1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/resource.h> 25 #include <linux/latencytop.h> 26 #include <linux/sched/prio.h> 27 #include <linux/signal_types.h> 28 #include <linux/psi_types.h> 29 #include <linux/mm_types_task.h> 30 #include <linux/task_io_accounting.h> 31 #include <linux/rseq.h> 32 33 /* task_struct member predeclarations (sorted alphabetically): */ 34 struct audit_context; 35 struct backing_dev_info; 36 struct bio_list; 37 struct blk_plug; 38 struct cfs_rq; 39 struct fs_struct; 40 struct futex_pi_state; 41 struct io_context; 42 struct mempolicy; 43 struct nameidata; 44 struct nsproxy; 45 struct perf_event_context; 46 struct pid_namespace; 47 struct pipe_inode_info; 48 struct rcu_node; 49 struct reclaim_state; 50 struct robust_list_head; 51 struct sched_attr; 52 struct sched_param; 53 struct seq_file; 54 struct sighand_struct; 55 struct signal_struct; 56 struct task_delay_info; 57 struct task_group; 58 59 /* 60 * Task state bitmask. NOTE! These bits are also 61 * encoded in fs/proc/array.c: get_task_state(). 62 * 63 * We have two separate sets of flags: task->state 64 * is about runnability, while task->exit_state are 65 * about the task exiting. Confusing, but this way 66 * modifying one set can't modify the other one by 67 * mistake. 68 */ 69 70 /* Used in tsk->state: */ 71 #define TASK_RUNNING 0x0000 72 #define TASK_INTERRUPTIBLE 0x0001 73 #define TASK_UNINTERRUPTIBLE 0x0002 74 #define __TASK_STOPPED 0x0004 75 #define __TASK_TRACED 0x0008 76 /* Used in tsk->exit_state: */ 77 #define EXIT_DEAD 0x0010 78 #define EXIT_ZOMBIE 0x0020 79 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 80 /* Used in tsk->state again: */ 81 #define TASK_PARKED 0x0040 82 #define TASK_DEAD 0x0080 83 #define TASK_WAKEKILL 0x0100 84 #define TASK_WAKING 0x0200 85 #define TASK_NOLOAD 0x0400 86 #define TASK_NEW 0x0800 87 #define TASK_STATE_MAX 0x1000 88 89 /* Convenience macros for the sake of set_current_state: */ 90 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 91 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 92 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 93 94 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 95 96 /* Convenience macros for the sake of wake_up(): */ 97 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 98 99 /* get_task_state(): */ 100 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 102 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 103 TASK_PARKED) 104 105 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 106 107 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 108 109 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 110 111 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 112 (task->flags & PF_FROZEN) == 0 && \ 113 (task->state & TASK_NOLOAD) == 0) 114 115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 116 117 /* 118 * Special states are those that do not use the normal wait-loop pattern. See 119 * the comment with set_special_state(). 120 */ 121 #define is_special_task_state(state) \ 122 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 123 124 #define __set_current_state(state_value) \ 125 do { \ 126 WARN_ON_ONCE(is_special_task_state(state_value));\ 127 current->task_state_change = _THIS_IP_; \ 128 current->state = (state_value); \ 129 } while (0) 130 131 #define set_current_state(state_value) \ 132 do { \ 133 WARN_ON_ONCE(is_special_task_state(state_value));\ 134 current->task_state_change = _THIS_IP_; \ 135 smp_store_mb(current->state, (state_value)); \ 136 } while (0) 137 138 #define set_special_state(state_value) \ 139 do { \ 140 unsigned long flags; /* may shadow */ \ 141 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 142 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 143 current->task_state_change = _THIS_IP_; \ 144 current->state = (state_value); \ 145 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 146 } while (0) 147 #else 148 /* 149 * set_current_state() includes a barrier so that the write of current->state 150 * is correctly serialised wrt the caller's subsequent test of whether to 151 * actually sleep: 152 * 153 * for (;;) { 154 * set_current_state(TASK_UNINTERRUPTIBLE); 155 * if (!need_sleep) 156 * break; 157 * 158 * schedule(); 159 * } 160 * __set_current_state(TASK_RUNNING); 161 * 162 * If the caller does not need such serialisation (because, for instance, the 163 * condition test and condition change and wakeup are under the same lock) then 164 * use __set_current_state(). 165 * 166 * The above is typically ordered against the wakeup, which does: 167 * 168 * need_sleep = false; 169 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 170 * 171 * where wake_up_state() executes a full memory barrier before accessing the 172 * task state. 173 * 174 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 175 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 176 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 177 * 178 * However, with slightly different timing the wakeup TASK_RUNNING store can 179 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 180 * a problem either because that will result in one extra go around the loop 181 * and our @cond test will save the day. 182 * 183 * Also see the comments of try_to_wake_up(). 184 */ 185 #define __set_current_state(state_value) \ 186 current->state = (state_value) 187 188 #define set_current_state(state_value) \ 189 smp_store_mb(current->state, (state_value)) 190 191 /* 192 * set_special_state() should be used for those states when the blocking task 193 * can not use the regular condition based wait-loop. In that case we must 194 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 195 * will not collide with our state change. 196 */ 197 #define set_special_state(state_value) \ 198 do { \ 199 unsigned long flags; /* may shadow */ \ 200 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 201 current->state = (state_value); \ 202 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 203 } while (0) 204 205 #endif 206 207 /* Task command name length: */ 208 #define TASK_COMM_LEN 16 209 210 extern void scheduler_tick(void); 211 212 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 213 214 extern long schedule_timeout(long timeout); 215 extern long schedule_timeout_interruptible(long timeout); 216 extern long schedule_timeout_killable(long timeout); 217 extern long schedule_timeout_uninterruptible(long timeout); 218 extern long schedule_timeout_idle(long timeout); 219 asmlinkage void schedule(void); 220 extern void schedule_preempt_disabled(void); 221 222 extern int __must_check io_schedule_prepare(void); 223 extern void io_schedule_finish(int token); 224 extern long io_schedule_timeout(long timeout); 225 extern void io_schedule(void); 226 227 /** 228 * struct prev_cputime - snapshot of system and user cputime 229 * @utime: time spent in user mode 230 * @stime: time spent in system mode 231 * @lock: protects the above two fields 232 * 233 * Stores previous user/system time values such that we can guarantee 234 * monotonicity. 235 */ 236 struct prev_cputime { 237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 238 u64 utime; 239 u64 stime; 240 raw_spinlock_t lock; 241 #endif 242 }; 243 244 /** 245 * struct task_cputime - collected CPU time counts 246 * @utime: time spent in user mode, in nanoseconds 247 * @stime: time spent in kernel mode, in nanoseconds 248 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 249 * 250 * This structure groups together three kinds of CPU time that are tracked for 251 * threads and thread groups. Most things considering CPU time want to group 252 * these counts together and treat all three of them in parallel. 253 */ 254 struct task_cputime { 255 u64 utime; 256 u64 stime; 257 unsigned long long sum_exec_runtime; 258 }; 259 260 /* Alternate field names when used on cache expirations: */ 261 #define virt_exp utime 262 #define prof_exp stime 263 #define sched_exp sum_exec_runtime 264 265 enum vtime_state { 266 /* Task is sleeping or running in a CPU with VTIME inactive: */ 267 VTIME_INACTIVE = 0, 268 /* Task runs in userspace in a CPU with VTIME active: */ 269 VTIME_USER, 270 /* Task runs in kernelspace in a CPU with VTIME active: */ 271 VTIME_SYS, 272 }; 273 274 struct vtime { 275 seqcount_t seqcount; 276 unsigned long long starttime; 277 enum vtime_state state; 278 u64 utime; 279 u64 stime; 280 u64 gtime; 281 }; 282 283 struct sched_info { 284 #ifdef CONFIG_SCHED_INFO 285 /* Cumulative counters: */ 286 287 /* # of times we have run on this CPU: */ 288 unsigned long pcount; 289 290 /* Time spent waiting on a runqueue: */ 291 unsigned long long run_delay; 292 293 /* Timestamps: */ 294 295 /* When did we last run on a CPU? */ 296 unsigned long long last_arrival; 297 298 /* When were we last queued to run? */ 299 unsigned long long last_queued; 300 301 #endif /* CONFIG_SCHED_INFO */ 302 }; 303 304 /* 305 * Integer metrics need fixed point arithmetic, e.g., sched/fair 306 * has a few: load, load_avg, util_avg, freq, and capacity. 307 * 308 * We define a basic fixed point arithmetic range, and then formalize 309 * all these metrics based on that basic range. 310 */ 311 # define SCHED_FIXEDPOINT_SHIFT 10 312 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 313 314 struct load_weight { 315 unsigned long weight; 316 u32 inv_weight; 317 }; 318 319 /** 320 * struct util_est - Estimation utilization of FAIR tasks 321 * @enqueued: instantaneous estimated utilization of a task/cpu 322 * @ewma: the Exponential Weighted Moving Average (EWMA) 323 * utilization of a task 324 * 325 * Support data structure to track an Exponential Weighted Moving Average 326 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 327 * average each time a task completes an activation. Sample's weight is chosen 328 * so that the EWMA will be relatively insensitive to transient changes to the 329 * task's workload. 330 * 331 * The enqueued attribute has a slightly different meaning for tasks and cpus: 332 * - task: the task's util_avg at last task dequeue time 333 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 334 * Thus, the util_est.enqueued of a task represents the contribution on the 335 * estimated utilization of the CPU where that task is currently enqueued. 336 * 337 * Only for tasks we track a moving average of the past instantaneous 338 * estimated utilization. This allows to absorb sporadic drops in utilization 339 * of an otherwise almost periodic task. 340 */ 341 struct util_est { 342 unsigned int enqueued; 343 unsigned int ewma; 344 #define UTIL_EST_WEIGHT_SHIFT 2 345 } __attribute__((__aligned__(sizeof(u64)))); 346 347 /* 348 * The load_avg/util_avg accumulates an infinite geometric series 349 * (see __update_load_avg() in kernel/sched/fair.c). 350 * 351 * [load_avg definition] 352 * 353 * load_avg = runnable% * scale_load_down(load) 354 * 355 * where runnable% is the time ratio that a sched_entity is runnable. 356 * For cfs_rq, it is the aggregated load_avg of all runnable and 357 * blocked sched_entities. 358 * 359 * load_avg may also take frequency scaling into account: 360 * 361 * load_avg = runnable% * scale_load_down(load) * freq% 362 * 363 * where freq% is the CPU frequency normalized to the highest frequency. 364 * 365 * [util_avg definition] 366 * 367 * util_avg = running% * SCHED_CAPACITY_SCALE 368 * 369 * where running% is the time ratio that a sched_entity is running on 370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 371 * and blocked sched_entities. 372 * 373 * util_avg may also factor frequency scaling and CPU capacity scaling: 374 * 375 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 376 * 377 * where freq% is the same as above, and capacity% is the CPU capacity 378 * normalized to the greatest capacity (due to uarch differences, etc). 379 * 380 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 381 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 382 * we therefore scale them to as large a range as necessary. This is for 383 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 384 * 385 * [Overflow issue] 386 * 387 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 388 * with the highest load (=88761), always runnable on a single cfs_rq, 389 * and should not overflow as the number already hits PID_MAX_LIMIT. 390 * 391 * For all other cases (including 32-bit kernels), struct load_weight's 392 * weight will overflow first before we do, because: 393 * 394 * Max(load_avg) <= Max(load.weight) 395 * 396 * Then it is the load_weight's responsibility to consider overflow 397 * issues. 398 */ 399 struct sched_avg { 400 u64 last_update_time; 401 u64 load_sum; 402 u64 runnable_load_sum; 403 u32 util_sum; 404 u32 period_contrib; 405 unsigned long load_avg; 406 unsigned long runnable_load_avg; 407 unsigned long util_avg; 408 struct util_est util_est; 409 } ____cacheline_aligned; 410 411 struct sched_statistics { 412 #ifdef CONFIG_SCHEDSTATS 413 u64 wait_start; 414 u64 wait_max; 415 u64 wait_count; 416 u64 wait_sum; 417 u64 iowait_count; 418 u64 iowait_sum; 419 420 u64 sleep_start; 421 u64 sleep_max; 422 s64 sum_sleep_runtime; 423 424 u64 block_start; 425 u64 block_max; 426 u64 exec_max; 427 u64 slice_max; 428 429 u64 nr_migrations_cold; 430 u64 nr_failed_migrations_affine; 431 u64 nr_failed_migrations_running; 432 u64 nr_failed_migrations_hot; 433 u64 nr_forced_migrations; 434 435 u64 nr_wakeups; 436 u64 nr_wakeups_sync; 437 u64 nr_wakeups_migrate; 438 u64 nr_wakeups_local; 439 u64 nr_wakeups_remote; 440 u64 nr_wakeups_affine; 441 u64 nr_wakeups_affine_attempts; 442 u64 nr_wakeups_passive; 443 u64 nr_wakeups_idle; 444 #endif 445 }; 446 447 struct sched_entity { 448 /* For load-balancing: */ 449 struct load_weight load; 450 unsigned long runnable_weight; 451 struct rb_node run_node; 452 struct list_head group_node; 453 unsigned int on_rq; 454 455 u64 exec_start; 456 u64 sum_exec_runtime; 457 u64 vruntime; 458 u64 prev_sum_exec_runtime; 459 460 u64 nr_migrations; 461 462 struct sched_statistics statistics; 463 464 #ifdef CONFIG_FAIR_GROUP_SCHED 465 int depth; 466 struct sched_entity *parent; 467 /* rq on which this entity is (to be) queued: */ 468 struct cfs_rq *cfs_rq; 469 /* rq "owned" by this entity/group: */ 470 struct cfs_rq *my_q; 471 #endif 472 473 #ifdef CONFIG_SMP 474 /* 475 * Per entity load average tracking. 476 * 477 * Put into separate cache line so it does not 478 * collide with read-mostly values above. 479 */ 480 struct sched_avg avg; 481 #endif 482 }; 483 484 struct sched_rt_entity { 485 struct list_head run_list; 486 unsigned long timeout; 487 unsigned long watchdog_stamp; 488 unsigned int time_slice; 489 unsigned short on_rq; 490 unsigned short on_list; 491 492 struct sched_rt_entity *back; 493 #ifdef CONFIG_RT_GROUP_SCHED 494 struct sched_rt_entity *parent; 495 /* rq on which this entity is (to be) queued: */ 496 struct rt_rq *rt_rq; 497 /* rq "owned" by this entity/group: */ 498 struct rt_rq *my_q; 499 #endif 500 } __randomize_layout; 501 502 struct sched_dl_entity { 503 struct rb_node rb_node; 504 505 /* 506 * Original scheduling parameters. Copied here from sched_attr 507 * during sched_setattr(), they will remain the same until 508 * the next sched_setattr(). 509 */ 510 u64 dl_runtime; /* Maximum runtime for each instance */ 511 u64 dl_deadline; /* Relative deadline of each instance */ 512 u64 dl_period; /* Separation of two instances (period) */ 513 u64 dl_bw; /* dl_runtime / dl_period */ 514 u64 dl_density; /* dl_runtime / dl_deadline */ 515 516 /* 517 * Actual scheduling parameters. Initialized with the values above, 518 * they are continuously updated during task execution. Note that 519 * the remaining runtime could be < 0 in case we are in overrun. 520 */ 521 s64 runtime; /* Remaining runtime for this instance */ 522 u64 deadline; /* Absolute deadline for this instance */ 523 unsigned int flags; /* Specifying the scheduler behaviour */ 524 525 /* 526 * Some bool flags: 527 * 528 * @dl_throttled tells if we exhausted the runtime. If so, the 529 * task has to wait for a replenishment to be performed at the 530 * next firing of dl_timer. 531 * 532 * @dl_boosted tells if we are boosted due to DI. If so we are 533 * outside bandwidth enforcement mechanism (but only until we 534 * exit the critical section); 535 * 536 * @dl_yielded tells if task gave up the CPU before consuming 537 * all its available runtime during the last job. 538 * 539 * @dl_non_contending tells if the task is inactive while still 540 * contributing to the active utilization. In other words, it 541 * indicates if the inactive timer has been armed and its handler 542 * has not been executed yet. This flag is useful to avoid race 543 * conditions between the inactive timer handler and the wakeup 544 * code. 545 * 546 * @dl_overrun tells if the task asked to be informed about runtime 547 * overruns. 548 */ 549 unsigned int dl_throttled : 1; 550 unsigned int dl_boosted : 1; 551 unsigned int dl_yielded : 1; 552 unsigned int dl_non_contending : 1; 553 unsigned int dl_overrun : 1; 554 555 /* 556 * Bandwidth enforcement timer. Each -deadline task has its 557 * own bandwidth to be enforced, thus we need one timer per task. 558 */ 559 struct hrtimer dl_timer; 560 561 /* 562 * Inactive timer, responsible for decreasing the active utilization 563 * at the "0-lag time". When a -deadline task blocks, it contributes 564 * to GRUB's active utilization until the "0-lag time", hence a 565 * timer is needed to decrease the active utilization at the correct 566 * time. 567 */ 568 struct hrtimer inactive_timer; 569 }; 570 571 union rcu_special { 572 struct { 573 u8 blocked; 574 u8 need_qs; 575 u8 exp_hint; /* Hint for performance. */ 576 u8 pad; /* No garbage from compiler! */ 577 } b; /* Bits. */ 578 u32 s; /* Set of bits. */ 579 }; 580 581 enum perf_event_task_context { 582 perf_invalid_context = -1, 583 perf_hw_context = 0, 584 perf_sw_context, 585 perf_nr_task_contexts, 586 }; 587 588 struct wake_q_node { 589 struct wake_q_node *next; 590 }; 591 592 struct task_struct { 593 #ifdef CONFIG_THREAD_INFO_IN_TASK 594 /* 595 * For reasons of header soup (see current_thread_info()), this 596 * must be the first element of task_struct. 597 */ 598 struct thread_info thread_info; 599 #endif 600 /* -1 unrunnable, 0 runnable, >0 stopped: */ 601 volatile long state; 602 603 /* 604 * This begins the randomizable portion of task_struct. Only 605 * scheduling-critical items should be added above here. 606 */ 607 randomized_struct_fields_start 608 609 void *stack; 610 atomic_t usage; 611 /* Per task flags (PF_*), defined further below: */ 612 unsigned int flags; 613 unsigned int ptrace; 614 615 #ifdef CONFIG_SMP 616 struct llist_node wake_entry; 617 int on_cpu; 618 #ifdef CONFIG_THREAD_INFO_IN_TASK 619 /* Current CPU: */ 620 unsigned int cpu; 621 #endif 622 unsigned int wakee_flips; 623 unsigned long wakee_flip_decay_ts; 624 struct task_struct *last_wakee; 625 626 /* 627 * recent_used_cpu is initially set as the last CPU used by a task 628 * that wakes affine another task. Waker/wakee relationships can 629 * push tasks around a CPU where each wakeup moves to the next one. 630 * Tracking a recently used CPU allows a quick search for a recently 631 * used CPU that may be idle. 632 */ 633 int recent_used_cpu; 634 int wake_cpu; 635 #endif 636 int on_rq; 637 638 int prio; 639 int static_prio; 640 int normal_prio; 641 unsigned int rt_priority; 642 643 const struct sched_class *sched_class; 644 struct sched_entity se; 645 struct sched_rt_entity rt; 646 #ifdef CONFIG_CGROUP_SCHED 647 struct task_group *sched_task_group; 648 #endif 649 struct sched_dl_entity dl; 650 651 #ifdef CONFIG_PREEMPT_NOTIFIERS 652 /* List of struct preempt_notifier: */ 653 struct hlist_head preempt_notifiers; 654 #endif 655 656 #ifdef CONFIG_BLK_DEV_IO_TRACE 657 unsigned int btrace_seq; 658 #endif 659 660 unsigned int policy; 661 int nr_cpus_allowed; 662 cpumask_t cpus_allowed; 663 664 #ifdef CONFIG_PREEMPT_RCU 665 int rcu_read_lock_nesting; 666 union rcu_special rcu_read_unlock_special; 667 struct list_head rcu_node_entry; 668 struct rcu_node *rcu_blocked_node; 669 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 670 671 #ifdef CONFIG_TASKS_RCU 672 unsigned long rcu_tasks_nvcsw; 673 u8 rcu_tasks_holdout; 674 u8 rcu_tasks_idx; 675 int rcu_tasks_idle_cpu; 676 struct list_head rcu_tasks_holdout_list; 677 #endif /* #ifdef CONFIG_TASKS_RCU */ 678 679 struct sched_info sched_info; 680 681 struct list_head tasks; 682 #ifdef CONFIG_SMP 683 struct plist_node pushable_tasks; 684 struct rb_node pushable_dl_tasks; 685 #endif 686 687 struct mm_struct *mm; 688 struct mm_struct *active_mm; 689 690 /* Per-thread vma caching: */ 691 struct vmacache vmacache; 692 693 #ifdef SPLIT_RSS_COUNTING 694 struct task_rss_stat rss_stat; 695 #endif 696 int exit_state; 697 int exit_code; 698 int exit_signal; 699 /* The signal sent when the parent dies: */ 700 int pdeath_signal; 701 /* JOBCTL_*, siglock protected: */ 702 unsigned long jobctl; 703 704 /* Used for emulating ABI behavior of previous Linux versions: */ 705 unsigned int personality; 706 707 /* Scheduler bits, serialized by scheduler locks: */ 708 unsigned sched_reset_on_fork:1; 709 unsigned sched_contributes_to_load:1; 710 unsigned sched_migrated:1; 711 unsigned sched_remote_wakeup:1; 712 #ifdef CONFIG_PSI 713 unsigned sched_psi_wake_requeue:1; 714 #endif 715 716 /* Force alignment to the next boundary: */ 717 unsigned :0; 718 719 /* Unserialized, strictly 'current' */ 720 721 /* Bit to tell LSMs we're in execve(): */ 722 unsigned in_execve:1; 723 unsigned in_iowait:1; 724 #ifndef TIF_RESTORE_SIGMASK 725 unsigned restore_sigmask:1; 726 #endif 727 #ifdef CONFIG_MEMCG 728 unsigned in_user_fault:1; 729 #endif 730 #ifdef CONFIG_COMPAT_BRK 731 unsigned brk_randomized:1; 732 #endif 733 #ifdef CONFIG_CGROUPS 734 /* disallow userland-initiated cgroup migration */ 735 unsigned no_cgroup_migration:1; 736 #endif 737 #ifdef CONFIG_BLK_CGROUP 738 /* to be used once the psi infrastructure lands upstream. */ 739 unsigned use_memdelay:1; 740 #endif 741 742 /* 743 * May usercopy functions fault on kernel addresses? 744 * This is not just a single bit because this can potentially nest. 745 */ 746 unsigned int kernel_uaccess_faults_ok; 747 748 unsigned long atomic_flags; /* Flags requiring atomic access. */ 749 750 struct restart_block restart_block; 751 752 pid_t pid; 753 pid_t tgid; 754 755 #ifdef CONFIG_STACKPROTECTOR 756 /* Canary value for the -fstack-protector GCC feature: */ 757 unsigned long stack_canary; 758 #endif 759 /* 760 * Pointers to the (original) parent process, youngest child, younger sibling, 761 * older sibling, respectively. (p->father can be replaced with 762 * p->real_parent->pid) 763 */ 764 765 /* Real parent process: */ 766 struct task_struct __rcu *real_parent; 767 768 /* Recipient of SIGCHLD, wait4() reports: */ 769 struct task_struct __rcu *parent; 770 771 /* 772 * Children/sibling form the list of natural children: 773 */ 774 struct list_head children; 775 struct list_head sibling; 776 struct task_struct *group_leader; 777 778 /* 779 * 'ptraced' is the list of tasks this task is using ptrace() on. 780 * 781 * This includes both natural children and PTRACE_ATTACH targets. 782 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 783 */ 784 struct list_head ptraced; 785 struct list_head ptrace_entry; 786 787 /* PID/PID hash table linkage. */ 788 struct pid *thread_pid; 789 struct hlist_node pid_links[PIDTYPE_MAX]; 790 struct list_head thread_group; 791 struct list_head thread_node; 792 793 struct completion *vfork_done; 794 795 /* CLONE_CHILD_SETTID: */ 796 int __user *set_child_tid; 797 798 /* CLONE_CHILD_CLEARTID: */ 799 int __user *clear_child_tid; 800 801 u64 utime; 802 u64 stime; 803 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 804 u64 utimescaled; 805 u64 stimescaled; 806 #endif 807 u64 gtime; 808 struct prev_cputime prev_cputime; 809 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 810 struct vtime vtime; 811 #endif 812 813 #ifdef CONFIG_NO_HZ_FULL 814 atomic_t tick_dep_mask; 815 #endif 816 /* Context switch counts: */ 817 unsigned long nvcsw; 818 unsigned long nivcsw; 819 820 /* Monotonic time in nsecs: */ 821 u64 start_time; 822 823 /* Boot based time in nsecs: */ 824 u64 real_start_time; 825 826 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 827 unsigned long min_flt; 828 unsigned long maj_flt; 829 830 #ifdef CONFIG_POSIX_TIMERS 831 struct task_cputime cputime_expires; 832 struct list_head cpu_timers[3]; 833 #endif 834 835 /* Process credentials: */ 836 837 /* Tracer's credentials at attach: */ 838 const struct cred __rcu *ptracer_cred; 839 840 /* Objective and real subjective task credentials (COW): */ 841 const struct cred __rcu *real_cred; 842 843 /* Effective (overridable) subjective task credentials (COW): */ 844 const struct cred __rcu *cred; 845 846 /* 847 * executable name, excluding path. 848 * 849 * - normally initialized setup_new_exec() 850 * - access it with [gs]et_task_comm() 851 * - lock it with task_lock() 852 */ 853 char comm[TASK_COMM_LEN]; 854 855 struct nameidata *nameidata; 856 857 #ifdef CONFIG_SYSVIPC 858 struct sysv_sem sysvsem; 859 struct sysv_shm sysvshm; 860 #endif 861 #ifdef CONFIG_DETECT_HUNG_TASK 862 unsigned long last_switch_count; 863 unsigned long last_switch_time; 864 #endif 865 /* Filesystem information: */ 866 struct fs_struct *fs; 867 868 /* Open file information: */ 869 struct files_struct *files; 870 871 /* Namespaces: */ 872 struct nsproxy *nsproxy; 873 874 /* Signal handlers: */ 875 struct signal_struct *signal; 876 struct sighand_struct *sighand; 877 sigset_t blocked; 878 sigset_t real_blocked; 879 /* Restored if set_restore_sigmask() was used: */ 880 sigset_t saved_sigmask; 881 struct sigpending pending; 882 unsigned long sas_ss_sp; 883 size_t sas_ss_size; 884 unsigned int sas_ss_flags; 885 886 struct callback_head *task_works; 887 888 struct audit_context *audit_context; 889 #ifdef CONFIG_AUDITSYSCALL 890 kuid_t loginuid; 891 unsigned int sessionid; 892 #endif 893 struct seccomp seccomp; 894 895 /* Thread group tracking: */ 896 u32 parent_exec_id; 897 u32 self_exec_id; 898 899 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 900 spinlock_t alloc_lock; 901 902 /* Protection of the PI data structures: */ 903 raw_spinlock_t pi_lock; 904 905 struct wake_q_node wake_q; 906 907 #ifdef CONFIG_RT_MUTEXES 908 /* PI waiters blocked on a rt_mutex held by this task: */ 909 struct rb_root_cached pi_waiters; 910 /* Updated under owner's pi_lock and rq lock */ 911 struct task_struct *pi_top_task; 912 /* Deadlock detection and priority inheritance handling: */ 913 struct rt_mutex_waiter *pi_blocked_on; 914 #endif 915 916 #ifdef CONFIG_DEBUG_MUTEXES 917 /* Mutex deadlock detection: */ 918 struct mutex_waiter *blocked_on; 919 #endif 920 921 #ifdef CONFIG_TRACE_IRQFLAGS 922 unsigned int irq_events; 923 unsigned long hardirq_enable_ip; 924 unsigned long hardirq_disable_ip; 925 unsigned int hardirq_enable_event; 926 unsigned int hardirq_disable_event; 927 int hardirqs_enabled; 928 int hardirq_context; 929 unsigned long softirq_disable_ip; 930 unsigned long softirq_enable_ip; 931 unsigned int softirq_disable_event; 932 unsigned int softirq_enable_event; 933 int softirqs_enabled; 934 int softirq_context; 935 #endif 936 937 #ifdef CONFIG_LOCKDEP 938 # define MAX_LOCK_DEPTH 48UL 939 u64 curr_chain_key; 940 int lockdep_depth; 941 unsigned int lockdep_recursion; 942 struct held_lock held_locks[MAX_LOCK_DEPTH]; 943 #endif 944 945 #ifdef CONFIG_UBSAN 946 unsigned int in_ubsan; 947 #endif 948 949 /* Journalling filesystem info: */ 950 void *journal_info; 951 952 /* Stacked block device info: */ 953 struct bio_list *bio_list; 954 955 #ifdef CONFIG_BLOCK 956 /* Stack plugging: */ 957 struct blk_plug *plug; 958 #endif 959 960 /* VM state: */ 961 struct reclaim_state *reclaim_state; 962 963 struct backing_dev_info *backing_dev_info; 964 965 struct io_context *io_context; 966 967 /* Ptrace state: */ 968 unsigned long ptrace_message; 969 kernel_siginfo_t *last_siginfo; 970 971 struct task_io_accounting ioac; 972 #ifdef CONFIG_PSI 973 /* Pressure stall state */ 974 unsigned int psi_flags; 975 #endif 976 #ifdef CONFIG_TASK_XACCT 977 /* Accumulated RSS usage: */ 978 u64 acct_rss_mem1; 979 /* Accumulated virtual memory usage: */ 980 u64 acct_vm_mem1; 981 /* stime + utime since last update: */ 982 u64 acct_timexpd; 983 #endif 984 #ifdef CONFIG_CPUSETS 985 /* Protected by ->alloc_lock: */ 986 nodemask_t mems_allowed; 987 /* Seqence number to catch updates: */ 988 seqcount_t mems_allowed_seq; 989 int cpuset_mem_spread_rotor; 990 int cpuset_slab_spread_rotor; 991 #endif 992 #ifdef CONFIG_CGROUPS 993 /* Control Group info protected by css_set_lock: */ 994 struct css_set __rcu *cgroups; 995 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 996 struct list_head cg_list; 997 #endif 998 #ifdef CONFIG_X86_RESCTRL 999 u32 closid; 1000 u32 rmid; 1001 #endif 1002 #ifdef CONFIG_FUTEX 1003 struct robust_list_head __user *robust_list; 1004 #ifdef CONFIG_COMPAT 1005 struct compat_robust_list_head __user *compat_robust_list; 1006 #endif 1007 struct list_head pi_state_list; 1008 struct futex_pi_state *pi_state_cache; 1009 #endif 1010 #ifdef CONFIG_PERF_EVENTS 1011 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1012 struct mutex perf_event_mutex; 1013 struct list_head perf_event_list; 1014 #endif 1015 #ifdef CONFIG_DEBUG_PREEMPT 1016 unsigned long preempt_disable_ip; 1017 #endif 1018 #ifdef CONFIG_NUMA 1019 /* Protected by alloc_lock: */ 1020 struct mempolicy *mempolicy; 1021 short il_prev; 1022 short pref_node_fork; 1023 #endif 1024 #ifdef CONFIG_NUMA_BALANCING 1025 int numa_scan_seq; 1026 unsigned int numa_scan_period; 1027 unsigned int numa_scan_period_max; 1028 int numa_preferred_nid; 1029 unsigned long numa_migrate_retry; 1030 /* Migration stamp: */ 1031 u64 node_stamp; 1032 u64 last_task_numa_placement; 1033 u64 last_sum_exec_runtime; 1034 struct callback_head numa_work; 1035 1036 struct numa_group *numa_group; 1037 1038 /* 1039 * numa_faults is an array split into four regions: 1040 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1041 * in this precise order. 1042 * 1043 * faults_memory: Exponential decaying average of faults on a per-node 1044 * basis. Scheduling placement decisions are made based on these 1045 * counts. The values remain static for the duration of a PTE scan. 1046 * faults_cpu: Track the nodes the process was running on when a NUMA 1047 * hinting fault was incurred. 1048 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1049 * during the current scan window. When the scan completes, the counts 1050 * in faults_memory and faults_cpu decay and these values are copied. 1051 */ 1052 unsigned long *numa_faults; 1053 unsigned long total_numa_faults; 1054 1055 /* 1056 * numa_faults_locality tracks if faults recorded during the last 1057 * scan window were remote/local or failed to migrate. The task scan 1058 * period is adapted based on the locality of the faults with different 1059 * weights depending on whether they were shared or private faults 1060 */ 1061 unsigned long numa_faults_locality[3]; 1062 1063 unsigned long numa_pages_migrated; 1064 #endif /* CONFIG_NUMA_BALANCING */ 1065 1066 #ifdef CONFIG_RSEQ 1067 struct rseq __user *rseq; 1068 u32 rseq_len; 1069 u32 rseq_sig; 1070 /* 1071 * RmW on rseq_event_mask must be performed atomically 1072 * with respect to preemption. 1073 */ 1074 unsigned long rseq_event_mask; 1075 #endif 1076 1077 struct tlbflush_unmap_batch tlb_ubc; 1078 1079 struct rcu_head rcu; 1080 1081 /* Cache last used pipe for splice(): */ 1082 struct pipe_inode_info *splice_pipe; 1083 1084 struct page_frag task_frag; 1085 1086 #ifdef CONFIG_TASK_DELAY_ACCT 1087 struct task_delay_info *delays; 1088 #endif 1089 1090 #ifdef CONFIG_FAULT_INJECTION 1091 int make_it_fail; 1092 unsigned int fail_nth; 1093 #endif 1094 /* 1095 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1096 * balance_dirty_pages() for a dirty throttling pause: 1097 */ 1098 int nr_dirtied; 1099 int nr_dirtied_pause; 1100 /* Start of a write-and-pause period: */ 1101 unsigned long dirty_paused_when; 1102 1103 #ifdef CONFIG_LATENCYTOP 1104 int latency_record_count; 1105 struct latency_record latency_record[LT_SAVECOUNT]; 1106 #endif 1107 /* 1108 * Time slack values; these are used to round up poll() and 1109 * select() etc timeout values. These are in nanoseconds. 1110 */ 1111 u64 timer_slack_ns; 1112 u64 default_timer_slack_ns; 1113 1114 #ifdef CONFIG_KASAN 1115 unsigned int kasan_depth; 1116 #endif 1117 1118 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1119 /* Index of current stored address in ret_stack: */ 1120 int curr_ret_stack; 1121 int curr_ret_depth; 1122 1123 /* Stack of return addresses for return function tracing: */ 1124 struct ftrace_ret_stack *ret_stack; 1125 1126 /* Timestamp for last schedule: */ 1127 unsigned long long ftrace_timestamp; 1128 1129 /* 1130 * Number of functions that haven't been traced 1131 * because of depth overrun: 1132 */ 1133 atomic_t trace_overrun; 1134 1135 /* Pause tracing: */ 1136 atomic_t tracing_graph_pause; 1137 #endif 1138 1139 #ifdef CONFIG_TRACING 1140 /* State flags for use by tracers: */ 1141 unsigned long trace; 1142 1143 /* Bitmask and counter of trace recursion: */ 1144 unsigned long trace_recursion; 1145 #endif /* CONFIG_TRACING */ 1146 1147 #ifdef CONFIG_KCOV 1148 /* Coverage collection mode enabled for this task (0 if disabled): */ 1149 unsigned int kcov_mode; 1150 1151 /* Size of the kcov_area: */ 1152 unsigned int kcov_size; 1153 1154 /* Buffer for coverage collection: */ 1155 void *kcov_area; 1156 1157 /* KCOV descriptor wired with this task or NULL: */ 1158 struct kcov *kcov; 1159 #endif 1160 1161 #ifdef CONFIG_MEMCG 1162 struct mem_cgroup *memcg_in_oom; 1163 gfp_t memcg_oom_gfp_mask; 1164 int memcg_oom_order; 1165 1166 /* Number of pages to reclaim on returning to userland: */ 1167 unsigned int memcg_nr_pages_over_high; 1168 1169 /* Used by memcontrol for targeted memcg charge: */ 1170 struct mem_cgroup *active_memcg; 1171 #endif 1172 1173 #ifdef CONFIG_BLK_CGROUP 1174 struct request_queue *throttle_queue; 1175 #endif 1176 1177 #ifdef CONFIG_UPROBES 1178 struct uprobe_task *utask; 1179 #endif 1180 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1181 unsigned int sequential_io; 1182 unsigned int sequential_io_avg; 1183 #endif 1184 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1185 unsigned long task_state_change; 1186 #endif 1187 int pagefault_disabled; 1188 #ifdef CONFIG_MMU 1189 struct task_struct *oom_reaper_list; 1190 #endif 1191 #ifdef CONFIG_VMAP_STACK 1192 struct vm_struct *stack_vm_area; 1193 #endif 1194 #ifdef CONFIG_THREAD_INFO_IN_TASK 1195 /* A live task holds one reference: */ 1196 atomic_t stack_refcount; 1197 #endif 1198 #ifdef CONFIG_LIVEPATCH 1199 int patch_state; 1200 #endif 1201 #ifdef CONFIG_SECURITY 1202 /* Used by LSM modules for access restriction: */ 1203 void *security; 1204 #endif 1205 1206 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1207 unsigned long lowest_stack; 1208 unsigned long prev_lowest_stack; 1209 #endif 1210 1211 /* 1212 * New fields for task_struct should be added above here, so that 1213 * they are included in the randomized portion of task_struct. 1214 */ 1215 randomized_struct_fields_end 1216 1217 /* CPU-specific state of this task: */ 1218 struct thread_struct thread; 1219 1220 /* 1221 * WARNING: on x86, 'thread_struct' contains a variable-sized 1222 * structure. It *MUST* be at the end of 'task_struct'. 1223 * 1224 * Do not put anything below here! 1225 */ 1226 }; 1227 1228 static inline struct pid *task_pid(struct task_struct *task) 1229 { 1230 return task->thread_pid; 1231 } 1232 1233 /* 1234 * the helpers to get the task's different pids as they are seen 1235 * from various namespaces 1236 * 1237 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1238 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1239 * current. 1240 * task_xid_nr_ns() : id seen from the ns specified; 1241 * 1242 * see also pid_nr() etc in include/linux/pid.h 1243 */ 1244 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1245 1246 static inline pid_t task_pid_nr(struct task_struct *tsk) 1247 { 1248 return tsk->pid; 1249 } 1250 1251 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1252 { 1253 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1254 } 1255 1256 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1257 { 1258 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1259 } 1260 1261 1262 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1263 { 1264 return tsk->tgid; 1265 } 1266 1267 /** 1268 * pid_alive - check that a task structure is not stale 1269 * @p: Task structure to be checked. 1270 * 1271 * Test if a process is not yet dead (at most zombie state) 1272 * If pid_alive fails, then pointers within the task structure 1273 * can be stale and must not be dereferenced. 1274 * 1275 * Return: 1 if the process is alive. 0 otherwise. 1276 */ 1277 static inline int pid_alive(const struct task_struct *p) 1278 { 1279 return p->thread_pid != NULL; 1280 } 1281 1282 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1283 { 1284 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1285 } 1286 1287 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1288 { 1289 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1290 } 1291 1292 1293 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1294 { 1295 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1296 } 1297 1298 static inline pid_t task_session_vnr(struct task_struct *tsk) 1299 { 1300 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1301 } 1302 1303 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1304 { 1305 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1306 } 1307 1308 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1309 { 1310 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1311 } 1312 1313 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1314 { 1315 pid_t pid = 0; 1316 1317 rcu_read_lock(); 1318 if (pid_alive(tsk)) 1319 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1320 rcu_read_unlock(); 1321 1322 return pid; 1323 } 1324 1325 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1326 { 1327 return task_ppid_nr_ns(tsk, &init_pid_ns); 1328 } 1329 1330 /* Obsolete, do not use: */ 1331 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1332 { 1333 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1334 } 1335 1336 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1337 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1338 1339 static inline unsigned int task_state_index(struct task_struct *tsk) 1340 { 1341 unsigned int tsk_state = READ_ONCE(tsk->state); 1342 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1343 1344 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1345 1346 if (tsk_state == TASK_IDLE) 1347 state = TASK_REPORT_IDLE; 1348 1349 return fls(state); 1350 } 1351 1352 static inline char task_index_to_char(unsigned int state) 1353 { 1354 static const char state_char[] = "RSDTtXZPI"; 1355 1356 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1357 1358 return state_char[state]; 1359 } 1360 1361 static inline char task_state_to_char(struct task_struct *tsk) 1362 { 1363 return task_index_to_char(task_state_index(tsk)); 1364 } 1365 1366 /** 1367 * is_global_init - check if a task structure is init. Since init 1368 * is free to have sub-threads we need to check tgid. 1369 * @tsk: Task structure to be checked. 1370 * 1371 * Check if a task structure is the first user space task the kernel created. 1372 * 1373 * Return: 1 if the task structure is init. 0 otherwise. 1374 */ 1375 static inline int is_global_init(struct task_struct *tsk) 1376 { 1377 return task_tgid_nr(tsk) == 1; 1378 } 1379 1380 extern struct pid *cad_pid; 1381 1382 /* 1383 * Per process flags 1384 */ 1385 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1386 #define PF_EXITING 0x00000004 /* Getting shut down */ 1387 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1388 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1389 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1390 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1391 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1392 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1393 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1394 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1395 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1396 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1397 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1398 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1399 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1400 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1401 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1402 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1403 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1404 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1405 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1406 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1407 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1408 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1409 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1410 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1411 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1412 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1413 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1414 1415 /* 1416 * Only the _current_ task can read/write to tsk->flags, but other 1417 * tasks can access tsk->flags in readonly mode for example 1418 * with tsk_used_math (like during threaded core dumping). 1419 * There is however an exception to this rule during ptrace 1420 * or during fork: the ptracer task is allowed to write to the 1421 * child->flags of its traced child (same goes for fork, the parent 1422 * can write to the child->flags), because we're guaranteed the 1423 * child is not running and in turn not changing child->flags 1424 * at the same time the parent does it. 1425 */ 1426 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1427 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1428 #define clear_used_math() clear_stopped_child_used_math(current) 1429 #define set_used_math() set_stopped_child_used_math(current) 1430 1431 #define conditional_stopped_child_used_math(condition, child) \ 1432 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1433 1434 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1435 1436 #define copy_to_stopped_child_used_math(child) \ 1437 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1438 1439 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1440 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1441 #define used_math() tsk_used_math(current) 1442 1443 static inline bool is_percpu_thread(void) 1444 { 1445 #ifdef CONFIG_SMP 1446 return (current->flags & PF_NO_SETAFFINITY) && 1447 (current->nr_cpus_allowed == 1); 1448 #else 1449 return true; 1450 #endif 1451 } 1452 1453 /* Per-process atomic flags. */ 1454 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1455 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1456 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1457 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1458 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1459 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1460 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1461 1462 #define TASK_PFA_TEST(name, func) \ 1463 static inline bool task_##func(struct task_struct *p) \ 1464 { return test_bit(PFA_##name, &p->atomic_flags); } 1465 1466 #define TASK_PFA_SET(name, func) \ 1467 static inline void task_set_##func(struct task_struct *p) \ 1468 { set_bit(PFA_##name, &p->atomic_flags); } 1469 1470 #define TASK_PFA_CLEAR(name, func) \ 1471 static inline void task_clear_##func(struct task_struct *p) \ 1472 { clear_bit(PFA_##name, &p->atomic_flags); } 1473 1474 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1475 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1476 1477 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1478 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1479 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1480 1481 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1482 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1483 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1484 1485 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1486 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1487 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1488 1489 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1490 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1491 1492 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1493 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1494 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1495 1496 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1497 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1498 1499 static inline void 1500 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1501 { 1502 current->flags &= ~flags; 1503 current->flags |= orig_flags & flags; 1504 } 1505 1506 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1507 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1508 #ifdef CONFIG_SMP 1509 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1510 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1511 #else 1512 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1513 { 1514 } 1515 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1516 { 1517 if (!cpumask_test_cpu(0, new_mask)) 1518 return -EINVAL; 1519 return 0; 1520 } 1521 #endif 1522 1523 #ifndef cpu_relax_yield 1524 #define cpu_relax_yield() cpu_relax() 1525 #endif 1526 1527 extern int yield_to(struct task_struct *p, bool preempt); 1528 extern void set_user_nice(struct task_struct *p, long nice); 1529 extern int task_prio(const struct task_struct *p); 1530 1531 /** 1532 * task_nice - return the nice value of a given task. 1533 * @p: the task in question. 1534 * 1535 * Return: The nice value [ -20 ... 0 ... 19 ]. 1536 */ 1537 static inline int task_nice(const struct task_struct *p) 1538 { 1539 return PRIO_TO_NICE((p)->static_prio); 1540 } 1541 1542 extern int can_nice(const struct task_struct *p, const int nice); 1543 extern int task_curr(const struct task_struct *p); 1544 extern int idle_cpu(int cpu); 1545 extern int available_idle_cpu(int cpu); 1546 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1547 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1548 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1549 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1550 extern struct task_struct *idle_task(int cpu); 1551 1552 /** 1553 * is_idle_task - is the specified task an idle task? 1554 * @p: the task in question. 1555 * 1556 * Return: 1 if @p is an idle task. 0 otherwise. 1557 */ 1558 static inline bool is_idle_task(const struct task_struct *p) 1559 { 1560 return !!(p->flags & PF_IDLE); 1561 } 1562 1563 extern struct task_struct *curr_task(int cpu); 1564 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1565 1566 void yield(void); 1567 1568 union thread_union { 1569 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1570 struct task_struct task; 1571 #endif 1572 #ifndef CONFIG_THREAD_INFO_IN_TASK 1573 struct thread_info thread_info; 1574 #endif 1575 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1576 }; 1577 1578 #ifndef CONFIG_THREAD_INFO_IN_TASK 1579 extern struct thread_info init_thread_info; 1580 #endif 1581 1582 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1583 1584 #ifdef CONFIG_THREAD_INFO_IN_TASK 1585 static inline struct thread_info *task_thread_info(struct task_struct *task) 1586 { 1587 return &task->thread_info; 1588 } 1589 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1590 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1591 #endif 1592 1593 /* 1594 * find a task by one of its numerical ids 1595 * 1596 * find_task_by_pid_ns(): 1597 * finds a task by its pid in the specified namespace 1598 * find_task_by_vpid(): 1599 * finds a task by its virtual pid 1600 * 1601 * see also find_vpid() etc in include/linux/pid.h 1602 */ 1603 1604 extern struct task_struct *find_task_by_vpid(pid_t nr); 1605 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1606 1607 /* 1608 * find a task by its virtual pid and get the task struct 1609 */ 1610 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1611 1612 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1613 extern int wake_up_process(struct task_struct *tsk); 1614 extern void wake_up_new_task(struct task_struct *tsk); 1615 1616 #ifdef CONFIG_SMP 1617 extern void kick_process(struct task_struct *tsk); 1618 #else 1619 static inline void kick_process(struct task_struct *tsk) { } 1620 #endif 1621 1622 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1623 1624 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1625 { 1626 __set_task_comm(tsk, from, false); 1627 } 1628 1629 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1630 #define get_task_comm(buf, tsk) ({ \ 1631 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1632 __get_task_comm(buf, sizeof(buf), tsk); \ 1633 }) 1634 1635 #ifdef CONFIG_SMP 1636 void scheduler_ipi(void); 1637 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1638 #else 1639 static inline void scheduler_ipi(void) { } 1640 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1641 { 1642 return 1; 1643 } 1644 #endif 1645 1646 /* 1647 * Set thread flags in other task's structures. 1648 * See asm/thread_info.h for TIF_xxxx flags available: 1649 */ 1650 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1651 { 1652 set_ti_thread_flag(task_thread_info(tsk), flag); 1653 } 1654 1655 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1656 { 1657 clear_ti_thread_flag(task_thread_info(tsk), flag); 1658 } 1659 1660 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1661 bool value) 1662 { 1663 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1664 } 1665 1666 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1667 { 1668 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1669 } 1670 1671 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1672 { 1673 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1674 } 1675 1676 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1677 { 1678 return test_ti_thread_flag(task_thread_info(tsk), flag); 1679 } 1680 1681 static inline void set_tsk_need_resched(struct task_struct *tsk) 1682 { 1683 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1684 } 1685 1686 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1687 { 1688 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1689 } 1690 1691 static inline int test_tsk_need_resched(struct task_struct *tsk) 1692 { 1693 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1694 } 1695 1696 /* 1697 * cond_resched() and cond_resched_lock(): latency reduction via 1698 * explicit rescheduling in places that are safe. The return 1699 * value indicates whether a reschedule was done in fact. 1700 * cond_resched_lock() will drop the spinlock before scheduling, 1701 */ 1702 #ifndef CONFIG_PREEMPT 1703 extern int _cond_resched(void); 1704 #else 1705 static inline int _cond_resched(void) { return 0; } 1706 #endif 1707 1708 #define cond_resched() ({ \ 1709 ___might_sleep(__FILE__, __LINE__, 0); \ 1710 _cond_resched(); \ 1711 }) 1712 1713 extern int __cond_resched_lock(spinlock_t *lock); 1714 1715 #define cond_resched_lock(lock) ({ \ 1716 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1717 __cond_resched_lock(lock); \ 1718 }) 1719 1720 static inline void cond_resched_rcu(void) 1721 { 1722 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1723 rcu_read_unlock(); 1724 cond_resched(); 1725 rcu_read_lock(); 1726 #endif 1727 } 1728 1729 /* 1730 * Does a critical section need to be broken due to another 1731 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1732 * but a general need for low latency) 1733 */ 1734 static inline int spin_needbreak(spinlock_t *lock) 1735 { 1736 #ifdef CONFIG_PREEMPT 1737 return spin_is_contended(lock); 1738 #else 1739 return 0; 1740 #endif 1741 } 1742 1743 static __always_inline bool need_resched(void) 1744 { 1745 return unlikely(tif_need_resched()); 1746 } 1747 1748 /* 1749 * Wrappers for p->thread_info->cpu access. No-op on UP. 1750 */ 1751 #ifdef CONFIG_SMP 1752 1753 static inline unsigned int task_cpu(const struct task_struct *p) 1754 { 1755 #ifdef CONFIG_THREAD_INFO_IN_TASK 1756 return p->cpu; 1757 #else 1758 return task_thread_info(p)->cpu; 1759 #endif 1760 } 1761 1762 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1763 1764 #else 1765 1766 static inline unsigned int task_cpu(const struct task_struct *p) 1767 { 1768 return 0; 1769 } 1770 1771 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1772 { 1773 } 1774 1775 #endif /* CONFIG_SMP */ 1776 1777 /* 1778 * In order to reduce various lock holder preemption latencies provide an 1779 * interface to see if a vCPU is currently running or not. 1780 * 1781 * This allows us to terminate optimistic spin loops and block, analogous to 1782 * the native optimistic spin heuristic of testing if the lock owner task is 1783 * running or not. 1784 */ 1785 #ifndef vcpu_is_preempted 1786 # define vcpu_is_preempted(cpu) false 1787 #endif 1788 1789 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1790 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1791 1792 #ifndef TASK_SIZE_OF 1793 #define TASK_SIZE_OF(tsk) TASK_SIZE 1794 #endif 1795 1796 #ifdef CONFIG_RSEQ 1797 1798 /* 1799 * Map the event mask on the user-space ABI enum rseq_cs_flags 1800 * for direct mask checks. 1801 */ 1802 enum rseq_event_mask_bits { 1803 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1804 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1805 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1806 }; 1807 1808 enum rseq_event_mask { 1809 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1810 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1811 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1812 }; 1813 1814 static inline void rseq_set_notify_resume(struct task_struct *t) 1815 { 1816 if (t->rseq) 1817 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1818 } 1819 1820 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1821 1822 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1823 struct pt_regs *regs) 1824 { 1825 if (current->rseq) 1826 __rseq_handle_notify_resume(ksig, regs); 1827 } 1828 1829 static inline void rseq_signal_deliver(struct ksignal *ksig, 1830 struct pt_regs *regs) 1831 { 1832 preempt_disable(); 1833 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1834 preempt_enable(); 1835 rseq_handle_notify_resume(ksig, regs); 1836 } 1837 1838 /* rseq_preempt() requires preemption to be disabled. */ 1839 static inline void rseq_preempt(struct task_struct *t) 1840 { 1841 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1842 rseq_set_notify_resume(t); 1843 } 1844 1845 /* rseq_migrate() requires preemption to be disabled. */ 1846 static inline void rseq_migrate(struct task_struct *t) 1847 { 1848 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1849 rseq_set_notify_resume(t); 1850 } 1851 1852 /* 1853 * If parent process has a registered restartable sequences area, the 1854 * child inherits. Only applies when forking a process, not a thread. 1855 */ 1856 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1857 { 1858 if (clone_flags & CLONE_THREAD) { 1859 t->rseq = NULL; 1860 t->rseq_len = 0; 1861 t->rseq_sig = 0; 1862 t->rseq_event_mask = 0; 1863 } else { 1864 t->rseq = current->rseq; 1865 t->rseq_len = current->rseq_len; 1866 t->rseq_sig = current->rseq_sig; 1867 t->rseq_event_mask = current->rseq_event_mask; 1868 } 1869 } 1870 1871 static inline void rseq_execve(struct task_struct *t) 1872 { 1873 t->rseq = NULL; 1874 t->rseq_len = 0; 1875 t->rseq_sig = 0; 1876 t->rseq_event_mask = 0; 1877 } 1878 1879 #else 1880 1881 static inline void rseq_set_notify_resume(struct task_struct *t) 1882 { 1883 } 1884 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1885 struct pt_regs *regs) 1886 { 1887 } 1888 static inline void rseq_signal_deliver(struct ksignal *ksig, 1889 struct pt_regs *regs) 1890 { 1891 } 1892 static inline void rseq_preempt(struct task_struct *t) 1893 { 1894 } 1895 static inline void rseq_migrate(struct task_struct *t) 1896 { 1897 } 1898 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1899 { 1900 } 1901 static inline void rseq_execve(struct task_struct *t) 1902 { 1903 } 1904 1905 #endif 1906 1907 #ifdef CONFIG_DEBUG_RSEQ 1908 1909 void rseq_syscall(struct pt_regs *regs); 1910 1911 #else 1912 1913 static inline void rseq_syscall(struct pt_regs *regs) 1914 { 1915 } 1916 1917 #endif 1918 1919 #endif 1920