xref: /linux/include/linux/sched.h (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48 
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 
62 #include <asm/processor.h>
63 
64 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
65 
66 /*
67  * Extended scheduling parameters data structure.
68  *
69  * This is needed because the original struct sched_param can not be
70  * altered without introducing ABI issues with legacy applications
71  * (e.g., in sched_getparam()).
72  *
73  * However, the possibility of specifying more than just a priority for
74  * the tasks may be useful for a wide variety of application fields, e.g.,
75  * multimedia, streaming, automation and control, and many others.
76  *
77  * This variant (sched_attr) is meant at describing a so-called
78  * sporadic time-constrained task. In such model a task is specified by:
79  *  - the activation period or minimum instance inter-arrival time;
80  *  - the maximum (or average, depending on the actual scheduling
81  *    discipline) computation time of all instances, a.k.a. runtime;
82  *  - the deadline (relative to the actual activation time) of each
83  *    instance.
84  * Very briefly, a periodic (sporadic) task asks for the execution of
85  * some specific computation --which is typically called an instance--
86  * (at most) every period. Moreover, each instance typically lasts no more
87  * than the runtime and must be completed by time instant t equal to
88  * the instance activation time + the deadline.
89  *
90  * This is reflected by the actual fields of the sched_attr structure:
91  *
92  *  @size		size of the structure, for fwd/bwd compat.
93  *
94  *  @sched_policy	task's scheduling policy
95  *  @sched_flags	for customizing the scheduler behaviour
96  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
97  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
98  *  @sched_deadline	representative of the task's deadline
99  *  @sched_runtime	representative of the task's runtime
100  *  @sched_period	representative of the task's period
101  *
102  * Given this task model, there are a multiplicity of scheduling algorithms
103  * and policies, that can be used to ensure all the tasks will make their
104  * timing constraints.
105  *
106  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107  * only user of this new interface. More information about the algorithm
108  * available in the scheduling class file or in Documentation/.
109  */
110 struct sched_attr {
111 	u32 size;
112 
113 	u32 sched_policy;
114 	u64 sched_flags;
115 
116 	/* SCHED_NORMAL, SCHED_BATCH */
117 	s32 sched_nice;
118 
119 	/* SCHED_FIFO, SCHED_RR */
120 	u32 sched_priority;
121 
122 	/* SCHED_DEADLINE */
123 	u64 sched_runtime;
124 	u64 sched_deadline;
125 	u64 sched_period;
126 };
127 
128 struct futex_pi_state;
129 struct robust_list_head;
130 struct bio_list;
131 struct fs_struct;
132 struct perf_event_context;
133 struct blk_plug;
134 struct filename;
135 
136 #define VMACACHE_BITS 2
137 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
138 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
139 
140 /*
141  * These are the constant used to fake the fixed-point load-average
142  * counting. Some notes:
143  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
144  *    a load-average precision of 10 bits integer + 11 bits fractional
145  *  - if you want to count load-averages more often, you need more
146  *    precision, or rounding will get you. With 2-second counting freq,
147  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
148  *    11 bit fractions.
149  */
150 extern unsigned long avenrun[];		/* Load averages */
151 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
152 
153 #define FSHIFT		11		/* nr of bits of precision */
154 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
155 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
156 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
157 #define EXP_5		2014		/* 1/exp(5sec/5min) */
158 #define EXP_15		2037		/* 1/exp(5sec/15min) */
159 
160 #define CALC_LOAD(load,exp,n) \
161 	load *= exp; \
162 	load += n*(FIXED_1-exp); \
163 	load >>= FSHIFT;
164 
165 extern unsigned long total_forks;
166 extern int nr_threads;
167 DECLARE_PER_CPU(unsigned long, process_counts);
168 extern int nr_processes(void);
169 extern unsigned long nr_running(void);
170 extern bool single_task_running(void);
171 extern unsigned long nr_iowait(void);
172 extern unsigned long nr_iowait_cpu(int cpu);
173 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
174 
175 extern void calc_global_load(unsigned long ticks);
176 extern void update_cpu_load_nohz(void);
177 
178 extern unsigned long get_parent_ip(unsigned long addr);
179 
180 extern void dump_cpu_task(int cpu);
181 
182 struct seq_file;
183 struct cfs_rq;
184 struct task_group;
185 #ifdef CONFIG_SCHED_DEBUG
186 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
187 extern void proc_sched_set_task(struct task_struct *p);
188 extern void
189 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
190 #endif
191 
192 /*
193  * Task state bitmask. NOTE! These bits are also
194  * encoded in fs/proc/array.c: get_task_state().
195  *
196  * We have two separate sets of flags: task->state
197  * is about runnability, while task->exit_state are
198  * about the task exiting. Confusing, but this way
199  * modifying one set can't modify the other one by
200  * mistake.
201  */
202 #define TASK_RUNNING		0
203 #define TASK_INTERRUPTIBLE	1
204 #define TASK_UNINTERRUPTIBLE	2
205 #define __TASK_STOPPED		4
206 #define __TASK_TRACED		8
207 /* in tsk->exit_state */
208 #define EXIT_DEAD		16
209 #define EXIT_ZOMBIE		32
210 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
211 /* in tsk->state again */
212 #define TASK_DEAD		64
213 #define TASK_WAKEKILL		128
214 #define TASK_WAKING		256
215 #define TASK_PARKED		512
216 #define TASK_STATE_MAX		1024
217 
218 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
219 
220 extern char ___assert_task_state[1 - 2*!!(
221 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
222 
223 /* Convenience macros for the sake of set_task_state */
224 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
225 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
226 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
227 
228 /* Convenience macros for the sake of wake_up */
229 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
230 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
231 
232 /* get_task_state() */
233 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
234 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
235 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
236 
237 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
238 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
239 #define task_is_stopped_or_traced(task)	\
240 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
241 #define task_contributes_to_load(task)	\
242 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
243 				 (task->flags & PF_FROZEN) == 0)
244 
245 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
246 
247 #define __set_task_state(tsk, state_value)			\
248 	do {							\
249 		(tsk)->task_state_change = _THIS_IP_;		\
250 		(tsk)->state = (state_value);			\
251 	} while (0)
252 #define set_task_state(tsk, state_value)			\
253 	do {							\
254 		(tsk)->task_state_change = _THIS_IP_;		\
255 		set_mb((tsk)->state, (state_value));		\
256 	} while (0)
257 
258 /*
259  * set_current_state() includes a barrier so that the write of current->state
260  * is correctly serialised wrt the caller's subsequent test of whether to
261  * actually sleep:
262  *
263  *	set_current_state(TASK_UNINTERRUPTIBLE);
264  *	if (do_i_need_to_sleep())
265  *		schedule();
266  *
267  * If the caller does not need such serialisation then use __set_current_state()
268  */
269 #define __set_current_state(state_value)			\
270 	do {							\
271 		current->task_state_change = _THIS_IP_;		\
272 		current->state = (state_value);			\
273 	} while (0)
274 #define set_current_state(state_value)				\
275 	do {							\
276 		current->task_state_change = _THIS_IP_;		\
277 		set_mb(current->state, (state_value));		\
278 	} while (0)
279 
280 #else
281 
282 #define __set_task_state(tsk, state_value)		\
283 	do { (tsk)->state = (state_value); } while (0)
284 #define set_task_state(tsk, state_value)		\
285 	set_mb((tsk)->state, (state_value))
286 
287 /*
288  * set_current_state() includes a barrier so that the write of current->state
289  * is correctly serialised wrt the caller's subsequent test of whether to
290  * actually sleep:
291  *
292  *	set_current_state(TASK_UNINTERRUPTIBLE);
293  *	if (do_i_need_to_sleep())
294  *		schedule();
295  *
296  * If the caller does not need such serialisation then use __set_current_state()
297  */
298 #define __set_current_state(state_value)		\
299 	do { current->state = (state_value); } while (0)
300 #define set_current_state(state_value)			\
301 	set_mb(current->state, (state_value))
302 
303 #endif
304 
305 /* Task command name length */
306 #define TASK_COMM_LEN 16
307 
308 #include <linux/spinlock.h>
309 
310 /*
311  * This serializes "schedule()" and also protects
312  * the run-queue from deletions/modifications (but
313  * _adding_ to the beginning of the run-queue has
314  * a separate lock).
315  */
316 extern rwlock_t tasklist_lock;
317 extern spinlock_t mmlist_lock;
318 
319 struct task_struct;
320 
321 #ifdef CONFIG_PROVE_RCU
322 extern int lockdep_tasklist_lock_is_held(void);
323 #endif /* #ifdef CONFIG_PROVE_RCU */
324 
325 extern void sched_init(void);
326 extern void sched_init_smp(void);
327 extern asmlinkage void schedule_tail(struct task_struct *prev);
328 extern void init_idle(struct task_struct *idle, int cpu);
329 extern void init_idle_bootup_task(struct task_struct *idle);
330 
331 extern cpumask_var_t cpu_isolated_map;
332 
333 extern int runqueue_is_locked(int cpu);
334 
335 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
336 extern void nohz_balance_enter_idle(int cpu);
337 extern void set_cpu_sd_state_idle(void);
338 extern int get_nohz_timer_target(int pinned);
339 #else
340 static inline void nohz_balance_enter_idle(int cpu) { }
341 static inline void set_cpu_sd_state_idle(void) { }
342 static inline int get_nohz_timer_target(int pinned)
343 {
344 	return smp_processor_id();
345 }
346 #endif
347 
348 /*
349  * Only dump TASK_* tasks. (0 for all tasks)
350  */
351 extern void show_state_filter(unsigned long state_filter);
352 
353 static inline void show_state(void)
354 {
355 	show_state_filter(0);
356 }
357 
358 extern void show_regs(struct pt_regs *);
359 
360 /*
361  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
362  * task), SP is the stack pointer of the first frame that should be shown in the back
363  * trace (or NULL if the entire call-chain of the task should be shown).
364  */
365 extern void show_stack(struct task_struct *task, unsigned long *sp);
366 
367 extern void cpu_init (void);
368 extern void trap_init(void);
369 extern void update_process_times(int user);
370 extern void scheduler_tick(void);
371 
372 extern void sched_show_task(struct task_struct *p);
373 
374 #ifdef CONFIG_LOCKUP_DETECTOR
375 extern void touch_softlockup_watchdog(void);
376 extern void touch_softlockup_watchdog_sync(void);
377 extern void touch_all_softlockup_watchdogs(void);
378 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
379 				  void __user *buffer,
380 				  size_t *lenp, loff_t *ppos);
381 extern unsigned int  softlockup_panic;
382 void lockup_detector_init(void);
383 #else
384 static inline void touch_softlockup_watchdog(void)
385 {
386 }
387 static inline void touch_softlockup_watchdog_sync(void)
388 {
389 }
390 static inline void touch_all_softlockup_watchdogs(void)
391 {
392 }
393 static inline void lockup_detector_init(void)
394 {
395 }
396 #endif
397 
398 #ifdef CONFIG_DETECT_HUNG_TASK
399 void reset_hung_task_detector(void);
400 #else
401 static inline void reset_hung_task_detector(void)
402 {
403 }
404 #endif
405 
406 /* Attach to any functions which should be ignored in wchan output. */
407 #define __sched		__attribute__((__section__(".sched.text")))
408 
409 /* Linker adds these: start and end of __sched functions */
410 extern char __sched_text_start[], __sched_text_end[];
411 
412 /* Is this address in the __sched functions? */
413 extern int in_sched_functions(unsigned long addr);
414 
415 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
416 extern signed long schedule_timeout(signed long timeout);
417 extern signed long schedule_timeout_interruptible(signed long timeout);
418 extern signed long schedule_timeout_killable(signed long timeout);
419 extern signed long schedule_timeout_uninterruptible(signed long timeout);
420 asmlinkage void schedule(void);
421 extern void schedule_preempt_disabled(void);
422 
423 extern long io_schedule_timeout(long timeout);
424 
425 static inline void io_schedule(void)
426 {
427 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
428 }
429 
430 struct nsproxy;
431 struct user_namespace;
432 
433 #ifdef CONFIG_MMU
434 extern void arch_pick_mmap_layout(struct mm_struct *mm);
435 extern unsigned long
436 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
437 		       unsigned long, unsigned long);
438 extern unsigned long
439 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
440 			  unsigned long len, unsigned long pgoff,
441 			  unsigned long flags);
442 #else
443 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
444 #endif
445 
446 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
447 #define SUID_DUMP_USER		1	/* Dump as user of process */
448 #define SUID_DUMP_ROOT		2	/* Dump as root */
449 
450 /* mm flags */
451 
452 /* for SUID_DUMP_* above */
453 #define MMF_DUMPABLE_BITS 2
454 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
455 
456 extern void set_dumpable(struct mm_struct *mm, int value);
457 /*
458  * This returns the actual value of the suid_dumpable flag. For things
459  * that are using this for checking for privilege transitions, it must
460  * test against SUID_DUMP_USER rather than treating it as a boolean
461  * value.
462  */
463 static inline int __get_dumpable(unsigned long mm_flags)
464 {
465 	return mm_flags & MMF_DUMPABLE_MASK;
466 }
467 
468 static inline int get_dumpable(struct mm_struct *mm)
469 {
470 	return __get_dumpable(mm->flags);
471 }
472 
473 /* coredump filter bits */
474 #define MMF_DUMP_ANON_PRIVATE	2
475 #define MMF_DUMP_ANON_SHARED	3
476 #define MMF_DUMP_MAPPED_PRIVATE	4
477 #define MMF_DUMP_MAPPED_SHARED	5
478 #define MMF_DUMP_ELF_HEADERS	6
479 #define MMF_DUMP_HUGETLB_PRIVATE 7
480 #define MMF_DUMP_HUGETLB_SHARED  8
481 
482 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
483 #define MMF_DUMP_FILTER_BITS	7
484 #define MMF_DUMP_FILTER_MASK \
485 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
486 #define MMF_DUMP_FILTER_DEFAULT \
487 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
488 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
489 
490 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
491 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
492 #else
493 # define MMF_DUMP_MASK_DEFAULT_ELF	0
494 #endif
495 					/* leave room for more dump flags */
496 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
497 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
498 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
499 
500 #define MMF_HAS_UPROBES		19	/* has uprobes */
501 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
502 
503 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
504 
505 struct sighand_struct {
506 	atomic_t		count;
507 	struct k_sigaction	action[_NSIG];
508 	spinlock_t		siglock;
509 	wait_queue_head_t	signalfd_wqh;
510 };
511 
512 struct pacct_struct {
513 	int			ac_flag;
514 	long			ac_exitcode;
515 	unsigned long		ac_mem;
516 	cputime_t		ac_utime, ac_stime;
517 	unsigned long		ac_minflt, ac_majflt;
518 };
519 
520 struct cpu_itimer {
521 	cputime_t expires;
522 	cputime_t incr;
523 	u32 error;
524 	u32 incr_error;
525 };
526 
527 /**
528  * struct cputime - snaphsot of system and user cputime
529  * @utime: time spent in user mode
530  * @stime: time spent in system mode
531  *
532  * Gathers a generic snapshot of user and system time.
533  */
534 struct cputime {
535 	cputime_t utime;
536 	cputime_t stime;
537 };
538 
539 /**
540  * struct task_cputime - collected CPU time counts
541  * @utime:		time spent in user mode, in &cputime_t units
542  * @stime:		time spent in kernel mode, in &cputime_t units
543  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
544  *
545  * This is an extension of struct cputime that includes the total runtime
546  * spent by the task from the scheduler point of view.
547  *
548  * As a result, this structure groups together three kinds of CPU time
549  * that are tracked for threads and thread groups.  Most things considering
550  * CPU time want to group these counts together and treat all three
551  * of them in parallel.
552  */
553 struct task_cputime {
554 	cputime_t utime;
555 	cputime_t stime;
556 	unsigned long long sum_exec_runtime;
557 };
558 /* Alternate field names when used to cache expirations. */
559 #define prof_exp	stime
560 #define virt_exp	utime
561 #define sched_exp	sum_exec_runtime
562 
563 #define INIT_CPUTIME	\
564 	(struct task_cputime) {					\
565 		.utime = 0,					\
566 		.stime = 0,					\
567 		.sum_exec_runtime = 0,				\
568 	}
569 
570 #ifdef CONFIG_PREEMPT_COUNT
571 #define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
572 #else
573 #define PREEMPT_DISABLED	PREEMPT_ENABLED
574 #endif
575 
576 /*
577  * Disable preemption until the scheduler is running.
578  * Reset by start_kernel()->sched_init()->init_idle().
579  *
580  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
581  * before the scheduler is active -- see should_resched().
582  */
583 #define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
584 
585 /**
586  * struct thread_group_cputimer - thread group interval timer counts
587  * @cputime:		thread group interval timers.
588  * @running:		non-zero when there are timers running and
589  * 			@cputime receives updates.
590  * @lock:		lock for fields in this struct.
591  *
592  * This structure contains the version of task_cputime, above, that is
593  * used for thread group CPU timer calculations.
594  */
595 struct thread_group_cputimer {
596 	struct task_cputime cputime;
597 	int running;
598 	raw_spinlock_t lock;
599 };
600 
601 #include <linux/rwsem.h>
602 struct autogroup;
603 
604 /*
605  * NOTE! "signal_struct" does not have its own
606  * locking, because a shared signal_struct always
607  * implies a shared sighand_struct, so locking
608  * sighand_struct is always a proper superset of
609  * the locking of signal_struct.
610  */
611 struct signal_struct {
612 	atomic_t		sigcnt;
613 	atomic_t		live;
614 	int			nr_threads;
615 	struct list_head	thread_head;
616 
617 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
618 
619 	/* current thread group signal load-balancing target: */
620 	struct task_struct	*curr_target;
621 
622 	/* shared signal handling: */
623 	struct sigpending	shared_pending;
624 
625 	/* thread group exit support */
626 	int			group_exit_code;
627 	/* overloaded:
628 	 * - notify group_exit_task when ->count is equal to notify_count
629 	 * - everyone except group_exit_task is stopped during signal delivery
630 	 *   of fatal signals, group_exit_task processes the signal.
631 	 */
632 	int			notify_count;
633 	struct task_struct	*group_exit_task;
634 
635 	/* thread group stop support, overloads group_exit_code too */
636 	int			group_stop_count;
637 	unsigned int		flags; /* see SIGNAL_* flags below */
638 
639 	/*
640 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
641 	 * manager, to re-parent orphan (double-forking) child processes
642 	 * to this process instead of 'init'. The service manager is
643 	 * able to receive SIGCHLD signals and is able to investigate
644 	 * the process until it calls wait(). All children of this
645 	 * process will inherit a flag if they should look for a
646 	 * child_subreaper process at exit.
647 	 */
648 	unsigned int		is_child_subreaper:1;
649 	unsigned int		has_child_subreaper:1;
650 
651 	/* POSIX.1b Interval Timers */
652 	int			posix_timer_id;
653 	struct list_head	posix_timers;
654 
655 	/* ITIMER_REAL timer for the process */
656 	struct hrtimer real_timer;
657 	struct pid *leader_pid;
658 	ktime_t it_real_incr;
659 
660 	/*
661 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
662 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
663 	 * values are defined to 0 and 1 respectively
664 	 */
665 	struct cpu_itimer it[2];
666 
667 	/*
668 	 * Thread group totals for process CPU timers.
669 	 * See thread_group_cputimer(), et al, for details.
670 	 */
671 	struct thread_group_cputimer cputimer;
672 
673 	/* Earliest-expiration cache. */
674 	struct task_cputime cputime_expires;
675 
676 	struct list_head cpu_timers[3];
677 
678 	struct pid *tty_old_pgrp;
679 
680 	/* boolean value for session group leader */
681 	int leader;
682 
683 	struct tty_struct *tty; /* NULL if no tty */
684 
685 #ifdef CONFIG_SCHED_AUTOGROUP
686 	struct autogroup *autogroup;
687 #endif
688 	/*
689 	 * Cumulative resource counters for dead threads in the group,
690 	 * and for reaped dead child processes forked by this group.
691 	 * Live threads maintain their own counters and add to these
692 	 * in __exit_signal, except for the group leader.
693 	 */
694 	seqlock_t stats_lock;
695 	cputime_t utime, stime, cutime, cstime;
696 	cputime_t gtime;
697 	cputime_t cgtime;
698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
699 	struct cputime prev_cputime;
700 #endif
701 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
702 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
703 	unsigned long inblock, oublock, cinblock, coublock;
704 	unsigned long maxrss, cmaxrss;
705 	struct task_io_accounting ioac;
706 
707 	/*
708 	 * Cumulative ns of schedule CPU time fo dead threads in the
709 	 * group, not including a zombie group leader, (This only differs
710 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
711 	 * other than jiffies.)
712 	 */
713 	unsigned long long sum_sched_runtime;
714 
715 	/*
716 	 * We don't bother to synchronize most readers of this at all,
717 	 * because there is no reader checking a limit that actually needs
718 	 * to get both rlim_cur and rlim_max atomically, and either one
719 	 * alone is a single word that can safely be read normally.
720 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
721 	 * protect this instead of the siglock, because they really
722 	 * have no need to disable irqs.
723 	 */
724 	struct rlimit rlim[RLIM_NLIMITS];
725 
726 #ifdef CONFIG_BSD_PROCESS_ACCT
727 	struct pacct_struct pacct;	/* per-process accounting information */
728 #endif
729 #ifdef CONFIG_TASKSTATS
730 	struct taskstats *stats;
731 #endif
732 #ifdef CONFIG_AUDIT
733 	unsigned audit_tty;
734 	unsigned audit_tty_log_passwd;
735 	struct tty_audit_buf *tty_audit_buf;
736 #endif
737 #ifdef CONFIG_CGROUPS
738 	/*
739 	 * group_rwsem prevents new tasks from entering the threadgroup and
740 	 * member tasks from exiting,a more specifically, setting of
741 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
742 	 * using threadgroup_change_begin/end().  Users which require
743 	 * threadgroup to remain stable should use threadgroup_[un]lock()
744 	 * which also takes care of exec path.  Currently, cgroup is the
745 	 * only user.
746 	 */
747 	struct rw_semaphore group_rwsem;
748 #endif
749 
750 	oom_flags_t oom_flags;
751 	short oom_score_adj;		/* OOM kill score adjustment */
752 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
753 					 * Only settable by CAP_SYS_RESOURCE. */
754 
755 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
756 					 * credential calculations
757 					 * (notably. ptrace) */
758 };
759 
760 /*
761  * Bits in flags field of signal_struct.
762  */
763 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
764 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
765 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
766 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
767 /*
768  * Pending notifications to parent.
769  */
770 #define SIGNAL_CLD_STOPPED	0x00000010
771 #define SIGNAL_CLD_CONTINUED	0x00000020
772 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
773 
774 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
775 
776 /* If true, all threads except ->group_exit_task have pending SIGKILL */
777 static inline int signal_group_exit(const struct signal_struct *sig)
778 {
779 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
780 		(sig->group_exit_task != NULL);
781 }
782 
783 /*
784  * Some day this will be a full-fledged user tracking system..
785  */
786 struct user_struct {
787 	atomic_t __count;	/* reference count */
788 	atomic_t processes;	/* How many processes does this user have? */
789 	atomic_t sigpending;	/* How many pending signals does this user have? */
790 #ifdef CONFIG_INOTIFY_USER
791 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
792 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
793 #endif
794 #ifdef CONFIG_FANOTIFY
795 	atomic_t fanotify_listeners;
796 #endif
797 #ifdef CONFIG_EPOLL
798 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
799 #endif
800 #ifdef CONFIG_POSIX_MQUEUE
801 	/* protected by mq_lock	*/
802 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
803 #endif
804 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
805 
806 #ifdef CONFIG_KEYS
807 	struct key *uid_keyring;	/* UID specific keyring */
808 	struct key *session_keyring;	/* UID's default session keyring */
809 #endif
810 
811 	/* Hash table maintenance information */
812 	struct hlist_node uidhash_node;
813 	kuid_t uid;
814 
815 #ifdef CONFIG_PERF_EVENTS
816 	atomic_long_t locked_vm;
817 #endif
818 };
819 
820 extern int uids_sysfs_init(void);
821 
822 extern struct user_struct *find_user(kuid_t);
823 
824 extern struct user_struct root_user;
825 #define INIT_USER (&root_user)
826 
827 
828 struct backing_dev_info;
829 struct reclaim_state;
830 
831 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
832 struct sched_info {
833 	/* cumulative counters */
834 	unsigned long pcount;	      /* # of times run on this cpu */
835 	unsigned long long run_delay; /* time spent waiting on a runqueue */
836 
837 	/* timestamps */
838 	unsigned long long last_arrival,/* when we last ran on a cpu */
839 			   last_queued;	/* when we were last queued to run */
840 };
841 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
842 
843 #ifdef CONFIG_TASK_DELAY_ACCT
844 struct task_delay_info {
845 	spinlock_t	lock;
846 	unsigned int	flags;	/* Private per-task flags */
847 
848 	/* For each stat XXX, add following, aligned appropriately
849 	 *
850 	 * struct timespec XXX_start, XXX_end;
851 	 * u64 XXX_delay;
852 	 * u32 XXX_count;
853 	 *
854 	 * Atomicity of updates to XXX_delay, XXX_count protected by
855 	 * single lock above (split into XXX_lock if contention is an issue).
856 	 */
857 
858 	/*
859 	 * XXX_count is incremented on every XXX operation, the delay
860 	 * associated with the operation is added to XXX_delay.
861 	 * XXX_delay contains the accumulated delay time in nanoseconds.
862 	 */
863 	u64 blkio_start;	/* Shared by blkio, swapin */
864 	u64 blkio_delay;	/* wait for sync block io completion */
865 	u64 swapin_delay;	/* wait for swapin block io completion */
866 	u32 blkio_count;	/* total count of the number of sync block */
867 				/* io operations performed */
868 	u32 swapin_count;	/* total count of the number of swapin block */
869 				/* io operations performed */
870 
871 	u64 freepages_start;
872 	u64 freepages_delay;	/* wait for memory reclaim */
873 	u32 freepages_count;	/* total count of memory reclaim */
874 };
875 #endif	/* CONFIG_TASK_DELAY_ACCT */
876 
877 static inline int sched_info_on(void)
878 {
879 #ifdef CONFIG_SCHEDSTATS
880 	return 1;
881 #elif defined(CONFIG_TASK_DELAY_ACCT)
882 	extern int delayacct_on;
883 	return delayacct_on;
884 #else
885 	return 0;
886 #endif
887 }
888 
889 enum cpu_idle_type {
890 	CPU_IDLE,
891 	CPU_NOT_IDLE,
892 	CPU_NEWLY_IDLE,
893 	CPU_MAX_IDLE_TYPES
894 };
895 
896 /*
897  * Increase resolution of cpu_capacity calculations
898  */
899 #define SCHED_CAPACITY_SHIFT	10
900 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
901 
902 /*
903  * sched-domains (multiprocessor balancing) declarations:
904  */
905 #ifdef CONFIG_SMP
906 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
907 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
908 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
909 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
910 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
911 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
912 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu power */
913 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
914 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
915 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
916 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
917 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
918 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
919 #define SD_NUMA			0x4000	/* cross-node balancing */
920 
921 #ifdef CONFIG_SCHED_SMT
922 static inline int cpu_smt_flags(void)
923 {
924 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
925 }
926 #endif
927 
928 #ifdef CONFIG_SCHED_MC
929 static inline int cpu_core_flags(void)
930 {
931 	return SD_SHARE_PKG_RESOURCES;
932 }
933 #endif
934 
935 #ifdef CONFIG_NUMA
936 static inline int cpu_numa_flags(void)
937 {
938 	return SD_NUMA;
939 }
940 #endif
941 
942 struct sched_domain_attr {
943 	int relax_domain_level;
944 };
945 
946 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
947 	.relax_domain_level = -1,			\
948 }
949 
950 extern int sched_domain_level_max;
951 
952 struct sched_group;
953 
954 struct sched_domain {
955 	/* These fields must be setup */
956 	struct sched_domain *parent;	/* top domain must be null terminated */
957 	struct sched_domain *child;	/* bottom domain must be null terminated */
958 	struct sched_group *groups;	/* the balancing groups of the domain */
959 	unsigned long min_interval;	/* Minimum balance interval ms */
960 	unsigned long max_interval;	/* Maximum balance interval ms */
961 	unsigned int busy_factor;	/* less balancing by factor if busy */
962 	unsigned int imbalance_pct;	/* No balance until over watermark */
963 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
964 	unsigned int busy_idx;
965 	unsigned int idle_idx;
966 	unsigned int newidle_idx;
967 	unsigned int wake_idx;
968 	unsigned int forkexec_idx;
969 	unsigned int smt_gain;
970 
971 	int nohz_idle;			/* NOHZ IDLE status */
972 	int flags;			/* See SD_* */
973 	int level;
974 
975 	/* Runtime fields. */
976 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
977 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
978 	unsigned int nr_balance_failed; /* initialise to 0 */
979 
980 	/* idle_balance() stats */
981 	u64 max_newidle_lb_cost;
982 	unsigned long next_decay_max_lb_cost;
983 
984 #ifdef CONFIG_SCHEDSTATS
985 	/* load_balance() stats */
986 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
987 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
988 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
989 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
990 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
991 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
992 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
993 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
994 
995 	/* Active load balancing */
996 	unsigned int alb_count;
997 	unsigned int alb_failed;
998 	unsigned int alb_pushed;
999 
1000 	/* SD_BALANCE_EXEC stats */
1001 	unsigned int sbe_count;
1002 	unsigned int sbe_balanced;
1003 	unsigned int sbe_pushed;
1004 
1005 	/* SD_BALANCE_FORK stats */
1006 	unsigned int sbf_count;
1007 	unsigned int sbf_balanced;
1008 	unsigned int sbf_pushed;
1009 
1010 	/* try_to_wake_up() stats */
1011 	unsigned int ttwu_wake_remote;
1012 	unsigned int ttwu_move_affine;
1013 	unsigned int ttwu_move_balance;
1014 #endif
1015 #ifdef CONFIG_SCHED_DEBUG
1016 	char *name;
1017 #endif
1018 	union {
1019 		void *private;		/* used during construction */
1020 		struct rcu_head rcu;	/* used during destruction */
1021 	};
1022 
1023 	unsigned int span_weight;
1024 	/*
1025 	 * Span of all CPUs in this domain.
1026 	 *
1027 	 * NOTE: this field is variable length. (Allocated dynamically
1028 	 * by attaching extra space to the end of the structure,
1029 	 * depending on how many CPUs the kernel has booted up with)
1030 	 */
1031 	unsigned long span[0];
1032 };
1033 
1034 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1035 {
1036 	return to_cpumask(sd->span);
1037 }
1038 
1039 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1040 				    struct sched_domain_attr *dattr_new);
1041 
1042 /* Allocate an array of sched domains, for partition_sched_domains(). */
1043 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1044 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1045 
1046 bool cpus_share_cache(int this_cpu, int that_cpu);
1047 
1048 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1049 typedef int (*sched_domain_flags_f)(void);
1050 
1051 #define SDTL_OVERLAP	0x01
1052 
1053 struct sd_data {
1054 	struct sched_domain **__percpu sd;
1055 	struct sched_group **__percpu sg;
1056 	struct sched_group_capacity **__percpu sgc;
1057 };
1058 
1059 struct sched_domain_topology_level {
1060 	sched_domain_mask_f mask;
1061 	sched_domain_flags_f sd_flags;
1062 	int		    flags;
1063 	int		    numa_level;
1064 	struct sd_data      data;
1065 #ifdef CONFIG_SCHED_DEBUG
1066 	char                *name;
1067 #endif
1068 };
1069 
1070 extern struct sched_domain_topology_level *sched_domain_topology;
1071 
1072 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1073 extern void wake_up_if_idle(int cpu);
1074 
1075 #ifdef CONFIG_SCHED_DEBUG
1076 # define SD_INIT_NAME(type)		.name = #type
1077 #else
1078 # define SD_INIT_NAME(type)
1079 #endif
1080 
1081 #else /* CONFIG_SMP */
1082 
1083 struct sched_domain_attr;
1084 
1085 static inline void
1086 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1087 			struct sched_domain_attr *dattr_new)
1088 {
1089 }
1090 
1091 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1092 {
1093 	return true;
1094 }
1095 
1096 #endif	/* !CONFIG_SMP */
1097 
1098 
1099 struct io_context;			/* See blkdev.h */
1100 
1101 
1102 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1103 extern void prefetch_stack(struct task_struct *t);
1104 #else
1105 static inline void prefetch_stack(struct task_struct *t) { }
1106 #endif
1107 
1108 struct audit_context;		/* See audit.c */
1109 struct mempolicy;
1110 struct pipe_inode_info;
1111 struct uts_namespace;
1112 
1113 struct load_weight {
1114 	unsigned long weight;
1115 	u32 inv_weight;
1116 };
1117 
1118 struct sched_avg {
1119 	u64 last_runnable_update;
1120 	s64 decay_count;
1121 	/*
1122 	 * utilization_avg_contrib describes the amount of time that a
1123 	 * sched_entity is running on a CPU. It is based on running_avg_sum
1124 	 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1125 	 * load_avg_contrib described the amount of time that a sched_entity
1126 	 * is runnable on a rq. It is based on both runnable_avg_sum and the
1127 	 * weight of the task.
1128 	 */
1129 	unsigned long load_avg_contrib, utilization_avg_contrib;
1130 	/*
1131 	 * These sums represent an infinite geometric series and so are bound
1132 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1133 	 * choices of y < 1-2^(-32)*1024.
1134 	 * running_avg_sum reflects the time that the sched_entity is
1135 	 * effectively running on the CPU.
1136 	 * runnable_avg_sum represents the amount of time a sched_entity is on
1137 	 * a runqueue which includes the running time that is monitored by
1138 	 * running_avg_sum.
1139 	 */
1140 	u32 runnable_avg_sum, avg_period, running_avg_sum;
1141 };
1142 
1143 #ifdef CONFIG_SCHEDSTATS
1144 struct sched_statistics {
1145 	u64			wait_start;
1146 	u64			wait_max;
1147 	u64			wait_count;
1148 	u64			wait_sum;
1149 	u64			iowait_count;
1150 	u64			iowait_sum;
1151 
1152 	u64			sleep_start;
1153 	u64			sleep_max;
1154 	s64			sum_sleep_runtime;
1155 
1156 	u64			block_start;
1157 	u64			block_max;
1158 	u64			exec_max;
1159 	u64			slice_max;
1160 
1161 	u64			nr_migrations_cold;
1162 	u64			nr_failed_migrations_affine;
1163 	u64			nr_failed_migrations_running;
1164 	u64			nr_failed_migrations_hot;
1165 	u64			nr_forced_migrations;
1166 
1167 	u64			nr_wakeups;
1168 	u64			nr_wakeups_sync;
1169 	u64			nr_wakeups_migrate;
1170 	u64			nr_wakeups_local;
1171 	u64			nr_wakeups_remote;
1172 	u64			nr_wakeups_affine;
1173 	u64			nr_wakeups_affine_attempts;
1174 	u64			nr_wakeups_passive;
1175 	u64			nr_wakeups_idle;
1176 };
1177 #endif
1178 
1179 struct sched_entity {
1180 	struct load_weight	load;		/* for load-balancing */
1181 	struct rb_node		run_node;
1182 	struct list_head	group_node;
1183 	unsigned int		on_rq;
1184 
1185 	u64			exec_start;
1186 	u64			sum_exec_runtime;
1187 	u64			vruntime;
1188 	u64			prev_sum_exec_runtime;
1189 
1190 	u64			nr_migrations;
1191 
1192 #ifdef CONFIG_SCHEDSTATS
1193 	struct sched_statistics statistics;
1194 #endif
1195 
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197 	int			depth;
1198 	struct sched_entity	*parent;
1199 	/* rq on which this entity is (to be) queued: */
1200 	struct cfs_rq		*cfs_rq;
1201 	/* rq "owned" by this entity/group: */
1202 	struct cfs_rq		*my_q;
1203 #endif
1204 
1205 #ifdef CONFIG_SMP
1206 	/* Per-entity load-tracking */
1207 	struct sched_avg	avg;
1208 #endif
1209 };
1210 
1211 struct sched_rt_entity {
1212 	struct list_head run_list;
1213 	unsigned long timeout;
1214 	unsigned long watchdog_stamp;
1215 	unsigned int time_slice;
1216 
1217 	struct sched_rt_entity *back;
1218 #ifdef CONFIG_RT_GROUP_SCHED
1219 	struct sched_rt_entity	*parent;
1220 	/* rq on which this entity is (to be) queued: */
1221 	struct rt_rq		*rt_rq;
1222 	/* rq "owned" by this entity/group: */
1223 	struct rt_rq		*my_q;
1224 #endif
1225 };
1226 
1227 struct sched_dl_entity {
1228 	struct rb_node	rb_node;
1229 
1230 	/*
1231 	 * Original scheduling parameters. Copied here from sched_attr
1232 	 * during sched_setattr(), they will remain the same until
1233 	 * the next sched_setattr().
1234 	 */
1235 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1236 	u64 dl_deadline;	/* relative deadline of each instance	*/
1237 	u64 dl_period;		/* separation of two instances (period) */
1238 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1239 
1240 	/*
1241 	 * Actual scheduling parameters. Initialized with the values above,
1242 	 * they are continously updated during task execution. Note that
1243 	 * the remaining runtime could be < 0 in case we are in overrun.
1244 	 */
1245 	s64 runtime;		/* remaining runtime for this instance	*/
1246 	u64 deadline;		/* absolute deadline for this instance	*/
1247 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1248 
1249 	/*
1250 	 * Some bool flags:
1251 	 *
1252 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1253 	 * task has to wait for a replenishment to be performed at the
1254 	 * next firing of dl_timer.
1255 	 *
1256 	 * @dl_new tells if a new instance arrived. If so we must
1257 	 * start executing it with full runtime and reset its absolute
1258 	 * deadline;
1259 	 *
1260 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1261 	 * outside bandwidth enforcement mechanism (but only until we
1262 	 * exit the critical section);
1263 	 *
1264 	 * @dl_yielded tells if task gave up the cpu before consuming
1265 	 * all its available runtime during the last job.
1266 	 */
1267 	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1268 
1269 	/*
1270 	 * Bandwidth enforcement timer. Each -deadline task has its
1271 	 * own bandwidth to be enforced, thus we need one timer per task.
1272 	 */
1273 	struct hrtimer dl_timer;
1274 };
1275 
1276 union rcu_special {
1277 	struct {
1278 		bool blocked;
1279 		bool need_qs;
1280 	} b;
1281 	short s;
1282 };
1283 struct rcu_node;
1284 
1285 enum perf_event_task_context {
1286 	perf_invalid_context = -1,
1287 	perf_hw_context = 0,
1288 	perf_sw_context,
1289 	perf_nr_task_contexts,
1290 };
1291 
1292 struct task_struct {
1293 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1294 	void *stack;
1295 	atomic_t usage;
1296 	unsigned int flags;	/* per process flags, defined below */
1297 	unsigned int ptrace;
1298 
1299 #ifdef CONFIG_SMP
1300 	struct llist_node wake_entry;
1301 	int on_cpu;
1302 	struct task_struct *last_wakee;
1303 	unsigned long wakee_flips;
1304 	unsigned long wakee_flip_decay_ts;
1305 
1306 	int wake_cpu;
1307 #endif
1308 	int on_rq;
1309 
1310 	int prio, static_prio, normal_prio;
1311 	unsigned int rt_priority;
1312 	const struct sched_class *sched_class;
1313 	struct sched_entity se;
1314 	struct sched_rt_entity rt;
1315 #ifdef CONFIG_CGROUP_SCHED
1316 	struct task_group *sched_task_group;
1317 #endif
1318 	struct sched_dl_entity dl;
1319 
1320 #ifdef CONFIG_PREEMPT_NOTIFIERS
1321 	/* list of struct preempt_notifier: */
1322 	struct hlist_head preempt_notifiers;
1323 #endif
1324 
1325 #ifdef CONFIG_BLK_DEV_IO_TRACE
1326 	unsigned int btrace_seq;
1327 #endif
1328 
1329 	unsigned int policy;
1330 	int nr_cpus_allowed;
1331 	cpumask_t cpus_allowed;
1332 
1333 #ifdef CONFIG_PREEMPT_RCU
1334 	int rcu_read_lock_nesting;
1335 	union rcu_special rcu_read_unlock_special;
1336 	struct list_head rcu_node_entry;
1337 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1338 #ifdef CONFIG_PREEMPT_RCU
1339 	struct rcu_node *rcu_blocked_node;
1340 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1341 #ifdef CONFIG_TASKS_RCU
1342 	unsigned long rcu_tasks_nvcsw;
1343 	bool rcu_tasks_holdout;
1344 	struct list_head rcu_tasks_holdout_list;
1345 	int rcu_tasks_idle_cpu;
1346 #endif /* #ifdef CONFIG_TASKS_RCU */
1347 
1348 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1349 	struct sched_info sched_info;
1350 #endif
1351 
1352 	struct list_head tasks;
1353 #ifdef CONFIG_SMP
1354 	struct plist_node pushable_tasks;
1355 	struct rb_node pushable_dl_tasks;
1356 #endif
1357 
1358 	struct mm_struct *mm, *active_mm;
1359 	/* per-thread vma caching */
1360 	u32 vmacache_seqnum;
1361 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1362 #if defined(SPLIT_RSS_COUNTING)
1363 	struct task_rss_stat	rss_stat;
1364 #endif
1365 /* task state */
1366 	int exit_state;
1367 	int exit_code, exit_signal;
1368 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1369 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1370 
1371 	/* Used for emulating ABI behavior of previous Linux versions */
1372 	unsigned int personality;
1373 
1374 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1375 				 * execve */
1376 	unsigned in_iowait:1;
1377 
1378 	/* Revert to default priority/policy when forking */
1379 	unsigned sched_reset_on_fork:1;
1380 	unsigned sched_contributes_to_load:1;
1381 	unsigned sched_migrated:1;
1382 
1383 #ifdef CONFIG_MEMCG_KMEM
1384 	unsigned memcg_kmem_skip_account:1;
1385 #endif
1386 #ifdef CONFIG_COMPAT_BRK
1387 	unsigned brk_randomized:1;
1388 #endif
1389 
1390 	unsigned long atomic_flags; /* Flags needing atomic access. */
1391 
1392 	struct restart_block restart_block;
1393 
1394 	pid_t pid;
1395 	pid_t tgid;
1396 
1397 #ifdef CONFIG_CC_STACKPROTECTOR
1398 	/* Canary value for the -fstack-protector gcc feature */
1399 	unsigned long stack_canary;
1400 #endif
1401 	/*
1402 	 * pointers to (original) parent process, youngest child, younger sibling,
1403 	 * older sibling, respectively.  (p->father can be replaced with
1404 	 * p->real_parent->pid)
1405 	 */
1406 	struct task_struct __rcu *real_parent; /* real parent process */
1407 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1408 	/*
1409 	 * children/sibling forms the list of my natural children
1410 	 */
1411 	struct list_head children;	/* list of my children */
1412 	struct list_head sibling;	/* linkage in my parent's children list */
1413 	struct task_struct *group_leader;	/* threadgroup leader */
1414 
1415 	/*
1416 	 * ptraced is the list of tasks this task is using ptrace on.
1417 	 * This includes both natural children and PTRACE_ATTACH targets.
1418 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1419 	 */
1420 	struct list_head ptraced;
1421 	struct list_head ptrace_entry;
1422 
1423 	/* PID/PID hash table linkage. */
1424 	struct pid_link pids[PIDTYPE_MAX];
1425 	struct list_head thread_group;
1426 	struct list_head thread_node;
1427 
1428 	struct completion *vfork_done;		/* for vfork() */
1429 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1430 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1431 
1432 	cputime_t utime, stime, utimescaled, stimescaled;
1433 	cputime_t gtime;
1434 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1435 	struct cputime prev_cputime;
1436 #endif
1437 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1438 	seqlock_t vtime_seqlock;
1439 	unsigned long long vtime_snap;
1440 	enum {
1441 		VTIME_SLEEPING = 0,
1442 		VTIME_USER,
1443 		VTIME_SYS,
1444 	} vtime_snap_whence;
1445 #endif
1446 	unsigned long nvcsw, nivcsw; /* context switch counts */
1447 	u64 start_time;		/* monotonic time in nsec */
1448 	u64 real_start_time;	/* boot based time in nsec */
1449 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1450 	unsigned long min_flt, maj_flt;
1451 
1452 	struct task_cputime cputime_expires;
1453 	struct list_head cpu_timers[3];
1454 
1455 /* process credentials */
1456 	const struct cred __rcu *real_cred; /* objective and real subjective task
1457 					 * credentials (COW) */
1458 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1459 					 * credentials (COW) */
1460 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1461 				     - access with [gs]et_task_comm (which lock
1462 				       it with task_lock())
1463 				     - initialized normally by setup_new_exec */
1464 /* file system info */
1465 	int link_count, total_link_count;
1466 #ifdef CONFIG_SYSVIPC
1467 /* ipc stuff */
1468 	struct sysv_sem sysvsem;
1469 	struct sysv_shm sysvshm;
1470 #endif
1471 #ifdef CONFIG_DETECT_HUNG_TASK
1472 /* hung task detection */
1473 	unsigned long last_switch_count;
1474 #endif
1475 /* CPU-specific state of this task */
1476 	struct thread_struct thread;
1477 /* filesystem information */
1478 	struct fs_struct *fs;
1479 /* open file information */
1480 	struct files_struct *files;
1481 /* namespaces */
1482 	struct nsproxy *nsproxy;
1483 /* signal handlers */
1484 	struct signal_struct *signal;
1485 	struct sighand_struct *sighand;
1486 
1487 	sigset_t blocked, real_blocked;
1488 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1489 	struct sigpending pending;
1490 
1491 	unsigned long sas_ss_sp;
1492 	size_t sas_ss_size;
1493 	int (*notifier)(void *priv);
1494 	void *notifier_data;
1495 	sigset_t *notifier_mask;
1496 	struct callback_head *task_works;
1497 
1498 	struct audit_context *audit_context;
1499 #ifdef CONFIG_AUDITSYSCALL
1500 	kuid_t loginuid;
1501 	unsigned int sessionid;
1502 #endif
1503 	struct seccomp seccomp;
1504 
1505 /* Thread group tracking */
1506    	u32 parent_exec_id;
1507    	u32 self_exec_id;
1508 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1509  * mempolicy */
1510 	spinlock_t alloc_lock;
1511 
1512 	/* Protection of the PI data structures: */
1513 	raw_spinlock_t pi_lock;
1514 
1515 #ifdef CONFIG_RT_MUTEXES
1516 	/* PI waiters blocked on a rt_mutex held by this task */
1517 	struct rb_root pi_waiters;
1518 	struct rb_node *pi_waiters_leftmost;
1519 	/* Deadlock detection and priority inheritance handling */
1520 	struct rt_mutex_waiter *pi_blocked_on;
1521 #endif
1522 
1523 #ifdef CONFIG_DEBUG_MUTEXES
1524 	/* mutex deadlock detection */
1525 	struct mutex_waiter *blocked_on;
1526 #endif
1527 #ifdef CONFIG_TRACE_IRQFLAGS
1528 	unsigned int irq_events;
1529 	unsigned long hardirq_enable_ip;
1530 	unsigned long hardirq_disable_ip;
1531 	unsigned int hardirq_enable_event;
1532 	unsigned int hardirq_disable_event;
1533 	int hardirqs_enabled;
1534 	int hardirq_context;
1535 	unsigned long softirq_disable_ip;
1536 	unsigned long softirq_enable_ip;
1537 	unsigned int softirq_disable_event;
1538 	unsigned int softirq_enable_event;
1539 	int softirqs_enabled;
1540 	int softirq_context;
1541 #endif
1542 #ifdef CONFIG_LOCKDEP
1543 # define MAX_LOCK_DEPTH 48UL
1544 	u64 curr_chain_key;
1545 	int lockdep_depth;
1546 	unsigned int lockdep_recursion;
1547 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1548 	gfp_t lockdep_reclaim_gfp;
1549 #endif
1550 
1551 /* journalling filesystem info */
1552 	void *journal_info;
1553 
1554 /* stacked block device info */
1555 	struct bio_list *bio_list;
1556 
1557 #ifdef CONFIG_BLOCK
1558 /* stack plugging */
1559 	struct blk_plug *plug;
1560 #endif
1561 
1562 /* VM state */
1563 	struct reclaim_state *reclaim_state;
1564 
1565 	struct backing_dev_info *backing_dev_info;
1566 
1567 	struct io_context *io_context;
1568 
1569 	unsigned long ptrace_message;
1570 	siginfo_t *last_siginfo; /* For ptrace use.  */
1571 	struct task_io_accounting ioac;
1572 #if defined(CONFIG_TASK_XACCT)
1573 	u64 acct_rss_mem1;	/* accumulated rss usage */
1574 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1575 	cputime_t acct_timexpd;	/* stime + utime since last update */
1576 #endif
1577 #ifdef CONFIG_CPUSETS
1578 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1579 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1580 	int cpuset_mem_spread_rotor;
1581 	int cpuset_slab_spread_rotor;
1582 #endif
1583 #ifdef CONFIG_CGROUPS
1584 	/* Control Group info protected by css_set_lock */
1585 	struct css_set __rcu *cgroups;
1586 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1587 	struct list_head cg_list;
1588 #endif
1589 #ifdef CONFIG_FUTEX
1590 	struct robust_list_head __user *robust_list;
1591 #ifdef CONFIG_COMPAT
1592 	struct compat_robust_list_head __user *compat_robust_list;
1593 #endif
1594 	struct list_head pi_state_list;
1595 	struct futex_pi_state *pi_state_cache;
1596 #endif
1597 #ifdef CONFIG_PERF_EVENTS
1598 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1599 	struct mutex perf_event_mutex;
1600 	struct list_head perf_event_list;
1601 #endif
1602 #ifdef CONFIG_DEBUG_PREEMPT
1603 	unsigned long preempt_disable_ip;
1604 #endif
1605 #ifdef CONFIG_NUMA
1606 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1607 	short il_next;
1608 	short pref_node_fork;
1609 #endif
1610 #ifdef CONFIG_NUMA_BALANCING
1611 	int numa_scan_seq;
1612 	unsigned int numa_scan_period;
1613 	unsigned int numa_scan_period_max;
1614 	int numa_preferred_nid;
1615 	unsigned long numa_migrate_retry;
1616 	u64 node_stamp;			/* migration stamp  */
1617 	u64 last_task_numa_placement;
1618 	u64 last_sum_exec_runtime;
1619 	struct callback_head numa_work;
1620 
1621 	struct list_head numa_entry;
1622 	struct numa_group *numa_group;
1623 
1624 	/*
1625 	 * numa_faults is an array split into four regions:
1626 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1627 	 * in this precise order.
1628 	 *
1629 	 * faults_memory: Exponential decaying average of faults on a per-node
1630 	 * basis. Scheduling placement decisions are made based on these
1631 	 * counts. The values remain static for the duration of a PTE scan.
1632 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1633 	 * hinting fault was incurred.
1634 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1635 	 * during the current scan window. When the scan completes, the counts
1636 	 * in faults_memory and faults_cpu decay and these values are copied.
1637 	 */
1638 	unsigned long *numa_faults;
1639 	unsigned long total_numa_faults;
1640 
1641 	/*
1642 	 * numa_faults_locality tracks if faults recorded during the last
1643 	 * scan window were remote/local or failed to migrate. The task scan
1644 	 * period is adapted based on the locality of the faults with different
1645 	 * weights depending on whether they were shared or private faults
1646 	 */
1647 	unsigned long numa_faults_locality[3];
1648 
1649 	unsigned long numa_pages_migrated;
1650 #endif /* CONFIG_NUMA_BALANCING */
1651 
1652 	struct rcu_head rcu;
1653 
1654 	/*
1655 	 * cache last used pipe for splice
1656 	 */
1657 	struct pipe_inode_info *splice_pipe;
1658 
1659 	struct page_frag task_frag;
1660 
1661 #ifdef	CONFIG_TASK_DELAY_ACCT
1662 	struct task_delay_info *delays;
1663 #endif
1664 #ifdef CONFIG_FAULT_INJECTION
1665 	int make_it_fail;
1666 #endif
1667 	/*
1668 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1669 	 * balance_dirty_pages() for some dirty throttling pause
1670 	 */
1671 	int nr_dirtied;
1672 	int nr_dirtied_pause;
1673 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1674 
1675 #ifdef CONFIG_LATENCYTOP
1676 	int latency_record_count;
1677 	struct latency_record latency_record[LT_SAVECOUNT];
1678 #endif
1679 	/*
1680 	 * time slack values; these are used to round up poll() and
1681 	 * select() etc timeout values. These are in nanoseconds.
1682 	 */
1683 	unsigned long timer_slack_ns;
1684 	unsigned long default_timer_slack_ns;
1685 
1686 #ifdef CONFIG_KASAN
1687 	unsigned int kasan_depth;
1688 #endif
1689 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1690 	/* Index of current stored address in ret_stack */
1691 	int curr_ret_stack;
1692 	/* Stack of return addresses for return function tracing */
1693 	struct ftrace_ret_stack	*ret_stack;
1694 	/* time stamp for last schedule */
1695 	unsigned long long ftrace_timestamp;
1696 	/*
1697 	 * Number of functions that haven't been traced
1698 	 * because of depth overrun.
1699 	 */
1700 	atomic_t trace_overrun;
1701 	/* Pause for the tracing */
1702 	atomic_t tracing_graph_pause;
1703 #endif
1704 #ifdef CONFIG_TRACING
1705 	/* state flags for use by tracers */
1706 	unsigned long trace;
1707 	/* bitmask and counter of trace recursion */
1708 	unsigned long trace_recursion;
1709 #endif /* CONFIG_TRACING */
1710 #ifdef CONFIG_MEMCG
1711 	struct memcg_oom_info {
1712 		struct mem_cgroup *memcg;
1713 		gfp_t gfp_mask;
1714 		int order;
1715 		unsigned int may_oom:1;
1716 	} memcg_oom;
1717 #endif
1718 #ifdef CONFIG_UPROBES
1719 	struct uprobe_task *utask;
1720 #endif
1721 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1722 	unsigned int	sequential_io;
1723 	unsigned int	sequential_io_avg;
1724 #endif
1725 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1726 	unsigned long	task_state_change;
1727 #endif
1728 };
1729 
1730 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1731 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1732 
1733 #define TNF_MIGRATED	0x01
1734 #define TNF_NO_GROUP	0x02
1735 #define TNF_SHARED	0x04
1736 #define TNF_FAULT_LOCAL	0x08
1737 #define TNF_MIGRATE_FAIL 0x10
1738 
1739 #ifdef CONFIG_NUMA_BALANCING
1740 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1741 extern pid_t task_numa_group_id(struct task_struct *p);
1742 extern void set_numabalancing_state(bool enabled);
1743 extern void task_numa_free(struct task_struct *p);
1744 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1745 					int src_nid, int dst_cpu);
1746 #else
1747 static inline void task_numa_fault(int last_node, int node, int pages,
1748 				   int flags)
1749 {
1750 }
1751 static inline pid_t task_numa_group_id(struct task_struct *p)
1752 {
1753 	return 0;
1754 }
1755 static inline void set_numabalancing_state(bool enabled)
1756 {
1757 }
1758 static inline void task_numa_free(struct task_struct *p)
1759 {
1760 }
1761 static inline bool should_numa_migrate_memory(struct task_struct *p,
1762 				struct page *page, int src_nid, int dst_cpu)
1763 {
1764 	return true;
1765 }
1766 #endif
1767 
1768 static inline struct pid *task_pid(struct task_struct *task)
1769 {
1770 	return task->pids[PIDTYPE_PID].pid;
1771 }
1772 
1773 static inline struct pid *task_tgid(struct task_struct *task)
1774 {
1775 	return task->group_leader->pids[PIDTYPE_PID].pid;
1776 }
1777 
1778 /*
1779  * Without tasklist or rcu lock it is not safe to dereference
1780  * the result of task_pgrp/task_session even if task == current,
1781  * we can race with another thread doing sys_setsid/sys_setpgid.
1782  */
1783 static inline struct pid *task_pgrp(struct task_struct *task)
1784 {
1785 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1786 }
1787 
1788 static inline struct pid *task_session(struct task_struct *task)
1789 {
1790 	return task->group_leader->pids[PIDTYPE_SID].pid;
1791 }
1792 
1793 struct pid_namespace;
1794 
1795 /*
1796  * the helpers to get the task's different pids as they are seen
1797  * from various namespaces
1798  *
1799  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1800  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1801  *                     current.
1802  * task_xid_nr_ns()  : id seen from the ns specified;
1803  *
1804  * set_task_vxid()   : assigns a virtual id to a task;
1805  *
1806  * see also pid_nr() etc in include/linux/pid.h
1807  */
1808 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1809 			struct pid_namespace *ns);
1810 
1811 static inline pid_t task_pid_nr(struct task_struct *tsk)
1812 {
1813 	return tsk->pid;
1814 }
1815 
1816 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1817 					struct pid_namespace *ns)
1818 {
1819 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1820 }
1821 
1822 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1823 {
1824 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1825 }
1826 
1827 
1828 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1829 {
1830 	return tsk->tgid;
1831 }
1832 
1833 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1834 
1835 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1836 {
1837 	return pid_vnr(task_tgid(tsk));
1838 }
1839 
1840 
1841 static inline int pid_alive(const struct task_struct *p);
1842 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1843 {
1844 	pid_t pid = 0;
1845 
1846 	rcu_read_lock();
1847 	if (pid_alive(tsk))
1848 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1849 	rcu_read_unlock();
1850 
1851 	return pid;
1852 }
1853 
1854 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1855 {
1856 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1857 }
1858 
1859 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1860 					struct pid_namespace *ns)
1861 {
1862 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1863 }
1864 
1865 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1866 {
1867 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1868 }
1869 
1870 
1871 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1872 					struct pid_namespace *ns)
1873 {
1874 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1875 }
1876 
1877 static inline pid_t task_session_vnr(struct task_struct *tsk)
1878 {
1879 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1880 }
1881 
1882 /* obsolete, do not use */
1883 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1884 {
1885 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1886 }
1887 
1888 /**
1889  * pid_alive - check that a task structure is not stale
1890  * @p: Task structure to be checked.
1891  *
1892  * Test if a process is not yet dead (at most zombie state)
1893  * If pid_alive fails, then pointers within the task structure
1894  * can be stale and must not be dereferenced.
1895  *
1896  * Return: 1 if the process is alive. 0 otherwise.
1897  */
1898 static inline int pid_alive(const struct task_struct *p)
1899 {
1900 	return p->pids[PIDTYPE_PID].pid != NULL;
1901 }
1902 
1903 /**
1904  * is_global_init - check if a task structure is init
1905  * @tsk: Task structure to be checked.
1906  *
1907  * Check if a task structure is the first user space task the kernel created.
1908  *
1909  * Return: 1 if the task structure is init. 0 otherwise.
1910  */
1911 static inline int is_global_init(struct task_struct *tsk)
1912 {
1913 	return tsk->pid == 1;
1914 }
1915 
1916 extern struct pid *cad_pid;
1917 
1918 extern void free_task(struct task_struct *tsk);
1919 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1920 
1921 extern void __put_task_struct(struct task_struct *t);
1922 
1923 static inline void put_task_struct(struct task_struct *t)
1924 {
1925 	if (atomic_dec_and_test(&t->usage))
1926 		__put_task_struct(t);
1927 }
1928 
1929 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1930 extern void task_cputime(struct task_struct *t,
1931 			 cputime_t *utime, cputime_t *stime);
1932 extern void task_cputime_scaled(struct task_struct *t,
1933 				cputime_t *utimescaled, cputime_t *stimescaled);
1934 extern cputime_t task_gtime(struct task_struct *t);
1935 #else
1936 static inline void task_cputime(struct task_struct *t,
1937 				cputime_t *utime, cputime_t *stime)
1938 {
1939 	if (utime)
1940 		*utime = t->utime;
1941 	if (stime)
1942 		*stime = t->stime;
1943 }
1944 
1945 static inline void task_cputime_scaled(struct task_struct *t,
1946 				       cputime_t *utimescaled,
1947 				       cputime_t *stimescaled)
1948 {
1949 	if (utimescaled)
1950 		*utimescaled = t->utimescaled;
1951 	if (stimescaled)
1952 		*stimescaled = t->stimescaled;
1953 }
1954 
1955 static inline cputime_t task_gtime(struct task_struct *t)
1956 {
1957 	return t->gtime;
1958 }
1959 #endif
1960 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1961 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1962 
1963 /*
1964  * Per process flags
1965  */
1966 #define PF_EXITING	0x00000004	/* getting shut down */
1967 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1968 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1969 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1970 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1971 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1972 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1973 #define PF_DUMPCORE	0x00000200	/* dumped core */
1974 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1975 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1976 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1977 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1978 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1979 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1980 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1981 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1982 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1983 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1984 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1985 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1986 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1987 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1988 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1989 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1990 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1991 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1992 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1993 
1994 /*
1995  * Only the _current_ task can read/write to tsk->flags, but other
1996  * tasks can access tsk->flags in readonly mode for example
1997  * with tsk_used_math (like during threaded core dumping).
1998  * There is however an exception to this rule during ptrace
1999  * or during fork: the ptracer task is allowed to write to the
2000  * child->flags of its traced child (same goes for fork, the parent
2001  * can write to the child->flags), because we're guaranteed the
2002  * child is not running and in turn not changing child->flags
2003  * at the same time the parent does it.
2004  */
2005 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2006 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2007 #define clear_used_math() clear_stopped_child_used_math(current)
2008 #define set_used_math() set_stopped_child_used_math(current)
2009 #define conditional_stopped_child_used_math(condition, child) \
2010 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2011 #define conditional_used_math(condition) \
2012 	conditional_stopped_child_used_math(condition, current)
2013 #define copy_to_stopped_child_used_math(child) \
2014 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2015 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2016 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2017 #define used_math() tsk_used_math(current)
2018 
2019 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2020  * __GFP_FS is also cleared as it implies __GFP_IO.
2021  */
2022 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2023 {
2024 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2025 		flags &= ~(__GFP_IO | __GFP_FS);
2026 	return flags;
2027 }
2028 
2029 static inline unsigned int memalloc_noio_save(void)
2030 {
2031 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2032 	current->flags |= PF_MEMALLOC_NOIO;
2033 	return flags;
2034 }
2035 
2036 static inline void memalloc_noio_restore(unsigned int flags)
2037 {
2038 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2039 }
2040 
2041 /* Per-process atomic flags. */
2042 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2043 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2044 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2045 
2046 
2047 #define TASK_PFA_TEST(name, func)					\
2048 	static inline bool task_##func(struct task_struct *p)		\
2049 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2050 #define TASK_PFA_SET(name, func)					\
2051 	static inline void task_set_##func(struct task_struct *p)	\
2052 	{ set_bit(PFA_##name, &p->atomic_flags); }
2053 #define TASK_PFA_CLEAR(name, func)					\
2054 	static inline void task_clear_##func(struct task_struct *p)	\
2055 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2056 
2057 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2058 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2059 
2060 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2061 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2062 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2063 
2064 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2065 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2066 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2067 
2068 /*
2069  * task->jobctl flags
2070  */
2071 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2072 
2073 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2074 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2075 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2076 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2077 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2078 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2079 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2080 
2081 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
2082 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
2083 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
2084 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
2085 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
2086 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
2087 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
2088 
2089 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2090 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2091 
2092 extern bool task_set_jobctl_pending(struct task_struct *task,
2093 				    unsigned int mask);
2094 extern void task_clear_jobctl_trapping(struct task_struct *task);
2095 extern void task_clear_jobctl_pending(struct task_struct *task,
2096 				      unsigned int mask);
2097 
2098 static inline void rcu_copy_process(struct task_struct *p)
2099 {
2100 #ifdef CONFIG_PREEMPT_RCU
2101 	p->rcu_read_lock_nesting = 0;
2102 	p->rcu_read_unlock_special.s = 0;
2103 	p->rcu_blocked_node = NULL;
2104 	INIT_LIST_HEAD(&p->rcu_node_entry);
2105 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2106 #ifdef CONFIG_TASKS_RCU
2107 	p->rcu_tasks_holdout = false;
2108 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2109 	p->rcu_tasks_idle_cpu = -1;
2110 #endif /* #ifdef CONFIG_TASKS_RCU */
2111 }
2112 
2113 static inline void tsk_restore_flags(struct task_struct *task,
2114 				unsigned long orig_flags, unsigned long flags)
2115 {
2116 	task->flags &= ~flags;
2117 	task->flags |= orig_flags & flags;
2118 }
2119 
2120 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2121 				     const struct cpumask *trial);
2122 extern int task_can_attach(struct task_struct *p,
2123 			   const struct cpumask *cs_cpus_allowed);
2124 #ifdef CONFIG_SMP
2125 extern void do_set_cpus_allowed(struct task_struct *p,
2126 			       const struct cpumask *new_mask);
2127 
2128 extern int set_cpus_allowed_ptr(struct task_struct *p,
2129 				const struct cpumask *new_mask);
2130 #else
2131 static inline void do_set_cpus_allowed(struct task_struct *p,
2132 				      const struct cpumask *new_mask)
2133 {
2134 }
2135 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2136 				       const struct cpumask *new_mask)
2137 {
2138 	if (!cpumask_test_cpu(0, new_mask))
2139 		return -EINVAL;
2140 	return 0;
2141 }
2142 #endif
2143 
2144 #ifdef CONFIG_NO_HZ_COMMON
2145 void calc_load_enter_idle(void);
2146 void calc_load_exit_idle(void);
2147 #else
2148 static inline void calc_load_enter_idle(void) { }
2149 static inline void calc_load_exit_idle(void) { }
2150 #endif /* CONFIG_NO_HZ_COMMON */
2151 
2152 #ifndef CONFIG_CPUMASK_OFFSTACK
2153 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2154 {
2155 	return set_cpus_allowed_ptr(p, &new_mask);
2156 }
2157 #endif
2158 
2159 /*
2160  * Do not use outside of architecture code which knows its limitations.
2161  *
2162  * sched_clock() has no promise of monotonicity or bounded drift between
2163  * CPUs, use (which you should not) requires disabling IRQs.
2164  *
2165  * Please use one of the three interfaces below.
2166  */
2167 extern unsigned long long notrace sched_clock(void);
2168 /*
2169  * See the comment in kernel/sched/clock.c
2170  */
2171 extern u64 cpu_clock(int cpu);
2172 extern u64 local_clock(void);
2173 extern u64 running_clock(void);
2174 extern u64 sched_clock_cpu(int cpu);
2175 
2176 
2177 extern void sched_clock_init(void);
2178 
2179 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2180 static inline void sched_clock_tick(void)
2181 {
2182 }
2183 
2184 static inline void sched_clock_idle_sleep_event(void)
2185 {
2186 }
2187 
2188 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2189 {
2190 }
2191 #else
2192 /*
2193  * Architectures can set this to 1 if they have specified
2194  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2195  * but then during bootup it turns out that sched_clock()
2196  * is reliable after all:
2197  */
2198 extern int sched_clock_stable(void);
2199 extern void set_sched_clock_stable(void);
2200 extern void clear_sched_clock_stable(void);
2201 
2202 extern void sched_clock_tick(void);
2203 extern void sched_clock_idle_sleep_event(void);
2204 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2205 #endif
2206 
2207 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2208 /*
2209  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2210  * The reason for this explicit opt-in is not to have perf penalty with
2211  * slow sched_clocks.
2212  */
2213 extern void enable_sched_clock_irqtime(void);
2214 extern void disable_sched_clock_irqtime(void);
2215 #else
2216 static inline void enable_sched_clock_irqtime(void) {}
2217 static inline void disable_sched_clock_irqtime(void) {}
2218 #endif
2219 
2220 extern unsigned long long
2221 task_sched_runtime(struct task_struct *task);
2222 
2223 /* sched_exec is called by processes performing an exec */
2224 #ifdef CONFIG_SMP
2225 extern void sched_exec(void);
2226 #else
2227 #define sched_exec()   {}
2228 #endif
2229 
2230 extern void sched_clock_idle_sleep_event(void);
2231 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2232 
2233 #ifdef CONFIG_HOTPLUG_CPU
2234 extern void idle_task_exit(void);
2235 #else
2236 static inline void idle_task_exit(void) {}
2237 #endif
2238 
2239 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2240 extern void wake_up_nohz_cpu(int cpu);
2241 #else
2242 static inline void wake_up_nohz_cpu(int cpu) { }
2243 #endif
2244 
2245 #ifdef CONFIG_NO_HZ_FULL
2246 extern bool sched_can_stop_tick(void);
2247 extern u64 scheduler_tick_max_deferment(void);
2248 #else
2249 static inline bool sched_can_stop_tick(void) { return false; }
2250 #endif
2251 
2252 #ifdef CONFIG_SCHED_AUTOGROUP
2253 extern void sched_autogroup_create_attach(struct task_struct *p);
2254 extern void sched_autogroup_detach(struct task_struct *p);
2255 extern void sched_autogroup_fork(struct signal_struct *sig);
2256 extern void sched_autogroup_exit(struct signal_struct *sig);
2257 #ifdef CONFIG_PROC_FS
2258 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2259 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2260 #endif
2261 #else
2262 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2263 static inline void sched_autogroup_detach(struct task_struct *p) { }
2264 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2265 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2266 #endif
2267 
2268 extern int yield_to(struct task_struct *p, bool preempt);
2269 extern void set_user_nice(struct task_struct *p, long nice);
2270 extern int task_prio(const struct task_struct *p);
2271 /**
2272  * task_nice - return the nice value of a given task.
2273  * @p: the task in question.
2274  *
2275  * Return: The nice value [ -20 ... 0 ... 19 ].
2276  */
2277 static inline int task_nice(const struct task_struct *p)
2278 {
2279 	return PRIO_TO_NICE((p)->static_prio);
2280 }
2281 extern int can_nice(const struct task_struct *p, const int nice);
2282 extern int task_curr(const struct task_struct *p);
2283 extern int idle_cpu(int cpu);
2284 extern int sched_setscheduler(struct task_struct *, int,
2285 			      const struct sched_param *);
2286 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2287 				      const struct sched_param *);
2288 extern int sched_setattr(struct task_struct *,
2289 			 const struct sched_attr *);
2290 extern struct task_struct *idle_task(int cpu);
2291 /**
2292  * is_idle_task - is the specified task an idle task?
2293  * @p: the task in question.
2294  *
2295  * Return: 1 if @p is an idle task. 0 otherwise.
2296  */
2297 static inline bool is_idle_task(const struct task_struct *p)
2298 {
2299 	return p->pid == 0;
2300 }
2301 extern struct task_struct *curr_task(int cpu);
2302 extern void set_curr_task(int cpu, struct task_struct *p);
2303 
2304 void yield(void);
2305 
2306 union thread_union {
2307 	struct thread_info thread_info;
2308 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2309 };
2310 
2311 #ifndef __HAVE_ARCH_KSTACK_END
2312 static inline int kstack_end(void *addr)
2313 {
2314 	/* Reliable end of stack detection:
2315 	 * Some APM bios versions misalign the stack
2316 	 */
2317 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2318 }
2319 #endif
2320 
2321 extern union thread_union init_thread_union;
2322 extern struct task_struct init_task;
2323 
2324 extern struct   mm_struct init_mm;
2325 
2326 extern struct pid_namespace init_pid_ns;
2327 
2328 /*
2329  * find a task by one of its numerical ids
2330  *
2331  * find_task_by_pid_ns():
2332  *      finds a task by its pid in the specified namespace
2333  * find_task_by_vpid():
2334  *      finds a task by its virtual pid
2335  *
2336  * see also find_vpid() etc in include/linux/pid.h
2337  */
2338 
2339 extern struct task_struct *find_task_by_vpid(pid_t nr);
2340 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2341 		struct pid_namespace *ns);
2342 
2343 /* per-UID process charging. */
2344 extern struct user_struct * alloc_uid(kuid_t);
2345 static inline struct user_struct *get_uid(struct user_struct *u)
2346 {
2347 	atomic_inc(&u->__count);
2348 	return u;
2349 }
2350 extern void free_uid(struct user_struct *);
2351 
2352 #include <asm/current.h>
2353 
2354 extern void xtime_update(unsigned long ticks);
2355 
2356 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2357 extern int wake_up_process(struct task_struct *tsk);
2358 extern void wake_up_new_task(struct task_struct *tsk);
2359 #ifdef CONFIG_SMP
2360  extern void kick_process(struct task_struct *tsk);
2361 #else
2362  static inline void kick_process(struct task_struct *tsk) { }
2363 #endif
2364 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2365 extern void sched_dead(struct task_struct *p);
2366 
2367 extern void proc_caches_init(void);
2368 extern void flush_signals(struct task_struct *);
2369 extern void __flush_signals(struct task_struct *);
2370 extern void ignore_signals(struct task_struct *);
2371 extern void flush_signal_handlers(struct task_struct *, int force_default);
2372 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2373 
2374 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2375 {
2376 	unsigned long flags;
2377 	int ret;
2378 
2379 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2380 	ret = dequeue_signal(tsk, mask, info);
2381 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2382 
2383 	return ret;
2384 }
2385 
2386 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2387 			      sigset_t *mask);
2388 extern void unblock_all_signals(void);
2389 extern void release_task(struct task_struct * p);
2390 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2391 extern int force_sigsegv(int, struct task_struct *);
2392 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2393 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2394 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2395 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2396 				const struct cred *, u32);
2397 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2398 extern int kill_pid(struct pid *pid, int sig, int priv);
2399 extern int kill_proc_info(int, struct siginfo *, pid_t);
2400 extern __must_check bool do_notify_parent(struct task_struct *, int);
2401 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2402 extern void force_sig(int, struct task_struct *);
2403 extern int send_sig(int, struct task_struct *, int);
2404 extern int zap_other_threads(struct task_struct *p);
2405 extern struct sigqueue *sigqueue_alloc(void);
2406 extern void sigqueue_free(struct sigqueue *);
2407 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2408 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2409 
2410 static inline void restore_saved_sigmask(void)
2411 {
2412 	if (test_and_clear_restore_sigmask())
2413 		__set_current_blocked(&current->saved_sigmask);
2414 }
2415 
2416 static inline sigset_t *sigmask_to_save(void)
2417 {
2418 	sigset_t *res = &current->blocked;
2419 	if (unlikely(test_restore_sigmask()))
2420 		res = &current->saved_sigmask;
2421 	return res;
2422 }
2423 
2424 static inline int kill_cad_pid(int sig, int priv)
2425 {
2426 	return kill_pid(cad_pid, sig, priv);
2427 }
2428 
2429 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2430 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2431 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2432 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2433 
2434 /*
2435  * True if we are on the alternate signal stack.
2436  */
2437 static inline int on_sig_stack(unsigned long sp)
2438 {
2439 #ifdef CONFIG_STACK_GROWSUP
2440 	return sp >= current->sas_ss_sp &&
2441 		sp - current->sas_ss_sp < current->sas_ss_size;
2442 #else
2443 	return sp > current->sas_ss_sp &&
2444 		sp - current->sas_ss_sp <= current->sas_ss_size;
2445 #endif
2446 }
2447 
2448 static inline int sas_ss_flags(unsigned long sp)
2449 {
2450 	if (!current->sas_ss_size)
2451 		return SS_DISABLE;
2452 
2453 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2454 }
2455 
2456 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2457 {
2458 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2459 #ifdef CONFIG_STACK_GROWSUP
2460 		return current->sas_ss_sp;
2461 #else
2462 		return current->sas_ss_sp + current->sas_ss_size;
2463 #endif
2464 	return sp;
2465 }
2466 
2467 /*
2468  * Routines for handling mm_structs
2469  */
2470 extern struct mm_struct * mm_alloc(void);
2471 
2472 /* mmdrop drops the mm and the page tables */
2473 extern void __mmdrop(struct mm_struct *);
2474 static inline void mmdrop(struct mm_struct * mm)
2475 {
2476 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2477 		__mmdrop(mm);
2478 }
2479 
2480 /* mmput gets rid of the mappings and all user-space */
2481 extern void mmput(struct mm_struct *);
2482 /* Grab a reference to a task's mm, if it is not already going away */
2483 extern struct mm_struct *get_task_mm(struct task_struct *task);
2484 /*
2485  * Grab a reference to a task's mm, if it is not already going away
2486  * and ptrace_may_access with the mode parameter passed to it
2487  * succeeds.
2488  */
2489 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2490 /* Remove the current tasks stale references to the old mm_struct */
2491 extern void mm_release(struct task_struct *, struct mm_struct *);
2492 
2493 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2494 			struct task_struct *);
2495 extern void flush_thread(void);
2496 extern void exit_thread(void);
2497 
2498 extern void exit_files(struct task_struct *);
2499 extern void __cleanup_sighand(struct sighand_struct *);
2500 
2501 extern void exit_itimers(struct signal_struct *);
2502 extern void flush_itimer_signals(void);
2503 
2504 extern void do_group_exit(int);
2505 
2506 extern int do_execve(struct filename *,
2507 		     const char __user * const __user *,
2508 		     const char __user * const __user *);
2509 extern int do_execveat(int, struct filename *,
2510 		       const char __user * const __user *,
2511 		       const char __user * const __user *,
2512 		       int);
2513 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2514 struct task_struct *fork_idle(int);
2515 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2516 
2517 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2518 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2519 {
2520 	__set_task_comm(tsk, from, false);
2521 }
2522 extern char *get_task_comm(char *to, struct task_struct *tsk);
2523 
2524 #ifdef CONFIG_SMP
2525 void scheduler_ipi(void);
2526 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2527 #else
2528 static inline void scheduler_ipi(void) { }
2529 static inline unsigned long wait_task_inactive(struct task_struct *p,
2530 					       long match_state)
2531 {
2532 	return 1;
2533 }
2534 #endif
2535 
2536 #define next_task(p) \
2537 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2538 
2539 #define for_each_process(p) \
2540 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2541 
2542 extern bool current_is_single_threaded(void);
2543 
2544 /*
2545  * Careful: do_each_thread/while_each_thread is a double loop so
2546  *          'break' will not work as expected - use goto instead.
2547  */
2548 #define do_each_thread(g, t) \
2549 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2550 
2551 #define while_each_thread(g, t) \
2552 	while ((t = next_thread(t)) != g)
2553 
2554 #define __for_each_thread(signal, t)	\
2555 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2556 
2557 #define for_each_thread(p, t)		\
2558 	__for_each_thread((p)->signal, t)
2559 
2560 /* Careful: this is a double loop, 'break' won't work as expected. */
2561 #define for_each_process_thread(p, t)	\
2562 	for_each_process(p) for_each_thread(p, t)
2563 
2564 static inline int get_nr_threads(struct task_struct *tsk)
2565 {
2566 	return tsk->signal->nr_threads;
2567 }
2568 
2569 static inline bool thread_group_leader(struct task_struct *p)
2570 {
2571 	return p->exit_signal >= 0;
2572 }
2573 
2574 /* Do to the insanities of de_thread it is possible for a process
2575  * to have the pid of the thread group leader without actually being
2576  * the thread group leader.  For iteration through the pids in proc
2577  * all we care about is that we have a task with the appropriate
2578  * pid, we don't actually care if we have the right task.
2579  */
2580 static inline bool has_group_leader_pid(struct task_struct *p)
2581 {
2582 	return task_pid(p) == p->signal->leader_pid;
2583 }
2584 
2585 static inline
2586 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2587 {
2588 	return p1->signal == p2->signal;
2589 }
2590 
2591 static inline struct task_struct *next_thread(const struct task_struct *p)
2592 {
2593 	return list_entry_rcu(p->thread_group.next,
2594 			      struct task_struct, thread_group);
2595 }
2596 
2597 static inline int thread_group_empty(struct task_struct *p)
2598 {
2599 	return list_empty(&p->thread_group);
2600 }
2601 
2602 #define delay_group_leader(p) \
2603 		(thread_group_leader(p) && !thread_group_empty(p))
2604 
2605 /*
2606  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2607  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2608  * pins the final release of task.io_context.  Also protects ->cpuset and
2609  * ->cgroup.subsys[]. And ->vfork_done.
2610  *
2611  * Nests both inside and outside of read_lock(&tasklist_lock).
2612  * It must not be nested with write_lock_irq(&tasklist_lock),
2613  * neither inside nor outside.
2614  */
2615 static inline void task_lock(struct task_struct *p)
2616 {
2617 	spin_lock(&p->alloc_lock);
2618 }
2619 
2620 static inline void task_unlock(struct task_struct *p)
2621 {
2622 	spin_unlock(&p->alloc_lock);
2623 }
2624 
2625 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2626 							unsigned long *flags);
2627 
2628 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2629 						       unsigned long *flags)
2630 {
2631 	struct sighand_struct *ret;
2632 
2633 	ret = __lock_task_sighand(tsk, flags);
2634 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2635 	return ret;
2636 }
2637 
2638 static inline void unlock_task_sighand(struct task_struct *tsk,
2639 						unsigned long *flags)
2640 {
2641 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2642 }
2643 
2644 #ifdef CONFIG_CGROUPS
2645 static inline void threadgroup_change_begin(struct task_struct *tsk)
2646 {
2647 	down_read(&tsk->signal->group_rwsem);
2648 }
2649 static inline void threadgroup_change_end(struct task_struct *tsk)
2650 {
2651 	up_read(&tsk->signal->group_rwsem);
2652 }
2653 
2654 /**
2655  * threadgroup_lock - lock threadgroup
2656  * @tsk: member task of the threadgroup to lock
2657  *
2658  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2659  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2660  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2661  * needs to stay stable across blockable operations.
2662  *
2663  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2664  * synchronization.  While held, no new task will be added to threadgroup
2665  * and no existing live task will have its PF_EXITING set.
2666  *
2667  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2668  * sub-thread becomes a new leader.
2669  */
2670 static inline void threadgroup_lock(struct task_struct *tsk)
2671 {
2672 	down_write(&tsk->signal->group_rwsem);
2673 }
2674 
2675 /**
2676  * threadgroup_unlock - unlock threadgroup
2677  * @tsk: member task of the threadgroup to unlock
2678  *
2679  * Reverse threadgroup_lock().
2680  */
2681 static inline void threadgroup_unlock(struct task_struct *tsk)
2682 {
2683 	up_write(&tsk->signal->group_rwsem);
2684 }
2685 #else
2686 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2687 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2688 static inline void threadgroup_lock(struct task_struct *tsk) {}
2689 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2690 #endif
2691 
2692 #ifndef __HAVE_THREAD_FUNCTIONS
2693 
2694 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2695 #define task_stack_page(task)	((task)->stack)
2696 
2697 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2698 {
2699 	*task_thread_info(p) = *task_thread_info(org);
2700 	task_thread_info(p)->task = p;
2701 }
2702 
2703 /*
2704  * Return the address of the last usable long on the stack.
2705  *
2706  * When the stack grows down, this is just above the thread
2707  * info struct. Going any lower will corrupt the threadinfo.
2708  *
2709  * When the stack grows up, this is the highest address.
2710  * Beyond that position, we corrupt data on the next page.
2711  */
2712 static inline unsigned long *end_of_stack(struct task_struct *p)
2713 {
2714 #ifdef CONFIG_STACK_GROWSUP
2715 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2716 #else
2717 	return (unsigned long *)(task_thread_info(p) + 1);
2718 #endif
2719 }
2720 
2721 #endif
2722 #define task_stack_end_corrupted(task) \
2723 		(*(end_of_stack(task)) != STACK_END_MAGIC)
2724 
2725 static inline int object_is_on_stack(void *obj)
2726 {
2727 	void *stack = task_stack_page(current);
2728 
2729 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2730 }
2731 
2732 extern void thread_info_cache_init(void);
2733 
2734 #ifdef CONFIG_DEBUG_STACK_USAGE
2735 static inline unsigned long stack_not_used(struct task_struct *p)
2736 {
2737 	unsigned long *n = end_of_stack(p);
2738 
2739 	do { 	/* Skip over canary */
2740 		n++;
2741 	} while (!*n);
2742 
2743 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2744 }
2745 #endif
2746 extern void set_task_stack_end_magic(struct task_struct *tsk);
2747 
2748 /* set thread flags in other task's structures
2749  * - see asm/thread_info.h for TIF_xxxx flags available
2750  */
2751 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2752 {
2753 	set_ti_thread_flag(task_thread_info(tsk), flag);
2754 }
2755 
2756 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2757 {
2758 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2759 }
2760 
2761 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2762 {
2763 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2764 }
2765 
2766 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2767 {
2768 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2769 }
2770 
2771 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2772 {
2773 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2774 }
2775 
2776 static inline void set_tsk_need_resched(struct task_struct *tsk)
2777 {
2778 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2779 }
2780 
2781 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2782 {
2783 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2784 }
2785 
2786 static inline int test_tsk_need_resched(struct task_struct *tsk)
2787 {
2788 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2789 }
2790 
2791 static inline int restart_syscall(void)
2792 {
2793 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2794 	return -ERESTARTNOINTR;
2795 }
2796 
2797 static inline int signal_pending(struct task_struct *p)
2798 {
2799 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2800 }
2801 
2802 static inline int __fatal_signal_pending(struct task_struct *p)
2803 {
2804 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2805 }
2806 
2807 static inline int fatal_signal_pending(struct task_struct *p)
2808 {
2809 	return signal_pending(p) && __fatal_signal_pending(p);
2810 }
2811 
2812 static inline int signal_pending_state(long state, struct task_struct *p)
2813 {
2814 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2815 		return 0;
2816 	if (!signal_pending(p))
2817 		return 0;
2818 
2819 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2820 }
2821 
2822 /*
2823  * cond_resched() and cond_resched_lock(): latency reduction via
2824  * explicit rescheduling in places that are safe. The return
2825  * value indicates whether a reschedule was done in fact.
2826  * cond_resched_lock() will drop the spinlock before scheduling,
2827  * cond_resched_softirq() will enable bhs before scheduling.
2828  */
2829 extern int _cond_resched(void);
2830 
2831 #define cond_resched() ({			\
2832 	___might_sleep(__FILE__, __LINE__, 0);	\
2833 	_cond_resched();			\
2834 })
2835 
2836 extern int __cond_resched_lock(spinlock_t *lock);
2837 
2838 #ifdef CONFIG_PREEMPT_COUNT
2839 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2840 #else
2841 #define PREEMPT_LOCK_OFFSET	0
2842 #endif
2843 
2844 #define cond_resched_lock(lock) ({				\
2845 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2846 	__cond_resched_lock(lock);				\
2847 })
2848 
2849 extern int __cond_resched_softirq(void);
2850 
2851 #define cond_resched_softirq() ({					\
2852 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2853 	__cond_resched_softirq();					\
2854 })
2855 
2856 static inline void cond_resched_rcu(void)
2857 {
2858 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2859 	rcu_read_unlock();
2860 	cond_resched();
2861 	rcu_read_lock();
2862 #endif
2863 }
2864 
2865 /*
2866  * Does a critical section need to be broken due to another
2867  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2868  * but a general need for low latency)
2869  */
2870 static inline int spin_needbreak(spinlock_t *lock)
2871 {
2872 #ifdef CONFIG_PREEMPT
2873 	return spin_is_contended(lock);
2874 #else
2875 	return 0;
2876 #endif
2877 }
2878 
2879 /*
2880  * Idle thread specific functions to determine the need_resched
2881  * polling state.
2882  */
2883 #ifdef TIF_POLLING_NRFLAG
2884 static inline int tsk_is_polling(struct task_struct *p)
2885 {
2886 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2887 }
2888 
2889 static inline void __current_set_polling(void)
2890 {
2891 	set_thread_flag(TIF_POLLING_NRFLAG);
2892 }
2893 
2894 static inline bool __must_check current_set_polling_and_test(void)
2895 {
2896 	__current_set_polling();
2897 
2898 	/*
2899 	 * Polling state must be visible before we test NEED_RESCHED,
2900 	 * paired by resched_curr()
2901 	 */
2902 	smp_mb__after_atomic();
2903 
2904 	return unlikely(tif_need_resched());
2905 }
2906 
2907 static inline void __current_clr_polling(void)
2908 {
2909 	clear_thread_flag(TIF_POLLING_NRFLAG);
2910 }
2911 
2912 static inline bool __must_check current_clr_polling_and_test(void)
2913 {
2914 	__current_clr_polling();
2915 
2916 	/*
2917 	 * Polling state must be visible before we test NEED_RESCHED,
2918 	 * paired by resched_curr()
2919 	 */
2920 	smp_mb__after_atomic();
2921 
2922 	return unlikely(tif_need_resched());
2923 }
2924 
2925 #else
2926 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2927 static inline void __current_set_polling(void) { }
2928 static inline void __current_clr_polling(void) { }
2929 
2930 static inline bool __must_check current_set_polling_and_test(void)
2931 {
2932 	return unlikely(tif_need_resched());
2933 }
2934 static inline bool __must_check current_clr_polling_and_test(void)
2935 {
2936 	return unlikely(tif_need_resched());
2937 }
2938 #endif
2939 
2940 static inline void current_clr_polling(void)
2941 {
2942 	__current_clr_polling();
2943 
2944 	/*
2945 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2946 	 * Once the bit is cleared, we'll get IPIs with every new
2947 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2948 	 * fold.
2949 	 */
2950 	smp_mb(); /* paired with resched_curr() */
2951 
2952 	preempt_fold_need_resched();
2953 }
2954 
2955 static __always_inline bool need_resched(void)
2956 {
2957 	return unlikely(tif_need_resched());
2958 }
2959 
2960 /*
2961  * Thread group CPU time accounting.
2962  */
2963 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2964 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2965 
2966 static inline void thread_group_cputime_init(struct signal_struct *sig)
2967 {
2968 	raw_spin_lock_init(&sig->cputimer.lock);
2969 }
2970 
2971 /*
2972  * Reevaluate whether the task has signals pending delivery.
2973  * Wake the task if so.
2974  * This is required every time the blocked sigset_t changes.
2975  * callers must hold sighand->siglock.
2976  */
2977 extern void recalc_sigpending_and_wake(struct task_struct *t);
2978 extern void recalc_sigpending(void);
2979 
2980 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2981 
2982 static inline void signal_wake_up(struct task_struct *t, bool resume)
2983 {
2984 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2985 }
2986 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2987 {
2988 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2989 }
2990 
2991 /*
2992  * Wrappers for p->thread_info->cpu access. No-op on UP.
2993  */
2994 #ifdef CONFIG_SMP
2995 
2996 static inline unsigned int task_cpu(const struct task_struct *p)
2997 {
2998 	return task_thread_info(p)->cpu;
2999 }
3000 
3001 static inline int task_node(const struct task_struct *p)
3002 {
3003 	return cpu_to_node(task_cpu(p));
3004 }
3005 
3006 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3007 
3008 #else
3009 
3010 static inline unsigned int task_cpu(const struct task_struct *p)
3011 {
3012 	return 0;
3013 }
3014 
3015 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3016 {
3017 }
3018 
3019 #endif /* CONFIG_SMP */
3020 
3021 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3022 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3023 
3024 #ifdef CONFIG_CGROUP_SCHED
3025 extern struct task_group root_task_group;
3026 #endif /* CONFIG_CGROUP_SCHED */
3027 
3028 extern int task_can_switch_user(struct user_struct *up,
3029 					struct task_struct *tsk);
3030 
3031 #ifdef CONFIG_TASK_XACCT
3032 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3033 {
3034 	tsk->ioac.rchar += amt;
3035 }
3036 
3037 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3038 {
3039 	tsk->ioac.wchar += amt;
3040 }
3041 
3042 static inline void inc_syscr(struct task_struct *tsk)
3043 {
3044 	tsk->ioac.syscr++;
3045 }
3046 
3047 static inline void inc_syscw(struct task_struct *tsk)
3048 {
3049 	tsk->ioac.syscw++;
3050 }
3051 #else
3052 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3053 {
3054 }
3055 
3056 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3057 {
3058 }
3059 
3060 static inline void inc_syscr(struct task_struct *tsk)
3061 {
3062 }
3063 
3064 static inline void inc_syscw(struct task_struct *tsk)
3065 {
3066 }
3067 #endif
3068 
3069 #ifndef TASK_SIZE_OF
3070 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3071 #endif
3072 
3073 #ifdef CONFIG_MEMCG
3074 extern void mm_update_next_owner(struct mm_struct *mm);
3075 #else
3076 static inline void mm_update_next_owner(struct mm_struct *mm)
3077 {
3078 }
3079 #endif /* CONFIG_MEMCG */
3080 
3081 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3082 		unsigned int limit)
3083 {
3084 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3085 }
3086 
3087 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3088 		unsigned int limit)
3089 {
3090 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3091 }
3092 
3093 static inline unsigned long rlimit(unsigned int limit)
3094 {
3095 	return task_rlimit(current, limit);
3096 }
3097 
3098 static inline unsigned long rlimit_max(unsigned int limit)
3099 {
3100 	return task_rlimit_max(current, limit);
3101 }
3102 
3103 #endif
3104