS 1107 struct sched_statistics { 1108 u64 wait_start; 1109 u64 wait_max; 1110 u64 wait_count; 1111 u64 wait_sum; 1112 u64 iowait_count; 1113 u64 iowait_sum; 1114 1115 u64 sleep_start; 1116 u64 sleep_max; 1117 s64 sum_sleep_runtime; 1118 1119 u64 block_start; 1120 u64 block_max; 1121 u64 exec_max; 1122 u64 slice_max; 1123 1124 u64 nr_migrations_cold; 1125 u64 nr_failed_migrations_affine; 1126 u64 nr_failed_migrations_running; 1127 u64 nr_failed_migrations_hot; 1128 u64 nr_forced_migrations; 1129 1130 u64 nr_wakeups; 1131 u64 nr_wakeups_sync; 1132 u64 nr_wakeups_migrate; 1133 u64 nr_wakeups_local; 1134 u64 nr_wakeups_remote; 1135 u64 nr_wakeups_affine; 1136 u64 nr_wakeups_affine_attempts; 1137 u64 nr_wakeups_passive; 1138 u64 nr_wakeups_idle; 1139 }; 1140 #endif 1141 1142 struct sched_entity { 1143 struct load_weight load; /* for load-balancing */ 1144 struct rb_node run_node; 1145 struct list_head group_node; 1146 unsigned int on_rq; 1147 1148 u64 exec_start; 1149 u64 sum_exec_runtime; 1150 u64 vruntime; 1151 u64 prev_sum_exec_runtime; 1152 1153 u64 nr_migrations; 1154 1155 #ifdef CONFIG_SCHEDSTATS 1156 struct sched_statistics statistics; 1157 #endif 1158 1159 #ifdef CONFIG_FAIR_GROUP_SCHED 1160 struct sched_entity *parent; 1161 /* rq on which this entity is (to be) queued: */ 1162 struct cfs_rq *cfs_rq; 1163 /* rq "owned" by this entity/group: */ 1164 struct cfs_rq *my_q; 1165 #endif 1166 }; 1167 1168 struct sched_rt_entity { 1169 struct list_head run_list; 1170 unsigned long timeout; 1171 unsigned int time_slice; 1172 int nr_cpus_allowed; 1173 1174 struct sched_rt_entity *back; 1175 #ifdef CONFIG_RT_GROUP_SCHED 1176 struct sched_rt_entity *parent; 1177 /* rq on which this entity is (to be) queued: */ 1178 struct rt_rq *rt_rq; 1179 /* rq "owned" by this entity/group: */ 1180 struct rt_rq *my_q; 1181 #endif 1182 }; 1183 1184 struct rcu_node; 1185 1186 enum perf_event_task_context { 1187 perf_invalid_context = -1, 1188 perf_hw_context = 0, 1189 perf_sw_context, 1190 perf_nr_task_contexts, 1191 }; 1192 1193 struct task_struct { 1194 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1195 void *stack; 1196 atomic_t usage; 1197 unsigned int flags; /* per process flags, defined below */ 1198 unsigned int ptrace; 1199 1200 int lock_depth; /* BKL lock depth */ 1201 1202 #ifdef CONFIG_SMP 1203 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1204 int oncpu; 1205 #endif 1206 #endif 1207 1208 int prio, static_prio, normal_prio; 1209 unsigned int rt_priority; 1210 const struct sched_class *sched_class; 1211 struct sched_entity se; 1212 struct sched_rt_entity rt; 1213 1214 #ifdef CONFIG_PREEMPT_NOTIFIERS 1215 /* list of struct preempt_notifier: */ 1216 struct hlist_head preempt_notifiers; 1217 #endif 1218 1219 /* 1220 * fpu_counter contains the number of consecutive context switches 1221 * that the FPU is used. If this is over a threshold, the lazy fpu 1222 * saving becomes unlazy to save the trap. This is an unsigned char 1223 * so that after 256 times the counter wraps and the behavior turns 1224 * lazy again; this to deal with bursty apps that only use FPU for 1225 * a short time 1226 */ 1227 unsigned char fpu_counter; 1228 #ifdef CONFIG_BLK_DEV_IO_TRACE 1229 unsigned int btrace_seq; 1230 #endif 1231 1232 unsigned int policy; 1233 cpumask_t cpus_allowed; 1234 1235 #ifdef CONFIG_PREEMPT_RCU 1236 int rcu_read_lock_nesting; 1237 char rcu_read_unlock_special; 1238 struct list_head rcu_node_entry; 1239 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1240 #ifdef CONFIG_TREE_PREEMPT_RCU 1241 struct rcu_node *rcu_blocked_node; 1242 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1243 #ifdef CONFIG_RCU_BOOST 1244 struct rt_mutex *rcu_boost_mutex; 1245 #endif /* #ifdef CONFIG_RCU_BOOST */ 1246 1247 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1248 struct sched_info sched_info; 1249 #endif 1250 1251 struct list_head tasks; 1252 #ifdef CONFIG_SMP 1253 struct plist_node pushable_tasks; 1254 #endif 1255 1256 struct mm_struct *mm, *active_mm; 1257 #ifdef CONFIG_COMPAT_BRK 1258 unsigned brk_randomized:1; 1259 #endif 1260 #if defined(SPLIT_RSS_COUNTING) 1261 struct task_rss_stat rss_stat; 1262 #endif 1263 /* task state */ 1264 int exit_state; 1265 int exit_code, exit_signal; 1266 int pdeath_signal; /* The signal sent when the parent dies */ 1267 /* ??? */ 1268 unsigned int personality; 1269 unsigned did_exec:1; 1270 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1271 * execve */ 1272 unsigned in_iowait:1; 1273 1274 1275 /* Revert to default priority/policy when forking */ 1276 unsigned sched_reset_on_fork:1; 1277 1278 pid_t pid; 1279 pid_t tgid; 1280 1281 #ifdef CONFIG_CC_STACKPROTECTOR 1282 /* Canary value for the -fstack-protector gcc feature */ 1283 unsigned long stack_canary; 1284 #endif 1285 1286 /* 1287 * pointers to (original) parent process, youngest child, younger sibling, 1288 * older sibling, respectively. (p->father can be replaced with 1289 * p->real_parent->pid) 1290 */ 1291 struct task_struct *real_parent; /* real parent process */ 1292 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1293 /* 1294 * children/sibling forms the list of my natural children 1295 */ 1296 struct list_head children; /* list of my children */ 1297 struct list_head sibling; /* linkage in my parent's children list */ 1298 struct task_struct *group_leader; /* threadgroup leader */ 1299 1300 /* 1301 * ptraced is the list of tasks this task is using ptrace on. 1302 * This includes both natural children and PTRACE_ATTACH targets. 1303 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1304 */ 1305 struct list_head ptraced; 1306 struct list_head ptrace_entry; 1307 1308 /* PID/PID hash table linkage. */ 1309 struct pid_link pids[PIDTYPE_MAX]; 1310 struct list_head thread_group; 1311 1312 struct completion *vfork_done; /* for vfork() */ 1313 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1314 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1315 1316 cputime_t utime, stime, utimescaled, stimescaled; 1317 cputime_t gtime; 1318 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1319 cputime_t prev_utime, prev_stime; 1320 #endif 1321 unsigned long nvcsw, nivcsw; /* context switch counts */ 1322 struct timespec start_time; /* monotonic time */ 1323 struct timespec real_start_time; /* boot based time */ 1324 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1325 unsigned long min_flt, maj_flt; 1326 1327 struct task_cputime cputime_expires; 1328 struct list_head cpu_timers[3]; 1329 1330 /* process credentials */ 1331 const struct cred __rcu *real_cred; /* objective and real subjective task 1332 * credentials (COW) */ 1333 const struct cred __rcu *cred; /* effective (overridable) subjective task 1334 * credentials (COW) */ 1335 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1336 1337 char comm[TASK_COMM_LEN]; /* executable name excluding path 1338 - access with [gs]et_task_comm (which lock 1339 it with task_lock()) 1340 - initialized normally by setup_new_exec */ 1341 /* file system info */ 1342 int link_count, total_link_count; 1343 #ifdef CONFIG_SYSVIPC 1344 /* ipc stuff */ 1345 struct sysv_sem sysvsem; 1346 #endif 1347 #ifdef CONFIG_DETECT_HUNG_TASK 1348 /* hung task detection */ 1349 unsigned long last_switch_count; 1350 #endif 1351 /* CPU-specific state of this task */ 1352 struct thread_struct thread; 1353 /* filesystem information */ 1354 struct fs_struct *fs; 1355 /* open file information */ 1356 struct files_struct *files; 1357 /* namespaces */ 1358 struct nsproxy *nsproxy; 1359 /* signal handlers */ 1360 struct signal_struct *signal; 1361 struct sighand_struct *sighand; 1362 1363 sigset_t blocked, real_blocked; 1364 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1365 struct sigpending pending; 1366 1367 unsigned long sas_ss_sp; 1368 size_t sas_ss_size; 1369 int (*notifier)(void *priv); 1370 void *notifier_data; 1371 sigset_t *notifier_mask; 1372 struct audit_context *audit_context; 1373 #ifdef CONFIG_AUDITSYSCALL 1374 uid_t loginuid; 1375 unsigned int sessionid; 1376 #endif 1377 seccomp_t seccomp; 1378 1379 /* Thread group tracking */ 1380 u32 parent_exec_id; 1381 u32 self_exec_id; 1382 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1383 * mempolicy */ 1384 spinlock_t alloc_lock; 1385 1386 #ifdef CONFIG_GENERIC_HARDIRQS 1387 /* IRQ handler threads */ 1388 struct irqaction *irqaction; 1389 #endif 1390 1391 /* Protection of the PI data structures: */ 1392 raw_spinlock_t pi_lock; 1393 1394 #ifdef CONFIG_RT_MUTEXES 1395 /* PI waiters blocked on a rt_mutex held by this task */ 1396 struct plist_head pi_waiters; 1397 /* Deadlock detection and priority inheritance handling */ 1398 struct rt_mutex_waiter *pi_blocked_on; 1399 #endif 1400 1401 #ifdef CONFIG_DEBUG_MUTEXES 1402 /* mutex deadlock detection */ 1403 struct mutex_waiter *blocked_on; 1404 #endif 1405 #ifdef CONFIG_TRACE_IRQFLAGS 1406 unsigned int irq_events; 1407 unsigned long hardirq_enable_ip; 1408 unsigned long hardirq_disable_ip; 1409 unsigned int hardirq_enable_event; 1410 unsigned int hardirq_disable_event; 1411 int hardirqs_enabled; 1412 int hardirq_context; 1413 unsigned long softirq_disable_ip; 1414 unsigned long softirq_enable_ip; 1415 unsigned int softirq_disable_event; 1416 unsigned int softirq_enable_event; 1417 int softirqs_enabled; 1418 int softirq_context; 1419 #endif 1420 #ifdef CONFIG_LOCKDEP 1421 # define MAX_LOCK_DEPTH 48UL 1422 u64 curr_chain_key; 1423 int lockdep_depth; 1424 unsigned int lockdep_recursion; 1425 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1426 gfp_t lockdep_reclaim_gfp; 1427 #endif 1428 1429 /* journalling filesystem info */ 1430 void *journal_info; 1431 1432 /* stacked block device info */ 1433 struct bio_list *bio_list; 1434 1435 #ifdef CONFIG_BLOCK 1436 /* stack plugging */ 1437 struct blk_plug *plug; 1438 #endif 1439 1440 /* VM state */ 1441 struct reclaim_state *reclaim_state; 1442 1443 struct backing_dev_info *backing_dev_info; 1444 1445 struct io_context *io_context; 1446 1447 unsigned long ptrace_message; 1448 siginfo_t *last_siginfo; /* For ptrace use. */ 1449 struct task_io_accounting ioac; 1450 #if defined(CONFIG_TASK_XACCT) 1451 u64 acct_rss_mem1; /* accumulated rss usage */ 1452 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1453 cputime_t acct_timexpd; /* stime + utime since last update */ 1454 #endif 1455 #ifdef CONFIG_CPUSETS 1456 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1457 int mems_allowed_change_disable; 1458 int cpuset_mem_spread_rotor; 1459 int cpuset_slab_spread_rotor; 1460 #endif 1461 #ifdef CONFIG_CGROUPS 1462 /* Control Group info protected by css_set_lock */ 1463 struct css_set __rcu *cgroups; 1464 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1465 struct list_head cg_list; 1466 #endif 1467 #ifdef CONFIG_FUTEX 1468 struct robust_list_head __user *robust_list; 1469 #ifdef CONFIG_COMPAT 1470 struct compat_robust_list_head __user *compat_robust_list; 1471 #endif 1472 struct list_head pi_state_list; 1473 struct futex_pi_state *pi_state_cache; 1474 #endif 1475 #ifdef CONFIG_PERF_EVENTS 1476 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1477 struct mutex perf_event_mutex; 1478 struct list_head perf_event_list; 1479 #endif 1480 #ifdef CONFIG_NUMA 1481 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1482 short il_next; 1483 short pref_node_fork; 1484 #endif 1485 atomic_t fs_excl; /* holding fs exclusive resources */ 1486 struct rcu_head rcu; 1487 1488 /* 1489 * cache last used pipe for splice 1490 */ 1491 struct pipe_inode_info *splice_pipe; 1492 #ifdef CONFIG_TASK_DELAY_ACCT 1493 struct task_delay_info *delays; 1494 #endif 1495 #ifdef CONFIG_FAULT_INJECTION 1496 int make_it_fail; 1497 #endif 1498 struct prop_local_single dirties; 1499 #ifdef CONFIG_LATENCYTOP 1500 int latency_record_count; 1501 struct latency_record latency_record[LT_SAVECOUNT]; 1502 #endif 1503 /* 1504 * time slack values; these are used to round up poll() and 1505 * select() etc timeout values. These are in nanoseconds. 1506 */ 1507 unsigned long timer_slack_ns; 1508 unsigned long default_timer_slack_ns; 1509 1510 struct list_head *scm_work_list; 1511 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1512 /* Index of current stored address in ret_stack */ 1513 int curr_ret_stack; 1514 /* Stack of return addresses for return function tracing */ 1515 struct ftrace_ret_stack *ret_stack; 1516 /* time stamp for last schedule */ 1517 unsigned long long ftrace_timestamp; 1518 /* 1519 * Number of functions that haven't been traced 1520 * because of depth overrun. 1521 */ 1522 atomic_t trace_overrun; 1523 /* Pause for the tracing */ 1524 atomic_t tracing_graph_pause; 1525 #endif 1526 #ifdef CONFIG_TRACING 1527 /* state flags for use by tracers */ 1528 unsigned long trace; 1529 /* bitmask of trace recursion */ 1530 unsigned long trace_recursion; 1531 #endif /* CONFIG_TRACING */ 1532 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1533 struct memcg_batch_info { 1534 int do_batch; /* incremented when batch uncharge started */ 1535 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1536 unsigned long nr_pages; /* uncharged usage */ 1537 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1538 } memcg_batch; 1539 #endif 1540 }; 1541 1542 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1543 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1544 1545 /* 1546 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1547 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1548 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1549 * values are inverted: lower p->prio value means higher priority. 1550 * 1551 * The MAX_USER_RT_PRIO value allows the actual maximum 1552 * RT priority to be separate from the value exported to 1553 * user-space. This allows kernel threads to set their 1554 * priority to a value higher than any user task. Note: 1555 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1556 */ 1557 1558 #define MAX_USER_RT_PRIO 100 1559 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1560 1561 #define MAX_PRIO (MAX_RT_PRIO + 40) 1562 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1563 1564 static inline int rt_prio(int prio) 1565 { 1566 if (unlikely(prio < MAX_RT_PRIO)) 1567 return 1; 1568 return 0; 1569 } 1570 1571 static inline int rt_task(struct task_struct *p) 1572 { 1573 return rt_prio(p->prio); 1574 } 1575 1576 static inline struct pid *task_pid(struct task_struct *task) 1577 { 1578 return task->pids[PIDTYPE_PID].pid; 1579 } 1580 1581 static inline struct pid *task_tgid(struct task_struct *task) 1582 { 1583 return task->group_leader->pids[PIDTYPE_PID].pid; 1584 } 1585 1586 /* 1587 * Without tasklist or rcu lock it is not safe to dereference 1588 * the result of task_pgrp/task_session even if task == current, 1589 * we can race with another thread doing sys_setsid/sys_setpgid. 1590 */ 1591 static inline struct pid *task_pgrp(struct task_struct *task) 1592 { 1593 return task->group_leader->pids[PIDTYPE_PGID].pid; 1594 } 1595 1596 static inline struct pid *task_session(struct task_struct *task) 1597 { 1598 return task->group_leader->pids[PIDTYPE_SID].pid; 1599 } 1600 1601 struct pid_namespace; 1602 1603 /* 1604 * the helpers to get the task's different pids as they are seen 1605 * from various namespaces 1606 * 1607 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1608 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1609 * current. 1610 * task_xid_nr_ns() : id seen from the ns specified; 1611 * 1612 * set_task_vxid() : assigns a virtual id to a task; 1613 * 1614 * see also pid_nr() etc in include/linux/pid.h 1615 */ 1616 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1617 struct pid_namespace *ns); 1618 1619 static inline pid_t task_pid_nr(struct task_struct *tsk) 1620 { 1621 return tsk->pid; 1622 } 1623 1624 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1625 struct pid_namespace *ns) 1626 { 1627 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1628 } 1629 1630 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1631 { 1632 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1633 } 1634 1635 1636 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1637 { 1638 return tsk->tgid; 1639 } 1640 1641 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1642 1643 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1644 { 1645 return pid_vnr(task_tgid(tsk)); 1646 } 1647 1648 1649 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1650 struct pid_namespace *ns) 1651 { 1652 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1653 } 1654 1655 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1656 { 1657 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1658 } 1659 1660 1661 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1662 struct pid_namespace *ns) 1663 { 1664 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1665 } 1666 1667 static inline pid_t task_session_vnr(struct task_struct *tsk) 1668 { 1669 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1670 } 1671 1672 /* obsolete, do not use */ 1673 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1674 { 1675 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1676 } 1677 1678 /** 1679 * pid_alive - check that a task structure is not stale 1680 * @p: Task structure to be checked. 1681 * 1682 * Test if a process is not yet dead (at most zombie state) 1683 * If pid_alive fails, then pointers within the task structure 1684 * can be stale and must not be dereferenced. 1685 */ 1686 static inline int pid_alive(struct task_struct *p) 1687 { 1688 return p->pids[PIDTYPE_PID].pid != NULL; 1689 } 1690 1691 /** 1692 * is_global_init - check if a task structure is init 1693 * @tsk: Task structure to be checked. 1694 * 1695 * Check if a task structure is the first user space task the kernel created. 1696 */ 1697 static inline int is_global_init(struct task_struct *tsk) 1698 { 1699 return tsk->pid == 1; 1700 } 1701 1702 /* 1703 * is_container_init: 1704 * check whether in the task is init in its own pid namespace. 1705 */ 1706 extern int is_container_init(struct task_struct *tsk); 1707 1708 extern struct pid *cad_pid; 1709 1710 extern void free_task(struct task_struct *tsk); 1711 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1712 1713 extern void __put_task_struct(struct task_struct *t); 1714 1715 static inline void put_task_struct(struct task_struct *t) 1716 { 1717 if (atomic_dec_and_test(&t->usage)) 1718 __put_task_struct(t); 1719 } 1720 1721 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1722 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1723 1724 /* 1725 * Per process flags 1726 */ 1727 #define PF_STARTING 0x00000002 /* being created */ 1728 #define PF_EXITING 0x00000004 /* getting shut down */ 1729 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1730 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1731 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1732 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1733 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1734 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1735 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1736 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1737 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1738 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1739 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1740 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1741 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1742 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1743 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1744 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1745 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1746 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1747 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1748 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1749 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1750 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1751 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1752 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1753 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1754 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1755 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1756 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1757 1758 /* 1759 * Only the _current_ task can read/write to tsk->flags, but other 1760 * tasks can access tsk->flags in readonly mode for example 1761 * with tsk_used_math (like during threaded core dumping). 1762 * There is however an exception to this rule during ptrace 1763 * or during fork: the ptracer task is allowed to write to the 1764 * child->flags of its traced child (same goes for fork, the parent 1765 * can write to the child->flags), because we're guaranteed the 1766 * child is not running and in turn not changing child->flags 1767 * at the same time the parent does it. 1768 */ 1769 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1770 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1771 #define clear_used_math() clear_stopped_child_used_math(current) 1772 #define set_used_math() set_stopped_child_used_math(current) 1773 #define conditional_stopped_child_used_math(condition, child) \ 1774 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1775 #define conditional_used_math(condition) \ 1776 conditional_stopped_child_used_math(condition, current) 1777 #define copy_to_stopped_child_used_math(child) \ 1778 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1779 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1780 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1781 #define used_math() tsk_used_math(current) 1782 1783 #ifdef CONFIG_PREEMPT_RCU 1784 1785 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1786 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1787 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1788 1789 static inline void rcu_copy_process(struct task_struct *p) 1790 { 1791 p->rcu_read_lock_nesting = 0; 1792 p->rcu_read_unlock_special = 0; 1793 #ifdef CONFIG_TREE_PREEMPT_RCU 1794 p->rcu_blocked_node = NULL; 1795 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1796 #ifdef CONFIG_RCU_BOOST 1797 p->rcu_boost_mutex = NULL; 1798 #endif /* #ifdef CONFIG_RCU_BOOST */ 1799 INIT_LIST_HEAD(&p->rcu_node_entry); 1800 } 1801 1802 #else 1803 1804 static inline void rcu_copy_process(struct task_struct *p) 1805 { 1806 } 1807 1808 #endif 1809 1810 #ifdef CONFIG_SMP 1811 extern int set_cpus_allowed_ptr(struct task_struct *p, 1812 const struct cpumask *new_mask); 1813 #else 1814 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1815 const struct cpumask *new_mask) 1816 { 1817 if (!cpumask_test_cpu(0, new_mask)) 1818 return -EINVAL; 1819 return 0; 1820 } 1821 #endif 1822 1823 #ifndef CONFIG_CPUMASK_OFFSTACK 1824 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1825 { 1826 return set_cpus_allowed_ptr(p, &new_mask); 1827 } 1828 #endif 1829 1830 /* 1831 * Do not use outside of architecture code which knows its limitations. 1832 * 1833 * sched_clock() has no promise of monotonicity or bounded drift between 1834 * CPUs, use (which you should not) requires disabling IRQs. 1835 * 1836 * Please use one of the three interfaces below. 1837 */ 1838 extern unsigned long long notrace sched_clock(void); 1839 /* 1840 * See the comment in kernel/sched_clock.c 1841 */ 1842 extern u64 cpu_clock(int cpu); 1843 extern u64 local_clock(void); 1844 extern u64 sched_clock_cpu(int cpu); 1845 1846 1847 extern void sched_clock_init(void); 1848 1849 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1850 static inline void sched_clock_tick(void) 1851 { 1852 } 1853 1854 static inline void sched_clock_idle_sleep_event(void) 1855 { 1856 } 1857 1858 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1859 { 1860 } 1861 #else 1862 /* 1863 * Architectures can set this to 1 if they have specified 1864 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1865 * but then during bootup it turns out that sched_clock() 1866 * is reliable after all: 1867 */ 1868 extern int sched_clock_stable; 1869 1870 extern void sched_clock_tick(void); 1871 extern void sched_clock_idle_sleep_event(void); 1872 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1873 #endif 1874 1875 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1876 /* 1877 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1878 * The reason for this explicit opt-in is not to have perf penalty with 1879 * slow sched_clocks. 1880 */ 1881 extern void enable_sched_clock_irqtime(void); 1882 extern void disable_sched_clock_irqtime(void); 1883 #else 1884 static inline void enable_sched_clock_irqtime(void) {} 1885 static inline void disable_sched_clock_irqtime(void) {} 1886 #endif 1887 1888 extern unsigned long long 1889 task_sched_runtime(struct task_struct *task); 1890 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1891 1892 /* sched_exec is called by processes performing an exec */ 1893 #ifdef CONFIG_SMP 1894 extern void sched_exec(void); 1895 #else 1896 #define sched_exec() {} 1897 #endif 1898 1899 extern void sched_clock_idle_sleep_event(void); 1900 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1901 1902 #ifdef CONFIG_HOTPLUG_CPU 1903 extern void idle_task_exit(void); 1904 #else 1905 static inline void idle_task_exit(void) {} 1906 #endif 1907 1908 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1909 extern void wake_up_idle_cpu(int cpu); 1910 #else 1911 static inline void wake_up_idle_cpu(int cpu) { } 1912 #endif 1913 1914 extern unsigned int sysctl_sched_latency; 1915 extern unsigned int sysctl_sched_min_granularity; 1916 extern unsigned int sysctl_sched_wakeup_granularity; 1917 extern unsigned int sysctl_sched_child_runs_first; 1918 1919 enum sched_tunable_scaling { 1920 SCHED_TUNABLESCALING_NONE, 1921 SCHED_TUNABLESCALING_LOG, 1922 SCHED_TUNABLESCALING_LINEAR, 1923 SCHED_TUNABLESCALING_END, 1924 }; 1925 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1926 1927 #ifdef CONFIG_SCHED_DEBUG 1928 extern unsigned int sysctl_sched_migration_cost; 1929 extern unsigned int sysctl_sched_nr_migrate; 1930 extern unsigned int sysctl_sched_time_avg; 1931 extern unsigned int sysctl_timer_migration; 1932 extern unsigned int sysctl_sched_shares_window; 1933 1934 int sched_proc_update_handler(struct ctl_table *table, int write, 1935 void __user *buffer, size_t *length, 1936 loff_t *ppos); 1937 #endif 1938 #ifdef CONFIG_SCHED_DEBUG 1939 static inline unsigned int get_sysctl_timer_migration(void) 1940 { 1941 return sysctl_timer_migration; 1942 } 1943 #else 1944 static inline unsigned int get_sysctl_timer_migration(void) 1945 { 1946 return 1; 1947 } 1948 #endif 1949 extern unsigned int sysctl_sched_rt_period; 1950 extern int sysctl_sched_rt_runtime; 1951 1952 int sched_rt_handler(struct ctl_table *table, int write, 1953 void __user *buffer, size_t *lenp, 1954 loff_t *ppos); 1955 1956 #ifdef CONFIG_SCHED_AUTOGROUP 1957 extern unsigned int sysctl_sched_autogroup_enabled; 1958 1959 extern void sched_autogroup_create_attach(struct task_struct *p); 1960 extern void sched_autogroup_detach(struct task_struct *p); 1961 extern void sched_autogroup_fork(struct signal_struct *sig); 1962 extern void sched_autogroup_exit(struct signal_struct *sig); 1963 #ifdef CONFIG_PROC_FS 1964 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1965 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 1966 #endif 1967 #else 1968 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1969 static inline void sched_autogroup_detach(struct task_struct *p) { } 1970 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1971 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1972 #endif 1973 1974 #ifdef CONFIG_RT_MUTEXES 1975 extern int rt_mutex_getprio(struct task_struct *p); 1976 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1977 extern void rt_mutex_adjust_pi(struct task_struct *p); 1978 #else 1979 static inline int rt_mutex_getprio(struct task_struct *p) 1980 { 1981 return p->normal_prio; 1982 } 1983 # define rt_mutex_adjust_pi(p) do { } while (0) 1984 #endif 1985 1986 extern bool yield_to(struct task_struct *p, bool preempt); 1987 extern void set_user_nice(struct task_struct *p, long nice); 1988 extern int task_prio(const struct task_struct *p); 1989 extern int task_nice(const struct task_struct *p); 1990 extern int can_nice(const struct task_struct *p, const int nice); 1991 extern int task_curr(const struct task_struct *p); 1992 extern int idle_cpu(int cpu); 1993 extern int sched_setscheduler(struct task_struct *, int, 1994 const struct sched_param *); 1995 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1996 const struct sched_param *); 1997 extern struct task_struct *idle_task(int cpu); 1998 extern struct task_struct *curr_task(int cpu); 1999 extern void set_curr_task(int cpu, struct task_struct *p); 2000 2001 void yield(void); 2002 2003 /* 2004 * The default (Linux) execution domain. 2005 */ 2006 extern struct exec_domain default_exec_domain; 2007 2008 union thread_union { 2009 struct thread_info thread_info; 2010 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2011 }; 2012 2013 #ifndef __HAVE_ARCH_KSTACK_END 2014 static inline int kstack_end(void *addr) 2015 { 2016 /* Reliable end of stack detection: 2017 * Some APM bios versions misalign the stack 2018 */ 2019 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2020 } 2021 #endif 2022 2023 extern union thread_union init_thread_union; 2024 extern struct task_struct init_task; 2025 2026 extern struct mm_struct init_mm; 2027 2028 extern struct pid_namespace init_pid_ns; 2029 2030 /* 2031 * find a task by one of its numerical ids 2032 * 2033 * find_task_by_pid_ns(): 2034 * finds a task by its pid in the specified namespace 2035 * find_task_by_vpid(): 2036 * finds a task by its virtual pid 2037 * 2038 * see also find_vpid() etc in include/linux/pid.h 2039 */ 2040 2041 extern struct task_struct *find_task_by_vpid(pid_t nr); 2042 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2043 struct pid_namespace *ns); 2044 2045 extern void __set_special_pids(struct pid *pid); 2046 2047 /* per-UID process charging. */ 2048 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2049 static inline struct user_struct *get_uid(struct user_struct *u) 2050 { 2051 atomic_inc(&u->__count); 2052 return u; 2053 } 2054 extern void free_uid(struct user_struct *); 2055 extern void release_uids(struct user_namespace *ns); 2056 2057 #include <asm/current.h> 2058 2059 extern void xtime_update(unsigned long ticks); 2060 2061 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2062 extern int wake_up_process(struct task_struct *tsk); 2063 extern void wake_up_new_task(struct task_struct *tsk, 2064 unsigned long clone_flags); 2065 #ifdef CONFIG_SMP 2066 extern void kick_process(struct task_struct *tsk); 2067 #else 2068 static inline void kick_process(struct task_struct *tsk) { } 2069 #endif 2070 extern void sched_fork(struct task_struct *p, int clone_flags); 2071 extern void sched_dead(struct task_struct *p); 2072 2073 extern void proc_caches_init(void); 2074 extern void flush_signals(struct task_struct *); 2075 extern void __flush_signals(struct task_struct *); 2076 extern void ignore_signals(struct task_struct *); 2077 extern void flush_signal_handlers(struct task_struct *, int force_default); 2078 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2079 2080 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2081 { 2082 unsigned long flags; 2083 int ret; 2084 2085 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2086 ret = dequeue_signal(tsk, mask, info); 2087 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2088 2089 return ret; 2090 } 2091 2092 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2093 sigset_t *mask); 2094 extern void unblock_all_signals(void); 2095 extern void release_task(struct task_struct * p); 2096 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2097 extern int force_sigsegv(int, struct task_struct *); 2098 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2099 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2100 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2101 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2102 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2103 extern int kill_pid(struct pid *pid, int sig, int priv); 2104 extern int kill_proc_info(int, struct siginfo *, pid_t); 2105 extern int do_notify_parent(struct task_struct *, int); 2106 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2107 extern void force_sig(int, struct task_struct *); 2108 extern int send_sig(int, struct task_struct *, int); 2109 extern int zap_other_threads(struct task_struct *p); 2110 extern struct sigqueue *sigqueue_alloc(void); 2111 extern void sigqueue_free(struct sigqueue *); 2112 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2113 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2114 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2115 2116 static inline int kill_cad_pid(int sig, int priv) 2117 { 2118 return kill_pid(cad_pid, sig, priv); 2119 } 2120 2121 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2122 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2123 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2124 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2125 2126 /* 2127 * True if we are on the alternate signal stack. 2128 */ 2129 static inline int on_sig_stack(unsigned long sp) 2130 { 2131 #ifdef CONFIG_STACK_GROWSUP 2132 return sp >= current->sas_ss_sp && 2133 sp - current->sas_ss_sp < current->sas_ss_size; 2134 #else 2135 return sp > current->sas_ss_sp && 2136 sp - current->sas_ss_sp <= current->sas_ss_size; 2137 #endif 2138 } 2139 2140 static inline int sas_ss_flags(unsigned long sp) 2141 { 2142 return (current->sas_ss_size == 0 ? SS_DISABLE 2143 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2144 } 2145 2146 /* 2147 * Routines for handling mm_structs 2148 */ 2149 extern struct mm_struct * mm_alloc(void); 2150 2151 /* mmdrop drops the mm and the page tables */ 2152 extern void __mmdrop(struct mm_struct *); 2153 static inline void mmdrop(struct mm_struct * mm) 2154 { 2155 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2156 __mmdrop(mm); 2157 } 2158 2159 /* mmput gets rid of the mappings and all user-space */ 2160 extern void mmput(struct mm_struct *); 2161 /* Grab a reference to a task's mm, if it is not already going away */ 2162 extern struct mm_struct *get_task_mm(struct task_struct *task); 2163 /* Remove the current tasks stale references to the old mm_struct */ 2164 extern void mm_release(struct task_struct *, struct mm_struct *); 2165 /* Allocate a new mm structure and copy contents from tsk->mm */ 2166 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2167 2168 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2169 struct task_struct *, struct pt_regs *); 2170 extern void flush_thread(void); 2171 extern void exit_thread(void); 2172 2173 extern void exit_files(struct task_struct *); 2174 extern void __cleanup_sighand(struct sighand_struct *); 2175 2176 extern void exit_itimers(struct signal_struct *); 2177 extern void flush_itimer_signals(void); 2178 2179 extern NORET_TYPE void do_group_exit(int); 2180 2181 extern void daemonize(const char *, ...); 2182 extern int allow_signal(int); 2183 extern int disallow_signal(int); 2184 2185 extern int do_execve(const char *, 2186 const char __user * const __user *, 2187 const char __user * const __user *, struct pt_regs *); 2188 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2189 struct task_struct *fork_idle(int); 2190 2191 extern void set_task_comm(struct task_struct *tsk, char *from); 2192 extern char *get_task_comm(char *to, struct task_struct *tsk); 2193 2194 #ifdef CONFIG_SMP 2195 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2196 #else 2197 static inline unsigned long wait_task_inactive(struct task_struct *p, 2198 long match_state) 2199 { 2200 return 1; 2201 } 2202 #endif 2203 2204 #define next_task(p) \ 2205 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2206 2207 #define for_each_process(p) \ 2208 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2209 2210 extern bool current_is_single_threaded(void); 2211 2212 /* 2213 * Careful: do_each_thread/while_each_thread is a double loop so 2214 * 'break' will not work as expected - use goto instead. 2215 */ 2216 #define do_each_thread(g, t) \ 2217 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2218 2219 #define while_each_thread(g, t) \ 2220 while ((t = next_thread(t)) != g) 2221 2222 static inline int get_nr_threads(struct task_struct *tsk) 2223 { 2224 return tsk->signal->nr_threads; 2225 } 2226 2227 /* de_thread depends on thread_group_leader not being a pid based check */ 2228 #define thread_group_leader(p) (p == p->group_leader) 2229 2230 /* Do to the insanities of de_thread it is possible for a process 2231 * to have the pid of the thread group leader without actually being 2232 * the thread group leader. For iteration through the pids in proc 2233 * all we care about is that we have a task with the appropriate 2234 * pid, we don't actually care if we have the right task. 2235 */ 2236 static inline int has_group_leader_pid(struct task_struct *p) 2237 { 2238 return p->pid == p->tgid; 2239 } 2240 2241 static inline 2242 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2243 { 2244 return p1->tgid == p2->tgid; 2245 } 2246 2247 static inline struct task_struct *next_thread(const struct task_struct *p) 2248 { 2249 return list_entry_rcu(p->thread_group.next, 2250 struct task_struct, thread_group); 2251 } 2252 2253 static inline int thread_group_empty(struct task_struct *p) 2254 { 2255 return list_empty(&p->thread_group); 2256 } 2257 2258 #define delay_group_leader(p) \ 2259 (thread_group_leader(p) && !thread_group_empty(p)) 2260 2261 static inline int task_detached(struct task_struct *p) 2262 { 2263 return p->exit_signal == -1; 2264 } 2265 2266 /* 2267 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2268 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2269 * pins the final release of task.io_context. Also protects ->cpuset and 2270 * ->cgroup.subsys[]. 2271 * 2272 * Nests both inside and outside of read_lock(&tasklist_lock). 2273 * It must not be nested with write_lock_irq(&tasklist_lock), 2274 * neither inside nor outside. 2275 */ 2276 static inline void task_lock(struct task_struct *p) 2277 { 2278 spin_lock(&p->alloc_lock); 2279 } 2280 2281 static inline void task_unlock(struct task_struct *p) 2282 { 2283 spin_unlock(&p->alloc_lock); 2284 } 2285 2286 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2287 unsigned long *flags); 2288 2289 #define lock_task_sighand(tsk, flags) \ 2290 ({ struct sighand_struct *__ss; \ 2291 __cond_lock(&(tsk)->sighand->siglock, \ 2292 (__ss = __lock_task_sighand(tsk, flags))); \ 2293 __ss; \ 2294 }) \ 2295 2296 static inline void unlock_task_sighand(struct task_struct *tsk, 2297 unsigned long *flags) 2298 { 2299 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2300 } 2301 2302 #ifndef __HAVE_THREAD_FUNCTIONS 2303 2304 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2305 #define task_stack_page(task) ((task)->stack) 2306 2307 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2308 { 2309 *task_thread_info(p) = *task_thread_info(org); 2310 task_thread_info(p)->task = p; 2311 } 2312 2313 static inline unsigned long *end_of_stack(struct task_struct *p) 2314 { 2315 return (unsigned long *)(task_thread_info(p) + 1); 2316 } 2317 2318 #endif 2319 2320 static inline int object_is_on_stack(void *obj) 2321 { 2322 void *stack = task_stack_page(current); 2323 2324 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2325 } 2326 2327 extern void thread_info_cache_init(void); 2328 2329 #ifdef CONFIG_DEBUG_STACK_USAGE 2330 static inline unsigned long stack_not_used(struct task_struct *p) 2331 { 2332 unsigned long *n = end_of_stack(p); 2333 2334 do { /* Skip over canary */ 2335 n++; 2336 } while (!*n); 2337 2338 return (unsigned long)n - (unsigned long)end_of_stack(p); 2339 } 2340 #endif 2341 2342 /* set thread flags in other task's structures 2343 * - see asm/thread_info.h for TIF_xxxx flags available 2344 */ 2345 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2346 { 2347 set_ti_thread_flag(task_thread_info(tsk), flag); 2348 } 2349 2350 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2351 { 2352 clear_ti_thread_flag(task_thread_info(tsk), flag); 2353 } 2354 2355 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2356 { 2357 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2358 } 2359 2360 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2361 { 2362 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2363 } 2364 2365 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2366 { 2367 return test_ti_thread_flag(task_thread_info(tsk), flag); 2368 } 2369 2370 static inline void set_tsk_need_resched(struct task_struct *tsk) 2371 { 2372 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2373 } 2374 2375 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2376 { 2377 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2378 } 2379 2380 static inline int test_tsk_need_resched(struct task_struct *tsk) 2381 { 2382 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2383 } 2384 2385 static inline int restart_syscall(void) 2386 { 2387 set_tsk_thread_flag(current, TIF_SIGPENDING); 2388 return -ERESTARTNOINTR; 2389 } 2390 2391 static inline int signal_pending(struct task_struct *p) 2392 { 2393 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2394 } 2395 2396 static inline int __fatal_signal_pending(struct task_struct *p) 2397 { 2398 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2399 } 2400 2401 static inline int fatal_signal_pending(struct task_struct *p) 2402 { 2403 return signal_pending(p) && __fatal_signal_pending(p); 2404 } 2405 2406 static inline int signal_pending_state(long state, struct task_struct *p) 2407 { 2408 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2409 return 0; 2410 if (!signal_pending(p)) 2411 return 0; 2412 2413 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2414 } 2415 2416 static inline int need_resched(void) 2417 { 2418 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2419 } 2420 2421 /* 2422 * cond_resched() and cond_resched_lock(): latency reduction via 2423 * explicit rescheduling in places that are safe. The return 2424 * value indicates whether a reschedule was done in fact. 2425 * cond_resched_lock() will drop the spinlock before scheduling, 2426 * cond_resched_softirq() will enable bhs before scheduling. 2427 */ 2428 extern int _cond_resched(void); 2429 2430 #define cond_resched() ({ \ 2431 __might_sleep(__FILE__, __LINE__, 0); \ 2432 _cond_resched(); \ 2433 }) 2434 2435 extern int __cond_resched_lock(spinlock_t *lock); 2436 2437 #ifdef CONFIG_PREEMPT 2438 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2439 #else 2440 #define PREEMPT_LOCK_OFFSET 0 2441 #endif 2442 2443 #define cond_resched_lock(lock) ({ \ 2444 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2445 __cond_resched_lock(lock); \ 2446 }) 2447 2448 extern int __cond_resched_softirq(void); 2449 2450 #define cond_resched_softirq() ({ \ 2451 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2452 __cond_resched_softirq(); \ 2453 }) 2454 2455 /* 2456 * Does a critical section need to be broken due to another 2457 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2458 * but a general need for low latency) 2459 */ 2460 static inline int spin_needbreak(spinlock_t *lock) 2461 { 2462 #ifdef CONFIG_PREEMPT 2463 return spin_is_contended(lock); 2464 #else 2465 return 0; 2466 #endif 2467 } 2468 2469 /* 2470 * Thread group CPU time accounting. 2471 */ 2472 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2473 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2474 2475 static inline void thread_group_cputime_init(struct signal_struct *sig) 2476 { 2477 spin_lock_init(&sig->cputimer.lock); 2478 } 2479 2480 /* 2481 * Reevaluate whether the task has signals pending delivery. 2482 * Wake the task if so. 2483 * This is required every time the blocked sigset_t changes. 2484 * callers must hold sighand->siglock. 2485 */ 2486 extern void recalc_sigpending_and_wake(struct task_struct *t); 2487 extern void recalc_sigpending(void); 2488 2489 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2490 2491 /* 2492 * Wrappers for p->thread_info->cpu access. No-op on UP. 2493 */ 2494 #ifdef CONFIG_SMP 2495 2496 static inline unsigned int task_cpu(const struct task_struct *p) 2497 { 2498 return task_thread_info(p)->cpu; 2499 } 2500 2501 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2502 2503 #else 2504 2505 static inline unsigned int task_cpu(const struct task_struct *p) 2506 { 2507 return 0; 2508 } 2509 2510 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2511 { 2512 } 2513 2514 #endif /* CONFIG_SMP */ 2515 2516 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2517 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2518 2519 extern void normalize_rt_tasks(void); 2520 2521 #ifdef CONFIG_CGROUP_SCHED 2522 2523 extern struct task_group root_task_group; 2524 2525 extern struct task_group *sched_create_group(struct task_group *parent); 2526 extern void sched_destroy_group(struct task_group *tg); 2527 extern void sched_move_task(struct task_struct *tsk); 2528 #ifdef CONFIG_FAIR_GROUP_SCHED 2529 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2530 extern unsigned long sched_group_shares(struct task_group *tg); 2531 #endif 2532 #ifdef CONFIG_RT_GROUP_SCHED 2533 extern int sched_group_set_rt_runtime(struct task_group *tg, 2534 long rt_runtime_us); 2535 extern long sched_group_rt_runtime(struct task_group *tg); 2536 extern int sched_group_set_rt_period(struct task_group *tg, 2537 long rt_period_us); 2538 extern long sched_group_rt_period(struct task_group *tg); 2539 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2540 #endif 2541 #endif 2542 2543 extern int task_can_switch_user(struct user_struct *up, 2544 struct task_struct *tsk); 2545 2546 #ifdef CONFIG_TASK_XACCT 2547 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2548 { 2549 tsk->ioac.rchar += amt; 2550 } 2551 2552 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2553 { 2554 tsk->ioac.wchar += amt; 2555 } 2556 2557 static inline void inc_syscr(struct task_struct *tsk) 2558 { 2559 tsk->ioac.syscr++; 2560 } 2561 2562 static inline void inc_syscw(struct task_struct *tsk) 2563 { 2564 tsk->ioac.syscw++; 2565 } 2566 #else 2567 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2568 { 2569 } 2570 2571 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2572 { 2573 } 2574 2575 static inline void inc_syscr(struct task_struct *tsk) 2576 { 2577 } 2578 2579 static inline void inc_syscw(struct task_struct *tsk) 2580 { 2581 } 2582 #endif 2583 2584 #ifndef TASK_SIZE_OF 2585 #define TASK_SIZE_OF(tsk) TASK_SIZE 2586 #endif 2587 2588 #ifdef CONFIG_MM_OWNER 2589 extern void mm_update_next_owner(struct mm_struct *mm); 2590 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2591 #else 2592 static inline void mm_update_next_owner(struct mm_struct *mm) 2593 { 2594 } 2595 2596 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2597 { 2598 } 2599 #endif /* CONFIG_MM_OWNER */ 2600 2601 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2602 unsigned int limit) 2603 { 2604 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2605 } 2606 2607 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2608 unsigned int limit) 2609 { 2610 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2611 } 2612 2613 static inline unsigned long rlimit(unsigned int limit) 2614 { 2615 return task_rlimit(current, limit); 2616 } 2617 2618 static inline unsigned long rlimit_max(unsigned int limit) 2619 { 2620 return task_rlimit_max(current, limit); 2621 } 2622 2623 #endif /* __KERNEL__ */ 2624 2625 #endif 2626