1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt_mask.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 62 #include <asm/processor.h> 63 64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 65 66 /* 67 * Extended scheduling parameters data structure. 68 * 69 * This is needed because the original struct sched_param can not be 70 * altered without introducing ABI issues with legacy applications 71 * (e.g., in sched_getparam()). 72 * 73 * However, the possibility of specifying more than just a priority for 74 * the tasks may be useful for a wide variety of application fields, e.g., 75 * multimedia, streaming, automation and control, and many others. 76 * 77 * This variant (sched_attr) is meant at describing a so-called 78 * sporadic time-constrained task. In such model a task is specified by: 79 * - the activation period or minimum instance inter-arrival time; 80 * - the maximum (or average, depending on the actual scheduling 81 * discipline) computation time of all instances, a.k.a. runtime; 82 * - the deadline (relative to the actual activation time) of each 83 * instance. 84 * Very briefly, a periodic (sporadic) task asks for the execution of 85 * some specific computation --which is typically called an instance-- 86 * (at most) every period. Moreover, each instance typically lasts no more 87 * than the runtime and must be completed by time instant t equal to 88 * the instance activation time + the deadline. 89 * 90 * This is reflected by the actual fields of the sched_attr structure: 91 * 92 * @size size of the structure, for fwd/bwd compat. 93 * 94 * @sched_policy task's scheduling policy 95 * @sched_flags for customizing the scheduler behaviour 96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 97 * @sched_priority task's static priority (SCHED_FIFO/RR) 98 * @sched_deadline representative of the task's deadline 99 * @sched_runtime representative of the task's runtime 100 * @sched_period representative of the task's period 101 * 102 * Given this task model, there are a multiplicity of scheduling algorithms 103 * and policies, that can be used to ensure all the tasks will make their 104 * timing constraints. 105 * 106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 107 * only user of this new interface. More information about the algorithm 108 * available in the scheduling class file or in Documentation/. 109 */ 110 struct sched_attr { 111 u32 size; 112 113 u32 sched_policy; 114 u64 sched_flags; 115 116 /* SCHED_NORMAL, SCHED_BATCH */ 117 s32 sched_nice; 118 119 /* SCHED_FIFO, SCHED_RR */ 120 u32 sched_priority; 121 122 /* SCHED_DEADLINE */ 123 u64 sched_runtime; 124 u64 sched_deadline; 125 u64 sched_period; 126 }; 127 128 struct futex_pi_state; 129 struct robust_list_head; 130 struct bio_list; 131 struct fs_struct; 132 struct perf_event_context; 133 struct blk_plug; 134 struct filename; 135 136 #define VMACACHE_BITS 2 137 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 138 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 139 140 /* 141 * These are the constant used to fake the fixed-point load-average 142 * counting. Some notes: 143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 144 * a load-average precision of 10 bits integer + 11 bits fractional 145 * - if you want to count load-averages more often, you need more 146 * precision, or rounding will get you. With 2-second counting freq, 147 * the EXP_n values would be 1981, 2034 and 2043 if still using only 148 * 11 bit fractions. 149 */ 150 extern unsigned long avenrun[]; /* Load averages */ 151 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 152 153 #define FSHIFT 11 /* nr of bits of precision */ 154 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 155 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 156 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 157 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 158 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 159 160 #define CALC_LOAD(load,exp,n) \ 161 load *= exp; \ 162 load += n*(FIXED_1-exp); \ 163 load >>= FSHIFT; 164 165 extern unsigned long total_forks; 166 extern int nr_threads; 167 DECLARE_PER_CPU(unsigned long, process_counts); 168 extern int nr_processes(void); 169 extern unsigned long nr_running(void); 170 extern bool single_task_running(void); 171 extern unsigned long nr_iowait(void); 172 extern unsigned long nr_iowait_cpu(int cpu); 173 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 174 175 extern void calc_global_load(unsigned long ticks); 176 extern void update_cpu_load_nohz(void); 177 178 extern unsigned long get_parent_ip(unsigned long addr); 179 180 extern void dump_cpu_task(int cpu); 181 182 struct seq_file; 183 struct cfs_rq; 184 struct task_group; 185 #ifdef CONFIG_SCHED_DEBUG 186 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 187 extern void proc_sched_set_task(struct task_struct *p); 188 extern void 189 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 190 #endif 191 192 /* 193 * Task state bitmask. NOTE! These bits are also 194 * encoded in fs/proc/array.c: get_task_state(). 195 * 196 * We have two separate sets of flags: task->state 197 * is about runnability, while task->exit_state are 198 * about the task exiting. Confusing, but this way 199 * modifying one set can't modify the other one by 200 * mistake. 201 */ 202 #define TASK_RUNNING 0 203 #define TASK_INTERRUPTIBLE 1 204 #define TASK_UNINTERRUPTIBLE 2 205 #define __TASK_STOPPED 4 206 #define __TASK_TRACED 8 207 /* in tsk->exit_state */ 208 #define EXIT_DEAD 16 209 #define EXIT_ZOMBIE 32 210 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 211 /* in tsk->state again */ 212 #define TASK_DEAD 64 213 #define TASK_WAKEKILL 128 214 #define TASK_WAKING 256 215 #define TASK_PARKED 512 216 #define TASK_STATE_MAX 1024 217 218 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 219 220 extern char ___assert_task_state[1 - 2*!!( 221 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 222 223 /* Convenience macros for the sake of set_task_state */ 224 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 225 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 226 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 227 228 /* Convenience macros for the sake of wake_up */ 229 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 230 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 231 232 /* get_task_state() */ 233 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 234 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 235 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 236 237 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 238 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 239 #define task_is_stopped_or_traced(task) \ 240 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 241 #define task_contributes_to_load(task) \ 242 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 243 (task->flags & PF_FROZEN) == 0) 244 245 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 246 247 #define __set_task_state(tsk, state_value) \ 248 do { \ 249 (tsk)->task_state_change = _THIS_IP_; \ 250 (tsk)->state = (state_value); \ 251 } while (0) 252 #define set_task_state(tsk, state_value) \ 253 do { \ 254 (tsk)->task_state_change = _THIS_IP_; \ 255 set_mb((tsk)->state, (state_value)); \ 256 } while (0) 257 258 /* 259 * set_current_state() includes a barrier so that the write of current->state 260 * is correctly serialised wrt the caller's subsequent test of whether to 261 * actually sleep: 262 * 263 * set_current_state(TASK_UNINTERRUPTIBLE); 264 * if (do_i_need_to_sleep()) 265 * schedule(); 266 * 267 * If the caller does not need such serialisation then use __set_current_state() 268 */ 269 #define __set_current_state(state_value) \ 270 do { \ 271 current->task_state_change = _THIS_IP_; \ 272 current->state = (state_value); \ 273 } while (0) 274 #define set_current_state(state_value) \ 275 do { \ 276 current->task_state_change = _THIS_IP_; \ 277 set_mb(current->state, (state_value)); \ 278 } while (0) 279 280 #else 281 282 #define __set_task_state(tsk, state_value) \ 283 do { (tsk)->state = (state_value); } while (0) 284 #define set_task_state(tsk, state_value) \ 285 set_mb((tsk)->state, (state_value)) 286 287 /* 288 * set_current_state() includes a barrier so that the write of current->state 289 * is correctly serialised wrt the caller's subsequent test of whether to 290 * actually sleep: 291 * 292 * set_current_state(TASK_UNINTERRUPTIBLE); 293 * if (do_i_need_to_sleep()) 294 * schedule(); 295 * 296 * If the caller does not need such serialisation then use __set_current_state() 297 */ 298 #define __set_current_state(state_value) \ 299 do { current->state = (state_value); } while (0) 300 #define set_current_state(state_value) \ 301 set_mb(current->state, (state_value)) 302 303 #endif 304 305 /* Task command name length */ 306 #define TASK_COMM_LEN 16 307 308 #include <linux/spinlock.h> 309 310 /* 311 * This serializes "schedule()" and also protects 312 * the run-queue from deletions/modifications (but 313 * _adding_ to the beginning of the run-queue has 314 * a separate lock). 315 */ 316 extern rwlock_t tasklist_lock; 317 extern spinlock_t mmlist_lock; 318 319 struct task_struct; 320 321 #ifdef CONFIG_PROVE_RCU 322 extern int lockdep_tasklist_lock_is_held(void); 323 #endif /* #ifdef CONFIG_PROVE_RCU */ 324 325 extern void sched_init(void); 326 extern void sched_init_smp(void); 327 extern asmlinkage void schedule_tail(struct task_struct *prev); 328 extern void init_idle(struct task_struct *idle, int cpu); 329 extern void init_idle_bootup_task(struct task_struct *idle); 330 331 extern cpumask_var_t cpu_isolated_map; 332 333 extern int runqueue_is_locked(int cpu); 334 335 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 336 extern void nohz_balance_enter_idle(int cpu); 337 extern void set_cpu_sd_state_idle(void); 338 extern int get_nohz_timer_target(int pinned); 339 #else 340 static inline void nohz_balance_enter_idle(int cpu) { } 341 static inline void set_cpu_sd_state_idle(void) { } 342 static inline int get_nohz_timer_target(int pinned) 343 { 344 return smp_processor_id(); 345 } 346 #endif 347 348 /* 349 * Only dump TASK_* tasks. (0 for all tasks) 350 */ 351 extern void show_state_filter(unsigned long state_filter); 352 353 static inline void show_state(void) 354 { 355 show_state_filter(0); 356 } 357 358 extern void show_regs(struct pt_regs *); 359 360 /* 361 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 362 * task), SP is the stack pointer of the first frame that should be shown in the back 363 * trace (or NULL if the entire call-chain of the task should be shown). 364 */ 365 extern void show_stack(struct task_struct *task, unsigned long *sp); 366 367 extern void cpu_init (void); 368 extern void trap_init(void); 369 extern void update_process_times(int user); 370 extern void scheduler_tick(void); 371 372 extern void sched_show_task(struct task_struct *p); 373 374 #ifdef CONFIG_LOCKUP_DETECTOR 375 extern void touch_softlockup_watchdog(void); 376 extern void touch_softlockup_watchdog_sync(void); 377 extern void touch_all_softlockup_watchdogs(void); 378 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 379 void __user *buffer, 380 size_t *lenp, loff_t *ppos); 381 extern unsigned int softlockup_panic; 382 void lockup_detector_init(void); 383 #else 384 static inline void touch_softlockup_watchdog(void) 385 { 386 } 387 static inline void touch_softlockup_watchdog_sync(void) 388 { 389 } 390 static inline void touch_all_softlockup_watchdogs(void) 391 { 392 } 393 static inline void lockup_detector_init(void) 394 { 395 } 396 #endif 397 398 #ifdef CONFIG_DETECT_HUNG_TASK 399 void reset_hung_task_detector(void); 400 #else 401 static inline void reset_hung_task_detector(void) 402 { 403 } 404 #endif 405 406 /* Attach to any functions which should be ignored in wchan output. */ 407 #define __sched __attribute__((__section__(".sched.text"))) 408 409 /* Linker adds these: start and end of __sched functions */ 410 extern char __sched_text_start[], __sched_text_end[]; 411 412 /* Is this address in the __sched functions? */ 413 extern int in_sched_functions(unsigned long addr); 414 415 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 416 extern signed long schedule_timeout(signed long timeout); 417 extern signed long schedule_timeout_interruptible(signed long timeout); 418 extern signed long schedule_timeout_killable(signed long timeout); 419 extern signed long schedule_timeout_uninterruptible(signed long timeout); 420 asmlinkage void schedule(void); 421 extern void schedule_preempt_disabled(void); 422 423 extern long io_schedule_timeout(long timeout); 424 425 static inline void io_schedule(void) 426 { 427 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 428 } 429 430 struct nsproxy; 431 struct user_namespace; 432 433 #ifdef CONFIG_MMU 434 extern void arch_pick_mmap_layout(struct mm_struct *mm); 435 extern unsigned long 436 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 437 unsigned long, unsigned long); 438 extern unsigned long 439 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 440 unsigned long len, unsigned long pgoff, 441 unsigned long flags); 442 #else 443 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 444 #endif 445 446 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 447 #define SUID_DUMP_USER 1 /* Dump as user of process */ 448 #define SUID_DUMP_ROOT 2 /* Dump as root */ 449 450 /* mm flags */ 451 452 /* for SUID_DUMP_* above */ 453 #define MMF_DUMPABLE_BITS 2 454 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 455 456 extern void set_dumpable(struct mm_struct *mm, int value); 457 /* 458 * This returns the actual value of the suid_dumpable flag. For things 459 * that are using this for checking for privilege transitions, it must 460 * test against SUID_DUMP_USER rather than treating it as a boolean 461 * value. 462 */ 463 static inline int __get_dumpable(unsigned long mm_flags) 464 { 465 return mm_flags & MMF_DUMPABLE_MASK; 466 } 467 468 static inline int get_dumpable(struct mm_struct *mm) 469 { 470 return __get_dumpable(mm->flags); 471 } 472 473 /* coredump filter bits */ 474 #define MMF_DUMP_ANON_PRIVATE 2 475 #define MMF_DUMP_ANON_SHARED 3 476 #define MMF_DUMP_MAPPED_PRIVATE 4 477 #define MMF_DUMP_MAPPED_SHARED 5 478 #define MMF_DUMP_ELF_HEADERS 6 479 #define MMF_DUMP_HUGETLB_PRIVATE 7 480 #define MMF_DUMP_HUGETLB_SHARED 8 481 482 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 483 #define MMF_DUMP_FILTER_BITS 7 484 #define MMF_DUMP_FILTER_MASK \ 485 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 486 #define MMF_DUMP_FILTER_DEFAULT \ 487 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 488 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 489 490 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 491 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 492 #else 493 # define MMF_DUMP_MASK_DEFAULT_ELF 0 494 #endif 495 /* leave room for more dump flags */ 496 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 497 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 498 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 499 500 #define MMF_HAS_UPROBES 19 /* has uprobes */ 501 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 502 503 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 504 505 struct sighand_struct { 506 atomic_t count; 507 struct k_sigaction action[_NSIG]; 508 spinlock_t siglock; 509 wait_queue_head_t signalfd_wqh; 510 }; 511 512 struct pacct_struct { 513 int ac_flag; 514 long ac_exitcode; 515 unsigned long ac_mem; 516 cputime_t ac_utime, ac_stime; 517 unsigned long ac_minflt, ac_majflt; 518 }; 519 520 struct cpu_itimer { 521 cputime_t expires; 522 cputime_t incr; 523 u32 error; 524 u32 incr_error; 525 }; 526 527 /** 528 * struct cputime - snaphsot of system and user cputime 529 * @utime: time spent in user mode 530 * @stime: time spent in system mode 531 * 532 * Gathers a generic snapshot of user and system time. 533 */ 534 struct cputime { 535 cputime_t utime; 536 cputime_t stime; 537 }; 538 539 /** 540 * struct task_cputime - collected CPU time counts 541 * @utime: time spent in user mode, in &cputime_t units 542 * @stime: time spent in kernel mode, in &cputime_t units 543 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 544 * 545 * This is an extension of struct cputime that includes the total runtime 546 * spent by the task from the scheduler point of view. 547 * 548 * As a result, this structure groups together three kinds of CPU time 549 * that are tracked for threads and thread groups. Most things considering 550 * CPU time want to group these counts together and treat all three 551 * of them in parallel. 552 */ 553 struct task_cputime { 554 cputime_t utime; 555 cputime_t stime; 556 unsigned long long sum_exec_runtime; 557 }; 558 /* Alternate field names when used to cache expirations. */ 559 #define prof_exp stime 560 #define virt_exp utime 561 #define sched_exp sum_exec_runtime 562 563 #define INIT_CPUTIME \ 564 (struct task_cputime) { \ 565 .utime = 0, \ 566 .stime = 0, \ 567 .sum_exec_runtime = 0, \ 568 } 569 570 #ifdef CONFIG_PREEMPT_COUNT 571 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 572 #else 573 #define PREEMPT_DISABLED PREEMPT_ENABLED 574 #endif 575 576 /* 577 * Disable preemption until the scheduler is running. 578 * Reset by start_kernel()->sched_init()->init_idle(). 579 * 580 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 581 * before the scheduler is active -- see should_resched(). 582 */ 583 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 584 585 /** 586 * struct thread_group_cputimer - thread group interval timer counts 587 * @cputime: thread group interval timers. 588 * @running: non-zero when there are timers running and 589 * @cputime receives updates. 590 * @lock: lock for fields in this struct. 591 * 592 * This structure contains the version of task_cputime, above, that is 593 * used for thread group CPU timer calculations. 594 */ 595 struct thread_group_cputimer { 596 struct task_cputime cputime; 597 int running; 598 raw_spinlock_t lock; 599 }; 600 601 #include <linux/rwsem.h> 602 struct autogroup; 603 604 /* 605 * NOTE! "signal_struct" does not have its own 606 * locking, because a shared signal_struct always 607 * implies a shared sighand_struct, so locking 608 * sighand_struct is always a proper superset of 609 * the locking of signal_struct. 610 */ 611 struct signal_struct { 612 atomic_t sigcnt; 613 atomic_t live; 614 int nr_threads; 615 struct list_head thread_head; 616 617 wait_queue_head_t wait_chldexit; /* for wait4() */ 618 619 /* current thread group signal load-balancing target: */ 620 struct task_struct *curr_target; 621 622 /* shared signal handling: */ 623 struct sigpending shared_pending; 624 625 /* thread group exit support */ 626 int group_exit_code; 627 /* overloaded: 628 * - notify group_exit_task when ->count is equal to notify_count 629 * - everyone except group_exit_task is stopped during signal delivery 630 * of fatal signals, group_exit_task processes the signal. 631 */ 632 int notify_count; 633 struct task_struct *group_exit_task; 634 635 /* thread group stop support, overloads group_exit_code too */ 636 int group_stop_count; 637 unsigned int flags; /* see SIGNAL_* flags below */ 638 639 /* 640 * PR_SET_CHILD_SUBREAPER marks a process, like a service 641 * manager, to re-parent orphan (double-forking) child processes 642 * to this process instead of 'init'. The service manager is 643 * able to receive SIGCHLD signals and is able to investigate 644 * the process until it calls wait(). All children of this 645 * process will inherit a flag if they should look for a 646 * child_subreaper process at exit. 647 */ 648 unsigned int is_child_subreaper:1; 649 unsigned int has_child_subreaper:1; 650 651 /* POSIX.1b Interval Timers */ 652 int posix_timer_id; 653 struct list_head posix_timers; 654 655 /* ITIMER_REAL timer for the process */ 656 struct hrtimer real_timer; 657 struct pid *leader_pid; 658 ktime_t it_real_incr; 659 660 /* 661 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 662 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 663 * values are defined to 0 and 1 respectively 664 */ 665 struct cpu_itimer it[2]; 666 667 /* 668 * Thread group totals for process CPU timers. 669 * See thread_group_cputimer(), et al, for details. 670 */ 671 struct thread_group_cputimer cputimer; 672 673 /* Earliest-expiration cache. */ 674 struct task_cputime cputime_expires; 675 676 struct list_head cpu_timers[3]; 677 678 struct pid *tty_old_pgrp; 679 680 /* boolean value for session group leader */ 681 int leader; 682 683 struct tty_struct *tty; /* NULL if no tty */ 684 685 #ifdef CONFIG_SCHED_AUTOGROUP 686 struct autogroup *autogroup; 687 #endif 688 /* 689 * Cumulative resource counters for dead threads in the group, 690 * and for reaped dead child processes forked by this group. 691 * Live threads maintain their own counters and add to these 692 * in __exit_signal, except for the group leader. 693 */ 694 seqlock_t stats_lock; 695 cputime_t utime, stime, cutime, cstime; 696 cputime_t gtime; 697 cputime_t cgtime; 698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 699 struct cputime prev_cputime; 700 #endif 701 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 702 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 703 unsigned long inblock, oublock, cinblock, coublock; 704 unsigned long maxrss, cmaxrss; 705 struct task_io_accounting ioac; 706 707 /* 708 * Cumulative ns of schedule CPU time fo dead threads in the 709 * group, not including a zombie group leader, (This only differs 710 * from jiffies_to_ns(utime + stime) if sched_clock uses something 711 * other than jiffies.) 712 */ 713 unsigned long long sum_sched_runtime; 714 715 /* 716 * We don't bother to synchronize most readers of this at all, 717 * because there is no reader checking a limit that actually needs 718 * to get both rlim_cur and rlim_max atomically, and either one 719 * alone is a single word that can safely be read normally. 720 * getrlimit/setrlimit use task_lock(current->group_leader) to 721 * protect this instead of the siglock, because they really 722 * have no need to disable irqs. 723 */ 724 struct rlimit rlim[RLIM_NLIMITS]; 725 726 #ifdef CONFIG_BSD_PROCESS_ACCT 727 struct pacct_struct pacct; /* per-process accounting information */ 728 #endif 729 #ifdef CONFIG_TASKSTATS 730 struct taskstats *stats; 731 #endif 732 #ifdef CONFIG_AUDIT 733 unsigned audit_tty; 734 unsigned audit_tty_log_passwd; 735 struct tty_audit_buf *tty_audit_buf; 736 #endif 737 #ifdef CONFIG_CGROUPS 738 /* 739 * group_rwsem prevents new tasks from entering the threadgroup and 740 * member tasks from exiting,a more specifically, setting of 741 * PF_EXITING. fork and exit paths are protected with this rwsem 742 * using threadgroup_change_begin/end(). Users which require 743 * threadgroup to remain stable should use threadgroup_[un]lock() 744 * which also takes care of exec path. Currently, cgroup is the 745 * only user. 746 */ 747 struct rw_semaphore group_rwsem; 748 #endif 749 750 oom_flags_t oom_flags; 751 short oom_score_adj; /* OOM kill score adjustment */ 752 short oom_score_adj_min; /* OOM kill score adjustment min value. 753 * Only settable by CAP_SYS_RESOURCE. */ 754 755 struct mutex cred_guard_mutex; /* guard against foreign influences on 756 * credential calculations 757 * (notably. ptrace) */ 758 }; 759 760 /* 761 * Bits in flags field of signal_struct. 762 */ 763 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 764 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 765 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 766 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 767 /* 768 * Pending notifications to parent. 769 */ 770 #define SIGNAL_CLD_STOPPED 0x00000010 771 #define SIGNAL_CLD_CONTINUED 0x00000020 772 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 773 774 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 775 776 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 777 static inline int signal_group_exit(const struct signal_struct *sig) 778 { 779 return (sig->flags & SIGNAL_GROUP_EXIT) || 780 (sig->group_exit_task != NULL); 781 } 782 783 /* 784 * Some day this will be a full-fledged user tracking system.. 785 */ 786 struct user_struct { 787 atomic_t __count; /* reference count */ 788 atomic_t processes; /* How many processes does this user have? */ 789 atomic_t sigpending; /* How many pending signals does this user have? */ 790 #ifdef CONFIG_INOTIFY_USER 791 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 792 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 793 #endif 794 #ifdef CONFIG_FANOTIFY 795 atomic_t fanotify_listeners; 796 #endif 797 #ifdef CONFIG_EPOLL 798 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 799 #endif 800 #ifdef CONFIG_POSIX_MQUEUE 801 /* protected by mq_lock */ 802 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 803 #endif 804 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 805 806 #ifdef CONFIG_KEYS 807 struct key *uid_keyring; /* UID specific keyring */ 808 struct key *session_keyring; /* UID's default session keyring */ 809 #endif 810 811 /* Hash table maintenance information */ 812 struct hlist_node uidhash_node; 813 kuid_t uid; 814 815 #ifdef CONFIG_PERF_EVENTS 816 atomic_long_t locked_vm; 817 #endif 818 }; 819 820 extern int uids_sysfs_init(void); 821 822 extern struct user_struct *find_user(kuid_t); 823 824 extern struct user_struct root_user; 825 #define INIT_USER (&root_user) 826 827 828 struct backing_dev_info; 829 struct reclaim_state; 830 831 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 832 struct sched_info { 833 /* cumulative counters */ 834 unsigned long pcount; /* # of times run on this cpu */ 835 unsigned long long run_delay; /* time spent waiting on a runqueue */ 836 837 /* timestamps */ 838 unsigned long long last_arrival,/* when we last ran on a cpu */ 839 last_queued; /* when we were last queued to run */ 840 }; 841 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 842 843 #ifdef CONFIG_TASK_DELAY_ACCT 844 struct task_delay_info { 845 spinlock_t lock; 846 unsigned int flags; /* Private per-task flags */ 847 848 /* For each stat XXX, add following, aligned appropriately 849 * 850 * struct timespec XXX_start, XXX_end; 851 * u64 XXX_delay; 852 * u32 XXX_count; 853 * 854 * Atomicity of updates to XXX_delay, XXX_count protected by 855 * single lock above (split into XXX_lock if contention is an issue). 856 */ 857 858 /* 859 * XXX_count is incremented on every XXX operation, the delay 860 * associated with the operation is added to XXX_delay. 861 * XXX_delay contains the accumulated delay time in nanoseconds. 862 */ 863 u64 blkio_start; /* Shared by blkio, swapin */ 864 u64 blkio_delay; /* wait for sync block io completion */ 865 u64 swapin_delay; /* wait for swapin block io completion */ 866 u32 blkio_count; /* total count of the number of sync block */ 867 /* io operations performed */ 868 u32 swapin_count; /* total count of the number of swapin block */ 869 /* io operations performed */ 870 871 u64 freepages_start; 872 u64 freepages_delay; /* wait for memory reclaim */ 873 u32 freepages_count; /* total count of memory reclaim */ 874 }; 875 #endif /* CONFIG_TASK_DELAY_ACCT */ 876 877 static inline int sched_info_on(void) 878 { 879 #ifdef CONFIG_SCHEDSTATS 880 return 1; 881 #elif defined(CONFIG_TASK_DELAY_ACCT) 882 extern int delayacct_on; 883 return delayacct_on; 884 #else 885 return 0; 886 #endif 887 } 888 889 enum cpu_idle_type { 890 CPU_IDLE, 891 CPU_NOT_IDLE, 892 CPU_NEWLY_IDLE, 893 CPU_MAX_IDLE_TYPES 894 }; 895 896 /* 897 * Increase resolution of cpu_capacity calculations 898 */ 899 #define SCHED_CAPACITY_SHIFT 10 900 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 901 902 /* 903 * sched-domains (multiprocessor balancing) declarations: 904 */ 905 #ifdef CONFIG_SMP 906 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 907 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 908 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 909 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 910 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 911 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 912 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 913 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 914 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 915 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 916 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 917 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 918 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 919 #define SD_NUMA 0x4000 /* cross-node balancing */ 920 921 #ifdef CONFIG_SCHED_SMT 922 static inline int cpu_smt_flags(void) 923 { 924 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 925 } 926 #endif 927 928 #ifdef CONFIG_SCHED_MC 929 static inline int cpu_core_flags(void) 930 { 931 return SD_SHARE_PKG_RESOURCES; 932 } 933 #endif 934 935 #ifdef CONFIG_NUMA 936 static inline int cpu_numa_flags(void) 937 { 938 return SD_NUMA; 939 } 940 #endif 941 942 struct sched_domain_attr { 943 int relax_domain_level; 944 }; 945 946 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 947 .relax_domain_level = -1, \ 948 } 949 950 extern int sched_domain_level_max; 951 952 struct sched_group; 953 954 struct sched_domain { 955 /* These fields must be setup */ 956 struct sched_domain *parent; /* top domain must be null terminated */ 957 struct sched_domain *child; /* bottom domain must be null terminated */ 958 struct sched_group *groups; /* the balancing groups of the domain */ 959 unsigned long min_interval; /* Minimum balance interval ms */ 960 unsigned long max_interval; /* Maximum balance interval ms */ 961 unsigned int busy_factor; /* less balancing by factor if busy */ 962 unsigned int imbalance_pct; /* No balance until over watermark */ 963 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 964 unsigned int busy_idx; 965 unsigned int idle_idx; 966 unsigned int newidle_idx; 967 unsigned int wake_idx; 968 unsigned int forkexec_idx; 969 unsigned int smt_gain; 970 971 int nohz_idle; /* NOHZ IDLE status */ 972 int flags; /* See SD_* */ 973 int level; 974 975 /* Runtime fields. */ 976 unsigned long last_balance; /* init to jiffies. units in jiffies */ 977 unsigned int balance_interval; /* initialise to 1. units in ms. */ 978 unsigned int nr_balance_failed; /* initialise to 0 */ 979 980 /* idle_balance() stats */ 981 u64 max_newidle_lb_cost; 982 unsigned long next_decay_max_lb_cost; 983 984 #ifdef CONFIG_SCHEDSTATS 985 /* load_balance() stats */ 986 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 987 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 988 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 989 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 990 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 991 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 992 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 993 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 994 995 /* Active load balancing */ 996 unsigned int alb_count; 997 unsigned int alb_failed; 998 unsigned int alb_pushed; 999 1000 /* SD_BALANCE_EXEC stats */ 1001 unsigned int sbe_count; 1002 unsigned int sbe_balanced; 1003 unsigned int sbe_pushed; 1004 1005 /* SD_BALANCE_FORK stats */ 1006 unsigned int sbf_count; 1007 unsigned int sbf_balanced; 1008 unsigned int sbf_pushed; 1009 1010 /* try_to_wake_up() stats */ 1011 unsigned int ttwu_wake_remote; 1012 unsigned int ttwu_move_affine; 1013 unsigned int ttwu_move_balance; 1014 #endif 1015 #ifdef CONFIG_SCHED_DEBUG 1016 char *name; 1017 #endif 1018 union { 1019 void *private; /* used during construction */ 1020 struct rcu_head rcu; /* used during destruction */ 1021 }; 1022 1023 unsigned int span_weight; 1024 /* 1025 * Span of all CPUs in this domain. 1026 * 1027 * NOTE: this field is variable length. (Allocated dynamically 1028 * by attaching extra space to the end of the structure, 1029 * depending on how many CPUs the kernel has booted up with) 1030 */ 1031 unsigned long span[0]; 1032 }; 1033 1034 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1035 { 1036 return to_cpumask(sd->span); 1037 } 1038 1039 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1040 struct sched_domain_attr *dattr_new); 1041 1042 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1043 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1044 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1045 1046 bool cpus_share_cache(int this_cpu, int that_cpu); 1047 1048 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1049 typedef int (*sched_domain_flags_f)(void); 1050 1051 #define SDTL_OVERLAP 0x01 1052 1053 struct sd_data { 1054 struct sched_domain **__percpu sd; 1055 struct sched_group **__percpu sg; 1056 struct sched_group_capacity **__percpu sgc; 1057 }; 1058 1059 struct sched_domain_topology_level { 1060 sched_domain_mask_f mask; 1061 sched_domain_flags_f sd_flags; 1062 int flags; 1063 int numa_level; 1064 struct sd_data data; 1065 #ifdef CONFIG_SCHED_DEBUG 1066 char *name; 1067 #endif 1068 }; 1069 1070 extern struct sched_domain_topology_level *sched_domain_topology; 1071 1072 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1073 extern void wake_up_if_idle(int cpu); 1074 1075 #ifdef CONFIG_SCHED_DEBUG 1076 # define SD_INIT_NAME(type) .name = #type 1077 #else 1078 # define SD_INIT_NAME(type) 1079 #endif 1080 1081 #else /* CONFIG_SMP */ 1082 1083 struct sched_domain_attr; 1084 1085 static inline void 1086 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1087 struct sched_domain_attr *dattr_new) 1088 { 1089 } 1090 1091 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1092 { 1093 return true; 1094 } 1095 1096 #endif /* !CONFIG_SMP */ 1097 1098 1099 struct io_context; /* See blkdev.h */ 1100 1101 1102 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1103 extern void prefetch_stack(struct task_struct *t); 1104 #else 1105 static inline void prefetch_stack(struct task_struct *t) { } 1106 #endif 1107 1108 struct audit_context; /* See audit.c */ 1109 struct mempolicy; 1110 struct pipe_inode_info; 1111 struct uts_namespace; 1112 1113 struct load_weight { 1114 unsigned long weight; 1115 u32 inv_weight; 1116 }; 1117 1118 struct sched_avg { 1119 u64 last_runnable_update; 1120 s64 decay_count; 1121 /* 1122 * utilization_avg_contrib describes the amount of time that a 1123 * sched_entity is running on a CPU. It is based on running_avg_sum 1124 * and is scaled in the range [0..SCHED_LOAD_SCALE]. 1125 * load_avg_contrib described the amount of time that a sched_entity 1126 * is runnable on a rq. It is based on both runnable_avg_sum and the 1127 * weight of the task. 1128 */ 1129 unsigned long load_avg_contrib, utilization_avg_contrib; 1130 /* 1131 * These sums represent an infinite geometric series and so are bound 1132 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1133 * choices of y < 1-2^(-32)*1024. 1134 * running_avg_sum reflects the time that the sched_entity is 1135 * effectively running on the CPU. 1136 * runnable_avg_sum represents the amount of time a sched_entity is on 1137 * a runqueue which includes the running time that is monitored by 1138 * running_avg_sum. 1139 */ 1140 u32 runnable_avg_sum, avg_period, running_avg_sum; 1141 }; 1142 1143 #ifdef CONFIG_SCHEDSTATS 1144 struct sched_statistics { 1145 u64 wait_start; 1146 u64 wait_max; 1147 u64 wait_count; 1148 u64 wait_sum; 1149 u64 iowait_count; 1150 u64 iowait_sum; 1151 1152 u64 sleep_start; 1153 u64 sleep_max; 1154 s64 sum_sleep_runtime; 1155 1156 u64 block_start; 1157 u64 block_max; 1158 u64 exec_max; 1159 u64 slice_max; 1160 1161 u64 nr_migrations_cold; 1162 u64 nr_failed_migrations_affine; 1163 u64 nr_failed_migrations_running; 1164 u64 nr_failed_migrations_hot; 1165 u64 nr_forced_migrations; 1166 1167 u64 nr_wakeups; 1168 u64 nr_wakeups_sync; 1169 u64 nr_wakeups_migrate; 1170 u64 nr_wakeups_local; 1171 u64 nr_wakeups_remote; 1172 u64 nr_wakeups_affine; 1173 u64 nr_wakeups_affine_attempts; 1174 u64 nr_wakeups_passive; 1175 u64 nr_wakeups_idle; 1176 }; 1177 #endif 1178 1179 struct sched_entity { 1180 struct load_weight load; /* for load-balancing */ 1181 struct rb_node run_node; 1182 struct list_head group_node; 1183 unsigned int on_rq; 1184 1185 u64 exec_start; 1186 u64 sum_exec_runtime; 1187 u64 vruntime; 1188 u64 prev_sum_exec_runtime; 1189 1190 u64 nr_migrations; 1191 1192 #ifdef CONFIG_SCHEDSTATS 1193 struct sched_statistics statistics; 1194 #endif 1195 1196 #ifdef CONFIG_FAIR_GROUP_SCHED 1197 int depth; 1198 struct sched_entity *parent; 1199 /* rq on which this entity is (to be) queued: */ 1200 struct cfs_rq *cfs_rq; 1201 /* rq "owned" by this entity/group: */ 1202 struct cfs_rq *my_q; 1203 #endif 1204 1205 #ifdef CONFIG_SMP 1206 /* Per-entity load-tracking */ 1207 struct sched_avg avg; 1208 #endif 1209 }; 1210 1211 struct sched_rt_entity { 1212 struct list_head run_list; 1213 unsigned long timeout; 1214 unsigned long watchdog_stamp; 1215 unsigned int time_slice; 1216 1217 struct sched_rt_entity *back; 1218 #ifdef CONFIG_RT_GROUP_SCHED 1219 struct sched_rt_entity *parent; 1220 /* rq on which this entity is (to be) queued: */ 1221 struct rt_rq *rt_rq; 1222 /* rq "owned" by this entity/group: */ 1223 struct rt_rq *my_q; 1224 #endif 1225 }; 1226 1227 struct sched_dl_entity { 1228 struct rb_node rb_node; 1229 1230 /* 1231 * Original scheduling parameters. Copied here from sched_attr 1232 * during sched_setattr(), they will remain the same until 1233 * the next sched_setattr(). 1234 */ 1235 u64 dl_runtime; /* maximum runtime for each instance */ 1236 u64 dl_deadline; /* relative deadline of each instance */ 1237 u64 dl_period; /* separation of two instances (period) */ 1238 u64 dl_bw; /* dl_runtime / dl_deadline */ 1239 1240 /* 1241 * Actual scheduling parameters. Initialized with the values above, 1242 * they are continously updated during task execution. Note that 1243 * the remaining runtime could be < 0 in case we are in overrun. 1244 */ 1245 s64 runtime; /* remaining runtime for this instance */ 1246 u64 deadline; /* absolute deadline for this instance */ 1247 unsigned int flags; /* specifying the scheduler behaviour */ 1248 1249 /* 1250 * Some bool flags: 1251 * 1252 * @dl_throttled tells if we exhausted the runtime. If so, the 1253 * task has to wait for a replenishment to be performed at the 1254 * next firing of dl_timer. 1255 * 1256 * @dl_new tells if a new instance arrived. If so we must 1257 * start executing it with full runtime and reset its absolute 1258 * deadline; 1259 * 1260 * @dl_boosted tells if we are boosted due to DI. If so we are 1261 * outside bandwidth enforcement mechanism (but only until we 1262 * exit the critical section); 1263 * 1264 * @dl_yielded tells if task gave up the cpu before consuming 1265 * all its available runtime during the last job. 1266 */ 1267 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1268 1269 /* 1270 * Bandwidth enforcement timer. Each -deadline task has its 1271 * own bandwidth to be enforced, thus we need one timer per task. 1272 */ 1273 struct hrtimer dl_timer; 1274 }; 1275 1276 union rcu_special { 1277 struct { 1278 bool blocked; 1279 bool need_qs; 1280 } b; 1281 short s; 1282 }; 1283 struct rcu_node; 1284 1285 enum perf_event_task_context { 1286 perf_invalid_context = -1, 1287 perf_hw_context = 0, 1288 perf_sw_context, 1289 perf_nr_task_contexts, 1290 }; 1291 1292 struct task_struct { 1293 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1294 void *stack; 1295 atomic_t usage; 1296 unsigned int flags; /* per process flags, defined below */ 1297 unsigned int ptrace; 1298 1299 #ifdef CONFIG_SMP 1300 struct llist_node wake_entry; 1301 int on_cpu; 1302 struct task_struct *last_wakee; 1303 unsigned long wakee_flips; 1304 unsigned long wakee_flip_decay_ts; 1305 1306 int wake_cpu; 1307 #endif 1308 int on_rq; 1309 1310 int prio, static_prio, normal_prio; 1311 unsigned int rt_priority; 1312 const struct sched_class *sched_class; 1313 struct sched_entity se; 1314 struct sched_rt_entity rt; 1315 #ifdef CONFIG_CGROUP_SCHED 1316 struct task_group *sched_task_group; 1317 #endif 1318 struct sched_dl_entity dl; 1319 1320 #ifdef CONFIG_PREEMPT_NOTIFIERS 1321 /* list of struct preempt_notifier: */ 1322 struct hlist_head preempt_notifiers; 1323 #endif 1324 1325 #ifdef CONFIG_BLK_DEV_IO_TRACE 1326 unsigned int btrace_seq; 1327 #endif 1328 1329 unsigned int policy; 1330 int nr_cpus_allowed; 1331 cpumask_t cpus_allowed; 1332 1333 #ifdef CONFIG_PREEMPT_RCU 1334 int rcu_read_lock_nesting; 1335 union rcu_special rcu_read_unlock_special; 1336 struct list_head rcu_node_entry; 1337 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1338 #ifdef CONFIG_PREEMPT_RCU 1339 struct rcu_node *rcu_blocked_node; 1340 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1341 #ifdef CONFIG_TASKS_RCU 1342 unsigned long rcu_tasks_nvcsw; 1343 bool rcu_tasks_holdout; 1344 struct list_head rcu_tasks_holdout_list; 1345 int rcu_tasks_idle_cpu; 1346 #endif /* #ifdef CONFIG_TASKS_RCU */ 1347 1348 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1349 struct sched_info sched_info; 1350 #endif 1351 1352 struct list_head tasks; 1353 #ifdef CONFIG_SMP 1354 struct plist_node pushable_tasks; 1355 struct rb_node pushable_dl_tasks; 1356 #endif 1357 1358 struct mm_struct *mm, *active_mm; 1359 /* per-thread vma caching */ 1360 u32 vmacache_seqnum; 1361 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1362 #if defined(SPLIT_RSS_COUNTING) 1363 struct task_rss_stat rss_stat; 1364 #endif 1365 /* task state */ 1366 int exit_state; 1367 int exit_code, exit_signal; 1368 int pdeath_signal; /* The signal sent when the parent dies */ 1369 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1370 1371 /* Used for emulating ABI behavior of previous Linux versions */ 1372 unsigned int personality; 1373 1374 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1375 * execve */ 1376 unsigned in_iowait:1; 1377 1378 /* Revert to default priority/policy when forking */ 1379 unsigned sched_reset_on_fork:1; 1380 unsigned sched_contributes_to_load:1; 1381 unsigned sched_migrated:1; 1382 1383 #ifdef CONFIG_MEMCG_KMEM 1384 unsigned memcg_kmem_skip_account:1; 1385 #endif 1386 #ifdef CONFIG_COMPAT_BRK 1387 unsigned brk_randomized:1; 1388 #endif 1389 1390 unsigned long atomic_flags; /* Flags needing atomic access. */ 1391 1392 struct restart_block restart_block; 1393 1394 pid_t pid; 1395 pid_t tgid; 1396 1397 #ifdef CONFIG_CC_STACKPROTECTOR 1398 /* Canary value for the -fstack-protector gcc feature */ 1399 unsigned long stack_canary; 1400 #endif 1401 /* 1402 * pointers to (original) parent process, youngest child, younger sibling, 1403 * older sibling, respectively. (p->father can be replaced with 1404 * p->real_parent->pid) 1405 */ 1406 struct task_struct __rcu *real_parent; /* real parent process */ 1407 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1408 /* 1409 * children/sibling forms the list of my natural children 1410 */ 1411 struct list_head children; /* list of my children */ 1412 struct list_head sibling; /* linkage in my parent's children list */ 1413 struct task_struct *group_leader; /* threadgroup leader */ 1414 1415 /* 1416 * ptraced is the list of tasks this task is using ptrace on. 1417 * This includes both natural children and PTRACE_ATTACH targets. 1418 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1419 */ 1420 struct list_head ptraced; 1421 struct list_head ptrace_entry; 1422 1423 /* PID/PID hash table linkage. */ 1424 struct pid_link pids[PIDTYPE_MAX]; 1425 struct list_head thread_group; 1426 struct list_head thread_node; 1427 1428 struct completion *vfork_done; /* for vfork() */ 1429 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1430 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1431 1432 cputime_t utime, stime, utimescaled, stimescaled; 1433 cputime_t gtime; 1434 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1435 struct cputime prev_cputime; 1436 #endif 1437 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1438 seqlock_t vtime_seqlock; 1439 unsigned long long vtime_snap; 1440 enum { 1441 VTIME_SLEEPING = 0, 1442 VTIME_USER, 1443 VTIME_SYS, 1444 } vtime_snap_whence; 1445 #endif 1446 unsigned long nvcsw, nivcsw; /* context switch counts */ 1447 u64 start_time; /* monotonic time in nsec */ 1448 u64 real_start_time; /* boot based time in nsec */ 1449 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1450 unsigned long min_flt, maj_flt; 1451 1452 struct task_cputime cputime_expires; 1453 struct list_head cpu_timers[3]; 1454 1455 /* process credentials */ 1456 const struct cred __rcu *real_cred; /* objective and real subjective task 1457 * credentials (COW) */ 1458 const struct cred __rcu *cred; /* effective (overridable) subjective task 1459 * credentials (COW) */ 1460 char comm[TASK_COMM_LEN]; /* executable name excluding path 1461 - access with [gs]et_task_comm (which lock 1462 it with task_lock()) 1463 - initialized normally by setup_new_exec */ 1464 /* file system info */ 1465 int link_count, total_link_count; 1466 #ifdef CONFIG_SYSVIPC 1467 /* ipc stuff */ 1468 struct sysv_sem sysvsem; 1469 struct sysv_shm sysvshm; 1470 #endif 1471 #ifdef CONFIG_DETECT_HUNG_TASK 1472 /* hung task detection */ 1473 unsigned long last_switch_count; 1474 #endif 1475 /* CPU-specific state of this task */ 1476 struct thread_struct thread; 1477 /* filesystem information */ 1478 struct fs_struct *fs; 1479 /* open file information */ 1480 struct files_struct *files; 1481 /* namespaces */ 1482 struct nsproxy *nsproxy; 1483 /* signal handlers */ 1484 struct signal_struct *signal; 1485 struct sighand_struct *sighand; 1486 1487 sigset_t blocked, real_blocked; 1488 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1489 struct sigpending pending; 1490 1491 unsigned long sas_ss_sp; 1492 size_t sas_ss_size; 1493 int (*notifier)(void *priv); 1494 void *notifier_data; 1495 sigset_t *notifier_mask; 1496 struct callback_head *task_works; 1497 1498 struct audit_context *audit_context; 1499 #ifdef CONFIG_AUDITSYSCALL 1500 kuid_t loginuid; 1501 unsigned int sessionid; 1502 #endif 1503 struct seccomp seccomp; 1504 1505 /* Thread group tracking */ 1506 u32 parent_exec_id; 1507 u32 self_exec_id; 1508 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1509 * mempolicy */ 1510 spinlock_t alloc_lock; 1511 1512 /* Protection of the PI data structures: */ 1513 raw_spinlock_t pi_lock; 1514 1515 #ifdef CONFIG_RT_MUTEXES 1516 /* PI waiters blocked on a rt_mutex held by this task */ 1517 struct rb_root pi_waiters; 1518 struct rb_node *pi_waiters_leftmost; 1519 /* Deadlock detection and priority inheritance handling */ 1520 struct rt_mutex_waiter *pi_blocked_on; 1521 #endif 1522 1523 #ifdef CONFIG_DEBUG_MUTEXES 1524 /* mutex deadlock detection */ 1525 struct mutex_waiter *blocked_on; 1526 #endif 1527 #ifdef CONFIG_TRACE_IRQFLAGS 1528 unsigned int irq_events; 1529 unsigned long hardirq_enable_ip; 1530 unsigned long hardirq_disable_ip; 1531 unsigned int hardirq_enable_event; 1532 unsigned int hardirq_disable_event; 1533 int hardirqs_enabled; 1534 int hardirq_context; 1535 unsigned long softirq_disable_ip; 1536 unsigned long softirq_enable_ip; 1537 unsigned int softirq_disable_event; 1538 unsigned int softirq_enable_event; 1539 int softirqs_enabled; 1540 int softirq_context; 1541 #endif 1542 #ifdef CONFIG_LOCKDEP 1543 # define MAX_LOCK_DEPTH 48UL 1544 u64 curr_chain_key; 1545 int lockdep_depth; 1546 unsigned int lockdep_recursion; 1547 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1548 gfp_t lockdep_reclaim_gfp; 1549 #endif 1550 1551 /* journalling filesystem info */ 1552 void *journal_info; 1553 1554 /* stacked block device info */ 1555 struct bio_list *bio_list; 1556 1557 #ifdef CONFIG_BLOCK 1558 /* stack plugging */ 1559 struct blk_plug *plug; 1560 #endif 1561 1562 /* VM state */ 1563 struct reclaim_state *reclaim_state; 1564 1565 struct backing_dev_info *backing_dev_info; 1566 1567 struct io_context *io_context; 1568 1569 unsigned long ptrace_message; 1570 siginfo_t *last_siginfo; /* For ptrace use. */ 1571 struct task_io_accounting ioac; 1572 #if defined(CONFIG_TASK_XACCT) 1573 u64 acct_rss_mem1; /* accumulated rss usage */ 1574 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1575 cputime_t acct_timexpd; /* stime + utime since last update */ 1576 #endif 1577 #ifdef CONFIG_CPUSETS 1578 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1579 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1580 int cpuset_mem_spread_rotor; 1581 int cpuset_slab_spread_rotor; 1582 #endif 1583 #ifdef CONFIG_CGROUPS 1584 /* Control Group info protected by css_set_lock */ 1585 struct css_set __rcu *cgroups; 1586 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1587 struct list_head cg_list; 1588 #endif 1589 #ifdef CONFIG_FUTEX 1590 struct robust_list_head __user *robust_list; 1591 #ifdef CONFIG_COMPAT 1592 struct compat_robust_list_head __user *compat_robust_list; 1593 #endif 1594 struct list_head pi_state_list; 1595 struct futex_pi_state *pi_state_cache; 1596 #endif 1597 #ifdef CONFIG_PERF_EVENTS 1598 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1599 struct mutex perf_event_mutex; 1600 struct list_head perf_event_list; 1601 #endif 1602 #ifdef CONFIG_DEBUG_PREEMPT 1603 unsigned long preempt_disable_ip; 1604 #endif 1605 #ifdef CONFIG_NUMA 1606 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1607 short il_next; 1608 short pref_node_fork; 1609 #endif 1610 #ifdef CONFIG_NUMA_BALANCING 1611 int numa_scan_seq; 1612 unsigned int numa_scan_period; 1613 unsigned int numa_scan_period_max; 1614 int numa_preferred_nid; 1615 unsigned long numa_migrate_retry; 1616 u64 node_stamp; /* migration stamp */ 1617 u64 last_task_numa_placement; 1618 u64 last_sum_exec_runtime; 1619 struct callback_head numa_work; 1620 1621 struct list_head numa_entry; 1622 struct numa_group *numa_group; 1623 1624 /* 1625 * numa_faults is an array split into four regions: 1626 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1627 * in this precise order. 1628 * 1629 * faults_memory: Exponential decaying average of faults on a per-node 1630 * basis. Scheduling placement decisions are made based on these 1631 * counts. The values remain static for the duration of a PTE scan. 1632 * faults_cpu: Track the nodes the process was running on when a NUMA 1633 * hinting fault was incurred. 1634 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1635 * during the current scan window. When the scan completes, the counts 1636 * in faults_memory and faults_cpu decay and these values are copied. 1637 */ 1638 unsigned long *numa_faults; 1639 unsigned long total_numa_faults; 1640 1641 /* 1642 * numa_faults_locality tracks if faults recorded during the last 1643 * scan window were remote/local or failed to migrate. The task scan 1644 * period is adapted based on the locality of the faults with different 1645 * weights depending on whether they were shared or private faults 1646 */ 1647 unsigned long numa_faults_locality[3]; 1648 1649 unsigned long numa_pages_migrated; 1650 #endif /* CONFIG_NUMA_BALANCING */ 1651 1652 struct rcu_head rcu; 1653 1654 /* 1655 * cache last used pipe for splice 1656 */ 1657 struct pipe_inode_info *splice_pipe; 1658 1659 struct page_frag task_frag; 1660 1661 #ifdef CONFIG_TASK_DELAY_ACCT 1662 struct task_delay_info *delays; 1663 #endif 1664 #ifdef CONFIG_FAULT_INJECTION 1665 int make_it_fail; 1666 #endif 1667 /* 1668 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1669 * balance_dirty_pages() for some dirty throttling pause 1670 */ 1671 int nr_dirtied; 1672 int nr_dirtied_pause; 1673 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1674 1675 #ifdef CONFIG_LATENCYTOP 1676 int latency_record_count; 1677 struct latency_record latency_record[LT_SAVECOUNT]; 1678 #endif 1679 /* 1680 * time slack values; these are used to round up poll() and 1681 * select() etc timeout values. These are in nanoseconds. 1682 */ 1683 unsigned long timer_slack_ns; 1684 unsigned long default_timer_slack_ns; 1685 1686 #ifdef CONFIG_KASAN 1687 unsigned int kasan_depth; 1688 #endif 1689 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1690 /* Index of current stored address in ret_stack */ 1691 int curr_ret_stack; 1692 /* Stack of return addresses for return function tracing */ 1693 struct ftrace_ret_stack *ret_stack; 1694 /* time stamp for last schedule */ 1695 unsigned long long ftrace_timestamp; 1696 /* 1697 * Number of functions that haven't been traced 1698 * because of depth overrun. 1699 */ 1700 atomic_t trace_overrun; 1701 /* Pause for the tracing */ 1702 atomic_t tracing_graph_pause; 1703 #endif 1704 #ifdef CONFIG_TRACING 1705 /* state flags for use by tracers */ 1706 unsigned long trace; 1707 /* bitmask and counter of trace recursion */ 1708 unsigned long trace_recursion; 1709 #endif /* CONFIG_TRACING */ 1710 #ifdef CONFIG_MEMCG 1711 struct memcg_oom_info { 1712 struct mem_cgroup *memcg; 1713 gfp_t gfp_mask; 1714 int order; 1715 unsigned int may_oom:1; 1716 } memcg_oom; 1717 #endif 1718 #ifdef CONFIG_UPROBES 1719 struct uprobe_task *utask; 1720 #endif 1721 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1722 unsigned int sequential_io; 1723 unsigned int sequential_io_avg; 1724 #endif 1725 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1726 unsigned long task_state_change; 1727 #endif 1728 }; 1729 1730 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1731 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1732 1733 #define TNF_MIGRATED 0x01 1734 #define TNF_NO_GROUP 0x02 1735 #define TNF_SHARED 0x04 1736 #define TNF_FAULT_LOCAL 0x08 1737 #define TNF_MIGRATE_FAIL 0x10 1738 1739 #ifdef CONFIG_NUMA_BALANCING 1740 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1741 extern pid_t task_numa_group_id(struct task_struct *p); 1742 extern void set_numabalancing_state(bool enabled); 1743 extern void task_numa_free(struct task_struct *p); 1744 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1745 int src_nid, int dst_cpu); 1746 #else 1747 static inline void task_numa_fault(int last_node, int node, int pages, 1748 int flags) 1749 { 1750 } 1751 static inline pid_t task_numa_group_id(struct task_struct *p) 1752 { 1753 return 0; 1754 } 1755 static inline void set_numabalancing_state(bool enabled) 1756 { 1757 } 1758 static inline void task_numa_free(struct task_struct *p) 1759 { 1760 } 1761 static inline bool should_numa_migrate_memory(struct task_struct *p, 1762 struct page *page, int src_nid, int dst_cpu) 1763 { 1764 return true; 1765 } 1766 #endif 1767 1768 static inline struct pid *task_pid(struct task_struct *task) 1769 { 1770 return task->pids[PIDTYPE_PID].pid; 1771 } 1772 1773 static inline struct pid *task_tgid(struct task_struct *task) 1774 { 1775 return task->group_leader->pids[PIDTYPE_PID].pid; 1776 } 1777 1778 /* 1779 * Without tasklist or rcu lock it is not safe to dereference 1780 * the result of task_pgrp/task_session even if task == current, 1781 * we can race with another thread doing sys_setsid/sys_setpgid. 1782 */ 1783 static inline struct pid *task_pgrp(struct task_struct *task) 1784 { 1785 return task->group_leader->pids[PIDTYPE_PGID].pid; 1786 } 1787 1788 static inline struct pid *task_session(struct task_struct *task) 1789 { 1790 return task->group_leader->pids[PIDTYPE_SID].pid; 1791 } 1792 1793 struct pid_namespace; 1794 1795 /* 1796 * the helpers to get the task's different pids as they are seen 1797 * from various namespaces 1798 * 1799 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1800 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1801 * current. 1802 * task_xid_nr_ns() : id seen from the ns specified; 1803 * 1804 * set_task_vxid() : assigns a virtual id to a task; 1805 * 1806 * see also pid_nr() etc in include/linux/pid.h 1807 */ 1808 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1809 struct pid_namespace *ns); 1810 1811 static inline pid_t task_pid_nr(struct task_struct *tsk) 1812 { 1813 return tsk->pid; 1814 } 1815 1816 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1817 struct pid_namespace *ns) 1818 { 1819 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1820 } 1821 1822 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1823 { 1824 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1825 } 1826 1827 1828 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1829 { 1830 return tsk->tgid; 1831 } 1832 1833 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1834 1835 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1836 { 1837 return pid_vnr(task_tgid(tsk)); 1838 } 1839 1840 1841 static inline int pid_alive(const struct task_struct *p); 1842 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1843 { 1844 pid_t pid = 0; 1845 1846 rcu_read_lock(); 1847 if (pid_alive(tsk)) 1848 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1849 rcu_read_unlock(); 1850 1851 return pid; 1852 } 1853 1854 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1855 { 1856 return task_ppid_nr_ns(tsk, &init_pid_ns); 1857 } 1858 1859 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1860 struct pid_namespace *ns) 1861 { 1862 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1863 } 1864 1865 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1866 { 1867 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1868 } 1869 1870 1871 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1872 struct pid_namespace *ns) 1873 { 1874 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1875 } 1876 1877 static inline pid_t task_session_vnr(struct task_struct *tsk) 1878 { 1879 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1880 } 1881 1882 /* obsolete, do not use */ 1883 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1884 { 1885 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1886 } 1887 1888 /** 1889 * pid_alive - check that a task structure is not stale 1890 * @p: Task structure to be checked. 1891 * 1892 * Test if a process is not yet dead (at most zombie state) 1893 * If pid_alive fails, then pointers within the task structure 1894 * can be stale and must not be dereferenced. 1895 * 1896 * Return: 1 if the process is alive. 0 otherwise. 1897 */ 1898 static inline int pid_alive(const struct task_struct *p) 1899 { 1900 return p->pids[PIDTYPE_PID].pid != NULL; 1901 } 1902 1903 /** 1904 * is_global_init - check if a task structure is init 1905 * @tsk: Task structure to be checked. 1906 * 1907 * Check if a task structure is the first user space task the kernel created. 1908 * 1909 * Return: 1 if the task structure is init. 0 otherwise. 1910 */ 1911 static inline int is_global_init(struct task_struct *tsk) 1912 { 1913 return tsk->pid == 1; 1914 } 1915 1916 extern struct pid *cad_pid; 1917 1918 extern void free_task(struct task_struct *tsk); 1919 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1920 1921 extern void __put_task_struct(struct task_struct *t); 1922 1923 static inline void put_task_struct(struct task_struct *t) 1924 { 1925 if (atomic_dec_and_test(&t->usage)) 1926 __put_task_struct(t); 1927 } 1928 1929 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1930 extern void task_cputime(struct task_struct *t, 1931 cputime_t *utime, cputime_t *stime); 1932 extern void task_cputime_scaled(struct task_struct *t, 1933 cputime_t *utimescaled, cputime_t *stimescaled); 1934 extern cputime_t task_gtime(struct task_struct *t); 1935 #else 1936 static inline void task_cputime(struct task_struct *t, 1937 cputime_t *utime, cputime_t *stime) 1938 { 1939 if (utime) 1940 *utime = t->utime; 1941 if (stime) 1942 *stime = t->stime; 1943 } 1944 1945 static inline void task_cputime_scaled(struct task_struct *t, 1946 cputime_t *utimescaled, 1947 cputime_t *stimescaled) 1948 { 1949 if (utimescaled) 1950 *utimescaled = t->utimescaled; 1951 if (stimescaled) 1952 *stimescaled = t->stimescaled; 1953 } 1954 1955 static inline cputime_t task_gtime(struct task_struct *t) 1956 { 1957 return t->gtime; 1958 } 1959 #endif 1960 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1961 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1962 1963 /* 1964 * Per process flags 1965 */ 1966 #define PF_EXITING 0x00000004 /* getting shut down */ 1967 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1968 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1969 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1970 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1971 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1972 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1973 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1974 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1975 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1976 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1977 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1978 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1979 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1980 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1981 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1982 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1983 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1984 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1985 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1986 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1987 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1988 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1989 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1990 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1991 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1992 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1993 1994 /* 1995 * Only the _current_ task can read/write to tsk->flags, but other 1996 * tasks can access tsk->flags in readonly mode for example 1997 * with tsk_used_math (like during threaded core dumping). 1998 * There is however an exception to this rule during ptrace 1999 * or during fork: the ptracer task is allowed to write to the 2000 * child->flags of its traced child (same goes for fork, the parent 2001 * can write to the child->flags), because we're guaranteed the 2002 * child is not running and in turn not changing child->flags 2003 * at the same time the parent does it. 2004 */ 2005 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2006 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2007 #define clear_used_math() clear_stopped_child_used_math(current) 2008 #define set_used_math() set_stopped_child_used_math(current) 2009 #define conditional_stopped_child_used_math(condition, child) \ 2010 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2011 #define conditional_used_math(condition) \ 2012 conditional_stopped_child_used_math(condition, current) 2013 #define copy_to_stopped_child_used_math(child) \ 2014 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2015 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2016 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2017 #define used_math() tsk_used_math(current) 2018 2019 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2020 * __GFP_FS is also cleared as it implies __GFP_IO. 2021 */ 2022 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2023 { 2024 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2025 flags &= ~(__GFP_IO | __GFP_FS); 2026 return flags; 2027 } 2028 2029 static inline unsigned int memalloc_noio_save(void) 2030 { 2031 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2032 current->flags |= PF_MEMALLOC_NOIO; 2033 return flags; 2034 } 2035 2036 static inline void memalloc_noio_restore(unsigned int flags) 2037 { 2038 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2039 } 2040 2041 /* Per-process atomic flags. */ 2042 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2043 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2044 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2045 2046 2047 #define TASK_PFA_TEST(name, func) \ 2048 static inline bool task_##func(struct task_struct *p) \ 2049 { return test_bit(PFA_##name, &p->atomic_flags); } 2050 #define TASK_PFA_SET(name, func) \ 2051 static inline void task_set_##func(struct task_struct *p) \ 2052 { set_bit(PFA_##name, &p->atomic_flags); } 2053 #define TASK_PFA_CLEAR(name, func) \ 2054 static inline void task_clear_##func(struct task_struct *p) \ 2055 { clear_bit(PFA_##name, &p->atomic_flags); } 2056 2057 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2058 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2059 2060 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2061 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2062 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2063 2064 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2065 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2066 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2067 2068 /* 2069 * task->jobctl flags 2070 */ 2071 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2072 2073 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2074 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2075 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2076 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2077 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2078 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2079 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2080 2081 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 2082 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 2083 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 2084 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 2085 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 2086 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 2087 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 2088 2089 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2090 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2091 2092 extern bool task_set_jobctl_pending(struct task_struct *task, 2093 unsigned int mask); 2094 extern void task_clear_jobctl_trapping(struct task_struct *task); 2095 extern void task_clear_jobctl_pending(struct task_struct *task, 2096 unsigned int mask); 2097 2098 static inline void rcu_copy_process(struct task_struct *p) 2099 { 2100 #ifdef CONFIG_PREEMPT_RCU 2101 p->rcu_read_lock_nesting = 0; 2102 p->rcu_read_unlock_special.s = 0; 2103 p->rcu_blocked_node = NULL; 2104 INIT_LIST_HEAD(&p->rcu_node_entry); 2105 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2106 #ifdef CONFIG_TASKS_RCU 2107 p->rcu_tasks_holdout = false; 2108 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2109 p->rcu_tasks_idle_cpu = -1; 2110 #endif /* #ifdef CONFIG_TASKS_RCU */ 2111 } 2112 2113 static inline void tsk_restore_flags(struct task_struct *task, 2114 unsigned long orig_flags, unsigned long flags) 2115 { 2116 task->flags &= ~flags; 2117 task->flags |= orig_flags & flags; 2118 } 2119 2120 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2121 const struct cpumask *trial); 2122 extern int task_can_attach(struct task_struct *p, 2123 const struct cpumask *cs_cpus_allowed); 2124 #ifdef CONFIG_SMP 2125 extern void do_set_cpus_allowed(struct task_struct *p, 2126 const struct cpumask *new_mask); 2127 2128 extern int set_cpus_allowed_ptr(struct task_struct *p, 2129 const struct cpumask *new_mask); 2130 #else 2131 static inline void do_set_cpus_allowed(struct task_struct *p, 2132 const struct cpumask *new_mask) 2133 { 2134 } 2135 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2136 const struct cpumask *new_mask) 2137 { 2138 if (!cpumask_test_cpu(0, new_mask)) 2139 return -EINVAL; 2140 return 0; 2141 } 2142 #endif 2143 2144 #ifdef CONFIG_NO_HZ_COMMON 2145 void calc_load_enter_idle(void); 2146 void calc_load_exit_idle(void); 2147 #else 2148 static inline void calc_load_enter_idle(void) { } 2149 static inline void calc_load_exit_idle(void) { } 2150 #endif /* CONFIG_NO_HZ_COMMON */ 2151 2152 #ifndef CONFIG_CPUMASK_OFFSTACK 2153 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2154 { 2155 return set_cpus_allowed_ptr(p, &new_mask); 2156 } 2157 #endif 2158 2159 /* 2160 * Do not use outside of architecture code which knows its limitations. 2161 * 2162 * sched_clock() has no promise of monotonicity or bounded drift between 2163 * CPUs, use (which you should not) requires disabling IRQs. 2164 * 2165 * Please use one of the three interfaces below. 2166 */ 2167 extern unsigned long long notrace sched_clock(void); 2168 /* 2169 * See the comment in kernel/sched/clock.c 2170 */ 2171 extern u64 cpu_clock(int cpu); 2172 extern u64 local_clock(void); 2173 extern u64 running_clock(void); 2174 extern u64 sched_clock_cpu(int cpu); 2175 2176 2177 extern void sched_clock_init(void); 2178 2179 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2180 static inline void sched_clock_tick(void) 2181 { 2182 } 2183 2184 static inline void sched_clock_idle_sleep_event(void) 2185 { 2186 } 2187 2188 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2189 { 2190 } 2191 #else 2192 /* 2193 * Architectures can set this to 1 if they have specified 2194 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2195 * but then during bootup it turns out that sched_clock() 2196 * is reliable after all: 2197 */ 2198 extern int sched_clock_stable(void); 2199 extern void set_sched_clock_stable(void); 2200 extern void clear_sched_clock_stable(void); 2201 2202 extern void sched_clock_tick(void); 2203 extern void sched_clock_idle_sleep_event(void); 2204 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2205 #endif 2206 2207 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2208 /* 2209 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2210 * The reason for this explicit opt-in is not to have perf penalty with 2211 * slow sched_clocks. 2212 */ 2213 extern void enable_sched_clock_irqtime(void); 2214 extern void disable_sched_clock_irqtime(void); 2215 #else 2216 static inline void enable_sched_clock_irqtime(void) {} 2217 static inline void disable_sched_clock_irqtime(void) {} 2218 #endif 2219 2220 extern unsigned long long 2221 task_sched_runtime(struct task_struct *task); 2222 2223 /* sched_exec is called by processes performing an exec */ 2224 #ifdef CONFIG_SMP 2225 extern void sched_exec(void); 2226 #else 2227 #define sched_exec() {} 2228 #endif 2229 2230 extern void sched_clock_idle_sleep_event(void); 2231 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2232 2233 #ifdef CONFIG_HOTPLUG_CPU 2234 extern void idle_task_exit(void); 2235 #else 2236 static inline void idle_task_exit(void) {} 2237 #endif 2238 2239 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2240 extern void wake_up_nohz_cpu(int cpu); 2241 #else 2242 static inline void wake_up_nohz_cpu(int cpu) { } 2243 #endif 2244 2245 #ifdef CONFIG_NO_HZ_FULL 2246 extern bool sched_can_stop_tick(void); 2247 extern u64 scheduler_tick_max_deferment(void); 2248 #else 2249 static inline bool sched_can_stop_tick(void) { return false; } 2250 #endif 2251 2252 #ifdef CONFIG_SCHED_AUTOGROUP 2253 extern void sched_autogroup_create_attach(struct task_struct *p); 2254 extern void sched_autogroup_detach(struct task_struct *p); 2255 extern void sched_autogroup_fork(struct signal_struct *sig); 2256 extern void sched_autogroup_exit(struct signal_struct *sig); 2257 #ifdef CONFIG_PROC_FS 2258 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2259 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2260 #endif 2261 #else 2262 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2263 static inline void sched_autogroup_detach(struct task_struct *p) { } 2264 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2265 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2266 #endif 2267 2268 extern int yield_to(struct task_struct *p, bool preempt); 2269 extern void set_user_nice(struct task_struct *p, long nice); 2270 extern int task_prio(const struct task_struct *p); 2271 /** 2272 * task_nice - return the nice value of a given task. 2273 * @p: the task in question. 2274 * 2275 * Return: The nice value [ -20 ... 0 ... 19 ]. 2276 */ 2277 static inline int task_nice(const struct task_struct *p) 2278 { 2279 return PRIO_TO_NICE((p)->static_prio); 2280 } 2281 extern int can_nice(const struct task_struct *p, const int nice); 2282 extern int task_curr(const struct task_struct *p); 2283 extern int idle_cpu(int cpu); 2284 extern int sched_setscheduler(struct task_struct *, int, 2285 const struct sched_param *); 2286 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2287 const struct sched_param *); 2288 extern int sched_setattr(struct task_struct *, 2289 const struct sched_attr *); 2290 extern struct task_struct *idle_task(int cpu); 2291 /** 2292 * is_idle_task - is the specified task an idle task? 2293 * @p: the task in question. 2294 * 2295 * Return: 1 if @p is an idle task. 0 otherwise. 2296 */ 2297 static inline bool is_idle_task(const struct task_struct *p) 2298 { 2299 return p->pid == 0; 2300 } 2301 extern struct task_struct *curr_task(int cpu); 2302 extern void set_curr_task(int cpu, struct task_struct *p); 2303 2304 void yield(void); 2305 2306 union thread_union { 2307 struct thread_info thread_info; 2308 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2309 }; 2310 2311 #ifndef __HAVE_ARCH_KSTACK_END 2312 static inline int kstack_end(void *addr) 2313 { 2314 /* Reliable end of stack detection: 2315 * Some APM bios versions misalign the stack 2316 */ 2317 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2318 } 2319 #endif 2320 2321 extern union thread_union init_thread_union; 2322 extern struct task_struct init_task; 2323 2324 extern struct mm_struct init_mm; 2325 2326 extern struct pid_namespace init_pid_ns; 2327 2328 /* 2329 * find a task by one of its numerical ids 2330 * 2331 * find_task_by_pid_ns(): 2332 * finds a task by its pid in the specified namespace 2333 * find_task_by_vpid(): 2334 * finds a task by its virtual pid 2335 * 2336 * see also find_vpid() etc in include/linux/pid.h 2337 */ 2338 2339 extern struct task_struct *find_task_by_vpid(pid_t nr); 2340 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2341 struct pid_namespace *ns); 2342 2343 /* per-UID process charging. */ 2344 extern struct user_struct * alloc_uid(kuid_t); 2345 static inline struct user_struct *get_uid(struct user_struct *u) 2346 { 2347 atomic_inc(&u->__count); 2348 return u; 2349 } 2350 extern void free_uid(struct user_struct *); 2351 2352 #include <asm/current.h> 2353 2354 extern void xtime_update(unsigned long ticks); 2355 2356 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2357 extern int wake_up_process(struct task_struct *tsk); 2358 extern void wake_up_new_task(struct task_struct *tsk); 2359 #ifdef CONFIG_SMP 2360 extern void kick_process(struct task_struct *tsk); 2361 #else 2362 static inline void kick_process(struct task_struct *tsk) { } 2363 #endif 2364 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2365 extern void sched_dead(struct task_struct *p); 2366 2367 extern void proc_caches_init(void); 2368 extern void flush_signals(struct task_struct *); 2369 extern void __flush_signals(struct task_struct *); 2370 extern void ignore_signals(struct task_struct *); 2371 extern void flush_signal_handlers(struct task_struct *, int force_default); 2372 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2373 2374 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2375 { 2376 unsigned long flags; 2377 int ret; 2378 2379 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2380 ret = dequeue_signal(tsk, mask, info); 2381 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2382 2383 return ret; 2384 } 2385 2386 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2387 sigset_t *mask); 2388 extern void unblock_all_signals(void); 2389 extern void release_task(struct task_struct * p); 2390 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2391 extern int force_sigsegv(int, struct task_struct *); 2392 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2393 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2394 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2395 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2396 const struct cred *, u32); 2397 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2398 extern int kill_pid(struct pid *pid, int sig, int priv); 2399 extern int kill_proc_info(int, struct siginfo *, pid_t); 2400 extern __must_check bool do_notify_parent(struct task_struct *, int); 2401 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2402 extern void force_sig(int, struct task_struct *); 2403 extern int send_sig(int, struct task_struct *, int); 2404 extern int zap_other_threads(struct task_struct *p); 2405 extern struct sigqueue *sigqueue_alloc(void); 2406 extern void sigqueue_free(struct sigqueue *); 2407 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2408 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2409 2410 static inline void restore_saved_sigmask(void) 2411 { 2412 if (test_and_clear_restore_sigmask()) 2413 __set_current_blocked(¤t->saved_sigmask); 2414 } 2415 2416 static inline sigset_t *sigmask_to_save(void) 2417 { 2418 sigset_t *res = ¤t->blocked; 2419 if (unlikely(test_restore_sigmask())) 2420 res = ¤t->saved_sigmask; 2421 return res; 2422 } 2423 2424 static inline int kill_cad_pid(int sig, int priv) 2425 { 2426 return kill_pid(cad_pid, sig, priv); 2427 } 2428 2429 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2430 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2431 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2432 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2433 2434 /* 2435 * True if we are on the alternate signal stack. 2436 */ 2437 static inline int on_sig_stack(unsigned long sp) 2438 { 2439 #ifdef CONFIG_STACK_GROWSUP 2440 return sp >= current->sas_ss_sp && 2441 sp - current->sas_ss_sp < current->sas_ss_size; 2442 #else 2443 return sp > current->sas_ss_sp && 2444 sp - current->sas_ss_sp <= current->sas_ss_size; 2445 #endif 2446 } 2447 2448 static inline int sas_ss_flags(unsigned long sp) 2449 { 2450 if (!current->sas_ss_size) 2451 return SS_DISABLE; 2452 2453 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2454 } 2455 2456 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2457 { 2458 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2459 #ifdef CONFIG_STACK_GROWSUP 2460 return current->sas_ss_sp; 2461 #else 2462 return current->sas_ss_sp + current->sas_ss_size; 2463 #endif 2464 return sp; 2465 } 2466 2467 /* 2468 * Routines for handling mm_structs 2469 */ 2470 extern struct mm_struct * mm_alloc(void); 2471 2472 /* mmdrop drops the mm and the page tables */ 2473 extern void __mmdrop(struct mm_struct *); 2474 static inline void mmdrop(struct mm_struct * mm) 2475 { 2476 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2477 __mmdrop(mm); 2478 } 2479 2480 /* mmput gets rid of the mappings and all user-space */ 2481 extern void mmput(struct mm_struct *); 2482 /* Grab a reference to a task's mm, if it is not already going away */ 2483 extern struct mm_struct *get_task_mm(struct task_struct *task); 2484 /* 2485 * Grab a reference to a task's mm, if it is not already going away 2486 * and ptrace_may_access with the mode parameter passed to it 2487 * succeeds. 2488 */ 2489 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2490 /* Remove the current tasks stale references to the old mm_struct */ 2491 extern void mm_release(struct task_struct *, struct mm_struct *); 2492 2493 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2494 struct task_struct *); 2495 extern void flush_thread(void); 2496 extern void exit_thread(void); 2497 2498 extern void exit_files(struct task_struct *); 2499 extern void __cleanup_sighand(struct sighand_struct *); 2500 2501 extern void exit_itimers(struct signal_struct *); 2502 extern void flush_itimer_signals(void); 2503 2504 extern void do_group_exit(int); 2505 2506 extern int do_execve(struct filename *, 2507 const char __user * const __user *, 2508 const char __user * const __user *); 2509 extern int do_execveat(int, struct filename *, 2510 const char __user * const __user *, 2511 const char __user * const __user *, 2512 int); 2513 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2514 struct task_struct *fork_idle(int); 2515 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2516 2517 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2518 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2519 { 2520 __set_task_comm(tsk, from, false); 2521 } 2522 extern char *get_task_comm(char *to, struct task_struct *tsk); 2523 2524 #ifdef CONFIG_SMP 2525 void scheduler_ipi(void); 2526 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2527 #else 2528 static inline void scheduler_ipi(void) { } 2529 static inline unsigned long wait_task_inactive(struct task_struct *p, 2530 long match_state) 2531 { 2532 return 1; 2533 } 2534 #endif 2535 2536 #define next_task(p) \ 2537 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2538 2539 #define for_each_process(p) \ 2540 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2541 2542 extern bool current_is_single_threaded(void); 2543 2544 /* 2545 * Careful: do_each_thread/while_each_thread is a double loop so 2546 * 'break' will not work as expected - use goto instead. 2547 */ 2548 #define do_each_thread(g, t) \ 2549 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2550 2551 #define while_each_thread(g, t) \ 2552 while ((t = next_thread(t)) != g) 2553 2554 #define __for_each_thread(signal, t) \ 2555 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2556 2557 #define for_each_thread(p, t) \ 2558 __for_each_thread((p)->signal, t) 2559 2560 /* Careful: this is a double loop, 'break' won't work as expected. */ 2561 #define for_each_process_thread(p, t) \ 2562 for_each_process(p) for_each_thread(p, t) 2563 2564 static inline int get_nr_threads(struct task_struct *tsk) 2565 { 2566 return tsk->signal->nr_threads; 2567 } 2568 2569 static inline bool thread_group_leader(struct task_struct *p) 2570 { 2571 return p->exit_signal >= 0; 2572 } 2573 2574 /* Do to the insanities of de_thread it is possible for a process 2575 * to have the pid of the thread group leader without actually being 2576 * the thread group leader. For iteration through the pids in proc 2577 * all we care about is that we have a task with the appropriate 2578 * pid, we don't actually care if we have the right task. 2579 */ 2580 static inline bool has_group_leader_pid(struct task_struct *p) 2581 { 2582 return task_pid(p) == p->signal->leader_pid; 2583 } 2584 2585 static inline 2586 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2587 { 2588 return p1->signal == p2->signal; 2589 } 2590 2591 static inline struct task_struct *next_thread(const struct task_struct *p) 2592 { 2593 return list_entry_rcu(p->thread_group.next, 2594 struct task_struct, thread_group); 2595 } 2596 2597 static inline int thread_group_empty(struct task_struct *p) 2598 { 2599 return list_empty(&p->thread_group); 2600 } 2601 2602 #define delay_group_leader(p) \ 2603 (thread_group_leader(p) && !thread_group_empty(p)) 2604 2605 /* 2606 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2607 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2608 * pins the final release of task.io_context. Also protects ->cpuset and 2609 * ->cgroup.subsys[]. And ->vfork_done. 2610 * 2611 * Nests both inside and outside of read_lock(&tasklist_lock). 2612 * It must not be nested with write_lock_irq(&tasklist_lock), 2613 * neither inside nor outside. 2614 */ 2615 static inline void task_lock(struct task_struct *p) 2616 { 2617 spin_lock(&p->alloc_lock); 2618 } 2619 2620 static inline void task_unlock(struct task_struct *p) 2621 { 2622 spin_unlock(&p->alloc_lock); 2623 } 2624 2625 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2626 unsigned long *flags); 2627 2628 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2629 unsigned long *flags) 2630 { 2631 struct sighand_struct *ret; 2632 2633 ret = __lock_task_sighand(tsk, flags); 2634 (void)__cond_lock(&tsk->sighand->siglock, ret); 2635 return ret; 2636 } 2637 2638 static inline void unlock_task_sighand(struct task_struct *tsk, 2639 unsigned long *flags) 2640 { 2641 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2642 } 2643 2644 #ifdef CONFIG_CGROUPS 2645 static inline void threadgroup_change_begin(struct task_struct *tsk) 2646 { 2647 down_read(&tsk->signal->group_rwsem); 2648 } 2649 static inline void threadgroup_change_end(struct task_struct *tsk) 2650 { 2651 up_read(&tsk->signal->group_rwsem); 2652 } 2653 2654 /** 2655 * threadgroup_lock - lock threadgroup 2656 * @tsk: member task of the threadgroup to lock 2657 * 2658 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2659 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2660 * change ->group_leader/pid. This is useful for cases where the threadgroup 2661 * needs to stay stable across blockable operations. 2662 * 2663 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2664 * synchronization. While held, no new task will be added to threadgroup 2665 * and no existing live task will have its PF_EXITING set. 2666 * 2667 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2668 * sub-thread becomes a new leader. 2669 */ 2670 static inline void threadgroup_lock(struct task_struct *tsk) 2671 { 2672 down_write(&tsk->signal->group_rwsem); 2673 } 2674 2675 /** 2676 * threadgroup_unlock - unlock threadgroup 2677 * @tsk: member task of the threadgroup to unlock 2678 * 2679 * Reverse threadgroup_lock(). 2680 */ 2681 static inline void threadgroup_unlock(struct task_struct *tsk) 2682 { 2683 up_write(&tsk->signal->group_rwsem); 2684 } 2685 #else 2686 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2687 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2688 static inline void threadgroup_lock(struct task_struct *tsk) {} 2689 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2690 #endif 2691 2692 #ifndef __HAVE_THREAD_FUNCTIONS 2693 2694 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2695 #define task_stack_page(task) ((task)->stack) 2696 2697 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2698 { 2699 *task_thread_info(p) = *task_thread_info(org); 2700 task_thread_info(p)->task = p; 2701 } 2702 2703 /* 2704 * Return the address of the last usable long on the stack. 2705 * 2706 * When the stack grows down, this is just above the thread 2707 * info struct. Going any lower will corrupt the threadinfo. 2708 * 2709 * When the stack grows up, this is the highest address. 2710 * Beyond that position, we corrupt data on the next page. 2711 */ 2712 static inline unsigned long *end_of_stack(struct task_struct *p) 2713 { 2714 #ifdef CONFIG_STACK_GROWSUP 2715 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2716 #else 2717 return (unsigned long *)(task_thread_info(p) + 1); 2718 #endif 2719 } 2720 2721 #endif 2722 #define task_stack_end_corrupted(task) \ 2723 (*(end_of_stack(task)) != STACK_END_MAGIC) 2724 2725 static inline int object_is_on_stack(void *obj) 2726 { 2727 void *stack = task_stack_page(current); 2728 2729 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2730 } 2731 2732 extern void thread_info_cache_init(void); 2733 2734 #ifdef CONFIG_DEBUG_STACK_USAGE 2735 static inline unsigned long stack_not_used(struct task_struct *p) 2736 { 2737 unsigned long *n = end_of_stack(p); 2738 2739 do { /* Skip over canary */ 2740 n++; 2741 } while (!*n); 2742 2743 return (unsigned long)n - (unsigned long)end_of_stack(p); 2744 } 2745 #endif 2746 extern void set_task_stack_end_magic(struct task_struct *tsk); 2747 2748 /* set thread flags in other task's structures 2749 * - see asm/thread_info.h for TIF_xxxx flags available 2750 */ 2751 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2752 { 2753 set_ti_thread_flag(task_thread_info(tsk), flag); 2754 } 2755 2756 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2757 { 2758 clear_ti_thread_flag(task_thread_info(tsk), flag); 2759 } 2760 2761 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2762 { 2763 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2764 } 2765 2766 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2767 { 2768 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2769 } 2770 2771 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2772 { 2773 return test_ti_thread_flag(task_thread_info(tsk), flag); 2774 } 2775 2776 static inline void set_tsk_need_resched(struct task_struct *tsk) 2777 { 2778 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2779 } 2780 2781 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2782 { 2783 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2784 } 2785 2786 static inline int test_tsk_need_resched(struct task_struct *tsk) 2787 { 2788 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2789 } 2790 2791 static inline int restart_syscall(void) 2792 { 2793 set_tsk_thread_flag(current, TIF_SIGPENDING); 2794 return -ERESTARTNOINTR; 2795 } 2796 2797 static inline int signal_pending(struct task_struct *p) 2798 { 2799 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2800 } 2801 2802 static inline int __fatal_signal_pending(struct task_struct *p) 2803 { 2804 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2805 } 2806 2807 static inline int fatal_signal_pending(struct task_struct *p) 2808 { 2809 return signal_pending(p) && __fatal_signal_pending(p); 2810 } 2811 2812 static inline int signal_pending_state(long state, struct task_struct *p) 2813 { 2814 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2815 return 0; 2816 if (!signal_pending(p)) 2817 return 0; 2818 2819 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2820 } 2821 2822 /* 2823 * cond_resched() and cond_resched_lock(): latency reduction via 2824 * explicit rescheduling in places that are safe. The return 2825 * value indicates whether a reschedule was done in fact. 2826 * cond_resched_lock() will drop the spinlock before scheduling, 2827 * cond_resched_softirq() will enable bhs before scheduling. 2828 */ 2829 extern int _cond_resched(void); 2830 2831 #define cond_resched() ({ \ 2832 ___might_sleep(__FILE__, __LINE__, 0); \ 2833 _cond_resched(); \ 2834 }) 2835 2836 extern int __cond_resched_lock(spinlock_t *lock); 2837 2838 #ifdef CONFIG_PREEMPT_COUNT 2839 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2840 #else 2841 #define PREEMPT_LOCK_OFFSET 0 2842 #endif 2843 2844 #define cond_resched_lock(lock) ({ \ 2845 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2846 __cond_resched_lock(lock); \ 2847 }) 2848 2849 extern int __cond_resched_softirq(void); 2850 2851 #define cond_resched_softirq() ({ \ 2852 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2853 __cond_resched_softirq(); \ 2854 }) 2855 2856 static inline void cond_resched_rcu(void) 2857 { 2858 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2859 rcu_read_unlock(); 2860 cond_resched(); 2861 rcu_read_lock(); 2862 #endif 2863 } 2864 2865 /* 2866 * Does a critical section need to be broken due to another 2867 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2868 * but a general need for low latency) 2869 */ 2870 static inline int spin_needbreak(spinlock_t *lock) 2871 { 2872 #ifdef CONFIG_PREEMPT 2873 return spin_is_contended(lock); 2874 #else 2875 return 0; 2876 #endif 2877 } 2878 2879 /* 2880 * Idle thread specific functions to determine the need_resched 2881 * polling state. 2882 */ 2883 #ifdef TIF_POLLING_NRFLAG 2884 static inline int tsk_is_polling(struct task_struct *p) 2885 { 2886 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2887 } 2888 2889 static inline void __current_set_polling(void) 2890 { 2891 set_thread_flag(TIF_POLLING_NRFLAG); 2892 } 2893 2894 static inline bool __must_check current_set_polling_and_test(void) 2895 { 2896 __current_set_polling(); 2897 2898 /* 2899 * Polling state must be visible before we test NEED_RESCHED, 2900 * paired by resched_curr() 2901 */ 2902 smp_mb__after_atomic(); 2903 2904 return unlikely(tif_need_resched()); 2905 } 2906 2907 static inline void __current_clr_polling(void) 2908 { 2909 clear_thread_flag(TIF_POLLING_NRFLAG); 2910 } 2911 2912 static inline bool __must_check current_clr_polling_and_test(void) 2913 { 2914 __current_clr_polling(); 2915 2916 /* 2917 * Polling state must be visible before we test NEED_RESCHED, 2918 * paired by resched_curr() 2919 */ 2920 smp_mb__after_atomic(); 2921 2922 return unlikely(tif_need_resched()); 2923 } 2924 2925 #else 2926 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2927 static inline void __current_set_polling(void) { } 2928 static inline void __current_clr_polling(void) { } 2929 2930 static inline bool __must_check current_set_polling_and_test(void) 2931 { 2932 return unlikely(tif_need_resched()); 2933 } 2934 static inline bool __must_check current_clr_polling_and_test(void) 2935 { 2936 return unlikely(tif_need_resched()); 2937 } 2938 #endif 2939 2940 static inline void current_clr_polling(void) 2941 { 2942 __current_clr_polling(); 2943 2944 /* 2945 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2946 * Once the bit is cleared, we'll get IPIs with every new 2947 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2948 * fold. 2949 */ 2950 smp_mb(); /* paired with resched_curr() */ 2951 2952 preempt_fold_need_resched(); 2953 } 2954 2955 static __always_inline bool need_resched(void) 2956 { 2957 return unlikely(tif_need_resched()); 2958 } 2959 2960 /* 2961 * Thread group CPU time accounting. 2962 */ 2963 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2964 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2965 2966 static inline void thread_group_cputime_init(struct signal_struct *sig) 2967 { 2968 raw_spin_lock_init(&sig->cputimer.lock); 2969 } 2970 2971 /* 2972 * Reevaluate whether the task has signals pending delivery. 2973 * Wake the task if so. 2974 * This is required every time the blocked sigset_t changes. 2975 * callers must hold sighand->siglock. 2976 */ 2977 extern void recalc_sigpending_and_wake(struct task_struct *t); 2978 extern void recalc_sigpending(void); 2979 2980 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2981 2982 static inline void signal_wake_up(struct task_struct *t, bool resume) 2983 { 2984 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2985 } 2986 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2987 { 2988 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2989 } 2990 2991 /* 2992 * Wrappers for p->thread_info->cpu access. No-op on UP. 2993 */ 2994 #ifdef CONFIG_SMP 2995 2996 static inline unsigned int task_cpu(const struct task_struct *p) 2997 { 2998 return task_thread_info(p)->cpu; 2999 } 3000 3001 static inline int task_node(const struct task_struct *p) 3002 { 3003 return cpu_to_node(task_cpu(p)); 3004 } 3005 3006 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3007 3008 #else 3009 3010 static inline unsigned int task_cpu(const struct task_struct *p) 3011 { 3012 return 0; 3013 } 3014 3015 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3016 { 3017 } 3018 3019 #endif /* CONFIG_SMP */ 3020 3021 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3022 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3023 3024 #ifdef CONFIG_CGROUP_SCHED 3025 extern struct task_group root_task_group; 3026 #endif /* CONFIG_CGROUP_SCHED */ 3027 3028 extern int task_can_switch_user(struct user_struct *up, 3029 struct task_struct *tsk); 3030 3031 #ifdef CONFIG_TASK_XACCT 3032 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3033 { 3034 tsk->ioac.rchar += amt; 3035 } 3036 3037 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3038 { 3039 tsk->ioac.wchar += amt; 3040 } 3041 3042 static inline void inc_syscr(struct task_struct *tsk) 3043 { 3044 tsk->ioac.syscr++; 3045 } 3046 3047 static inline void inc_syscw(struct task_struct *tsk) 3048 { 3049 tsk->ioac.syscw++; 3050 } 3051 #else 3052 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3053 { 3054 } 3055 3056 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3057 { 3058 } 3059 3060 static inline void inc_syscr(struct task_struct *tsk) 3061 { 3062 } 3063 3064 static inline void inc_syscw(struct task_struct *tsk) 3065 { 3066 } 3067 #endif 3068 3069 #ifndef TASK_SIZE_OF 3070 #define TASK_SIZE_OF(tsk) TASK_SIZE 3071 #endif 3072 3073 #ifdef CONFIG_MEMCG 3074 extern void mm_update_next_owner(struct mm_struct *mm); 3075 #else 3076 static inline void mm_update_next_owner(struct mm_struct *mm) 3077 { 3078 } 3079 #endif /* CONFIG_MEMCG */ 3080 3081 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3082 unsigned int limit) 3083 { 3084 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 3085 } 3086 3087 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3088 unsigned int limit) 3089 { 3090 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 3091 } 3092 3093 static inline unsigned long rlimit(unsigned int limit) 3094 { 3095 return task_rlimit(current, limit); 3096 } 3097 3098 static inline unsigned long rlimit_max(unsigned int limit) 3099 { 3100 return task_rlimit_max(current, limit); 3101 } 3102 3103 #endif 3104