xref: /linux/include/linux/sched.h (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct pid_namespace;
69 struct pipe_inode_info;
70 struct rcu_node;
71 struct reclaim_state;
72 struct robust_list_head;
73 struct root_domain;
74 struct rq;
75 struct sched_attr;
76 struct sched_dl_entity;
77 struct seq_file;
78 struct sighand_struct;
79 struct signal_struct;
80 struct task_delay_info;
81 struct task_group;
82 struct task_struct;
83 struct user_event_mm;
84 
85 #include <linux/sched/ext.h>
86 
87 /*
88  * Task state bitmask. NOTE! These bits are also
89  * encoded in fs/proc/array.c: get_task_state().
90  *
91  * We have two separate sets of flags: task->__state
92  * is about runnability, while task->exit_state are
93  * about the task exiting. Confusing, but this way
94  * modifying one set can't modify the other one by
95  * mistake.
96  */
97 
98 /* Used in tsk->__state: */
99 #define TASK_RUNNING			0x00000000
100 #define TASK_INTERRUPTIBLE		0x00000001
101 #define TASK_UNINTERRUPTIBLE		0x00000002
102 #define __TASK_STOPPED			0x00000004
103 #define __TASK_TRACED			0x00000008
104 /* Used in tsk->exit_state: */
105 #define EXIT_DEAD			0x00000010
106 #define EXIT_ZOMBIE			0x00000020
107 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
108 /* Used in tsk->__state again: */
109 #define TASK_PARKED			0x00000040
110 #define TASK_DEAD			0x00000080
111 #define TASK_WAKEKILL			0x00000100
112 #define TASK_WAKING			0x00000200
113 #define TASK_NOLOAD			0x00000400
114 #define TASK_NEW			0x00000800
115 #define TASK_RTLOCK_WAIT		0x00001000
116 #define TASK_FREEZABLE			0x00002000
117 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
118 #define TASK_FROZEN			0x00008000
119 #define TASK_STATE_MAX			0x00010000
120 
121 #define TASK_ANY			(TASK_STATE_MAX-1)
122 
123 /*
124  * DO NOT ADD ANY NEW USERS !
125  */
126 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
127 
128 /* Convenience macros for the sake of set_current_state: */
129 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
130 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
131 #define TASK_TRACED			__TASK_TRACED
132 
133 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
134 
135 /* Convenience macros for the sake of wake_up(): */
136 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
137 
138 /* get_task_state(): */
139 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
140 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
141 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
142 					 TASK_PARKED)
143 
144 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
145 
146 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
147 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
148 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
149 
150 /*
151  * Special states are those that do not use the normal wait-loop pattern. See
152  * the comment with set_special_state().
153  */
154 #define is_special_task_state(state)					\
155 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
156 		    TASK_DEAD | TASK_FROZEN))
157 
158 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
159 # define debug_normal_state_change(state_value)				\
160 	do {								\
161 		WARN_ON_ONCE(is_special_task_state(state_value));	\
162 		current->task_state_change = _THIS_IP_;			\
163 	} while (0)
164 
165 # define debug_special_state_change(state_value)			\
166 	do {								\
167 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
168 		current->task_state_change = _THIS_IP_;			\
169 	} while (0)
170 
171 # define debug_rtlock_wait_set_state()					\
172 	do {								 \
173 		current->saved_state_change = current->task_state_change;\
174 		current->task_state_change = _THIS_IP_;			 \
175 	} while (0)
176 
177 # define debug_rtlock_wait_restore_state()				\
178 	do {								 \
179 		current->task_state_change = current->saved_state_change;\
180 	} while (0)
181 
182 #else
183 # define debug_normal_state_change(cond)	do { } while (0)
184 # define debug_special_state_change(cond)	do { } while (0)
185 # define debug_rtlock_wait_set_state()		do { } while (0)
186 # define debug_rtlock_wait_restore_state()	do { } while (0)
187 #endif
188 
189 /*
190  * set_current_state() includes a barrier so that the write of current->__state
191  * is correctly serialised wrt the caller's subsequent test of whether to
192  * actually sleep:
193  *
194  *   for (;;) {
195  *	set_current_state(TASK_UNINTERRUPTIBLE);
196  *	if (CONDITION)
197  *	   break;
198  *
199  *	schedule();
200  *   }
201  *   __set_current_state(TASK_RUNNING);
202  *
203  * If the caller does not need such serialisation (because, for instance, the
204  * CONDITION test and condition change and wakeup are under the same lock) then
205  * use __set_current_state().
206  *
207  * The above is typically ordered against the wakeup, which does:
208  *
209  *   CONDITION = 1;
210  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
211  *
212  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
213  * accessing p->__state.
214  *
215  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
216  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
217  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
218  *
219  * However, with slightly different timing the wakeup TASK_RUNNING store can
220  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
221  * a problem either because that will result in one extra go around the loop
222  * and our @cond test will save the day.
223  *
224  * Also see the comments of try_to_wake_up().
225  */
226 #define __set_current_state(state_value)				\
227 	do {								\
228 		debug_normal_state_change((state_value));		\
229 		WRITE_ONCE(current->__state, (state_value));		\
230 	} while (0)
231 
232 #define set_current_state(state_value)					\
233 	do {								\
234 		debug_normal_state_change((state_value));		\
235 		smp_store_mb(current->__state, (state_value));		\
236 	} while (0)
237 
238 /*
239  * set_special_state() should be used for those states when the blocking task
240  * can not use the regular condition based wait-loop. In that case we must
241  * serialize against wakeups such that any possible in-flight TASK_RUNNING
242  * stores will not collide with our state change.
243  */
244 #define set_special_state(state_value)					\
245 	do {								\
246 		unsigned long flags; /* may shadow */			\
247 									\
248 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
249 		debug_special_state_change((state_value));		\
250 		WRITE_ONCE(current->__state, (state_value));		\
251 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
252 	} while (0)
253 
254 /*
255  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
256  *
257  * RT's spin/rwlock substitutions are state preserving. The state of the
258  * task when blocking on the lock is saved in task_struct::saved_state and
259  * restored after the lock has been acquired.  These operations are
260  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
261  * lock related wakeups while the task is blocked on the lock are
262  * redirected to operate on task_struct::saved_state to ensure that these
263  * are not dropped. On restore task_struct::saved_state is set to
264  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
265  *
266  * The lock operation looks like this:
267  *
268  *	current_save_and_set_rtlock_wait_state();
269  *	for (;;) {
270  *		if (try_lock())
271  *			break;
272  *		raw_spin_unlock_irq(&lock->wait_lock);
273  *		schedule_rtlock();
274  *		raw_spin_lock_irq(&lock->wait_lock);
275  *		set_current_state(TASK_RTLOCK_WAIT);
276  *	}
277  *	current_restore_rtlock_saved_state();
278  */
279 #define current_save_and_set_rtlock_wait_state()			\
280 	do {								\
281 		lockdep_assert_irqs_disabled();				\
282 		raw_spin_lock(&current->pi_lock);			\
283 		current->saved_state = current->__state;		\
284 		debug_rtlock_wait_set_state();				\
285 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
286 		raw_spin_unlock(&current->pi_lock);			\
287 	} while (0);
288 
289 #define current_restore_rtlock_saved_state()				\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		debug_rtlock_wait_restore_state();			\
294 		WRITE_ONCE(current->__state, current->saved_state);	\
295 		current->saved_state = TASK_RUNNING;			\
296 		raw_spin_unlock(&current->pi_lock);			\
297 	} while (0);
298 
299 #define get_current_state()	READ_ONCE(current->__state)
300 
301 /*
302  * Define the task command name length as enum, then it can be visible to
303  * BPF programs.
304  */
305 enum {
306 	TASK_COMM_LEN = 16,
307 };
308 
309 extern void sched_tick(void);
310 
311 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
312 
313 extern long schedule_timeout(long timeout);
314 extern long schedule_timeout_interruptible(long timeout);
315 extern long schedule_timeout_killable(long timeout);
316 extern long schedule_timeout_uninterruptible(long timeout);
317 extern long schedule_timeout_idle(long timeout);
318 asmlinkage void schedule(void);
319 extern void schedule_preempt_disabled(void);
320 asmlinkage void preempt_schedule_irq(void);
321 #ifdef CONFIG_PREEMPT_RT
322  extern void schedule_rtlock(void);
323 #endif
324 
325 extern int __must_check io_schedule_prepare(void);
326 extern void io_schedule_finish(int token);
327 extern long io_schedule_timeout(long timeout);
328 extern void io_schedule(void);
329 
330 /**
331  * struct prev_cputime - snapshot of system and user cputime
332  * @utime: time spent in user mode
333  * @stime: time spent in system mode
334  * @lock: protects the above two fields
335  *
336  * Stores previous user/system time values such that we can guarantee
337  * monotonicity.
338  */
339 struct prev_cputime {
340 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
341 	u64				utime;
342 	u64				stime;
343 	raw_spinlock_t			lock;
344 #endif
345 };
346 
347 enum vtime_state {
348 	/* Task is sleeping or running in a CPU with VTIME inactive: */
349 	VTIME_INACTIVE = 0,
350 	/* Task is idle */
351 	VTIME_IDLE,
352 	/* Task runs in kernelspace in a CPU with VTIME active: */
353 	VTIME_SYS,
354 	/* Task runs in userspace in a CPU with VTIME active: */
355 	VTIME_USER,
356 	/* Task runs as guests in a CPU with VTIME active: */
357 	VTIME_GUEST,
358 };
359 
360 struct vtime {
361 	seqcount_t		seqcount;
362 	unsigned long long	starttime;
363 	enum vtime_state	state;
364 	unsigned int		cpu;
365 	u64			utime;
366 	u64			stime;
367 	u64			gtime;
368 };
369 
370 /*
371  * Utilization clamp constraints.
372  * @UCLAMP_MIN:	Minimum utilization
373  * @UCLAMP_MAX:	Maximum utilization
374  * @UCLAMP_CNT:	Utilization clamp constraints count
375  */
376 enum uclamp_id {
377 	UCLAMP_MIN = 0,
378 	UCLAMP_MAX,
379 	UCLAMP_CNT
380 };
381 
382 #ifdef CONFIG_SMP
383 extern struct root_domain def_root_domain;
384 extern struct mutex sched_domains_mutex;
385 #endif
386 
387 struct sched_param {
388 	int sched_priority;
389 };
390 
391 struct sched_info {
392 #ifdef CONFIG_SCHED_INFO
393 	/* Cumulative counters: */
394 
395 	/* # of times we have run on this CPU: */
396 	unsigned long			pcount;
397 
398 	/* Time spent waiting on a runqueue: */
399 	unsigned long long		run_delay;
400 
401 	/* Timestamps: */
402 
403 	/* When did we last run on a CPU? */
404 	unsigned long long		last_arrival;
405 
406 	/* When were we last queued to run? */
407 	unsigned long long		last_queued;
408 
409 #endif /* CONFIG_SCHED_INFO */
410 };
411 
412 /*
413  * Integer metrics need fixed point arithmetic, e.g., sched/fair
414  * has a few: load, load_avg, util_avg, freq, and capacity.
415  *
416  * We define a basic fixed point arithmetic range, and then formalize
417  * all these metrics based on that basic range.
418  */
419 # define SCHED_FIXEDPOINT_SHIFT		10
420 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
421 
422 /* Increase resolution of cpu_capacity calculations */
423 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
424 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
425 
426 struct load_weight {
427 	unsigned long			weight;
428 	u32				inv_weight;
429 };
430 
431 /*
432  * The load/runnable/util_avg accumulates an infinite geometric series
433  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
434  *
435  * [load_avg definition]
436  *
437  *   load_avg = runnable% * scale_load_down(load)
438  *
439  * [runnable_avg definition]
440  *
441  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
442  *
443  * [util_avg definition]
444  *
445  *   util_avg = running% * SCHED_CAPACITY_SCALE
446  *
447  * where runnable% is the time ratio that a sched_entity is runnable and
448  * running% the time ratio that a sched_entity is running.
449  *
450  * For cfs_rq, they are the aggregated values of all runnable and blocked
451  * sched_entities.
452  *
453  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
454  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
455  * for computing those signals (see update_rq_clock_pelt())
456  *
457  * N.B., the above ratios (runnable% and running%) themselves are in the
458  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
459  * to as large a range as necessary. This is for example reflected by
460  * util_avg's SCHED_CAPACITY_SCALE.
461  *
462  * [Overflow issue]
463  *
464  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
465  * with the highest load (=88761), always runnable on a single cfs_rq,
466  * and should not overflow as the number already hits PID_MAX_LIMIT.
467  *
468  * For all other cases (including 32-bit kernels), struct load_weight's
469  * weight will overflow first before we do, because:
470  *
471  *    Max(load_avg) <= Max(load.weight)
472  *
473  * Then it is the load_weight's responsibility to consider overflow
474  * issues.
475  */
476 struct sched_avg {
477 	u64				last_update_time;
478 	u64				load_sum;
479 	u64				runnable_sum;
480 	u32				util_sum;
481 	u32				period_contrib;
482 	unsigned long			load_avg;
483 	unsigned long			runnable_avg;
484 	unsigned long			util_avg;
485 	unsigned int			util_est;
486 } ____cacheline_aligned;
487 
488 /*
489  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
490  * updates. When a task is dequeued, its util_est should not be updated if its
491  * util_avg has not been updated in the meantime.
492  * This information is mapped into the MSB bit of util_est at dequeue time.
493  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
494  * it is safe to use MSB.
495  */
496 #define UTIL_EST_WEIGHT_SHIFT		2
497 #define UTIL_AVG_UNCHANGED		0x80000000
498 
499 struct sched_statistics {
500 #ifdef CONFIG_SCHEDSTATS
501 	u64				wait_start;
502 	u64				wait_max;
503 	u64				wait_count;
504 	u64				wait_sum;
505 	u64				iowait_count;
506 	u64				iowait_sum;
507 
508 	u64				sleep_start;
509 	u64				sleep_max;
510 	s64				sum_sleep_runtime;
511 
512 	u64				block_start;
513 	u64				block_max;
514 	s64				sum_block_runtime;
515 
516 	s64				exec_max;
517 	u64				slice_max;
518 
519 	u64				nr_migrations_cold;
520 	u64				nr_failed_migrations_affine;
521 	u64				nr_failed_migrations_running;
522 	u64				nr_failed_migrations_hot;
523 	u64				nr_forced_migrations;
524 
525 	u64				nr_wakeups;
526 	u64				nr_wakeups_sync;
527 	u64				nr_wakeups_migrate;
528 	u64				nr_wakeups_local;
529 	u64				nr_wakeups_remote;
530 	u64				nr_wakeups_affine;
531 	u64				nr_wakeups_affine_attempts;
532 	u64				nr_wakeups_passive;
533 	u64				nr_wakeups_idle;
534 
535 #ifdef CONFIG_SCHED_CORE
536 	u64				core_forceidle_sum;
537 #endif
538 #endif /* CONFIG_SCHEDSTATS */
539 } ____cacheline_aligned;
540 
541 struct sched_entity {
542 	/* For load-balancing: */
543 	struct load_weight		load;
544 	struct rb_node			run_node;
545 	u64				deadline;
546 	u64				min_vruntime;
547 	u64				min_slice;
548 
549 	struct list_head		group_node;
550 	unsigned char			on_rq;
551 	unsigned char			sched_delayed;
552 	unsigned char			rel_deadline;
553 	unsigned char			custom_slice;
554 					/* hole */
555 
556 	u64				exec_start;
557 	u64				sum_exec_runtime;
558 	u64				prev_sum_exec_runtime;
559 	u64				vruntime;
560 	s64				vlag;
561 	u64				slice;
562 
563 	u64				nr_migrations;
564 
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 	int				depth;
567 	struct sched_entity		*parent;
568 	/* rq on which this entity is (to be) queued: */
569 	struct cfs_rq			*cfs_rq;
570 	/* rq "owned" by this entity/group: */
571 	struct cfs_rq			*my_q;
572 	/* cached value of my_q->h_nr_running */
573 	unsigned long			runnable_weight;
574 #endif
575 
576 #ifdef CONFIG_SMP
577 	/*
578 	 * Per entity load average tracking.
579 	 *
580 	 * Put into separate cache line so it does not
581 	 * collide with read-mostly values above.
582 	 */
583 	struct sched_avg		avg;
584 #endif
585 };
586 
587 struct sched_rt_entity {
588 	struct list_head		run_list;
589 	unsigned long			timeout;
590 	unsigned long			watchdog_stamp;
591 	unsigned int			time_slice;
592 	unsigned short			on_rq;
593 	unsigned short			on_list;
594 
595 	struct sched_rt_entity		*back;
596 #ifdef CONFIG_RT_GROUP_SCHED
597 	struct sched_rt_entity		*parent;
598 	/* rq on which this entity is (to be) queued: */
599 	struct rt_rq			*rt_rq;
600 	/* rq "owned" by this entity/group: */
601 	struct rt_rq			*my_q;
602 #endif
603 } __randomize_layout;
604 
605 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
606 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
607 
608 struct sched_dl_entity {
609 	struct rb_node			rb_node;
610 
611 	/*
612 	 * Original scheduling parameters. Copied here from sched_attr
613 	 * during sched_setattr(), they will remain the same until
614 	 * the next sched_setattr().
615 	 */
616 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
617 	u64				dl_deadline;	/* Relative deadline of each instance	*/
618 	u64				dl_period;	/* Separation of two instances (period) */
619 	u64				dl_bw;		/* dl_runtime / dl_period		*/
620 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
621 
622 	/*
623 	 * Actual scheduling parameters. Initialized with the values above,
624 	 * they are continuously updated during task execution. Note that
625 	 * the remaining runtime could be < 0 in case we are in overrun.
626 	 */
627 	s64				runtime;	/* Remaining runtime for this instance	*/
628 	u64				deadline;	/* Absolute deadline for this instance	*/
629 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
630 
631 	/*
632 	 * Some bool flags:
633 	 *
634 	 * @dl_throttled tells if we exhausted the runtime. If so, the
635 	 * task has to wait for a replenishment to be performed at the
636 	 * next firing of dl_timer.
637 	 *
638 	 * @dl_yielded tells if task gave up the CPU before consuming
639 	 * all its available runtime during the last job.
640 	 *
641 	 * @dl_non_contending tells if the task is inactive while still
642 	 * contributing to the active utilization. In other words, it
643 	 * indicates if the inactive timer has been armed and its handler
644 	 * has not been executed yet. This flag is useful to avoid race
645 	 * conditions between the inactive timer handler and the wakeup
646 	 * code.
647 	 *
648 	 * @dl_overrun tells if the task asked to be informed about runtime
649 	 * overruns.
650 	 *
651 	 * @dl_server tells if this is a server entity.
652 	 *
653 	 * @dl_defer tells if this is a deferred or regular server. For
654 	 * now only defer server exists.
655 	 *
656 	 * @dl_defer_armed tells if the deferrable server is waiting
657 	 * for the replenishment timer to activate it.
658 	 *
659 	 * @dl_defer_running tells if the deferrable server is actually
660 	 * running, skipping the defer phase.
661 	 */
662 	unsigned int			dl_throttled      : 1;
663 	unsigned int			dl_yielded        : 1;
664 	unsigned int			dl_non_contending : 1;
665 	unsigned int			dl_overrun	  : 1;
666 	unsigned int			dl_server         : 1;
667 	unsigned int			dl_defer	  : 1;
668 	unsigned int			dl_defer_armed	  : 1;
669 	unsigned int			dl_defer_running  : 1;
670 
671 	/*
672 	 * Bandwidth enforcement timer. Each -deadline task has its
673 	 * own bandwidth to be enforced, thus we need one timer per task.
674 	 */
675 	struct hrtimer			dl_timer;
676 
677 	/*
678 	 * Inactive timer, responsible for decreasing the active utilization
679 	 * at the "0-lag time". When a -deadline task blocks, it contributes
680 	 * to GRUB's active utilization until the "0-lag time", hence a
681 	 * timer is needed to decrease the active utilization at the correct
682 	 * time.
683 	 */
684 	struct hrtimer			inactive_timer;
685 
686 	/*
687 	 * Bits for DL-server functionality. Also see the comment near
688 	 * dl_server_update().
689 	 *
690 	 * @rq the runqueue this server is for
691 	 *
692 	 * @server_has_tasks() returns true if @server_pick return a
693 	 * runnable task.
694 	 */
695 	struct rq			*rq;
696 	dl_server_has_tasks_f		server_has_tasks;
697 	dl_server_pick_f		server_pick_task;
698 
699 #ifdef CONFIG_RT_MUTEXES
700 	/*
701 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
702 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
703 	 * to (the original one/itself).
704 	 */
705 	struct sched_dl_entity *pi_se;
706 #endif
707 };
708 
709 #ifdef CONFIG_UCLAMP_TASK
710 /* Number of utilization clamp buckets (shorter alias) */
711 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
712 
713 /*
714  * Utilization clamp for a scheduling entity
715  * @value:		clamp value "assigned" to a se
716  * @bucket_id:		bucket index corresponding to the "assigned" value
717  * @active:		the se is currently refcounted in a rq's bucket
718  * @user_defined:	the requested clamp value comes from user-space
719  *
720  * The bucket_id is the index of the clamp bucket matching the clamp value
721  * which is pre-computed and stored to avoid expensive integer divisions from
722  * the fast path.
723  *
724  * The active bit is set whenever a task has got an "effective" value assigned,
725  * which can be different from the clamp value "requested" from user-space.
726  * This allows to know a task is refcounted in the rq's bucket corresponding
727  * to the "effective" bucket_id.
728  *
729  * The user_defined bit is set whenever a task has got a task-specific clamp
730  * value requested from userspace, i.e. the system defaults apply to this task
731  * just as a restriction. This allows to relax default clamps when a less
732  * restrictive task-specific value has been requested, thus allowing to
733  * implement a "nice" semantic. For example, a task running with a 20%
734  * default boost can still drop its own boosting to 0%.
735  */
736 struct uclamp_se {
737 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
738 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
739 	unsigned int active		: 1;
740 	unsigned int user_defined	: 1;
741 };
742 #endif /* CONFIG_UCLAMP_TASK */
743 
744 union rcu_special {
745 	struct {
746 		u8			blocked;
747 		u8			need_qs;
748 		u8			exp_hint; /* Hint for performance. */
749 		u8			need_mb; /* Readers need smp_mb(). */
750 	} b; /* Bits. */
751 	u32 s; /* Set of bits. */
752 };
753 
754 enum perf_event_task_context {
755 	perf_invalid_context = -1,
756 	perf_hw_context = 0,
757 	perf_sw_context,
758 	perf_nr_task_contexts,
759 };
760 
761 /*
762  * Number of contexts where an event can trigger:
763  *      task, softirq, hardirq, nmi.
764  */
765 #define PERF_NR_CONTEXTS	4
766 
767 struct wake_q_node {
768 	struct wake_q_node *next;
769 };
770 
771 struct kmap_ctrl {
772 #ifdef CONFIG_KMAP_LOCAL
773 	int				idx;
774 	pte_t				pteval[KM_MAX_IDX];
775 #endif
776 };
777 
778 struct task_struct {
779 #ifdef CONFIG_THREAD_INFO_IN_TASK
780 	/*
781 	 * For reasons of header soup (see current_thread_info()), this
782 	 * must be the first element of task_struct.
783 	 */
784 	struct thread_info		thread_info;
785 #endif
786 	unsigned int			__state;
787 
788 	/* saved state for "spinlock sleepers" */
789 	unsigned int			saved_state;
790 
791 	/*
792 	 * This begins the randomizable portion of task_struct. Only
793 	 * scheduling-critical items should be added above here.
794 	 */
795 	randomized_struct_fields_start
796 
797 	void				*stack;
798 	refcount_t			usage;
799 	/* Per task flags (PF_*), defined further below: */
800 	unsigned int			flags;
801 	unsigned int			ptrace;
802 
803 #ifdef CONFIG_MEM_ALLOC_PROFILING
804 	struct alloc_tag		*alloc_tag;
805 #endif
806 
807 #ifdef CONFIG_SMP
808 	int				on_cpu;
809 	struct __call_single_node	wake_entry;
810 	unsigned int			wakee_flips;
811 	unsigned long			wakee_flip_decay_ts;
812 	struct task_struct		*last_wakee;
813 
814 	/*
815 	 * recent_used_cpu is initially set as the last CPU used by a task
816 	 * that wakes affine another task. Waker/wakee relationships can
817 	 * push tasks around a CPU where each wakeup moves to the next one.
818 	 * Tracking a recently used CPU allows a quick search for a recently
819 	 * used CPU that may be idle.
820 	 */
821 	int				recent_used_cpu;
822 	int				wake_cpu;
823 #endif
824 	int				on_rq;
825 
826 	int				prio;
827 	int				static_prio;
828 	int				normal_prio;
829 	unsigned int			rt_priority;
830 
831 	struct sched_entity		se;
832 	struct sched_rt_entity		rt;
833 	struct sched_dl_entity		dl;
834 	struct sched_dl_entity		*dl_server;
835 #ifdef CONFIG_SCHED_CLASS_EXT
836 	struct sched_ext_entity		scx;
837 #endif
838 	const struct sched_class	*sched_class;
839 
840 #ifdef CONFIG_SCHED_CORE
841 	struct rb_node			core_node;
842 	unsigned long			core_cookie;
843 	unsigned int			core_occupation;
844 #endif
845 
846 #ifdef CONFIG_CGROUP_SCHED
847 	struct task_group		*sched_task_group;
848 #endif
849 
850 
851 #ifdef CONFIG_UCLAMP_TASK
852 	/*
853 	 * Clamp values requested for a scheduling entity.
854 	 * Must be updated with task_rq_lock() held.
855 	 */
856 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
857 	/*
858 	 * Effective clamp values used for a scheduling entity.
859 	 * Must be updated with task_rq_lock() held.
860 	 */
861 	struct uclamp_se		uclamp[UCLAMP_CNT];
862 #endif
863 
864 	struct sched_statistics         stats;
865 
866 #ifdef CONFIG_PREEMPT_NOTIFIERS
867 	/* List of struct preempt_notifier: */
868 	struct hlist_head		preempt_notifiers;
869 #endif
870 
871 #ifdef CONFIG_BLK_DEV_IO_TRACE
872 	unsigned int			btrace_seq;
873 #endif
874 
875 	unsigned int			policy;
876 	unsigned long			max_allowed_capacity;
877 	int				nr_cpus_allowed;
878 	const cpumask_t			*cpus_ptr;
879 	cpumask_t			*user_cpus_ptr;
880 	cpumask_t			cpus_mask;
881 	void				*migration_pending;
882 #ifdef CONFIG_SMP
883 	unsigned short			migration_disabled;
884 #endif
885 	unsigned short			migration_flags;
886 
887 #ifdef CONFIG_PREEMPT_RCU
888 	int				rcu_read_lock_nesting;
889 	union rcu_special		rcu_read_unlock_special;
890 	struct list_head		rcu_node_entry;
891 	struct rcu_node			*rcu_blocked_node;
892 #endif /* #ifdef CONFIG_PREEMPT_RCU */
893 
894 #ifdef CONFIG_TASKS_RCU
895 	unsigned long			rcu_tasks_nvcsw;
896 	u8				rcu_tasks_holdout;
897 	u8				rcu_tasks_idx;
898 	int				rcu_tasks_idle_cpu;
899 	struct list_head		rcu_tasks_holdout_list;
900 	int				rcu_tasks_exit_cpu;
901 	struct list_head		rcu_tasks_exit_list;
902 #endif /* #ifdef CONFIG_TASKS_RCU */
903 
904 #ifdef CONFIG_TASKS_TRACE_RCU
905 	int				trc_reader_nesting;
906 	int				trc_ipi_to_cpu;
907 	union rcu_special		trc_reader_special;
908 	struct list_head		trc_holdout_list;
909 	struct list_head		trc_blkd_node;
910 	int				trc_blkd_cpu;
911 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
912 
913 	struct sched_info		sched_info;
914 
915 	struct list_head		tasks;
916 #ifdef CONFIG_SMP
917 	struct plist_node		pushable_tasks;
918 	struct rb_node			pushable_dl_tasks;
919 #endif
920 
921 	struct mm_struct		*mm;
922 	struct mm_struct		*active_mm;
923 	struct address_space		*faults_disabled_mapping;
924 
925 	int				exit_state;
926 	int				exit_code;
927 	int				exit_signal;
928 	/* The signal sent when the parent dies: */
929 	int				pdeath_signal;
930 	/* JOBCTL_*, siglock protected: */
931 	unsigned long			jobctl;
932 
933 	/* Used for emulating ABI behavior of previous Linux versions: */
934 	unsigned int			personality;
935 
936 	/* Scheduler bits, serialized by scheduler locks: */
937 	unsigned			sched_reset_on_fork:1;
938 	unsigned			sched_contributes_to_load:1;
939 	unsigned			sched_migrated:1;
940 
941 	/* Force alignment to the next boundary: */
942 	unsigned			:0;
943 
944 	/* Unserialized, strictly 'current' */
945 
946 	/*
947 	 * This field must not be in the scheduler word above due to wakelist
948 	 * queueing no longer being serialized by p->on_cpu. However:
949 	 *
950 	 * p->XXX = X;			ttwu()
951 	 * schedule()			  if (p->on_rq && ..) // false
952 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
953 	 *   deactivate_task()		      ttwu_queue_wakelist())
954 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
955 	 *
956 	 * guarantees all stores of 'current' are visible before
957 	 * ->sched_remote_wakeup gets used, so it can be in this word.
958 	 */
959 	unsigned			sched_remote_wakeup:1;
960 #ifdef CONFIG_RT_MUTEXES
961 	unsigned			sched_rt_mutex:1;
962 #endif
963 
964 	/* Bit to tell TOMOYO we're in execve(): */
965 	unsigned			in_execve:1;
966 	unsigned			in_iowait:1;
967 #ifndef TIF_RESTORE_SIGMASK
968 	unsigned			restore_sigmask:1;
969 #endif
970 #ifdef CONFIG_MEMCG_V1
971 	unsigned			in_user_fault:1;
972 #endif
973 #ifdef CONFIG_LRU_GEN
974 	/* whether the LRU algorithm may apply to this access */
975 	unsigned			in_lru_fault:1;
976 #endif
977 #ifdef CONFIG_COMPAT_BRK
978 	unsigned			brk_randomized:1;
979 #endif
980 #ifdef CONFIG_CGROUPS
981 	/* disallow userland-initiated cgroup migration */
982 	unsigned			no_cgroup_migration:1;
983 	/* task is frozen/stopped (used by the cgroup freezer) */
984 	unsigned			frozen:1;
985 #endif
986 #ifdef CONFIG_BLK_CGROUP
987 	unsigned			use_memdelay:1;
988 #endif
989 #ifdef CONFIG_PSI
990 	/* Stalled due to lack of memory */
991 	unsigned			in_memstall:1;
992 #endif
993 #ifdef CONFIG_PAGE_OWNER
994 	/* Used by page_owner=on to detect recursion in page tracking. */
995 	unsigned			in_page_owner:1;
996 #endif
997 #ifdef CONFIG_EVENTFD
998 	/* Recursion prevention for eventfd_signal() */
999 	unsigned			in_eventfd:1;
1000 #endif
1001 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1002 	unsigned			pasid_activated:1;
1003 #endif
1004 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1005 	unsigned			reported_split_lock:1;
1006 #endif
1007 #ifdef CONFIG_TASK_DELAY_ACCT
1008 	/* delay due to memory thrashing */
1009 	unsigned                        in_thrashing:1;
1010 #endif
1011 #ifdef CONFIG_PREEMPT_RT
1012 	struct netdev_xmit		net_xmit;
1013 #endif
1014 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1015 
1016 	struct restart_block		restart_block;
1017 
1018 	pid_t				pid;
1019 	pid_t				tgid;
1020 
1021 #ifdef CONFIG_STACKPROTECTOR
1022 	/* Canary value for the -fstack-protector GCC feature: */
1023 	unsigned long			stack_canary;
1024 #endif
1025 	/*
1026 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1027 	 * older sibling, respectively.  (p->father can be replaced with
1028 	 * p->real_parent->pid)
1029 	 */
1030 
1031 	/* Real parent process: */
1032 	struct task_struct __rcu	*real_parent;
1033 
1034 	/* Recipient of SIGCHLD, wait4() reports: */
1035 	struct task_struct __rcu	*parent;
1036 
1037 	/*
1038 	 * Children/sibling form the list of natural children:
1039 	 */
1040 	struct list_head		children;
1041 	struct list_head		sibling;
1042 	struct task_struct		*group_leader;
1043 
1044 	/*
1045 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1046 	 *
1047 	 * This includes both natural children and PTRACE_ATTACH targets.
1048 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1049 	 */
1050 	struct list_head		ptraced;
1051 	struct list_head		ptrace_entry;
1052 
1053 	/* PID/PID hash table linkage. */
1054 	struct pid			*thread_pid;
1055 	struct hlist_node		pid_links[PIDTYPE_MAX];
1056 	struct list_head		thread_node;
1057 
1058 	struct completion		*vfork_done;
1059 
1060 	/* CLONE_CHILD_SETTID: */
1061 	int __user			*set_child_tid;
1062 
1063 	/* CLONE_CHILD_CLEARTID: */
1064 	int __user			*clear_child_tid;
1065 
1066 	/* PF_KTHREAD | PF_IO_WORKER */
1067 	void				*worker_private;
1068 
1069 	u64				utime;
1070 	u64				stime;
1071 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1072 	u64				utimescaled;
1073 	u64				stimescaled;
1074 #endif
1075 	u64				gtime;
1076 	struct prev_cputime		prev_cputime;
1077 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1078 	struct vtime			vtime;
1079 #endif
1080 
1081 #ifdef CONFIG_NO_HZ_FULL
1082 	atomic_t			tick_dep_mask;
1083 #endif
1084 	/* Context switch counts: */
1085 	unsigned long			nvcsw;
1086 	unsigned long			nivcsw;
1087 
1088 	/* Monotonic time in nsecs: */
1089 	u64				start_time;
1090 
1091 	/* Boot based time in nsecs: */
1092 	u64				start_boottime;
1093 
1094 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1095 	unsigned long			min_flt;
1096 	unsigned long			maj_flt;
1097 
1098 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1099 	struct posix_cputimers		posix_cputimers;
1100 
1101 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1102 	struct posix_cputimers_work	posix_cputimers_work;
1103 #endif
1104 
1105 	/* Process credentials: */
1106 
1107 	/* Tracer's credentials at attach: */
1108 	const struct cred __rcu		*ptracer_cred;
1109 
1110 	/* Objective and real subjective task credentials (COW): */
1111 	const struct cred __rcu		*real_cred;
1112 
1113 	/* Effective (overridable) subjective task credentials (COW): */
1114 	const struct cred __rcu		*cred;
1115 
1116 #ifdef CONFIG_KEYS
1117 	/* Cached requested key. */
1118 	struct key			*cached_requested_key;
1119 #endif
1120 
1121 	/*
1122 	 * executable name, excluding path.
1123 	 *
1124 	 * - normally initialized begin_new_exec()
1125 	 * - set it with set_task_comm()
1126 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1127 	 *     zero-padded
1128 	 *   - task_lock() to ensure the operation is atomic and the name is
1129 	 *     fully updated.
1130 	 */
1131 	char				comm[TASK_COMM_LEN];
1132 
1133 	struct nameidata		*nameidata;
1134 
1135 #ifdef CONFIG_SYSVIPC
1136 	struct sysv_sem			sysvsem;
1137 	struct sysv_shm			sysvshm;
1138 #endif
1139 #ifdef CONFIG_DETECT_HUNG_TASK
1140 	unsigned long			last_switch_count;
1141 	unsigned long			last_switch_time;
1142 #endif
1143 	/* Filesystem information: */
1144 	struct fs_struct		*fs;
1145 
1146 	/* Open file information: */
1147 	struct files_struct		*files;
1148 
1149 #ifdef CONFIG_IO_URING
1150 	struct io_uring_task		*io_uring;
1151 #endif
1152 
1153 	/* Namespaces: */
1154 	struct nsproxy			*nsproxy;
1155 
1156 	/* Signal handlers: */
1157 	struct signal_struct		*signal;
1158 	struct sighand_struct __rcu		*sighand;
1159 	sigset_t			blocked;
1160 	sigset_t			real_blocked;
1161 	/* Restored if set_restore_sigmask() was used: */
1162 	sigset_t			saved_sigmask;
1163 	struct sigpending		pending;
1164 	unsigned long			sas_ss_sp;
1165 	size_t				sas_ss_size;
1166 	unsigned int			sas_ss_flags;
1167 
1168 	struct callback_head		*task_works;
1169 
1170 #ifdef CONFIG_AUDIT
1171 #ifdef CONFIG_AUDITSYSCALL
1172 	struct audit_context		*audit_context;
1173 #endif
1174 	kuid_t				loginuid;
1175 	unsigned int			sessionid;
1176 #endif
1177 	struct seccomp			seccomp;
1178 	struct syscall_user_dispatch	syscall_dispatch;
1179 
1180 	/* Thread group tracking: */
1181 	u64				parent_exec_id;
1182 	u64				self_exec_id;
1183 
1184 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1185 	spinlock_t			alloc_lock;
1186 
1187 	/* Protection of the PI data structures: */
1188 	raw_spinlock_t			pi_lock;
1189 
1190 	struct wake_q_node		wake_q;
1191 
1192 #ifdef CONFIG_RT_MUTEXES
1193 	/* PI waiters blocked on a rt_mutex held by this task: */
1194 	struct rb_root_cached		pi_waiters;
1195 	/* Updated under owner's pi_lock and rq lock */
1196 	struct task_struct		*pi_top_task;
1197 	/* Deadlock detection and priority inheritance handling: */
1198 	struct rt_mutex_waiter		*pi_blocked_on;
1199 #endif
1200 
1201 #ifdef CONFIG_DEBUG_MUTEXES
1202 	/* Mutex deadlock detection: */
1203 	struct mutex_waiter		*blocked_on;
1204 #endif
1205 
1206 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1207 	int				non_block_count;
1208 #endif
1209 
1210 #ifdef CONFIG_TRACE_IRQFLAGS
1211 	struct irqtrace_events		irqtrace;
1212 	unsigned int			hardirq_threaded;
1213 	u64				hardirq_chain_key;
1214 	int				softirqs_enabled;
1215 	int				softirq_context;
1216 	int				irq_config;
1217 #endif
1218 #ifdef CONFIG_PREEMPT_RT
1219 	int				softirq_disable_cnt;
1220 #endif
1221 
1222 #ifdef CONFIG_LOCKDEP
1223 # define MAX_LOCK_DEPTH			48UL
1224 	u64				curr_chain_key;
1225 	int				lockdep_depth;
1226 	unsigned int			lockdep_recursion;
1227 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1228 #endif
1229 
1230 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1231 	unsigned int			in_ubsan;
1232 #endif
1233 
1234 	/* Journalling filesystem info: */
1235 	void				*journal_info;
1236 
1237 	/* Stacked block device info: */
1238 	struct bio_list			*bio_list;
1239 
1240 	/* Stack plugging: */
1241 	struct blk_plug			*plug;
1242 
1243 	/* VM state: */
1244 	struct reclaim_state		*reclaim_state;
1245 
1246 	struct io_context		*io_context;
1247 
1248 #ifdef CONFIG_COMPACTION
1249 	struct capture_control		*capture_control;
1250 #endif
1251 	/* Ptrace state: */
1252 	unsigned long			ptrace_message;
1253 	kernel_siginfo_t		*last_siginfo;
1254 
1255 	struct task_io_accounting	ioac;
1256 #ifdef CONFIG_PSI
1257 	/* Pressure stall state */
1258 	unsigned int			psi_flags;
1259 #endif
1260 #ifdef CONFIG_TASK_XACCT
1261 	/* Accumulated RSS usage: */
1262 	u64				acct_rss_mem1;
1263 	/* Accumulated virtual memory usage: */
1264 	u64				acct_vm_mem1;
1265 	/* stime + utime since last update: */
1266 	u64				acct_timexpd;
1267 #endif
1268 #ifdef CONFIG_CPUSETS
1269 	/* Protected by ->alloc_lock: */
1270 	nodemask_t			mems_allowed;
1271 	/* Sequence number to catch updates: */
1272 	seqcount_spinlock_t		mems_allowed_seq;
1273 	int				cpuset_mem_spread_rotor;
1274 #endif
1275 #ifdef CONFIG_CGROUPS
1276 	/* Control Group info protected by css_set_lock: */
1277 	struct css_set __rcu		*cgroups;
1278 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1279 	struct list_head		cg_list;
1280 #endif
1281 #ifdef CONFIG_X86_CPU_RESCTRL
1282 	u32				closid;
1283 	u32				rmid;
1284 #endif
1285 #ifdef CONFIG_FUTEX
1286 	struct robust_list_head __user	*robust_list;
1287 #ifdef CONFIG_COMPAT
1288 	struct compat_robust_list_head __user *compat_robust_list;
1289 #endif
1290 	struct list_head		pi_state_list;
1291 	struct futex_pi_state		*pi_state_cache;
1292 	struct mutex			futex_exit_mutex;
1293 	unsigned int			futex_state;
1294 #endif
1295 #ifdef CONFIG_PERF_EVENTS
1296 	u8				perf_recursion[PERF_NR_CONTEXTS];
1297 	struct perf_event_context	*perf_event_ctxp;
1298 	struct mutex			perf_event_mutex;
1299 	struct list_head		perf_event_list;
1300 #endif
1301 #ifdef CONFIG_DEBUG_PREEMPT
1302 	unsigned long			preempt_disable_ip;
1303 #endif
1304 #ifdef CONFIG_NUMA
1305 	/* Protected by alloc_lock: */
1306 	struct mempolicy		*mempolicy;
1307 	short				il_prev;
1308 	u8				il_weight;
1309 	short				pref_node_fork;
1310 #endif
1311 #ifdef CONFIG_NUMA_BALANCING
1312 	int				numa_scan_seq;
1313 	unsigned int			numa_scan_period;
1314 	unsigned int			numa_scan_period_max;
1315 	int				numa_preferred_nid;
1316 	unsigned long			numa_migrate_retry;
1317 	/* Migration stamp: */
1318 	u64				node_stamp;
1319 	u64				last_task_numa_placement;
1320 	u64				last_sum_exec_runtime;
1321 	struct callback_head		numa_work;
1322 
1323 	/*
1324 	 * This pointer is only modified for current in syscall and
1325 	 * pagefault context (and for tasks being destroyed), so it can be read
1326 	 * from any of the following contexts:
1327 	 *  - RCU read-side critical section
1328 	 *  - current->numa_group from everywhere
1329 	 *  - task's runqueue locked, task not running
1330 	 */
1331 	struct numa_group __rcu		*numa_group;
1332 
1333 	/*
1334 	 * numa_faults is an array split into four regions:
1335 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1336 	 * in this precise order.
1337 	 *
1338 	 * faults_memory: Exponential decaying average of faults on a per-node
1339 	 * basis. Scheduling placement decisions are made based on these
1340 	 * counts. The values remain static for the duration of a PTE scan.
1341 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1342 	 * hinting fault was incurred.
1343 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1344 	 * during the current scan window. When the scan completes, the counts
1345 	 * in faults_memory and faults_cpu decay and these values are copied.
1346 	 */
1347 	unsigned long			*numa_faults;
1348 	unsigned long			total_numa_faults;
1349 
1350 	/*
1351 	 * numa_faults_locality tracks if faults recorded during the last
1352 	 * scan window were remote/local or failed to migrate. The task scan
1353 	 * period is adapted based on the locality of the faults with different
1354 	 * weights depending on whether they were shared or private faults
1355 	 */
1356 	unsigned long			numa_faults_locality[3];
1357 
1358 	unsigned long			numa_pages_migrated;
1359 #endif /* CONFIG_NUMA_BALANCING */
1360 
1361 #ifdef CONFIG_RSEQ
1362 	struct rseq __user *rseq;
1363 	u32 rseq_len;
1364 	u32 rseq_sig;
1365 	/*
1366 	 * RmW on rseq_event_mask must be performed atomically
1367 	 * with respect to preemption.
1368 	 */
1369 	unsigned long rseq_event_mask;
1370 #endif
1371 
1372 #ifdef CONFIG_SCHED_MM_CID
1373 	int				mm_cid;		/* Current cid in mm */
1374 	int				last_mm_cid;	/* Most recent cid in mm */
1375 	int				migrate_from_cpu;
1376 	int				mm_cid_active;	/* Whether cid bitmap is active */
1377 	struct callback_head		cid_work;
1378 #endif
1379 
1380 	struct tlbflush_unmap_batch	tlb_ubc;
1381 
1382 	/* Cache last used pipe for splice(): */
1383 	struct pipe_inode_info		*splice_pipe;
1384 
1385 	struct page_frag		task_frag;
1386 
1387 #ifdef CONFIG_TASK_DELAY_ACCT
1388 	struct task_delay_info		*delays;
1389 #endif
1390 
1391 #ifdef CONFIG_FAULT_INJECTION
1392 	int				make_it_fail;
1393 	unsigned int			fail_nth;
1394 #endif
1395 	/*
1396 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1397 	 * balance_dirty_pages() for a dirty throttling pause:
1398 	 */
1399 	int				nr_dirtied;
1400 	int				nr_dirtied_pause;
1401 	/* Start of a write-and-pause period: */
1402 	unsigned long			dirty_paused_when;
1403 
1404 #ifdef CONFIG_LATENCYTOP
1405 	int				latency_record_count;
1406 	struct latency_record		latency_record[LT_SAVECOUNT];
1407 #endif
1408 	/*
1409 	 * Time slack values; these are used to round up poll() and
1410 	 * select() etc timeout values. These are in nanoseconds.
1411 	 */
1412 	u64				timer_slack_ns;
1413 	u64				default_timer_slack_ns;
1414 
1415 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1416 	unsigned int			kasan_depth;
1417 #endif
1418 
1419 #ifdef CONFIG_KCSAN
1420 	struct kcsan_ctx		kcsan_ctx;
1421 #ifdef CONFIG_TRACE_IRQFLAGS
1422 	struct irqtrace_events		kcsan_save_irqtrace;
1423 #endif
1424 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1425 	int				kcsan_stack_depth;
1426 #endif
1427 #endif
1428 
1429 #ifdef CONFIG_KMSAN
1430 	struct kmsan_ctx		kmsan_ctx;
1431 #endif
1432 
1433 #if IS_ENABLED(CONFIG_KUNIT)
1434 	struct kunit			*kunit_test;
1435 #endif
1436 
1437 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1438 	/* Index of current stored address in ret_stack: */
1439 	int				curr_ret_stack;
1440 	int				curr_ret_depth;
1441 
1442 	/* Stack of return addresses for return function tracing: */
1443 	unsigned long			*ret_stack;
1444 
1445 	/* Timestamp for last schedule: */
1446 	unsigned long long		ftrace_timestamp;
1447 	unsigned long long		ftrace_sleeptime;
1448 
1449 	/*
1450 	 * Number of functions that haven't been traced
1451 	 * because of depth overrun:
1452 	 */
1453 	atomic_t			trace_overrun;
1454 
1455 	/* Pause tracing: */
1456 	atomic_t			tracing_graph_pause;
1457 #endif
1458 
1459 #ifdef CONFIG_TRACING
1460 	/* Bitmask and counter of trace recursion: */
1461 	unsigned long			trace_recursion;
1462 #endif /* CONFIG_TRACING */
1463 
1464 #ifdef CONFIG_KCOV
1465 	/* See kernel/kcov.c for more details. */
1466 
1467 	/* Coverage collection mode enabled for this task (0 if disabled): */
1468 	unsigned int			kcov_mode;
1469 
1470 	/* Size of the kcov_area: */
1471 	unsigned int			kcov_size;
1472 
1473 	/* Buffer for coverage collection: */
1474 	void				*kcov_area;
1475 
1476 	/* KCOV descriptor wired with this task or NULL: */
1477 	struct kcov			*kcov;
1478 
1479 	/* KCOV common handle for remote coverage collection: */
1480 	u64				kcov_handle;
1481 
1482 	/* KCOV sequence number: */
1483 	int				kcov_sequence;
1484 
1485 	/* Collect coverage from softirq context: */
1486 	unsigned int			kcov_softirq;
1487 #endif
1488 
1489 #ifdef CONFIG_MEMCG_V1
1490 	struct mem_cgroup		*memcg_in_oom;
1491 #endif
1492 
1493 #ifdef CONFIG_MEMCG
1494 	/* Number of pages to reclaim on returning to userland: */
1495 	unsigned int			memcg_nr_pages_over_high;
1496 
1497 	/* Used by memcontrol for targeted memcg charge: */
1498 	struct mem_cgroup		*active_memcg;
1499 
1500 	/* Cache for current->cgroups->memcg->objcg lookups: */
1501 	struct obj_cgroup		*objcg;
1502 #endif
1503 
1504 #ifdef CONFIG_BLK_CGROUP
1505 	struct gendisk			*throttle_disk;
1506 #endif
1507 
1508 #ifdef CONFIG_UPROBES
1509 	struct uprobe_task		*utask;
1510 #endif
1511 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1512 	unsigned int			sequential_io;
1513 	unsigned int			sequential_io_avg;
1514 #endif
1515 	struct kmap_ctrl		kmap_ctrl;
1516 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1517 	unsigned long			task_state_change;
1518 # ifdef CONFIG_PREEMPT_RT
1519 	unsigned long			saved_state_change;
1520 # endif
1521 #endif
1522 	struct rcu_head			rcu;
1523 	refcount_t			rcu_users;
1524 	int				pagefault_disabled;
1525 #ifdef CONFIG_MMU
1526 	struct task_struct		*oom_reaper_list;
1527 	struct timer_list		oom_reaper_timer;
1528 #endif
1529 #ifdef CONFIG_VMAP_STACK
1530 	struct vm_struct		*stack_vm_area;
1531 #endif
1532 #ifdef CONFIG_THREAD_INFO_IN_TASK
1533 	/* A live task holds one reference: */
1534 	refcount_t			stack_refcount;
1535 #endif
1536 #ifdef CONFIG_LIVEPATCH
1537 	int patch_state;
1538 #endif
1539 #ifdef CONFIG_SECURITY
1540 	/* Used by LSM modules for access restriction: */
1541 	void				*security;
1542 #endif
1543 #ifdef CONFIG_BPF_SYSCALL
1544 	/* Used by BPF task local storage */
1545 	struct bpf_local_storage __rcu	*bpf_storage;
1546 	/* Used for BPF run context */
1547 	struct bpf_run_ctx		*bpf_ctx;
1548 #endif
1549 	/* Used by BPF for per-TASK xdp storage */
1550 	struct bpf_net_context		*bpf_net_context;
1551 
1552 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1553 	unsigned long			lowest_stack;
1554 	unsigned long			prev_lowest_stack;
1555 #endif
1556 
1557 #ifdef CONFIG_X86_MCE
1558 	void __user			*mce_vaddr;
1559 	__u64				mce_kflags;
1560 	u64				mce_addr;
1561 	__u64				mce_ripv : 1,
1562 					mce_whole_page : 1,
1563 					__mce_reserved : 62;
1564 	struct callback_head		mce_kill_me;
1565 	int				mce_count;
1566 #endif
1567 
1568 #ifdef CONFIG_KRETPROBES
1569 	struct llist_head               kretprobe_instances;
1570 #endif
1571 #ifdef CONFIG_RETHOOK
1572 	struct llist_head               rethooks;
1573 #endif
1574 
1575 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1576 	/*
1577 	 * If L1D flush is supported on mm context switch
1578 	 * then we use this callback head to queue kill work
1579 	 * to kill tasks that are not running on SMT disabled
1580 	 * cores
1581 	 */
1582 	struct callback_head		l1d_flush_kill;
1583 #endif
1584 
1585 #ifdef CONFIG_RV
1586 	/*
1587 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1588 	 * If we find justification for more monitors, we can think
1589 	 * about adding more or developing a dynamic method. So far,
1590 	 * none of these are justified.
1591 	 */
1592 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1593 #endif
1594 
1595 #ifdef CONFIG_USER_EVENTS
1596 	struct user_event_mm		*user_event_mm;
1597 #endif
1598 
1599 	/*
1600 	 * New fields for task_struct should be added above here, so that
1601 	 * they are included in the randomized portion of task_struct.
1602 	 */
1603 	randomized_struct_fields_end
1604 
1605 	/* CPU-specific state of this task: */
1606 	struct thread_struct		thread;
1607 
1608 	/*
1609 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1610 	 * structure.  It *MUST* be at the end of 'task_struct'.
1611 	 *
1612 	 * Do not put anything below here!
1613 	 */
1614 };
1615 
1616 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1617 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1618 
1619 static inline unsigned int __task_state_index(unsigned int tsk_state,
1620 					      unsigned int tsk_exit_state)
1621 {
1622 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1623 
1624 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1625 
1626 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1627 		state = TASK_REPORT_IDLE;
1628 
1629 	/*
1630 	 * We're lying here, but rather than expose a completely new task state
1631 	 * to userspace, we can make this appear as if the task has gone through
1632 	 * a regular rt_mutex_lock() call.
1633 	 */
1634 	if (tsk_state & TASK_RTLOCK_WAIT)
1635 		state = TASK_UNINTERRUPTIBLE;
1636 
1637 	return fls(state);
1638 }
1639 
1640 static inline unsigned int task_state_index(struct task_struct *tsk)
1641 {
1642 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1643 }
1644 
1645 static inline char task_index_to_char(unsigned int state)
1646 {
1647 	static const char state_char[] = "RSDTtXZPI";
1648 
1649 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1650 
1651 	return state_char[state];
1652 }
1653 
1654 static inline char task_state_to_char(struct task_struct *tsk)
1655 {
1656 	return task_index_to_char(task_state_index(tsk));
1657 }
1658 
1659 extern struct pid *cad_pid;
1660 
1661 /*
1662  * Per process flags
1663  */
1664 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1665 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1666 #define PF_EXITING		0x00000004	/* Getting shut down */
1667 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1668 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1669 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1670 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1671 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1672 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1673 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1674 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1675 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1676 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1677 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1678 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1679 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1680 #define PF__HOLE__00010000	0x00010000
1681 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1682 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1683 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1684 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1685 						 * I am cleaning dirty pages from some other bdi. */
1686 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1687 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1688 #define PF__HOLE__00800000	0x00800000
1689 #define PF__HOLE__01000000	0x01000000
1690 #define PF__HOLE__02000000	0x02000000
1691 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1692 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1693 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1694 						 * See memalloc_pin_save() */
1695 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1696 #define PF__HOLE__40000000	0x40000000
1697 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1698 
1699 /*
1700  * Only the _current_ task can read/write to tsk->flags, but other
1701  * tasks can access tsk->flags in readonly mode for example
1702  * with tsk_used_math (like during threaded core dumping).
1703  * There is however an exception to this rule during ptrace
1704  * or during fork: the ptracer task is allowed to write to the
1705  * child->flags of its traced child (same goes for fork, the parent
1706  * can write to the child->flags), because we're guaranteed the
1707  * child is not running and in turn not changing child->flags
1708  * at the same time the parent does it.
1709  */
1710 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1711 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1712 #define clear_used_math()			clear_stopped_child_used_math(current)
1713 #define set_used_math()				set_stopped_child_used_math(current)
1714 
1715 #define conditional_stopped_child_used_math(condition, child) \
1716 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1717 
1718 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1719 
1720 #define copy_to_stopped_child_used_math(child) \
1721 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1722 
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1725 #define used_math()				tsk_used_math(current)
1726 
1727 static __always_inline bool is_percpu_thread(void)
1728 {
1729 #ifdef CONFIG_SMP
1730 	return (current->flags & PF_NO_SETAFFINITY) &&
1731 		(current->nr_cpus_allowed  == 1);
1732 #else
1733 	return true;
1734 #endif
1735 }
1736 
1737 /* Per-process atomic flags. */
1738 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1739 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1740 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1741 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1742 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1743 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1744 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1745 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1746 
1747 #define TASK_PFA_TEST(name, func)					\
1748 	static inline bool task_##func(struct task_struct *p)		\
1749 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1750 
1751 #define TASK_PFA_SET(name, func)					\
1752 	static inline void task_set_##func(struct task_struct *p)	\
1753 	{ set_bit(PFA_##name, &p->atomic_flags); }
1754 
1755 #define TASK_PFA_CLEAR(name, func)					\
1756 	static inline void task_clear_##func(struct task_struct *p)	\
1757 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1758 
1759 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1760 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1761 
1762 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1763 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1764 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1765 
1766 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1767 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1768 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1769 
1770 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1771 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1772 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1773 
1774 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1775 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1776 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1777 
1778 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1779 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1780 
1781 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1782 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1783 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1784 
1785 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1786 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1787 
1788 static inline void
1789 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1790 {
1791 	current->flags &= ~flags;
1792 	current->flags |= orig_flags & flags;
1793 }
1794 
1795 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1796 extern int task_can_attach(struct task_struct *p);
1797 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1798 extern void dl_bw_free(int cpu, u64 dl_bw);
1799 #ifdef CONFIG_SMP
1800 
1801 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1802 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1803 
1804 /**
1805  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1806  * @p: the task
1807  * @new_mask: CPU affinity mask
1808  *
1809  * Return: zero if successful, or a negative error code
1810  */
1811 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1812 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1813 extern void release_user_cpus_ptr(struct task_struct *p);
1814 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1815 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1816 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1817 #else
1818 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1819 {
1820 }
1821 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1822 {
1823 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1824 	if ((*cpumask_bits(new_mask) & 1) == 0)
1825 		return -EINVAL;
1826 	return 0;
1827 }
1828 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1829 {
1830 	if (src->user_cpus_ptr)
1831 		return -EINVAL;
1832 	return 0;
1833 }
1834 static inline void release_user_cpus_ptr(struct task_struct *p)
1835 {
1836 	WARN_ON(p->user_cpus_ptr);
1837 }
1838 
1839 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1840 {
1841 	return 0;
1842 }
1843 #endif
1844 
1845 extern int yield_to(struct task_struct *p, bool preempt);
1846 extern void set_user_nice(struct task_struct *p, long nice);
1847 extern int task_prio(const struct task_struct *p);
1848 
1849 /**
1850  * task_nice - return the nice value of a given task.
1851  * @p: the task in question.
1852  *
1853  * Return: The nice value [ -20 ... 0 ... 19 ].
1854  */
1855 static inline int task_nice(const struct task_struct *p)
1856 {
1857 	return PRIO_TO_NICE((p)->static_prio);
1858 }
1859 
1860 extern int can_nice(const struct task_struct *p, const int nice);
1861 extern int task_curr(const struct task_struct *p);
1862 extern int idle_cpu(int cpu);
1863 extern int available_idle_cpu(int cpu);
1864 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1865 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1866 extern void sched_set_fifo(struct task_struct *p);
1867 extern void sched_set_fifo_low(struct task_struct *p);
1868 extern void sched_set_normal(struct task_struct *p, int nice);
1869 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1870 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1871 extern struct task_struct *idle_task(int cpu);
1872 
1873 /**
1874  * is_idle_task - is the specified task an idle task?
1875  * @p: the task in question.
1876  *
1877  * Return: 1 if @p is an idle task. 0 otherwise.
1878  */
1879 static __always_inline bool is_idle_task(const struct task_struct *p)
1880 {
1881 	return !!(p->flags & PF_IDLE);
1882 }
1883 
1884 extern struct task_struct *curr_task(int cpu);
1885 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1886 
1887 void yield(void);
1888 
1889 union thread_union {
1890 	struct task_struct task;
1891 #ifndef CONFIG_THREAD_INFO_IN_TASK
1892 	struct thread_info thread_info;
1893 #endif
1894 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1895 };
1896 
1897 #ifndef CONFIG_THREAD_INFO_IN_TASK
1898 extern struct thread_info init_thread_info;
1899 #endif
1900 
1901 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1902 
1903 #ifdef CONFIG_THREAD_INFO_IN_TASK
1904 # define task_thread_info(task)	(&(task)->thread_info)
1905 #else
1906 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1907 #endif
1908 
1909 /*
1910  * find a task by one of its numerical ids
1911  *
1912  * find_task_by_pid_ns():
1913  *      finds a task by its pid in the specified namespace
1914  * find_task_by_vpid():
1915  *      finds a task by its virtual pid
1916  *
1917  * see also find_vpid() etc in include/linux/pid.h
1918  */
1919 
1920 extern struct task_struct *find_task_by_vpid(pid_t nr);
1921 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1922 
1923 /*
1924  * find a task by its virtual pid and get the task struct
1925  */
1926 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1927 
1928 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1929 extern int wake_up_process(struct task_struct *tsk);
1930 extern void wake_up_new_task(struct task_struct *tsk);
1931 
1932 #ifdef CONFIG_SMP
1933 extern void kick_process(struct task_struct *tsk);
1934 #else
1935 static inline void kick_process(struct task_struct *tsk) { }
1936 #endif
1937 
1938 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1939 
1940 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1941 {
1942 	__set_task_comm(tsk, from, false);
1943 }
1944 
1945 /*
1946  * - Why not use task_lock()?
1947  *   User space can randomly change their names anyway, so locking for readers
1948  *   doesn't make sense. For writers, locking is probably necessary, as a race
1949  *   condition could lead to long-term mixed results.
1950  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1951  *   always NUL-terminated and zero-padded. Therefore the race condition between
1952  *   reader and writer is not an issue.
1953  *
1954  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1955  *   Since the callers don't perform any return value checks, this safeguard is
1956  *   necessary.
1957  */
1958 #define get_task_comm(buf, tsk) ({			\
1959 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1960 	strscpy_pad(buf, (tsk)->comm);			\
1961 	buf;						\
1962 })
1963 
1964 #ifdef CONFIG_SMP
1965 static __always_inline void scheduler_ipi(void)
1966 {
1967 	/*
1968 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1969 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1970 	 * this IPI.
1971 	 */
1972 	preempt_fold_need_resched();
1973 }
1974 #else
1975 static inline void scheduler_ipi(void) { }
1976 #endif
1977 
1978 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1979 
1980 /*
1981  * Set thread flags in other task's structures.
1982  * See asm/thread_info.h for TIF_xxxx flags available:
1983  */
1984 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1985 {
1986 	set_ti_thread_flag(task_thread_info(tsk), flag);
1987 }
1988 
1989 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1990 {
1991 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1992 }
1993 
1994 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1995 					  bool value)
1996 {
1997 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1998 }
1999 
2000 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004 
2005 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2006 {
2007 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2008 }
2009 
2010 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2011 {
2012 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2013 }
2014 
2015 static inline void set_tsk_need_resched(struct task_struct *tsk)
2016 {
2017 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2018 }
2019 
2020 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2021 {
2022 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2023 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2024 }
2025 
2026 static inline int test_tsk_need_resched(struct task_struct *tsk)
2027 {
2028 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2029 }
2030 
2031 /*
2032  * cond_resched() and cond_resched_lock(): latency reduction via
2033  * explicit rescheduling in places that are safe. The return
2034  * value indicates whether a reschedule was done in fact.
2035  * cond_resched_lock() will drop the spinlock before scheduling,
2036  */
2037 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2038 extern int __cond_resched(void);
2039 
2040 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2041 
2042 void sched_dynamic_klp_enable(void);
2043 void sched_dynamic_klp_disable(void);
2044 
2045 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2046 
2047 static __always_inline int _cond_resched(void)
2048 {
2049 	return static_call_mod(cond_resched)();
2050 }
2051 
2052 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2053 
2054 extern int dynamic_cond_resched(void);
2055 
2056 static __always_inline int _cond_resched(void)
2057 {
2058 	return dynamic_cond_resched();
2059 }
2060 
2061 #else /* !CONFIG_PREEMPTION */
2062 
2063 static inline int _cond_resched(void)
2064 {
2065 	klp_sched_try_switch();
2066 	return __cond_resched();
2067 }
2068 
2069 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2070 
2071 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2072 
2073 static inline int _cond_resched(void)
2074 {
2075 	klp_sched_try_switch();
2076 	return 0;
2077 }
2078 
2079 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2080 
2081 #define cond_resched() ({			\
2082 	__might_resched(__FILE__, __LINE__, 0);	\
2083 	_cond_resched();			\
2084 })
2085 
2086 extern int __cond_resched_lock(spinlock_t *lock);
2087 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2088 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2089 
2090 #define MIGHT_RESCHED_RCU_SHIFT		8
2091 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2092 
2093 #ifndef CONFIG_PREEMPT_RT
2094 /*
2095  * Non RT kernels have an elevated preempt count due to the held lock,
2096  * but are not allowed to be inside a RCU read side critical section
2097  */
2098 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2099 #else
2100 /*
2101  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2102  * cond_resched*lock() has to take that into account because it checks for
2103  * preempt_count() and rcu_preempt_depth().
2104  */
2105 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2106 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2107 #endif
2108 
2109 #define cond_resched_lock(lock) ({						\
2110 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2111 	__cond_resched_lock(lock);						\
2112 })
2113 
2114 #define cond_resched_rwlock_read(lock) ({					\
2115 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2116 	__cond_resched_rwlock_read(lock);					\
2117 })
2118 
2119 #define cond_resched_rwlock_write(lock) ({					\
2120 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2121 	__cond_resched_rwlock_write(lock);					\
2122 })
2123 
2124 static __always_inline bool need_resched(void)
2125 {
2126 	return unlikely(tif_need_resched());
2127 }
2128 
2129 /*
2130  * Wrappers for p->thread_info->cpu access. No-op on UP.
2131  */
2132 #ifdef CONFIG_SMP
2133 
2134 static inline unsigned int task_cpu(const struct task_struct *p)
2135 {
2136 	return READ_ONCE(task_thread_info(p)->cpu);
2137 }
2138 
2139 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2140 
2141 #else
2142 
2143 static inline unsigned int task_cpu(const struct task_struct *p)
2144 {
2145 	return 0;
2146 }
2147 
2148 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2149 {
2150 }
2151 
2152 #endif /* CONFIG_SMP */
2153 
2154 static inline bool task_is_runnable(struct task_struct *p)
2155 {
2156 	return p->on_rq && !p->se.sched_delayed;
2157 }
2158 
2159 extern bool sched_task_on_rq(struct task_struct *p);
2160 extern unsigned long get_wchan(struct task_struct *p);
2161 extern struct task_struct *cpu_curr_snapshot(int cpu);
2162 
2163 #include <linux/spinlock.h>
2164 
2165 /*
2166  * In order to reduce various lock holder preemption latencies provide an
2167  * interface to see if a vCPU is currently running or not.
2168  *
2169  * This allows us to terminate optimistic spin loops and block, analogous to
2170  * the native optimistic spin heuristic of testing if the lock owner task is
2171  * running or not.
2172  */
2173 #ifndef vcpu_is_preempted
2174 static inline bool vcpu_is_preempted(int cpu)
2175 {
2176 	return false;
2177 }
2178 #endif
2179 
2180 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2181 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2182 
2183 #ifndef TASK_SIZE_OF
2184 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2185 #endif
2186 
2187 #ifdef CONFIG_SMP
2188 static inline bool owner_on_cpu(struct task_struct *owner)
2189 {
2190 	/*
2191 	 * As lock holder preemption issue, we both skip spinning if
2192 	 * task is not on cpu or its cpu is preempted
2193 	 */
2194 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2195 }
2196 
2197 /* Returns effective CPU energy utilization, as seen by the scheduler */
2198 unsigned long sched_cpu_util(int cpu);
2199 #endif /* CONFIG_SMP */
2200 
2201 #ifdef CONFIG_SCHED_CORE
2202 extern void sched_core_free(struct task_struct *tsk);
2203 extern void sched_core_fork(struct task_struct *p);
2204 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2205 				unsigned long uaddr);
2206 extern int sched_core_idle_cpu(int cpu);
2207 #else
2208 static inline void sched_core_free(struct task_struct *tsk) { }
2209 static inline void sched_core_fork(struct task_struct *p) { }
2210 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2211 #endif
2212 
2213 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2214 
2215 #ifdef CONFIG_MEM_ALLOC_PROFILING
2216 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2217 {
2218 	swap(current->alloc_tag, tag);
2219 	return tag;
2220 }
2221 
2222 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2223 {
2224 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2225 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2226 #endif
2227 	current->alloc_tag = old;
2228 }
2229 #else
2230 #define alloc_tag_save(_tag)			NULL
2231 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2232 #endif
2233 
2234 #endif
2235