xref: /linux/include/linux/sched.h (revision 80d7da1cac62f28b3df4880e8143b39cabb4b59a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/psi_types.h>
29 #include <linux/mm_types_task.h>
30 #include <linux/task_io_accounting.h>
31 #include <linux/rseq.h>
32 
33 /* task_struct member predeclarations (sorted alphabetically): */
34 struct audit_context;
35 struct backing_dev_info;
36 struct bio_list;
37 struct blk_plug;
38 struct cfs_rq;
39 struct fs_struct;
40 struct futex_pi_state;
41 struct io_context;
42 struct mempolicy;
43 struct nameidata;
44 struct nsproxy;
45 struct perf_event_context;
46 struct pid_namespace;
47 struct pipe_inode_info;
48 struct rcu_node;
49 struct reclaim_state;
50 struct robust_list_head;
51 struct sched_attr;
52 struct sched_param;
53 struct seq_file;
54 struct sighand_struct;
55 struct signal_struct;
56 struct task_delay_info;
57 struct task_group;
58 
59 /*
60  * Task state bitmask. NOTE! These bits are also
61  * encoded in fs/proc/array.c: get_task_state().
62  *
63  * We have two separate sets of flags: task->state
64  * is about runnability, while task->exit_state are
65  * about the task exiting. Confusing, but this way
66  * modifying one set can't modify the other one by
67  * mistake.
68  */
69 
70 /* Used in tsk->state: */
71 #define TASK_RUNNING			0x0000
72 #define TASK_INTERRUPTIBLE		0x0001
73 #define TASK_UNINTERRUPTIBLE		0x0002
74 #define __TASK_STOPPED			0x0004
75 #define __TASK_TRACED			0x0008
76 /* Used in tsk->exit_state: */
77 #define EXIT_DEAD			0x0010
78 #define EXIT_ZOMBIE			0x0020
79 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
80 /* Used in tsk->state again: */
81 #define TASK_PARKED			0x0040
82 #define TASK_DEAD			0x0080
83 #define TASK_WAKEKILL			0x0100
84 #define TASK_WAKING			0x0200
85 #define TASK_NOLOAD			0x0400
86 #define TASK_NEW			0x0800
87 #define TASK_STATE_MAX			0x1000
88 
89 /* Convenience macros for the sake of set_current_state: */
90 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
91 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
92 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
93 
94 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
95 
96 /* Convenience macros for the sake of wake_up(): */
97 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
98 
99 /* get_task_state(): */
100 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
103 					 TASK_PARKED)
104 
105 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
106 
107 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
108 
109 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
110 
111 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
112 					 (task->flags & PF_FROZEN) == 0 && \
113 					 (task->state & TASK_NOLOAD) == 0)
114 
115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
116 
117 /*
118  * Special states are those that do not use the normal wait-loop pattern. See
119  * the comment with set_special_state().
120  */
121 #define is_special_task_state(state)				\
122 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
123 
124 #define __set_current_state(state_value)			\
125 	do {							\
126 		WARN_ON_ONCE(is_special_task_state(state_value));\
127 		current->task_state_change = _THIS_IP_;		\
128 		current->state = (state_value);			\
129 	} while (0)
130 
131 #define set_current_state(state_value)				\
132 	do {							\
133 		WARN_ON_ONCE(is_special_task_state(state_value));\
134 		current->task_state_change = _THIS_IP_;		\
135 		smp_store_mb(current->state, (state_value));	\
136 	} while (0)
137 
138 #define set_special_state(state_value)					\
139 	do {								\
140 		unsigned long flags; /* may shadow */			\
141 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
142 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
143 		current->task_state_change = _THIS_IP_;			\
144 		current->state = (state_value);				\
145 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
146 	} while (0)
147 #else
148 /*
149  * set_current_state() includes a barrier so that the write of current->state
150  * is correctly serialised wrt the caller's subsequent test of whether to
151  * actually sleep:
152  *
153  *   for (;;) {
154  *	set_current_state(TASK_UNINTERRUPTIBLE);
155  *	if (!need_sleep)
156  *		break;
157  *
158  *	schedule();
159  *   }
160  *   __set_current_state(TASK_RUNNING);
161  *
162  * If the caller does not need such serialisation (because, for instance, the
163  * condition test and condition change and wakeup are under the same lock) then
164  * use __set_current_state().
165  *
166  * The above is typically ordered against the wakeup, which does:
167  *
168  *   need_sleep = false;
169  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
170  *
171  * where wake_up_state() executes a full memory barrier before accessing the
172  * task state.
173  *
174  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
175  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
176  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
177  *
178  * However, with slightly different timing the wakeup TASK_RUNNING store can
179  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
180  * a problem either because that will result in one extra go around the loop
181  * and our @cond test will save the day.
182  *
183  * Also see the comments of try_to_wake_up().
184  */
185 #define __set_current_state(state_value)				\
186 	current->state = (state_value)
187 
188 #define set_current_state(state_value)					\
189 	smp_store_mb(current->state, (state_value))
190 
191 /*
192  * set_special_state() should be used for those states when the blocking task
193  * can not use the regular condition based wait-loop. In that case we must
194  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
195  * will not collide with our state change.
196  */
197 #define set_special_state(state_value)					\
198 	do {								\
199 		unsigned long flags; /* may shadow */			\
200 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
201 		current->state = (state_value);				\
202 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
203 	} while (0)
204 
205 #endif
206 
207 /* Task command name length: */
208 #define TASK_COMM_LEN			16
209 
210 extern void scheduler_tick(void);
211 
212 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
213 
214 extern long schedule_timeout(long timeout);
215 extern long schedule_timeout_interruptible(long timeout);
216 extern long schedule_timeout_killable(long timeout);
217 extern long schedule_timeout_uninterruptible(long timeout);
218 extern long schedule_timeout_idle(long timeout);
219 asmlinkage void schedule(void);
220 extern void schedule_preempt_disabled(void);
221 
222 extern int __must_check io_schedule_prepare(void);
223 extern void io_schedule_finish(int token);
224 extern long io_schedule_timeout(long timeout);
225 extern void io_schedule(void);
226 
227 /**
228  * struct prev_cputime - snapshot of system and user cputime
229  * @utime: time spent in user mode
230  * @stime: time spent in system mode
231  * @lock: protects the above two fields
232  *
233  * Stores previous user/system time values such that we can guarantee
234  * monotonicity.
235  */
236 struct prev_cputime {
237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
238 	u64				utime;
239 	u64				stime;
240 	raw_spinlock_t			lock;
241 #endif
242 };
243 
244 /**
245  * struct task_cputime - collected CPU time counts
246  * @utime:		time spent in user mode, in nanoseconds
247  * @stime:		time spent in kernel mode, in nanoseconds
248  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
249  *
250  * This structure groups together three kinds of CPU time that are tracked for
251  * threads and thread groups.  Most things considering CPU time want to group
252  * these counts together and treat all three of them in parallel.
253  */
254 struct task_cputime {
255 	u64				utime;
256 	u64				stime;
257 	unsigned long long		sum_exec_runtime;
258 };
259 
260 /* Alternate field names when used on cache expirations: */
261 #define virt_exp			utime
262 #define prof_exp			stime
263 #define sched_exp			sum_exec_runtime
264 
265 enum vtime_state {
266 	/* Task is sleeping or running in a CPU with VTIME inactive: */
267 	VTIME_INACTIVE = 0,
268 	/* Task runs in userspace in a CPU with VTIME active: */
269 	VTIME_USER,
270 	/* Task runs in kernelspace in a CPU with VTIME active: */
271 	VTIME_SYS,
272 };
273 
274 struct vtime {
275 	seqcount_t		seqcount;
276 	unsigned long long	starttime;
277 	enum vtime_state	state;
278 	u64			utime;
279 	u64			stime;
280 	u64			gtime;
281 };
282 
283 struct sched_info {
284 #ifdef CONFIG_SCHED_INFO
285 	/* Cumulative counters: */
286 
287 	/* # of times we have run on this CPU: */
288 	unsigned long			pcount;
289 
290 	/* Time spent waiting on a runqueue: */
291 	unsigned long long		run_delay;
292 
293 	/* Timestamps: */
294 
295 	/* When did we last run on a CPU? */
296 	unsigned long long		last_arrival;
297 
298 	/* When were we last queued to run? */
299 	unsigned long long		last_queued;
300 
301 #endif /* CONFIG_SCHED_INFO */
302 };
303 
304 /*
305  * Integer metrics need fixed point arithmetic, e.g., sched/fair
306  * has a few: load, load_avg, util_avg, freq, and capacity.
307  *
308  * We define a basic fixed point arithmetic range, and then formalize
309  * all these metrics based on that basic range.
310  */
311 # define SCHED_FIXEDPOINT_SHIFT		10
312 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
313 
314 struct load_weight {
315 	unsigned long			weight;
316 	u32				inv_weight;
317 };
318 
319 /**
320  * struct util_est - Estimation utilization of FAIR tasks
321  * @enqueued: instantaneous estimated utilization of a task/cpu
322  * @ewma:     the Exponential Weighted Moving Average (EWMA)
323  *            utilization of a task
324  *
325  * Support data structure to track an Exponential Weighted Moving Average
326  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
327  * average each time a task completes an activation. Sample's weight is chosen
328  * so that the EWMA will be relatively insensitive to transient changes to the
329  * task's workload.
330  *
331  * The enqueued attribute has a slightly different meaning for tasks and cpus:
332  * - task:   the task's util_avg at last task dequeue time
333  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
334  * Thus, the util_est.enqueued of a task represents the contribution on the
335  * estimated utilization of the CPU where that task is currently enqueued.
336  *
337  * Only for tasks we track a moving average of the past instantaneous
338  * estimated utilization. This allows to absorb sporadic drops in utilization
339  * of an otherwise almost periodic task.
340  */
341 struct util_est {
342 	unsigned int			enqueued;
343 	unsigned int			ewma;
344 #define UTIL_EST_WEIGHT_SHIFT		2
345 } __attribute__((__aligned__(sizeof(u64))));
346 
347 /*
348  * The load_avg/util_avg accumulates an infinite geometric series
349  * (see __update_load_avg() in kernel/sched/fair.c).
350  *
351  * [load_avg definition]
352  *
353  *   load_avg = runnable% * scale_load_down(load)
354  *
355  * where runnable% is the time ratio that a sched_entity is runnable.
356  * For cfs_rq, it is the aggregated load_avg of all runnable and
357  * blocked sched_entities.
358  *
359  * load_avg may also take frequency scaling into account:
360  *
361  *   load_avg = runnable% * scale_load_down(load) * freq%
362  *
363  * where freq% is the CPU frequency normalized to the highest frequency.
364  *
365  * [util_avg definition]
366  *
367  *   util_avg = running% * SCHED_CAPACITY_SCALE
368  *
369  * where running% is the time ratio that a sched_entity is running on
370  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371  * and blocked sched_entities.
372  *
373  * util_avg may also factor frequency scaling and CPU capacity scaling:
374  *
375  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
376  *
377  * where freq% is the same as above, and capacity% is the CPU capacity
378  * normalized to the greatest capacity (due to uarch differences, etc).
379  *
380  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
381  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
382  * we therefore scale them to as large a range as necessary. This is for
383  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
384  *
385  * [Overflow issue]
386  *
387  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
388  * with the highest load (=88761), always runnable on a single cfs_rq,
389  * and should not overflow as the number already hits PID_MAX_LIMIT.
390  *
391  * For all other cases (including 32-bit kernels), struct load_weight's
392  * weight will overflow first before we do, because:
393  *
394  *    Max(load_avg) <= Max(load.weight)
395  *
396  * Then it is the load_weight's responsibility to consider overflow
397  * issues.
398  */
399 struct sched_avg {
400 	u64				last_update_time;
401 	u64				load_sum;
402 	u64				runnable_load_sum;
403 	u32				util_sum;
404 	u32				period_contrib;
405 	unsigned long			load_avg;
406 	unsigned long			runnable_load_avg;
407 	unsigned long			util_avg;
408 	struct util_est			util_est;
409 } ____cacheline_aligned;
410 
411 struct sched_statistics {
412 #ifdef CONFIG_SCHEDSTATS
413 	u64				wait_start;
414 	u64				wait_max;
415 	u64				wait_count;
416 	u64				wait_sum;
417 	u64				iowait_count;
418 	u64				iowait_sum;
419 
420 	u64				sleep_start;
421 	u64				sleep_max;
422 	s64				sum_sleep_runtime;
423 
424 	u64				block_start;
425 	u64				block_max;
426 	u64				exec_max;
427 	u64				slice_max;
428 
429 	u64				nr_migrations_cold;
430 	u64				nr_failed_migrations_affine;
431 	u64				nr_failed_migrations_running;
432 	u64				nr_failed_migrations_hot;
433 	u64				nr_forced_migrations;
434 
435 	u64				nr_wakeups;
436 	u64				nr_wakeups_sync;
437 	u64				nr_wakeups_migrate;
438 	u64				nr_wakeups_local;
439 	u64				nr_wakeups_remote;
440 	u64				nr_wakeups_affine;
441 	u64				nr_wakeups_affine_attempts;
442 	u64				nr_wakeups_passive;
443 	u64				nr_wakeups_idle;
444 #endif
445 };
446 
447 struct sched_entity {
448 	/* For load-balancing: */
449 	struct load_weight		load;
450 	unsigned long			runnable_weight;
451 	struct rb_node			run_node;
452 	struct list_head		group_node;
453 	unsigned int			on_rq;
454 
455 	u64				exec_start;
456 	u64				sum_exec_runtime;
457 	u64				vruntime;
458 	u64				prev_sum_exec_runtime;
459 
460 	u64				nr_migrations;
461 
462 	struct sched_statistics		statistics;
463 
464 #ifdef CONFIG_FAIR_GROUP_SCHED
465 	int				depth;
466 	struct sched_entity		*parent;
467 	/* rq on which this entity is (to be) queued: */
468 	struct cfs_rq			*cfs_rq;
469 	/* rq "owned" by this entity/group: */
470 	struct cfs_rq			*my_q;
471 #endif
472 
473 #ifdef CONFIG_SMP
474 	/*
475 	 * Per entity load average tracking.
476 	 *
477 	 * Put into separate cache line so it does not
478 	 * collide with read-mostly values above.
479 	 */
480 	struct sched_avg		avg;
481 #endif
482 };
483 
484 struct sched_rt_entity {
485 	struct list_head		run_list;
486 	unsigned long			timeout;
487 	unsigned long			watchdog_stamp;
488 	unsigned int			time_slice;
489 	unsigned short			on_rq;
490 	unsigned short			on_list;
491 
492 	struct sched_rt_entity		*back;
493 #ifdef CONFIG_RT_GROUP_SCHED
494 	struct sched_rt_entity		*parent;
495 	/* rq on which this entity is (to be) queued: */
496 	struct rt_rq			*rt_rq;
497 	/* rq "owned" by this entity/group: */
498 	struct rt_rq			*my_q;
499 #endif
500 } __randomize_layout;
501 
502 struct sched_dl_entity {
503 	struct rb_node			rb_node;
504 
505 	/*
506 	 * Original scheduling parameters. Copied here from sched_attr
507 	 * during sched_setattr(), they will remain the same until
508 	 * the next sched_setattr().
509 	 */
510 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
511 	u64				dl_deadline;	/* Relative deadline of each instance	*/
512 	u64				dl_period;	/* Separation of two instances (period) */
513 	u64				dl_bw;		/* dl_runtime / dl_period		*/
514 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
515 
516 	/*
517 	 * Actual scheduling parameters. Initialized with the values above,
518 	 * they are continuously updated during task execution. Note that
519 	 * the remaining runtime could be < 0 in case we are in overrun.
520 	 */
521 	s64				runtime;	/* Remaining runtime for this instance	*/
522 	u64				deadline;	/* Absolute deadline for this instance	*/
523 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
524 
525 	/*
526 	 * Some bool flags:
527 	 *
528 	 * @dl_throttled tells if we exhausted the runtime. If so, the
529 	 * task has to wait for a replenishment to be performed at the
530 	 * next firing of dl_timer.
531 	 *
532 	 * @dl_boosted tells if we are boosted due to DI. If so we are
533 	 * outside bandwidth enforcement mechanism (but only until we
534 	 * exit the critical section);
535 	 *
536 	 * @dl_yielded tells if task gave up the CPU before consuming
537 	 * all its available runtime during the last job.
538 	 *
539 	 * @dl_non_contending tells if the task is inactive while still
540 	 * contributing to the active utilization. In other words, it
541 	 * indicates if the inactive timer has been armed and its handler
542 	 * has not been executed yet. This flag is useful to avoid race
543 	 * conditions between the inactive timer handler and the wakeup
544 	 * code.
545 	 *
546 	 * @dl_overrun tells if the task asked to be informed about runtime
547 	 * overruns.
548 	 */
549 	unsigned int			dl_throttled      : 1;
550 	unsigned int			dl_boosted        : 1;
551 	unsigned int			dl_yielded        : 1;
552 	unsigned int			dl_non_contending : 1;
553 	unsigned int			dl_overrun	  : 1;
554 
555 	/*
556 	 * Bandwidth enforcement timer. Each -deadline task has its
557 	 * own bandwidth to be enforced, thus we need one timer per task.
558 	 */
559 	struct hrtimer			dl_timer;
560 
561 	/*
562 	 * Inactive timer, responsible for decreasing the active utilization
563 	 * at the "0-lag time". When a -deadline task blocks, it contributes
564 	 * to GRUB's active utilization until the "0-lag time", hence a
565 	 * timer is needed to decrease the active utilization at the correct
566 	 * time.
567 	 */
568 	struct hrtimer inactive_timer;
569 };
570 
571 union rcu_special {
572 	struct {
573 		u8			blocked;
574 		u8			need_qs;
575 		u8			exp_hint; /* Hint for performance. */
576 		u8			pad; /* No garbage from compiler! */
577 	} b; /* Bits. */
578 	u32 s; /* Set of bits. */
579 };
580 
581 enum perf_event_task_context {
582 	perf_invalid_context = -1,
583 	perf_hw_context = 0,
584 	perf_sw_context,
585 	perf_nr_task_contexts,
586 };
587 
588 struct wake_q_node {
589 	struct wake_q_node *next;
590 };
591 
592 struct task_struct {
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
594 	/*
595 	 * For reasons of header soup (see current_thread_info()), this
596 	 * must be the first element of task_struct.
597 	 */
598 	struct thread_info		thread_info;
599 #endif
600 	/* -1 unrunnable, 0 runnable, >0 stopped: */
601 	volatile long			state;
602 
603 	/*
604 	 * This begins the randomizable portion of task_struct. Only
605 	 * scheduling-critical items should be added above here.
606 	 */
607 	randomized_struct_fields_start
608 
609 	void				*stack;
610 	atomic_t			usage;
611 	/* Per task flags (PF_*), defined further below: */
612 	unsigned int			flags;
613 	unsigned int			ptrace;
614 
615 #ifdef CONFIG_SMP
616 	struct llist_node		wake_entry;
617 	int				on_cpu;
618 #ifdef CONFIG_THREAD_INFO_IN_TASK
619 	/* Current CPU: */
620 	unsigned int			cpu;
621 #endif
622 	unsigned int			wakee_flips;
623 	unsigned long			wakee_flip_decay_ts;
624 	struct task_struct		*last_wakee;
625 
626 	/*
627 	 * recent_used_cpu is initially set as the last CPU used by a task
628 	 * that wakes affine another task. Waker/wakee relationships can
629 	 * push tasks around a CPU where each wakeup moves to the next one.
630 	 * Tracking a recently used CPU allows a quick search for a recently
631 	 * used CPU that may be idle.
632 	 */
633 	int				recent_used_cpu;
634 	int				wake_cpu;
635 #endif
636 	int				on_rq;
637 
638 	int				prio;
639 	int				static_prio;
640 	int				normal_prio;
641 	unsigned int			rt_priority;
642 
643 	const struct sched_class	*sched_class;
644 	struct sched_entity		se;
645 	struct sched_rt_entity		rt;
646 #ifdef CONFIG_CGROUP_SCHED
647 	struct task_group		*sched_task_group;
648 #endif
649 	struct sched_dl_entity		dl;
650 
651 #ifdef CONFIG_PREEMPT_NOTIFIERS
652 	/* List of struct preempt_notifier: */
653 	struct hlist_head		preempt_notifiers;
654 #endif
655 
656 #ifdef CONFIG_BLK_DEV_IO_TRACE
657 	unsigned int			btrace_seq;
658 #endif
659 
660 	unsigned int			policy;
661 	int				nr_cpus_allowed;
662 	cpumask_t			cpus_allowed;
663 
664 #ifdef CONFIG_PREEMPT_RCU
665 	int				rcu_read_lock_nesting;
666 	union rcu_special		rcu_read_unlock_special;
667 	struct list_head		rcu_node_entry;
668 	struct rcu_node			*rcu_blocked_node;
669 #endif /* #ifdef CONFIG_PREEMPT_RCU */
670 
671 #ifdef CONFIG_TASKS_RCU
672 	unsigned long			rcu_tasks_nvcsw;
673 	u8				rcu_tasks_holdout;
674 	u8				rcu_tasks_idx;
675 	int				rcu_tasks_idle_cpu;
676 	struct list_head		rcu_tasks_holdout_list;
677 #endif /* #ifdef CONFIG_TASKS_RCU */
678 
679 	struct sched_info		sched_info;
680 
681 	struct list_head		tasks;
682 #ifdef CONFIG_SMP
683 	struct plist_node		pushable_tasks;
684 	struct rb_node			pushable_dl_tasks;
685 #endif
686 
687 	struct mm_struct		*mm;
688 	struct mm_struct		*active_mm;
689 
690 	/* Per-thread vma caching: */
691 	struct vmacache			vmacache;
692 
693 #ifdef SPLIT_RSS_COUNTING
694 	struct task_rss_stat		rss_stat;
695 #endif
696 	int				exit_state;
697 	int				exit_code;
698 	int				exit_signal;
699 	/* The signal sent when the parent dies: */
700 	int				pdeath_signal;
701 	/* JOBCTL_*, siglock protected: */
702 	unsigned long			jobctl;
703 
704 	/* Used for emulating ABI behavior of previous Linux versions: */
705 	unsigned int			personality;
706 
707 	/* Scheduler bits, serialized by scheduler locks: */
708 	unsigned			sched_reset_on_fork:1;
709 	unsigned			sched_contributes_to_load:1;
710 	unsigned			sched_migrated:1;
711 	unsigned			sched_remote_wakeup:1;
712 #ifdef CONFIG_PSI
713 	unsigned			sched_psi_wake_requeue:1;
714 #endif
715 
716 	/* Force alignment to the next boundary: */
717 	unsigned			:0;
718 
719 	/* Unserialized, strictly 'current' */
720 
721 	/* Bit to tell LSMs we're in execve(): */
722 	unsigned			in_execve:1;
723 	unsigned			in_iowait:1;
724 #ifndef TIF_RESTORE_SIGMASK
725 	unsigned			restore_sigmask:1;
726 #endif
727 #ifdef CONFIG_MEMCG
728 	unsigned			in_user_fault:1;
729 #endif
730 #ifdef CONFIG_COMPAT_BRK
731 	unsigned			brk_randomized:1;
732 #endif
733 #ifdef CONFIG_CGROUPS
734 	/* disallow userland-initiated cgroup migration */
735 	unsigned			no_cgroup_migration:1;
736 #endif
737 #ifdef CONFIG_BLK_CGROUP
738 	/* to be used once the psi infrastructure lands upstream. */
739 	unsigned			use_memdelay:1;
740 #endif
741 
742 	/*
743 	 * May usercopy functions fault on kernel addresses?
744 	 * This is not just a single bit because this can potentially nest.
745 	 */
746 	unsigned int			kernel_uaccess_faults_ok;
747 
748 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
749 
750 	struct restart_block		restart_block;
751 
752 	pid_t				pid;
753 	pid_t				tgid;
754 
755 #ifdef CONFIG_STACKPROTECTOR
756 	/* Canary value for the -fstack-protector GCC feature: */
757 	unsigned long			stack_canary;
758 #endif
759 	/*
760 	 * Pointers to the (original) parent process, youngest child, younger sibling,
761 	 * older sibling, respectively.  (p->father can be replaced with
762 	 * p->real_parent->pid)
763 	 */
764 
765 	/* Real parent process: */
766 	struct task_struct __rcu	*real_parent;
767 
768 	/* Recipient of SIGCHLD, wait4() reports: */
769 	struct task_struct __rcu	*parent;
770 
771 	/*
772 	 * Children/sibling form the list of natural children:
773 	 */
774 	struct list_head		children;
775 	struct list_head		sibling;
776 	struct task_struct		*group_leader;
777 
778 	/*
779 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
780 	 *
781 	 * This includes both natural children and PTRACE_ATTACH targets.
782 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
783 	 */
784 	struct list_head		ptraced;
785 	struct list_head		ptrace_entry;
786 
787 	/* PID/PID hash table linkage. */
788 	struct pid			*thread_pid;
789 	struct hlist_node		pid_links[PIDTYPE_MAX];
790 	struct list_head		thread_group;
791 	struct list_head		thread_node;
792 
793 	struct completion		*vfork_done;
794 
795 	/* CLONE_CHILD_SETTID: */
796 	int __user			*set_child_tid;
797 
798 	/* CLONE_CHILD_CLEARTID: */
799 	int __user			*clear_child_tid;
800 
801 	u64				utime;
802 	u64				stime;
803 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
804 	u64				utimescaled;
805 	u64				stimescaled;
806 #endif
807 	u64				gtime;
808 	struct prev_cputime		prev_cputime;
809 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
810 	struct vtime			vtime;
811 #endif
812 
813 #ifdef CONFIG_NO_HZ_FULL
814 	atomic_t			tick_dep_mask;
815 #endif
816 	/* Context switch counts: */
817 	unsigned long			nvcsw;
818 	unsigned long			nivcsw;
819 
820 	/* Monotonic time in nsecs: */
821 	u64				start_time;
822 
823 	/* Boot based time in nsecs: */
824 	u64				real_start_time;
825 
826 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
827 	unsigned long			min_flt;
828 	unsigned long			maj_flt;
829 
830 #ifdef CONFIG_POSIX_TIMERS
831 	struct task_cputime		cputime_expires;
832 	struct list_head		cpu_timers[3];
833 #endif
834 
835 	/* Process credentials: */
836 
837 	/* Tracer's credentials at attach: */
838 	const struct cred __rcu		*ptracer_cred;
839 
840 	/* Objective and real subjective task credentials (COW): */
841 	const struct cred __rcu		*real_cred;
842 
843 	/* Effective (overridable) subjective task credentials (COW): */
844 	const struct cred __rcu		*cred;
845 
846 	/*
847 	 * executable name, excluding path.
848 	 *
849 	 * - normally initialized setup_new_exec()
850 	 * - access it with [gs]et_task_comm()
851 	 * - lock it with task_lock()
852 	 */
853 	char				comm[TASK_COMM_LEN];
854 
855 	struct nameidata		*nameidata;
856 
857 #ifdef CONFIG_SYSVIPC
858 	struct sysv_sem			sysvsem;
859 	struct sysv_shm			sysvshm;
860 #endif
861 #ifdef CONFIG_DETECT_HUNG_TASK
862 	unsigned long			last_switch_count;
863 	unsigned long			last_switch_time;
864 #endif
865 	/* Filesystem information: */
866 	struct fs_struct		*fs;
867 
868 	/* Open file information: */
869 	struct files_struct		*files;
870 
871 	/* Namespaces: */
872 	struct nsproxy			*nsproxy;
873 
874 	/* Signal handlers: */
875 	struct signal_struct		*signal;
876 	struct sighand_struct		*sighand;
877 	sigset_t			blocked;
878 	sigset_t			real_blocked;
879 	/* Restored if set_restore_sigmask() was used: */
880 	sigset_t			saved_sigmask;
881 	struct sigpending		pending;
882 	unsigned long			sas_ss_sp;
883 	size_t				sas_ss_size;
884 	unsigned int			sas_ss_flags;
885 
886 	struct callback_head		*task_works;
887 
888 	struct audit_context		*audit_context;
889 #ifdef CONFIG_AUDITSYSCALL
890 	kuid_t				loginuid;
891 	unsigned int			sessionid;
892 #endif
893 	struct seccomp			seccomp;
894 
895 	/* Thread group tracking: */
896 	u32				parent_exec_id;
897 	u32				self_exec_id;
898 
899 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
900 	spinlock_t			alloc_lock;
901 
902 	/* Protection of the PI data structures: */
903 	raw_spinlock_t			pi_lock;
904 
905 	struct wake_q_node		wake_q;
906 
907 #ifdef CONFIG_RT_MUTEXES
908 	/* PI waiters blocked on a rt_mutex held by this task: */
909 	struct rb_root_cached		pi_waiters;
910 	/* Updated under owner's pi_lock and rq lock */
911 	struct task_struct		*pi_top_task;
912 	/* Deadlock detection and priority inheritance handling: */
913 	struct rt_mutex_waiter		*pi_blocked_on;
914 #endif
915 
916 #ifdef CONFIG_DEBUG_MUTEXES
917 	/* Mutex deadlock detection: */
918 	struct mutex_waiter		*blocked_on;
919 #endif
920 
921 #ifdef CONFIG_TRACE_IRQFLAGS
922 	unsigned int			irq_events;
923 	unsigned long			hardirq_enable_ip;
924 	unsigned long			hardirq_disable_ip;
925 	unsigned int			hardirq_enable_event;
926 	unsigned int			hardirq_disable_event;
927 	int				hardirqs_enabled;
928 	int				hardirq_context;
929 	unsigned long			softirq_disable_ip;
930 	unsigned long			softirq_enable_ip;
931 	unsigned int			softirq_disable_event;
932 	unsigned int			softirq_enable_event;
933 	int				softirqs_enabled;
934 	int				softirq_context;
935 #endif
936 
937 #ifdef CONFIG_LOCKDEP
938 # define MAX_LOCK_DEPTH			48UL
939 	u64				curr_chain_key;
940 	int				lockdep_depth;
941 	unsigned int			lockdep_recursion;
942 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
943 #endif
944 
945 #ifdef CONFIG_UBSAN
946 	unsigned int			in_ubsan;
947 #endif
948 
949 	/* Journalling filesystem info: */
950 	void				*journal_info;
951 
952 	/* Stacked block device info: */
953 	struct bio_list			*bio_list;
954 
955 #ifdef CONFIG_BLOCK
956 	/* Stack plugging: */
957 	struct blk_plug			*plug;
958 #endif
959 
960 	/* VM state: */
961 	struct reclaim_state		*reclaim_state;
962 
963 	struct backing_dev_info		*backing_dev_info;
964 
965 	struct io_context		*io_context;
966 
967 	/* Ptrace state: */
968 	unsigned long			ptrace_message;
969 	kernel_siginfo_t		*last_siginfo;
970 
971 	struct task_io_accounting	ioac;
972 #ifdef CONFIG_PSI
973 	/* Pressure stall state */
974 	unsigned int			psi_flags;
975 #endif
976 #ifdef CONFIG_TASK_XACCT
977 	/* Accumulated RSS usage: */
978 	u64				acct_rss_mem1;
979 	/* Accumulated virtual memory usage: */
980 	u64				acct_vm_mem1;
981 	/* stime + utime since last update: */
982 	u64				acct_timexpd;
983 #endif
984 #ifdef CONFIG_CPUSETS
985 	/* Protected by ->alloc_lock: */
986 	nodemask_t			mems_allowed;
987 	/* Seqence number to catch updates: */
988 	seqcount_t			mems_allowed_seq;
989 	int				cpuset_mem_spread_rotor;
990 	int				cpuset_slab_spread_rotor;
991 #endif
992 #ifdef CONFIG_CGROUPS
993 	/* Control Group info protected by css_set_lock: */
994 	struct css_set __rcu		*cgroups;
995 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
996 	struct list_head		cg_list;
997 #endif
998 #ifdef CONFIG_X86_RESCTRL
999 	u32				closid;
1000 	u32				rmid;
1001 #endif
1002 #ifdef CONFIG_FUTEX
1003 	struct robust_list_head __user	*robust_list;
1004 #ifdef CONFIG_COMPAT
1005 	struct compat_robust_list_head __user *compat_robust_list;
1006 #endif
1007 	struct list_head		pi_state_list;
1008 	struct futex_pi_state		*pi_state_cache;
1009 #endif
1010 #ifdef CONFIG_PERF_EVENTS
1011 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1012 	struct mutex			perf_event_mutex;
1013 	struct list_head		perf_event_list;
1014 #endif
1015 #ifdef CONFIG_DEBUG_PREEMPT
1016 	unsigned long			preempt_disable_ip;
1017 #endif
1018 #ifdef CONFIG_NUMA
1019 	/* Protected by alloc_lock: */
1020 	struct mempolicy		*mempolicy;
1021 	short				il_prev;
1022 	short				pref_node_fork;
1023 #endif
1024 #ifdef CONFIG_NUMA_BALANCING
1025 	int				numa_scan_seq;
1026 	unsigned int			numa_scan_period;
1027 	unsigned int			numa_scan_period_max;
1028 	int				numa_preferred_nid;
1029 	unsigned long			numa_migrate_retry;
1030 	/* Migration stamp: */
1031 	u64				node_stamp;
1032 	u64				last_task_numa_placement;
1033 	u64				last_sum_exec_runtime;
1034 	struct callback_head		numa_work;
1035 
1036 	struct numa_group		*numa_group;
1037 
1038 	/*
1039 	 * numa_faults is an array split into four regions:
1040 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1041 	 * in this precise order.
1042 	 *
1043 	 * faults_memory: Exponential decaying average of faults on a per-node
1044 	 * basis. Scheduling placement decisions are made based on these
1045 	 * counts. The values remain static for the duration of a PTE scan.
1046 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1047 	 * hinting fault was incurred.
1048 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1049 	 * during the current scan window. When the scan completes, the counts
1050 	 * in faults_memory and faults_cpu decay and these values are copied.
1051 	 */
1052 	unsigned long			*numa_faults;
1053 	unsigned long			total_numa_faults;
1054 
1055 	/*
1056 	 * numa_faults_locality tracks if faults recorded during the last
1057 	 * scan window were remote/local or failed to migrate. The task scan
1058 	 * period is adapted based on the locality of the faults with different
1059 	 * weights depending on whether they were shared or private faults
1060 	 */
1061 	unsigned long			numa_faults_locality[3];
1062 
1063 	unsigned long			numa_pages_migrated;
1064 #endif /* CONFIG_NUMA_BALANCING */
1065 
1066 #ifdef CONFIG_RSEQ
1067 	struct rseq __user *rseq;
1068 	u32 rseq_len;
1069 	u32 rseq_sig;
1070 	/*
1071 	 * RmW on rseq_event_mask must be performed atomically
1072 	 * with respect to preemption.
1073 	 */
1074 	unsigned long rseq_event_mask;
1075 #endif
1076 
1077 	struct tlbflush_unmap_batch	tlb_ubc;
1078 
1079 	struct rcu_head			rcu;
1080 
1081 	/* Cache last used pipe for splice(): */
1082 	struct pipe_inode_info		*splice_pipe;
1083 
1084 	struct page_frag		task_frag;
1085 
1086 #ifdef CONFIG_TASK_DELAY_ACCT
1087 	struct task_delay_info		*delays;
1088 #endif
1089 
1090 #ifdef CONFIG_FAULT_INJECTION
1091 	int				make_it_fail;
1092 	unsigned int			fail_nth;
1093 #endif
1094 	/*
1095 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1096 	 * balance_dirty_pages() for a dirty throttling pause:
1097 	 */
1098 	int				nr_dirtied;
1099 	int				nr_dirtied_pause;
1100 	/* Start of a write-and-pause period: */
1101 	unsigned long			dirty_paused_when;
1102 
1103 #ifdef CONFIG_LATENCYTOP
1104 	int				latency_record_count;
1105 	struct latency_record		latency_record[LT_SAVECOUNT];
1106 #endif
1107 	/*
1108 	 * Time slack values; these are used to round up poll() and
1109 	 * select() etc timeout values. These are in nanoseconds.
1110 	 */
1111 	u64				timer_slack_ns;
1112 	u64				default_timer_slack_ns;
1113 
1114 #ifdef CONFIG_KASAN
1115 	unsigned int			kasan_depth;
1116 #endif
1117 
1118 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1119 	/* Index of current stored address in ret_stack: */
1120 	int				curr_ret_stack;
1121 	int				curr_ret_depth;
1122 
1123 	/* Stack of return addresses for return function tracing: */
1124 	struct ftrace_ret_stack		*ret_stack;
1125 
1126 	/* Timestamp for last schedule: */
1127 	unsigned long long		ftrace_timestamp;
1128 
1129 	/*
1130 	 * Number of functions that haven't been traced
1131 	 * because of depth overrun:
1132 	 */
1133 	atomic_t			trace_overrun;
1134 
1135 	/* Pause tracing: */
1136 	atomic_t			tracing_graph_pause;
1137 #endif
1138 
1139 #ifdef CONFIG_TRACING
1140 	/* State flags for use by tracers: */
1141 	unsigned long			trace;
1142 
1143 	/* Bitmask and counter of trace recursion: */
1144 	unsigned long			trace_recursion;
1145 #endif /* CONFIG_TRACING */
1146 
1147 #ifdef CONFIG_KCOV
1148 	/* Coverage collection mode enabled for this task (0 if disabled): */
1149 	unsigned int			kcov_mode;
1150 
1151 	/* Size of the kcov_area: */
1152 	unsigned int			kcov_size;
1153 
1154 	/* Buffer for coverage collection: */
1155 	void				*kcov_area;
1156 
1157 	/* KCOV descriptor wired with this task or NULL: */
1158 	struct kcov			*kcov;
1159 #endif
1160 
1161 #ifdef CONFIG_MEMCG
1162 	struct mem_cgroup		*memcg_in_oom;
1163 	gfp_t				memcg_oom_gfp_mask;
1164 	int				memcg_oom_order;
1165 
1166 	/* Number of pages to reclaim on returning to userland: */
1167 	unsigned int			memcg_nr_pages_over_high;
1168 
1169 	/* Used by memcontrol for targeted memcg charge: */
1170 	struct mem_cgroup		*active_memcg;
1171 #endif
1172 
1173 #ifdef CONFIG_BLK_CGROUP
1174 	struct request_queue		*throttle_queue;
1175 #endif
1176 
1177 #ifdef CONFIG_UPROBES
1178 	struct uprobe_task		*utask;
1179 #endif
1180 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1181 	unsigned int			sequential_io;
1182 	unsigned int			sequential_io_avg;
1183 #endif
1184 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1185 	unsigned long			task_state_change;
1186 #endif
1187 	int				pagefault_disabled;
1188 #ifdef CONFIG_MMU
1189 	struct task_struct		*oom_reaper_list;
1190 #endif
1191 #ifdef CONFIG_VMAP_STACK
1192 	struct vm_struct		*stack_vm_area;
1193 #endif
1194 #ifdef CONFIG_THREAD_INFO_IN_TASK
1195 	/* A live task holds one reference: */
1196 	atomic_t			stack_refcount;
1197 #endif
1198 #ifdef CONFIG_LIVEPATCH
1199 	int patch_state;
1200 #endif
1201 #ifdef CONFIG_SECURITY
1202 	/* Used by LSM modules for access restriction: */
1203 	void				*security;
1204 #endif
1205 
1206 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1207 	unsigned long			lowest_stack;
1208 	unsigned long			prev_lowest_stack;
1209 #endif
1210 
1211 	/*
1212 	 * New fields for task_struct should be added above here, so that
1213 	 * they are included in the randomized portion of task_struct.
1214 	 */
1215 	randomized_struct_fields_end
1216 
1217 	/* CPU-specific state of this task: */
1218 	struct thread_struct		thread;
1219 
1220 	/*
1221 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1222 	 * structure.  It *MUST* be at the end of 'task_struct'.
1223 	 *
1224 	 * Do not put anything below here!
1225 	 */
1226 };
1227 
1228 static inline struct pid *task_pid(struct task_struct *task)
1229 {
1230 	return task->thread_pid;
1231 }
1232 
1233 /*
1234  * the helpers to get the task's different pids as they are seen
1235  * from various namespaces
1236  *
1237  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1238  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1239  *                     current.
1240  * task_xid_nr_ns()  : id seen from the ns specified;
1241  *
1242  * see also pid_nr() etc in include/linux/pid.h
1243  */
1244 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1245 
1246 static inline pid_t task_pid_nr(struct task_struct *tsk)
1247 {
1248 	return tsk->pid;
1249 }
1250 
1251 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1252 {
1253 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1254 }
1255 
1256 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1257 {
1258 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1259 }
1260 
1261 
1262 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1263 {
1264 	return tsk->tgid;
1265 }
1266 
1267 /**
1268  * pid_alive - check that a task structure is not stale
1269  * @p: Task structure to be checked.
1270  *
1271  * Test if a process is not yet dead (at most zombie state)
1272  * If pid_alive fails, then pointers within the task structure
1273  * can be stale and must not be dereferenced.
1274  *
1275  * Return: 1 if the process is alive. 0 otherwise.
1276  */
1277 static inline int pid_alive(const struct task_struct *p)
1278 {
1279 	return p->thread_pid != NULL;
1280 }
1281 
1282 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1283 {
1284 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1285 }
1286 
1287 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1288 {
1289 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1290 }
1291 
1292 
1293 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1294 {
1295 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1296 }
1297 
1298 static inline pid_t task_session_vnr(struct task_struct *tsk)
1299 {
1300 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1301 }
1302 
1303 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1304 {
1305 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1306 }
1307 
1308 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1309 {
1310 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1311 }
1312 
1313 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1314 {
1315 	pid_t pid = 0;
1316 
1317 	rcu_read_lock();
1318 	if (pid_alive(tsk))
1319 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1320 	rcu_read_unlock();
1321 
1322 	return pid;
1323 }
1324 
1325 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1326 {
1327 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1328 }
1329 
1330 /* Obsolete, do not use: */
1331 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1332 {
1333 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1334 }
1335 
1336 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1337 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1338 
1339 static inline unsigned int task_state_index(struct task_struct *tsk)
1340 {
1341 	unsigned int tsk_state = READ_ONCE(tsk->state);
1342 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1343 
1344 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1345 
1346 	if (tsk_state == TASK_IDLE)
1347 		state = TASK_REPORT_IDLE;
1348 
1349 	return fls(state);
1350 }
1351 
1352 static inline char task_index_to_char(unsigned int state)
1353 {
1354 	static const char state_char[] = "RSDTtXZPI";
1355 
1356 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1357 
1358 	return state_char[state];
1359 }
1360 
1361 static inline char task_state_to_char(struct task_struct *tsk)
1362 {
1363 	return task_index_to_char(task_state_index(tsk));
1364 }
1365 
1366 /**
1367  * is_global_init - check if a task structure is init. Since init
1368  * is free to have sub-threads we need to check tgid.
1369  * @tsk: Task structure to be checked.
1370  *
1371  * Check if a task structure is the first user space task the kernel created.
1372  *
1373  * Return: 1 if the task structure is init. 0 otherwise.
1374  */
1375 static inline int is_global_init(struct task_struct *tsk)
1376 {
1377 	return task_tgid_nr(tsk) == 1;
1378 }
1379 
1380 extern struct pid *cad_pid;
1381 
1382 /*
1383  * Per process flags
1384  */
1385 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1386 #define PF_EXITING		0x00000004	/* Getting shut down */
1387 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1388 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1389 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1390 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1391 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1392 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1393 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1394 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1395 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1396 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1397 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1398 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1399 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1400 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1401 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1402 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1403 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1404 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1405 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1406 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1407 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1408 #define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1409 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1410 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1411 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1412 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1413 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1414 
1415 /*
1416  * Only the _current_ task can read/write to tsk->flags, but other
1417  * tasks can access tsk->flags in readonly mode for example
1418  * with tsk_used_math (like during threaded core dumping).
1419  * There is however an exception to this rule during ptrace
1420  * or during fork: the ptracer task is allowed to write to the
1421  * child->flags of its traced child (same goes for fork, the parent
1422  * can write to the child->flags), because we're guaranteed the
1423  * child is not running and in turn not changing child->flags
1424  * at the same time the parent does it.
1425  */
1426 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1427 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1428 #define clear_used_math()			clear_stopped_child_used_math(current)
1429 #define set_used_math()				set_stopped_child_used_math(current)
1430 
1431 #define conditional_stopped_child_used_math(condition, child) \
1432 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1433 
1434 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1435 
1436 #define copy_to_stopped_child_used_math(child) \
1437 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1438 
1439 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1440 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1441 #define used_math()				tsk_used_math(current)
1442 
1443 static inline bool is_percpu_thread(void)
1444 {
1445 #ifdef CONFIG_SMP
1446 	return (current->flags & PF_NO_SETAFFINITY) &&
1447 		(current->nr_cpus_allowed  == 1);
1448 #else
1449 	return true;
1450 #endif
1451 }
1452 
1453 /* Per-process atomic flags. */
1454 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1455 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1456 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1457 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1458 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1459 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1460 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1461 
1462 #define TASK_PFA_TEST(name, func)					\
1463 	static inline bool task_##func(struct task_struct *p)		\
1464 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1465 
1466 #define TASK_PFA_SET(name, func)					\
1467 	static inline void task_set_##func(struct task_struct *p)	\
1468 	{ set_bit(PFA_##name, &p->atomic_flags); }
1469 
1470 #define TASK_PFA_CLEAR(name, func)					\
1471 	static inline void task_clear_##func(struct task_struct *p)	\
1472 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1473 
1474 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1475 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1476 
1477 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1478 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1479 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1480 
1481 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1482 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1483 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1484 
1485 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1486 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1487 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1488 
1489 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1490 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1491 
1492 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1493 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1494 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1495 
1496 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1497 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1498 
1499 static inline void
1500 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1501 {
1502 	current->flags &= ~flags;
1503 	current->flags |= orig_flags & flags;
1504 }
1505 
1506 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1507 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1508 #ifdef CONFIG_SMP
1509 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1510 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1511 #else
1512 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1513 {
1514 }
1515 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1516 {
1517 	if (!cpumask_test_cpu(0, new_mask))
1518 		return -EINVAL;
1519 	return 0;
1520 }
1521 #endif
1522 
1523 #ifndef cpu_relax_yield
1524 #define cpu_relax_yield() cpu_relax()
1525 #endif
1526 
1527 extern int yield_to(struct task_struct *p, bool preempt);
1528 extern void set_user_nice(struct task_struct *p, long nice);
1529 extern int task_prio(const struct task_struct *p);
1530 
1531 /**
1532  * task_nice - return the nice value of a given task.
1533  * @p: the task in question.
1534  *
1535  * Return: The nice value [ -20 ... 0 ... 19 ].
1536  */
1537 static inline int task_nice(const struct task_struct *p)
1538 {
1539 	return PRIO_TO_NICE((p)->static_prio);
1540 }
1541 
1542 extern int can_nice(const struct task_struct *p, const int nice);
1543 extern int task_curr(const struct task_struct *p);
1544 extern int idle_cpu(int cpu);
1545 extern int available_idle_cpu(int cpu);
1546 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1547 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1548 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1549 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1550 extern struct task_struct *idle_task(int cpu);
1551 
1552 /**
1553  * is_idle_task - is the specified task an idle task?
1554  * @p: the task in question.
1555  *
1556  * Return: 1 if @p is an idle task. 0 otherwise.
1557  */
1558 static inline bool is_idle_task(const struct task_struct *p)
1559 {
1560 	return !!(p->flags & PF_IDLE);
1561 }
1562 
1563 extern struct task_struct *curr_task(int cpu);
1564 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1565 
1566 void yield(void);
1567 
1568 union thread_union {
1569 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1570 	struct task_struct task;
1571 #endif
1572 #ifndef CONFIG_THREAD_INFO_IN_TASK
1573 	struct thread_info thread_info;
1574 #endif
1575 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1576 };
1577 
1578 #ifndef CONFIG_THREAD_INFO_IN_TASK
1579 extern struct thread_info init_thread_info;
1580 #endif
1581 
1582 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1583 
1584 #ifdef CONFIG_THREAD_INFO_IN_TASK
1585 static inline struct thread_info *task_thread_info(struct task_struct *task)
1586 {
1587 	return &task->thread_info;
1588 }
1589 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1590 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1591 #endif
1592 
1593 /*
1594  * find a task by one of its numerical ids
1595  *
1596  * find_task_by_pid_ns():
1597  *      finds a task by its pid in the specified namespace
1598  * find_task_by_vpid():
1599  *      finds a task by its virtual pid
1600  *
1601  * see also find_vpid() etc in include/linux/pid.h
1602  */
1603 
1604 extern struct task_struct *find_task_by_vpid(pid_t nr);
1605 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1606 
1607 /*
1608  * find a task by its virtual pid and get the task struct
1609  */
1610 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1611 
1612 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1613 extern int wake_up_process(struct task_struct *tsk);
1614 extern void wake_up_new_task(struct task_struct *tsk);
1615 
1616 #ifdef CONFIG_SMP
1617 extern void kick_process(struct task_struct *tsk);
1618 #else
1619 static inline void kick_process(struct task_struct *tsk) { }
1620 #endif
1621 
1622 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1623 
1624 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1625 {
1626 	__set_task_comm(tsk, from, false);
1627 }
1628 
1629 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1630 #define get_task_comm(buf, tsk) ({			\
1631 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1632 	__get_task_comm(buf, sizeof(buf), tsk);		\
1633 })
1634 
1635 #ifdef CONFIG_SMP
1636 void scheduler_ipi(void);
1637 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1638 #else
1639 static inline void scheduler_ipi(void) { }
1640 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1641 {
1642 	return 1;
1643 }
1644 #endif
1645 
1646 /*
1647  * Set thread flags in other task's structures.
1648  * See asm/thread_info.h for TIF_xxxx flags available:
1649  */
1650 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1651 {
1652 	set_ti_thread_flag(task_thread_info(tsk), flag);
1653 }
1654 
1655 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1656 {
1657 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1658 }
1659 
1660 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1661 					  bool value)
1662 {
1663 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1664 }
1665 
1666 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1667 {
1668 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1669 }
1670 
1671 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1672 {
1673 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1674 }
1675 
1676 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1677 {
1678 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1679 }
1680 
1681 static inline void set_tsk_need_resched(struct task_struct *tsk)
1682 {
1683 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1684 }
1685 
1686 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1687 {
1688 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1689 }
1690 
1691 static inline int test_tsk_need_resched(struct task_struct *tsk)
1692 {
1693 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1694 }
1695 
1696 /*
1697  * cond_resched() and cond_resched_lock(): latency reduction via
1698  * explicit rescheduling in places that are safe. The return
1699  * value indicates whether a reschedule was done in fact.
1700  * cond_resched_lock() will drop the spinlock before scheduling,
1701  */
1702 #ifndef CONFIG_PREEMPT
1703 extern int _cond_resched(void);
1704 #else
1705 static inline int _cond_resched(void) { return 0; }
1706 #endif
1707 
1708 #define cond_resched() ({			\
1709 	___might_sleep(__FILE__, __LINE__, 0);	\
1710 	_cond_resched();			\
1711 })
1712 
1713 extern int __cond_resched_lock(spinlock_t *lock);
1714 
1715 #define cond_resched_lock(lock) ({				\
1716 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1717 	__cond_resched_lock(lock);				\
1718 })
1719 
1720 static inline void cond_resched_rcu(void)
1721 {
1722 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1723 	rcu_read_unlock();
1724 	cond_resched();
1725 	rcu_read_lock();
1726 #endif
1727 }
1728 
1729 /*
1730  * Does a critical section need to be broken due to another
1731  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1732  * but a general need for low latency)
1733  */
1734 static inline int spin_needbreak(spinlock_t *lock)
1735 {
1736 #ifdef CONFIG_PREEMPT
1737 	return spin_is_contended(lock);
1738 #else
1739 	return 0;
1740 #endif
1741 }
1742 
1743 static __always_inline bool need_resched(void)
1744 {
1745 	return unlikely(tif_need_resched());
1746 }
1747 
1748 /*
1749  * Wrappers for p->thread_info->cpu access. No-op on UP.
1750  */
1751 #ifdef CONFIG_SMP
1752 
1753 static inline unsigned int task_cpu(const struct task_struct *p)
1754 {
1755 #ifdef CONFIG_THREAD_INFO_IN_TASK
1756 	return p->cpu;
1757 #else
1758 	return task_thread_info(p)->cpu;
1759 #endif
1760 }
1761 
1762 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1763 
1764 #else
1765 
1766 static inline unsigned int task_cpu(const struct task_struct *p)
1767 {
1768 	return 0;
1769 }
1770 
1771 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1772 {
1773 }
1774 
1775 #endif /* CONFIG_SMP */
1776 
1777 /*
1778  * In order to reduce various lock holder preemption latencies provide an
1779  * interface to see if a vCPU is currently running or not.
1780  *
1781  * This allows us to terminate optimistic spin loops and block, analogous to
1782  * the native optimistic spin heuristic of testing if the lock owner task is
1783  * running or not.
1784  */
1785 #ifndef vcpu_is_preempted
1786 # define vcpu_is_preempted(cpu)	false
1787 #endif
1788 
1789 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1790 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1791 
1792 #ifndef TASK_SIZE_OF
1793 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1794 #endif
1795 
1796 #ifdef CONFIG_RSEQ
1797 
1798 /*
1799  * Map the event mask on the user-space ABI enum rseq_cs_flags
1800  * for direct mask checks.
1801  */
1802 enum rseq_event_mask_bits {
1803 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1804 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1805 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1806 };
1807 
1808 enum rseq_event_mask {
1809 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1810 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1811 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1812 };
1813 
1814 static inline void rseq_set_notify_resume(struct task_struct *t)
1815 {
1816 	if (t->rseq)
1817 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1818 }
1819 
1820 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1821 
1822 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1823 					     struct pt_regs *regs)
1824 {
1825 	if (current->rseq)
1826 		__rseq_handle_notify_resume(ksig, regs);
1827 }
1828 
1829 static inline void rseq_signal_deliver(struct ksignal *ksig,
1830 				       struct pt_regs *regs)
1831 {
1832 	preempt_disable();
1833 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1834 	preempt_enable();
1835 	rseq_handle_notify_resume(ksig, regs);
1836 }
1837 
1838 /* rseq_preempt() requires preemption to be disabled. */
1839 static inline void rseq_preempt(struct task_struct *t)
1840 {
1841 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1842 	rseq_set_notify_resume(t);
1843 }
1844 
1845 /* rseq_migrate() requires preemption to be disabled. */
1846 static inline void rseq_migrate(struct task_struct *t)
1847 {
1848 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1849 	rseq_set_notify_resume(t);
1850 }
1851 
1852 /*
1853  * If parent process has a registered restartable sequences area, the
1854  * child inherits. Only applies when forking a process, not a thread.
1855  */
1856 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1857 {
1858 	if (clone_flags & CLONE_THREAD) {
1859 		t->rseq = NULL;
1860 		t->rseq_len = 0;
1861 		t->rseq_sig = 0;
1862 		t->rseq_event_mask = 0;
1863 	} else {
1864 		t->rseq = current->rseq;
1865 		t->rseq_len = current->rseq_len;
1866 		t->rseq_sig = current->rseq_sig;
1867 		t->rseq_event_mask = current->rseq_event_mask;
1868 	}
1869 }
1870 
1871 static inline void rseq_execve(struct task_struct *t)
1872 {
1873 	t->rseq = NULL;
1874 	t->rseq_len = 0;
1875 	t->rseq_sig = 0;
1876 	t->rseq_event_mask = 0;
1877 }
1878 
1879 #else
1880 
1881 static inline void rseq_set_notify_resume(struct task_struct *t)
1882 {
1883 }
1884 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1885 					     struct pt_regs *regs)
1886 {
1887 }
1888 static inline void rseq_signal_deliver(struct ksignal *ksig,
1889 				       struct pt_regs *regs)
1890 {
1891 }
1892 static inline void rseq_preempt(struct task_struct *t)
1893 {
1894 }
1895 static inline void rseq_migrate(struct task_struct *t)
1896 {
1897 }
1898 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1899 {
1900 }
1901 static inline void rseq_execve(struct task_struct *t)
1902 {
1903 }
1904 
1905 #endif
1906 
1907 #ifdef CONFIG_DEBUG_RSEQ
1908 
1909 void rseq_syscall(struct pt_regs *regs);
1910 
1911 #else
1912 
1913 static inline void rseq_syscall(struct pt_regs *regs)
1914 {
1915 }
1916 
1917 #endif
1918 
1919 #endif
1920