1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt_mask.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 62 #include <asm/processor.h> 63 64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 65 66 /* 67 * Extended scheduling parameters data structure. 68 * 69 * This is needed because the original struct sched_param can not be 70 * altered without introducing ABI issues with legacy applications 71 * (e.g., in sched_getparam()). 72 * 73 * However, the possibility of specifying more than just a priority for 74 * the tasks may be useful for a wide variety of application fields, e.g., 75 * multimedia, streaming, automation and control, and many others. 76 * 77 * This variant (sched_attr) is meant at describing a so-called 78 * sporadic time-constrained task. In such model a task is specified by: 79 * - the activation period or minimum instance inter-arrival time; 80 * - the maximum (or average, depending on the actual scheduling 81 * discipline) computation time of all instances, a.k.a. runtime; 82 * - the deadline (relative to the actual activation time) of each 83 * instance. 84 * Very briefly, a periodic (sporadic) task asks for the execution of 85 * some specific computation --which is typically called an instance-- 86 * (at most) every period. Moreover, each instance typically lasts no more 87 * than the runtime and must be completed by time instant t equal to 88 * the instance activation time + the deadline. 89 * 90 * This is reflected by the actual fields of the sched_attr structure: 91 * 92 * @size size of the structure, for fwd/bwd compat. 93 * 94 * @sched_policy task's scheduling policy 95 * @sched_flags for customizing the scheduler behaviour 96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 97 * @sched_priority task's static priority (SCHED_FIFO/RR) 98 * @sched_deadline representative of the task's deadline 99 * @sched_runtime representative of the task's runtime 100 * @sched_period representative of the task's period 101 * 102 * Given this task model, there are a multiplicity of scheduling algorithms 103 * and policies, that can be used to ensure all the tasks will make their 104 * timing constraints. 105 * 106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 107 * only user of this new interface. More information about the algorithm 108 * available in the scheduling class file or in Documentation/. 109 */ 110 struct sched_attr { 111 u32 size; 112 113 u32 sched_policy; 114 u64 sched_flags; 115 116 /* SCHED_NORMAL, SCHED_BATCH */ 117 s32 sched_nice; 118 119 /* SCHED_FIFO, SCHED_RR */ 120 u32 sched_priority; 121 122 /* SCHED_DEADLINE */ 123 u64 sched_runtime; 124 u64 sched_deadline; 125 u64 sched_period; 126 }; 127 128 struct exec_domain; 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 137 #define VMACACHE_BITS 2 138 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 139 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 140 141 /* 142 * These are the constant used to fake the fixed-point load-average 143 * counting. Some notes: 144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 145 * a load-average precision of 10 bits integer + 11 bits fractional 146 * - if you want to count load-averages more often, you need more 147 * precision, or rounding will get you. With 2-second counting freq, 148 * the EXP_n values would be 1981, 2034 and 2043 if still using only 149 * 11 bit fractions. 150 */ 151 extern unsigned long avenrun[]; /* Load averages */ 152 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 153 154 #define FSHIFT 11 /* nr of bits of precision */ 155 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 156 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 157 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 158 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 159 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 160 161 #define CALC_LOAD(load,exp,n) \ 162 load *= exp; \ 163 load += n*(FIXED_1-exp); \ 164 load >>= FSHIFT; 165 166 extern unsigned long total_forks; 167 extern int nr_threads; 168 DECLARE_PER_CPU(unsigned long, process_counts); 169 extern int nr_processes(void); 170 extern unsigned long nr_running(void); 171 extern bool single_task_running(void); 172 extern unsigned long nr_iowait(void); 173 extern unsigned long nr_iowait_cpu(int cpu); 174 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 175 176 extern void calc_global_load(unsigned long ticks); 177 extern void update_cpu_load_nohz(void); 178 179 extern unsigned long get_parent_ip(unsigned long addr); 180 181 extern void dump_cpu_task(int cpu); 182 183 struct seq_file; 184 struct cfs_rq; 185 struct task_group; 186 #ifdef CONFIG_SCHED_DEBUG 187 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 188 extern void proc_sched_set_task(struct task_struct *p); 189 extern void 190 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 191 #endif 192 193 /* 194 * Task state bitmask. NOTE! These bits are also 195 * encoded in fs/proc/array.c: get_task_state(). 196 * 197 * We have two separate sets of flags: task->state 198 * is about runnability, while task->exit_state are 199 * about the task exiting. Confusing, but this way 200 * modifying one set can't modify the other one by 201 * mistake. 202 */ 203 #define TASK_RUNNING 0 204 #define TASK_INTERRUPTIBLE 1 205 #define TASK_UNINTERRUPTIBLE 2 206 #define __TASK_STOPPED 4 207 #define __TASK_TRACED 8 208 /* in tsk->exit_state */ 209 #define EXIT_DEAD 16 210 #define EXIT_ZOMBIE 32 211 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 212 /* in tsk->state again */ 213 #define TASK_DEAD 64 214 #define TASK_WAKEKILL 128 215 #define TASK_WAKING 256 216 #define TASK_PARKED 512 217 #define TASK_STATE_MAX 1024 218 219 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 220 221 extern char ___assert_task_state[1 - 2*!!( 222 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 223 224 /* Convenience macros for the sake of set_task_state */ 225 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 226 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 227 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 228 229 /* Convenience macros for the sake of wake_up */ 230 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 231 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 232 233 /* get_task_state() */ 234 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 235 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 236 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 237 238 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 239 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 240 #define task_is_stopped_or_traced(task) \ 241 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 242 #define task_contributes_to_load(task) \ 243 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 244 (task->flags & PF_FROZEN) == 0) 245 246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 247 248 #define __set_task_state(tsk, state_value) \ 249 do { \ 250 (tsk)->task_state_change = _THIS_IP_; \ 251 (tsk)->state = (state_value); \ 252 } while (0) 253 #define set_task_state(tsk, state_value) \ 254 do { \ 255 (tsk)->task_state_change = _THIS_IP_; \ 256 set_mb((tsk)->state, (state_value)); \ 257 } while (0) 258 259 /* 260 * set_current_state() includes a barrier so that the write of current->state 261 * is correctly serialised wrt the caller's subsequent test of whether to 262 * actually sleep: 263 * 264 * set_current_state(TASK_UNINTERRUPTIBLE); 265 * if (do_i_need_to_sleep()) 266 * schedule(); 267 * 268 * If the caller does not need such serialisation then use __set_current_state() 269 */ 270 #define __set_current_state(state_value) \ 271 do { \ 272 current->task_state_change = _THIS_IP_; \ 273 current->state = (state_value); \ 274 } while (0) 275 #define set_current_state(state_value) \ 276 do { \ 277 current->task_state_change = _THIS_IP_; \ 278 set_mb(current->state, (state_value)); \ 279 } while (0) 280 281 #else 282 283 #define __set_task_state(tsk, state_value) \ 284 do { (tsk)->state = (state_value); } while (0) 285 #define set_task_state(tsk, state_value) \ 286 set_mb((tsk)->state, (state_value)) 287 288 /* 289 * set_current_state() includes a barrier so that the write of current->state 290 * is correctly serialised wrt the caller's subsequent test of whether to 291 * actually sleep: 292 * 293 * set_current_state(TASK_UNINTERRUPTIBLE); 294 * if (do_i_need_to_sleep()) 295 * schedule(); 296 * 297 * If the caller does not need such serialisation then use __set_current_state() 298 */ 299 #define __set_current_state(state_value) \ 300 do { current->state = (state_value); } while (0) 301 #define set_current_state(state_value) \ 302 set_mb(current->state, (state_value)) 303 304 #endif 305 306 /* Task command name length */ 307 #define TASK_COMM_LEN 16 308 309 #include <linux/spinlock.h> 310 311 /* 312 * This serializes "schedule()" and also protects 313 * the run-queue from deletions/modifications (but 314 * _adding_ to the beginning of the run-queue has 315 * a separate lock). 316 */ 317 extern rwlock_t tasklist_lock; 318 extern spinlock_t mmlist_lock; 319 320 struct task_struct; 321 322 #ifdef CONFIG_PROVE_RCU 323 extern int lockdep_tasklist_lock_is_held(void); 324 #endif /* #ifdef CONFIG_PROVE_RCU */ 325 326 extern void sched_init(void); 327 extern void sched_init_smp(void); 328 extern asmlinkage void schedule_tail(struct task_struct *prev); 329 extern void init_idle(struct task_struct *idle, int cpu); 330 extern void init_idle_bootup_task(struct task_struct *idle); 331 332 extern int runqueue_is_locked(int cpu); 333 334 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 335 extern void nohz_balance_enter_idle(int cpu); 336 extern void set_cpu_sd_state_idle(void); 337 extern int get_nohz_timer_target(int pinned); 338 #else 339 static inline void nohz_balance_enter_idle(int cpu) { } 340 static inline void set_cpu_sd_state_idle(void) { } 341 static inline int get_nohz_timer_target(int pinned) 342 { 343 return smp_processor_id(); 344 } 345 #endif 346 347 /* 348 * Only dump TASK_* tasks. (0 for all tasks) 349 */ 350 extern void show_state_filter(unsigned long state_filter); 351 352 static inline void show_state(void) 353 { 354 show_state_filter(0); 355 } 356 357 extern void show_regs(struct pt_regs *); 358 359 /* 360 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 361 * task), SP is the stack pointer of the first frame that should be shown in the back 362 * trace (or NULL if the entire call-chain of the task should be shown). 363 */ 364 extern void show_stack(struct task_struct *task, unsigned long *sp); 365 366 extern void cpu_init (void); 367 extern void trap_init(void); 368 extern void update_process_times(int user); 369 extern void scheduler_tick(void); 370 371 extern void sched_show_task(struct task_struct *p); 372 373 #ifdef CONFIG_LOCKUP_DETECTOR 374 extern void touch_softlockup_watchdog(void); 375 extern void touch_softlockup_watchdog_sync(void); 376 extern void touch_all_softlockup_watchdogs(void); 377 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 378 void __user *buffer, 379 size_t *lenp, loff_t *ppos); 380 extern unsigned int softlockup_panic; 381 void lockup_detector_init(void); 382 #else 383 static inline void touch_softlockup_watchdog(void) 384 { 385 } 386 static inline void touch_softlockup_watchdog_sync(void) 387 { 388 } 389 static inline void touch_all_softlockup_watchdogs(void) 390 { 391 } 392 static inline void lockup_detector_init(void) 393 { 394 } 395 #endif 396 397 #ifdef CONFIG_DETECT_HUNG_TASK 398 void reset_hung_task_detector(void); 399 #else 400 static inline void reset_hung_task_detector(void) 401 { 402 } 403 #endif 404 405 /* Attach to any functions which should be ignored in wchan output. */ 406 #define __sched __attribute__((__section__(".sched.text"))) 407 408 /* Linker adds these: start and end of __sched functions */ 409 extern char __sched_text_start[], __sched_text_end[]; 410 411 /* Is this address in the __sched functions? */ 412 extern int in_sched_functions(unsigned long addr); 413 414 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 415 extern signed long schedule_timeout(signed long timeout); 416 extern signed long schedule_timeout_interruptible(signed long timeout); 417 extern signed long schedule_timeout_killable(signed long timeout); 418 extern signed long schedule_timeout_uninterruptible(signed long timeout); 419 asmlinkage void schedule(void); 420 extern void schedule_preempt_disabled(void); 421 422 extern long io_schedule_timeout(long timeout); 423 424 static inline void io_schedule(void) 425 { 426 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 427 } 428 429 struct nsproxy; 430 struct user_namespace; 431 432 #ifdef CONFIG_MMU 433 extern void arch_pick_mmap_layout(struct mm_struct *mm); 434 extern unsigned long 435 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 436 unsigned long, unsigned long); 437 extern unsigned long 438 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 439 unsigned long len, unsigned long pgoff, 440 unsigned long flags); 441 #else 442 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 443 #endif 444 445 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 446 #define SUID_DUMP_USER 1 /* Dump as user of process */ 447 #define SUID_DUMP_ROOT 2 /* Dump as root */ 448 449 /* mm flags */ 450 451 /* for SUID_DUMP_* above */ 452 #define MMF_DUMPABLE_BITS 2 453 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 454 455 extern void set_dumpable(struct mm_struct *mm, int value); 456 /* 457 * This returns the actual value of the suid_dumpable flag. For things 458 * that are using this for checking for privilege transitions, it must 459 * test against SUID_DUMP_USER rather than treating it as a boolean 460 * value. 461 */ 462 static inline int __get_dumpable(unsigned long mm_flags) 463 { 464 return mm_flags & MMF_DUMPABLE_MASK; 465 } 466 467 static inline int get_dumpable(struct mm_struct *mm) 468 { 469 return __get_dumpable(mm->flags); 470 } 471 472 /* coredump filter bits */ 473 #define MMF_DUMP_ANON_PRIVATE 2 474 #define MMF_DUMP_ANON_SHARED 3 475 #define MMF_DUMP_MAPPED_PRIVATE 4 476 #define MMF_DUMP_MAPPED_SHARED 5 477 #define MMF_DUMP_ELF_HEADERS 6 478 #define MMF_DUMP_HUGETLB_PRIVATE 7 479 #define MMF_DUMP_HUGETLB_SHARED 8 480 481 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 482 #define MMF_DUMP_FILTER_BITS 7 483 #define MMF_DUMP_FILTER_MASK \ 484 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 485 #define MMF_DUMP_FILTER_DEFAULT \ 486 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 487 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 488 489 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 490 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 491 #else 492 # define MMF_DUMP_MASK_DEFAULT_ELF 0 493 #endif 494 /* leave room for more dump flags */ 495 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 496 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 497 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 498 499 #define MMF_HAS_UPROBES 19 /* has uprobes */ 500 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 501 502 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 503 504 struct sighand_struct { 505 atomic_t count; 506 struct k_sigaction action[_NSIG]; 507 spinlock_t siglock; 508 wait_queue_head_t signalfd_wqh; 509 }; 510 511 struct pacct_struct { 512 int ac_flag; 513 long ac_exitcode; 514 unsigned long ac_mem; 515 cputime_t ac_utime, ac_stime; 516 unsigned long ac_minflt, ac_majflt; 517 }; 518 519 struct cpu_itimer { 520 cputime_t expires; 521 cputime_t incr; 522 u32 error; 523 u32 incr_error; 524 }; 525 526 /** 527 * struct cputime - snaphsot of system and user cputime 528 * @utime: time spent in user mode 529 * @stime: time spent in system mode 530 * 531 * Gathers a generic snapshot of user and system time. 532 */ 533 struct cputime { 534 cputime_t utime; 535 cputime_t stime; 536 }; 537 538 /** 539 * struct task_cputime - collected CPU time counts 540 * @utime: time spent in user mode, in &cputime_t units 541 * @stime: time spent in kernel mode, in &cputime_t units 542 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 543 * 544 * This is an extension of struct cputime that includes the total runtime 545 * spent by the task from the scheduler point of view. 546 * 547 * As a result, this structure groups together three kinds of CPU time 548 * that are tracked for threads and thread groups. Most things considering 549 * CPU time want to group these counts together and treat all three 550 * of them in parallel. 551 */ 552 struct task_cputime { 553 cputime_t utime; 554 cputime_t stime; 555 unsigned long long sum_exec_runtime; 556 }; 557 /* Alternate field names when used to cache expirations. */ 558 #define prof_exp stime 559 #define virt_exp utime 560 #define sched_exp sum_exec_runtime 561 562 #define INIT_CPUTIME \ 563 (struct task_cputime) { \ 564 .utime = 0, \ 565 .stime = 0, \ 566 .sum_exec_runtime = 0, \ 567 } 568 569 #ifdef CONFIG_PREEMPT_COUNT 570 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 571 #else 572 #define PREEMPT_DISABLED PREEMPT_ENABLED 573 #endif 574 575 /* 576 * Disable preemption until the scheduler is running. 577 * Reset by start_kernel()->sched_init()->init_idle(). 578 * 579 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 580 * before the scheduler is active -- see should_resched(). 581 */ 582 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 583 584 /** 585 * struct thread_group_cputimer - thread group interval timer counts 586 * @cputime: thread group interval timers. 587 * @running: non-zero when there are timers running and 588 * @cputime receives updates. 589 * @lock: lock for fields in this struct. 590 * 591 * This structure contains the version of task_cputime, above, that is 592 * used for thread group CPU timer calculations. 593 */ 594 struct thread_group_cputimer { 595 struct task_cputime cputime; 596 int running; 597 raw_spinlock_t lock; 598 }; 599 600 #include <linux/rwsem.h> 601 struct autogroup; 602 603 /* 604 * NOTE! "signal_struct" does not have its own 605 * locking, because a shared signal_struct always 606 * implies a shared sighand_struct, so locking 607 * sighand_struct is always a proper superset of 608 * the locking of signal_struct. 609 */ 610 struct signal_struct { 611 atomic_t sigcnt; 612 atomic_t live; 613 int nr_threads; 614 struct list_head thread_head; 615 616 wait_queue_head_t wait_chldexit; /* for wait4() */ 617 618 /* current thread group signal load-balancing target: */ 619 struct task_struct *curr_target; 620 621 /* shared signal handling: */ 622 struct sigpending shared_pending; 623 624 /* thread group exit support */ 625 int group_exit_code; 626 /* overloaded: 627 * - notify group_exit_task when ->count is equal to notify_count 628 * - everyone except group_exit_task is stopped during signal delivery 629 * of fatal signals, group_exit_task processes the signal. 630 */ 631 int notify_count; 632 struct task_struct *group_exit_task; 633 634 /* thread group stop support, overloads group_exit_code too */ 635 int group_stop_count; 636 unsigned int flags; /* see SIGNAL_* flags below */ 637 638 /* 639 * PR_SET_CHILD_SUBREAPER marks a process, like a service 640 * manager, to re-parent orphan (double-forking) child processes 641 * to this process instead of 'init'. The service manager is 642 * able to receive SIGCHLD signals and is able to investigate 643 * the process until it calls wait(). All children of this 644 * process will inherit a flag if they should look for a 645 * child_subreaper process at exit. 646 */ 647 unsigned int is_child_subreaper:1; 648 unsigned int has_child_subreaper:1; 649 650 /* POSIX.1b Interval Timers */ 651 int posix_timer_id; 652 struct list_head posix_timers; 653 654 /* ITIMER_REAL timer for the process */ 655 struct hrtimer real_timer; 656 struct pid *leader_pid; 657 ktime_t it_real_incr; 658 659 /* 660 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 661 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 662 * values are defined to 0 and 1 respectively 663 */ 664 struct cpu_itimer it[2]; 665 666 /* 667 * Thread group totals for process CPU timers. 668 * See thread_group_cputimer(), et al, for details. 669 */ 670 struct thread_group_cputimer cputimer; 671 672 /* Earliest-expiration cache. */ 673 struct task_cputime cputime_expires; 674 675 struct list_head cpu_timers[3]; 676 677 struct pid *tty_old_pgrp; 678 679 /* boolean value for session group leader */ 680 int leader; 681 682 struct tty_struct *tty; /* NULL if no tty */ 683 684 #ifdef CONFIG_SCHED_AUTOGROUP 685 struct autogroup *autogroup; 686 #endif 687 /* 688 * Cumulative resource counters for dead threads in the group, 689 * and for reaped dead child processes forked by this group. 690 * Live threads maintain their own counters and add to these 691 * in __exit_signal, except for the group leader. 692 */ 693 seqlock_t stats_lock; 694 cputime_t utime, stime, cutime, cstime; 695 cputime_t gtime; 696 cputime_t cgtime; 697 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 698 struct cputime prev_cputime; 699 #endif 700 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 701 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 702 unsigned long inblock, oublock, cinblock, coublock; 703 unsigned long maxrss, cmaxrss; 704 struct task_io_accounting ioac; 705 706 /* 707 * Cumulative ns of schedule CPU time fo dead threads in the 708 * group, not including a zombie group leader, (This only differs 709 * from jiffies_to_ns(utime + stime) if sched_clock uses something 710 * other than jiffies.) 711 */ 712 unsigned long long sum_sched_runtime; 713 714 /* 715 * We don't bother to synchronize most readers of this at all, 716 * because there is no reader checking a limit that actually needs 717 * to get both rlim_cur and rlim_max atomically, and either one 718 * alone is a single word that can safely be read normally. 719 * getrlimit/setrlimit use task_lock(current->group_leader) to 720 * protect this instead of the siglock, because they really 721 * have no need to disable irqs. 722 */ 723 struct rlimit rlim[RLIM_NLIMITS]; 724 725 #ifdef CONFIG_BSD_PROCESS_ACCT 726 struct pacct_struct pacct; /* per-process accounting information */ 727 #endif 728 #ifdef CONFIG_TASKSTATS 729 struct taskstats *stats; 730 #endif 731 #ifdef CONFIG_AUDIT 732 unsigned audit_tty; 733 unsigned audit_tty_log_passwd; 734 struct tty_audit_buf *tty_audit_buf; 735 #endif 736 #ifdef CONFIG_CGROUPS 737 /* 738 * group_rwsem prevents new tasks from entering the threadgroup and 739 * member tasks from exiting,a more specifically, setting of 740 * PF_EXITING. fork and exit paths are protected with this rwsem 741 * using threadgroup_change_begin/end(). Users which require 742 * threadgroup to remain stable should use threadgroup_[un]lock() 743 * which also takes care of exec path. Currently, cgroup is the 744 * only user. 745 */ 746 struct rw_semaphore group_rwsem; 747 #endif 748 749 oom_flags_t oom_flags; 750 short oom_score_adj; /* OOM kill score adjustment */ 751 short oom_score_adj_min; /* OOM kill score adjustment min value. 752 * Only settable by CAP_SYS_RESOURCE. */ 753 754 struct mutex cred_guard_mutex; /* guard against foreign influences on 755 * credential calculations 756 * (notably. ptrace) */ 757 }; 758 759 /* 760 * Bits in flags field of signal_struct. 761 */ 762 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 763 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 764 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 765 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 766 /* 767 * Pending notifications to parent. 768 */ 769 #define SIGNAL_CLD_STOPPED 0x00000010 770 #define SIGNAL_CLD_CONTINUED 0x00000020 771 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 772 773 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 774 775 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 776 static inline int signal_group_exit(const struct signal_struct *sig) 777 { 778 return (sig->flags & SIGNAL_GROUP_EXIT) || 779 (sig->group_exit_task != NULL); 780 } 781 782 /* 783 * Some day this will be a full-fledged user tracking system.. 784 */ 785 struct user_struct { 786 atomic_t __count; /* reference count */ 787 atomic_t processes; /* How many processes does this user have? */ 788 atomic_t sigpending; /* How many pending signals does this user have? */ 789 #ifdef CONFIG_INOTIFY_USER 790 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 791 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 792 #endif 793 #ifdef CONFIG_FANOTIFY 794 atomic_t fanotify_listeners; 795 #endif 796 #ifdef CONFIG_EPOLL 797 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 798 #endif 799 #ifdef CONFIG_POSIX_MQUEUE 800 /* protected by mq_lock */ 801 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 802 #endif 803 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 804 805 #ifdef CONFIG_KEYS 806 struct key *uid_keyring; /* UID specific keyring */ 807 struct key *session_keyring; /* UID's default session keyring */ 808 #endif 809 810 /* Hash table maintenance information */ 811 struct hlist_node uidhash_node; 812 kuid_t uid; 813 814 #ifdef CONFIG_PERF_EVENTS 815 atomic_long_t locked_vm; 816 #endif 817 }; 818 819 extern int uids_sysfs_init(void); 820 821 extern struct user_struct *find_user(kuid_t); 822 823 extern struct user_struct root_user; 824 #define INIT_USER (&root_user) 825 826 827 struct backing_dev_info; 828 struct reclaim_state; 829 830 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 831 struct sched_info { 832 /* cumulative counters */ 833 unsigned long pcount; /* # of times run on this cpu */ 834 unsigned long long run_delay; /* time spent waiting on a runqueue */ 835 836 /* timestamps */ 837 unsigned long long last_arrival,/* when we last ran on a cpu */ 838 last_queued; /* when we were last queued to run */ 839 }; 840 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 841 842 #ifdef CONFIG_TASK_DELAY_ACCT 843 struct task_delay_info { 844 spinlock_t lock; 845 unsigned int flags; /* Private per-task flags */ 846 847 /* For each stat XXX, add following, aligned appropriately 848 * 849 * struct timespec XXX_start, XXX_end; 850 * u64 XXX_delay; 851 * u32 XXX_count; 852 * 853 * Atomicity of updates to XXX_delay, XXX_count protected by 854 * single lock above (split into XXX_lock if contention is an issue). 855 */ 856 857 /* 858 * XXX_count is incremented on every XXX operation, the delay 859 * associated with the operation is added to XXX_delay. 860 * XXX_delay contains the accumulated delay time in nanoseconds. 861 */ 862 u64 blkio_start; /* Shared by blkio, swapin */ 863 u64 blkio_delay; /* wait for sync block io completion */ 864 u64 swapin_delay; /* wait for swapin block io completion */ 865 u32 blkio_count; /* total count of the number of sync block */ 866 /* io operations performed */ 867 u32 swapin_count; /* total count of the number of swapin block */ 868 /* io operations performed */ 869 870 u64 freepages_start; 871 u64 freepages_delay; /* wait for memory reclaim */ 872 u32 freepages_count; /* total count of memory reclaim */ 873 }; 874 #endif /* CONFIG_TASK_DELAY_ACCT */ 875 876 static inline int sched_info_on(void) 877 { 878 #ifdef CONFIG_SCHEDSTATS 879 return 1; 880 #elif defined(CONFIG_TASK_DELAY_ACCT) 881 extern int delayacct_on; 882 return delayacct_on; 883 #else 884 return 0; 885 #endif 886 } 887 888 enum cpu_idle_type { 889 CPU_IDLE, 890 CPU_NOT_IDLE, 891 CPU_NEWLY_IDLE, 892 CPU_MAX_IDLE_TYPES 893 }; 894 895 /* 896 * Increase resolution of cpu_capacity calculations 897 */ 898 #define SCHED_CAPACITY_SHIFT 10 899 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 900 901 /* 902 * sched-domains (multiprocessor balancing) declarations: 903 */ 904 #ifdef CONFIG_SMP 905 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 906 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 907 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 908 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 909 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 910 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 911 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 912 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 913 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 914 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 915 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 916 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 917 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 918 #define SD_NUMA 0x4000 /* cross-node balancing */ 919 920 #ifdef CONFIG_SCHED_SMT 921 static inline int cpu_smt_flags(void) 922 { 923 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 924 } 925 #endif 926 927 #ifdef CONFIG_SCHED_MC 928 static inline int cpu_core_flags(void) 929 { 930 return SD_SHARE_PKG_RESOURCES; 931 } 932 #endif 933 934 #ifdef CONFIG_NUMA 935 static inline int cpu_numa_flags(void) 936 { 937 return SD_NUMA; 938 } 939 #endif 940 941 struct sched_domain_attr { 942 int relax_domain_level; 943 }; 944 945 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 946 .relax_domain_level = -1, \ 947 } 948 949 extern int sched_domain_level_max; 950 951 struct sched_group; 952 953 struct sched_domain { 954 /* These fields must be setup */ 955 struct sched_domain *parent; /* top domain must be null terminated */ 956 struct sched_domain *child; /* bottom domain must be null terminated */ 957 struct sched_group *groups; /* the balancing groups of the domain */ 958 unsigned long min_interval; /* Minimum balance interval ms */ 959 unsigned long max_interval; /* Maximum balance interval ms */ 960 unsigned int busy_factor; /* less balancing by factor if busy */ 961 unsigned int imbalance_pct; /* No balance until over watermark */ 962 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 963 unsigned int busy_idx; 964 unsigned int idle_idx; 965 unsigned int newidle_idx; 966 unsigned int wake_idx; 967 unsigned int forkexec_idx; 968 unsigned int smt_gain; 969 970 int nohz_idle; /* NOHZ IDLE status */ 971 int flags; /* See SD_* */ 972 int level; 973 974 /* Runtime fields. */ 975 unsigned long last_balance; /* init to jiffies. units in jiffies */ 976 unsigned int balance_interval; /* initialise to 1. units in ms. */ 977 unsigned int nr_balance_failed; /* initialise to 0 */ 978 979 /* idle_balance() stats */ 980 u64 max_newidle_lb_cost; 981 unsigned long next_decay_max_lb_cost; 982 983 #ifdef CONFIG_SCHEDSTATS 984 /* load_balance() stats */ 985 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 986 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 987 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 988 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 989 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 990 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 991 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 992 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 993 994 /* Active load balancing */ 995 unsigned int alb_count; 996 unsigned int alb_failed; 997 unsigned int alb_pushed; 998 999 /* SD_BALANCE_EXEC stats */ 1000 unsigned int sbe_count; 1001 unsigned int sbe_balanced; 1002 unsigned int sbe_pushed; 1003 1004 /* SD_BALANCE_FORK stats */ 1005 unsigned int sbf_count; 1006 unsigned int sbf_balanced; 1007 unsigned int sbf_pushed; 1008 1009 /* try_to_wake_up() stats */ 1010 unsigned int ttwu_wake_remote; 1011 unsigned int ttwu_move_affine; 1012 unsigned int ttwu_move_balance; 1013 #endif 1014 #ifdef CONFIG_SCHED_DEBUG 1015 char *name; 1016 #endif 1017 union { 1018 void *private; /* used during construction */ 1019 struct rcu_head rcu; /* used during destruction */ 1020 }; 1021 1022 unsigned int span_weight; 1023 /* 1024 * Span of all CPUs in this domain. 1025 * 1026 * NOTE: this field is variable length. (Allocated dynamically 1027 * by attaching extra space to the end of the structure, 1028 * depending on how many CPUs the kernel has booted up with) 1029 */ 1030 unsigned long span[0]; 1031 }; 1032 1033 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1034 { 1035 return to_cpumask(sd->span); 1036 } 1037 1038 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1039 struct sched_domain_attr *dattr_new); 1040 1041 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1042 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1043 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1044 1045 bool cpus_share_cache(int this_cpu, int that_cpu); 1046 1047 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1048 typedef int (*sched_domain_flags_f)(void); 1049 1050 #define SDTL_OVERLAP 0x01 1051 1052 struct sd_data { 1053 struct sched_domain **__percpu sd; 1054 struct sched_group **__percpu sg; 1055 struct sched_group_capacity **__percpu sgc; 1056 }; 1057 1058 struct sched_domain_topology_level { 1059 sched_domain_mask_f mask; 1060 sched_domain_flags_f sd_flags; 1061 int flags; 1062 int numa_level; 1063 struct sd_data data; 1064 #ifdef CONFIG_SCHED_DEBUG 1065 char *name; 1066 #endif 1067 }; 1068 1069 extern struct sched_domain_topology_level *sched_domain_topology; 1070 1071 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1072 extern void wake_up_if_idle(int cpu); 1073 1074 #ifdef CONFIG_SCHED_DEBUG 1075 # define SD_INIT_NAME(type) .name = #type 1076 #else 1077 # define SD_INIT_NAME(type) 1078 #endif 1079 1080 #else /* CONFIG_SMP */ 1081 1082 struct sched_domain_attr; 1083 1084 static inline void 1085 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1086 struct sched_domain_attr *dattr_new) 1087 { 1088 } 1089 1090 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1091 { 1092 return true; 1093 } 1094 1095 #endif /* !CONFIG_SMP */ 1096 1097 1098 struct io_context; /* See blkdev.h */ 1099 1100 1101 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1102 extern void prefetch_stack(struct task_struct *t); 1103 #else 1104 static inline void prefetch_stack(struct task_struct *t) { } 1105 #endif 1106 1107 struct audit_context; /* See audit.c */ 1108 struct mempolicy; 1109 struct pipe_inode_info; 1110 struct uts_namespace; 1111 1112 struct load_weight { 1113 unsigned long weight; 1114 u32 inv_weight; 1115 }; 1116 1117 struct sched_avg { 1118 /* 1119 * These sums represent an infinite geometric series and so are bound 1120 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1121 * choices of y < 1-2^(-32)*1024. 1122 */ 1123 u32 runnable_avg_sum, runnable_avg_period; 1124 u64 last_runnable_update; 1125 s64 decay_count; 1126 unsigned long load_avg_contrib; 1127 }; 1128 1129 #ifdef CONFIG_SCHEDSTATS 1130 struct sched_statistics { 1131 u64 wait_start; 1132 u64 wait_max; 1133 u64 wait_count; 1134 u64 wait_sum; 1135 u64 iowait_count; 1136 u64 iowait_sum; 1137 1138 u64 sleep_start; 1139 u64 sleep_max; 1140 s64 sum_sleep_runtime; 1141 1142 u64 block_start; 1143 u64 block_max; 1144 u64 exec_max; 1145 u64 slice_max; 1146 1147 u64 nr_migrations_cold; 1148 u64 nr_failed_migrations_affine; 1149 u64 nr_failed_migrations_running; 1150 u64 nr_failed_migrations_hot; 1151 u64 nr_forced_migrations; 1152 1153 u64 nr_wakeups; 1154 u64 nr_wakeups_sync; 1155 u64 nr_wakeups_migrate; 1156 u64 nr_wakeups_local; 1157 u64 nr_wakeups_remote; 1158 u64 nr_wakeups_affine; 1159 u64 nr_wakeups_affine_attempts; 1160 u64 nr_wakeups_passive; 1161 u64 nr_wakeups_idle; 1162 }; 1163 #endif 1164 1165 struct sched_entity { 1166 struct load_weight load; /* for load-balancing */ 1167 struct rb_node run_node; 1168 struct list_head group_node; 1169 unsigned int on_rq; 1170 1171 u64 exec_start; 1172 u64 sum_exec_runtime; 1173 u64 vruntime; 1174 u64 prev_sum_exec_runtime; 1175 1176 u64 nr_migrations; 1177 1178 #ifdef CONFIG_SCHEDSTATS 1179 struct sched_statistics statistics; 1180 #endif 1181 1182 #ifdef CONFIG_FAIR_GROUP_SCHED 1183 int depth; 1184 struct sched_entity *parent; 1185 /* rq on which this entity is (to be) queued: */ 1186 struct cfs_rq *cfs_rq; 1187 /* rq "owned" by this entity/group: */ 1188 struct cfs_rq *my_q; 1189 #endif 1190 1191 #ifdef CONFIG_SMP 1192 /* Per-entity load-tracking */ 1193 struct sched_avg avg; 1194 #endif 1195 }; 1196 1197 struct sched_rt_entity { 1198 struct list_head run_list; 1199 unsigned long timeout; 1200 unsigned long watchdog_stamp; 1201 unsigned int time_slice; 1202 1203 struct sched_rt_entity *back; 1204 #ifdef CONFIG_RT_GROUP_SCHED 1205 struct sched_rt_entity *parent; 1206 /* rq on which this entity is (to be) queued: */ 1207 struct rt_rq *rt_rq; 1208 /* rq "owned" by this entity/group: */ 1209 struct rt_rq *my_q; 1210 #endif 1211 }; 1212 1213 struct sched_dl_entity { 1214 struct rb_node rb_node; 1215 1216 /* 1217 * Original scheduling parameters. Copied here from sched_attr 1218 * during sched_setattr(), they will remain the same until 1219 * the next sched_setattr(). 1220 */ 1221 u64 dl_runtime; /* maximum runtime for each instance */ 1222 u64 dl_deadline; /* relative deadline of each instance */ 1223 u64 dl_period; /* separation of two instances (period) */ 1224 u64 dl_bw; /* dl_runtime / dl_deadline */ 1225 1226 /* 1227 * Actual scheduling parameters. Initialized with the values above, 1228 * they are continously updated during task execution. Note that 1229 * the remaining runtime could be < 0 in case we are in overrun. 1230 */ 1231 s64 runtime; /* remaining runtime for this instance */ 1232 u64 deadline; /* absolute deadline for this instance */ 1233 unsigned int flags; /* specifying the scheduler behaviour */ 1234 1235 /* 1236 * Some bool flags: 1237 * 1238 * @dl_throttled tells if we exhausted the runtime. If so, the 1239 * task has to wait for a replenishment to be performed at the 1240 * next firing of dl_timer. 1241 * 1242 * @dl_new tells if a new instance arrived. If so we must 1243 * start executing it with full runtime and reset its absolute 1244 * deadline; 1245 * 1246 * @dl_boosted tells if we are boosted due to DI. If so we are 1247 * outside bandwidth enforcement mechanism (but only until we 1248 * exit the critical section); 1249 * 1250 * @dl_yielded tells if task gave up the cpu before consuming 1251 * all its available runtime during the last job. 1252 */ 1253 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1254 1255 /* 1256 * Bandwidth enforcement timer. Each -deadline task has its 1257 * own bandwidth to be enforced, thus we need one timer per task. 1258 */ 1259 struct hrtimer dl_timer; 1260 }; 1261 1262 union rcu_special { 1263 struct { 1264 bool blocked; 1265 bool need_qs; 1266 } b; 1267 short s; 1268 }; 1269 struct rcu_node; 1270 1271 enum perf_event_task_context { 1272 perf_invalid_context = -1, 1273 perf_hw_context = 0, 1274 perf_sw_context, 1275 perf_nr_task_contexts, 1276 }; 1277 1278 struct task_struct { 1279 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1280 void *stack; 1281 atomic_t usage; 1282 unsigned int flags; /* per process flags, defined below */ 1283 unsigned int ptrace; 1284 1285 #ifdef CONFIG_SMP 1286 struct llist_node wake_entry; 1287 int on_cpu; 1288 struct task_struct *last_wakee; 1289 unsigned long wakee_flips; 1290 unsigned long wakee_flip_decay_ts; 1291 1292 int wake_cpu; 1293 #endif 1294 int on_rq; 1295 1296 int prio, static_prio, normal_prio; 1297 unsigned int rt_priority; 1298 const struct sched_class *sched_class; 1299 struct sched_entity se; 1300 struct sched_rt_entity rt; 1301 #ifdef CONFIG_CGROUP_SCHED 1302 struct task_group *sched_task_group; 1303 #endif 1304 struct sched_dl_entity dl; 1305 1306 #ifdef CONFIG_PREEMPT_NOTIFIERS 1307 /* list of struct preempt_notifier: */ 1308 struct hlist_head preempt_notifiers; 1309 #endif 1310 1311 #ifdef CONFIG_BLK_DEV_IO_TRACE 1312 unsigned int btrace_seq; 1313 #endif 1314 1315 unsigned int policy; 1316 int nr_cpus_allowed; 1317 cpumask_t cpus_allowed; 1318 1319 #ifdef CONFIG_PREEMPT_RCU 1320 int rcu_read_lock_nesting; 1321 union rcu_special rcu_read_unlock_special; 1322 struct list_head rcu_node_entry; 1323 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1324 #ifdef CONFIG_PREEMPT_RCU 1325 struct rcu_node *rcu_blocked_node; 1326 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1327 #ifdef CONFIG_TASKS_RCU 1328 unsigned long rcu_tasks_nvcsw; 1329 bool rcu_tasks_holdout; 1330 struct list_head rcu_tasks_holdout_list; 1331 int rcu_tasks_idle_cpu; 1332 #endif /* #ifdef CONFIG_TASKS_RCU */ 1333 1334 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1335 struct sched_info sched_info; 1336 #endif 1337 1338 struct list_head tasks; 1339 #ifdef CONFIG_SMP 1340 struct plist_node pushable_tasks; 1341 struct rb_node pushable_dl_tasks; 1342 #endif 1343 1344 struct mm_struct *mm, *active_mm; 1345 #ifdef CONFIG_COMPAT_BRK 1346 unsigned brk_randomized:1; 1347 #endif 1348 /* per-thread vma caching */ 1349 u32 vmacache_seqnum; 1350 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1351 #if defined(SPLIT_RSS_COUNTING) 1352 struct task_rss_stat rss_stat; 1353 #endif 1354 /* task state */ 1355 int exit_state; 1356 int exit_code, exit_signal; 1357 int pdeath_signal; /* The signal sent when the parent dies */ 1358 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1359 1360 /* Used for emulating ABI behavior of previous Linux versions */ 1361 unsigned int personality; 1362 1363 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1364 * execve */ 1365 unsigned in_iowait:1; 1366 1367 /* Revert to default priority/policy when forking */ 1368 unsigned sched_reset_on_fork:1; 1369 unsigned sched_contributes_to_load:1; 1370 1371 #ifdef CONFIG_MEMCG_KMEM 1372 unsigned memcg_kmem_skip_account:1; 1373 #endif 1374 1375 unsigned long atomic_flags; /* Flags needing atomic access. */ 1376 1377 struct restart_block restart_block; 1378 1379 pid_t pid; 1380 pid_t tgid; 1381 1382 #ifdef CONFIG_CC_STACKPROTECTOR 1383 /* Canary value for the -fstack-protector gcc feature */ 1384 unsigned long stack_canary; 1385 #endif 1386 /* 1387 * pointers to (original) parent process, youngest child, younger sibling, 1388 * older sibling, respectively. (p->father can be replaced with 1389 * p->real_parent->pid) 1390 */ 1391 struct task_struct __rcu *real_parent; /* real parent process */ 1392 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1393 /* 1394 * children/sibling forms the list of my natural children 1395 */ 1396 struct list_head children; /* list of my children */ 1397 struct list_head sibling; /* linkage in my parent's children list */ 1398 struct task_struct *group_leader; /* threadgroup leader */ 1399 1400 /* 1401 * ptraced is the list of tasks this task is using ptrace on. 1402 * This includes both natural children and PTRACE_ATTACH targets. 1403 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1404 */ 1405 struct list_head ptraced; 1406 struct list_head ptrace_entry; 1407 1408 /* PID/PID hash table linkage. */ 1409 struct pid_link pids[PIDTYPE_MAX]; 1410 struct list_head thread_group; 1411 struct list_head thread_node; 1412 1413 struct completion *vfork_done; /* for vfork() */ 1414 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1415 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1416 1417 cputime_t utime, stime, utimescaled, stimescaled; 1418 cputime_t gtime; 1419 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1420 struct cputime prev_cputime; 1421 #endif 1422 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1423 seqlock_t vtime_seqlock; 1424 unsigned long long vtime_snap; 1425 enum { 1426 VTIME_SLEEPING = 0, 1427 VTIME_USER, 1428 VTIME_SYS, 1429 } vtime_snap_whence; 1430 #endif 1431 unsigned long nvcsw, nivcsw; /* context switch counts */ 1432 u64 start_time; /* monotonic time in nsec */ 1433 u64 real_start_time; /* boot based time in nsec */ 1434 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1435 unsigned long min_flt, maj_flt; 1436 1437 struct task_cputime cputime_expires; 1438 struct list_head cpu_timers[3]; 1439 1440 /* process credentials */ 1441 const struct cred __rcu *real_cred; /* objective and real subjective task 1442 * credentials (COW) */ 1443 const struct cred __rcu *cred; /* effective (overridable) subjective task 1444 * credentials (COW) */ 1445 char comm[TASK_COMM_LEN]; /* executable name excluding path 1446 - access with [gs]et_task_comm (which lock 1447 it with task_lock()) 1448 - initialized normally by setup_new_exec */ 1449 /* file system info */ 1450 int link_count, total_link_count; 1451 #ifdef CONFIG_SYSVIPC 1452 /* ipc stuff */ 1453 struct sysv_sem sysvsem; 1454 struct sysv_shm sysvshm; 1455 #endif 1456 #ifdef CONFIG_DETECT_HUNG_TASK 1457 /* hung task detection */ 1458 unsigned long last_switch_count; 1459 #endif 1460 /* CPU-specific state of this task */ 1461 struct thread_struct thread; 1462 /* filesystem information */ 1463 struct fs_struct *fs; 1464 /* open file information */ 1465 struct files_struct *files; 1466 /* namespaces */ 1467 struct nsproxy *nsproxy; 1468 /* signal handlers */ 1469 struct signal_struct *signal; 1470 struct sighand_struct *sighand; 1471 1472 sigset_t blocked, real_blocked; 1473 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1474 struct sigpending pending; 1475 1476 unsigned long sas_ss_sp; 1477 size_t sas_ss_size; 1478 int (*notifier)(void *priv); 1479 void *notifier_data; 1480 sigset_t *notifier_mask; 1481 struct callback_head *task_works; 1482 1483 struct audit_context *audit_context; 1484 #ifdef CONFIG_AUDITSYSCALL 1485 kuid_t loginuid; 1486 unsigned int sessionid; 1487 #endif 1488 struct seccomp seccomp; 1489 1490 /* Thread group tracking */ 1491 u32 parent_exec_id; 1492 u32 self_exec_id; 1493 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1494 * mempolicy */ 1495 spinlock_t alloc_lock; 1496 1497 /* Protection of the PI data structures: */ 1498 raw_spinlock_t pi_lock; 1499 1500 #ifdef CONFIG_RT_MUTEXES 1501 /* PI waiters blocked on a rt_mutex held by this task */ 1502 struct rb_root pi_waiters; 1503 struct rb_node *pi_waiters_leftmost; 1504 /* Deadlock detection and priority inheritance handling */ 1505 struct rt_mutex_waiter *pi_blocked_on; 1506 #endif 1507 1508 #ifdef CONFIG_DEBUG_MUTEXES 1509 /* mutex deadlock detection */ 1510 struct mutex_waiter *blocked_on; 1511 #endif 1512 #ifdef CONFIG_TRACE_IRQFLAGS 1513 unsigned int irq_events; 1514 unsigned long hardirq_enable_ip; 1515 unsigned long hardirq_disable_ip; 1516 unsigned int hardirq_enable_event; 1517 unsigned int hardirq_disable_event; 1518 int hardirqs_enabled; 1519 int hardirq_context; 1520 unsigned long softirq_disable_ip; 1521 unsigned long softirq_enable_ip; 1522 unsigned int softirq_disable_event; 1523 unsigned int softirq_enable_event; 1524 int softirqs_enabled; 1525 int softirq_context; 1526 #endif 1527 #ifdef CONFIG_LOCKDEP 1528 # define MAX_LOCK_DEPTH 48UL 1529 u64 curr_chain_key; 1530 int lockdep_depth; 1531 unsigned int lockdep_recursion; 1532 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1533 gfp_t lockdep_reclaim_gfp; 1534 #endif 1535 1536 /* journalling filesystem info */ 1537 void *journal_info; 1538 1539 /* stacked block device info */ 1540 struct bio_list *bio_list; 1541 1542 #ifdef CONFIG_BLOCK 1543 /* stack plugging */ 1544 struct blk_plug *plug; 1545 #endif 1546 1547 /* VM state */ 1548 struct reclaim_state *reclaim_state; 1549 1550 struct backing_dev_info *backing_dev_info; 1551 1552 struct io_context *io_context; 1553 1554 unsigned long ptrace_message; 1555 siginfo_t *last_siginfo; /* For ptrace use. */ 1556 struct task_io_accounting ioac; 1557 #if defined(CONFIG_TASK_XACCT) 1558 u64 acct_rss_mem1; /* accumulated rss usage */ 1559 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1560 cputime_t acct_timexpd; /* stime + utime since last update */ 1561 #endif 1562 #ifdef CONFIG_CPUSETS 1563 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1564 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1565 int cpuset_mem_spread_rotor; 1566 int cpuset_slab_spread_rotor; 1567 #endif 1568 #ifdef CONFIG_CGROUPS 1569 /* Control Group info protected by css_set_lock */ 1570 struct css_set __rcu *cgroups; 1571 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1572 struct list_head cg_list; 1573 #endif 1574 #ifdef CONFIG_FUTEX 1575 struct robust_list_head __user *robust_list; 1576 #ifdef CONFIG_COMPAT 1577 struct compat_robust_list_head __user *compat_robust_list; 1578 #endif 1579 struct list_head pi_state_list; 1580 struct futex_pi_state *pi_state_cache; 1581 #endif 1582 #ifdef CONFIG_PERF_EVENTS 1583 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1584 struct mutex perf_event_mutex; 1585 struct list_head perf_event_list; 1586 #endif 1587 #ifdef CONFIG_DEBUG_PREEMPT 1588 unsigned long preempt_disable_ip; 1589 #endif 1590 #ifdef CONFIG_NUMA 1591 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1592 short il_next; 1593 short pref_node_fork; 1594 #endif 1595 #ifdef CONFIG_NUMA_BALANCING 1596 int numa_scan_seq; 1597 unsigned int numa_scan_period; 1598 unsigned int numa_scan_period_max; 1599 int numa_preferred_nid; 1600 unsigned long numa_migrate_retry; 1601 u64 node_stamp; /* migration stamp */ 1602 u64 last_task_numa_placement; 1603 u64 last_sum_exec_runtime; 1604 struct callback_head numa_work; 1605 1606 struct list_head numa_entry; 1607 struct numa_group *numa_group; 1608 1609 /* 1610 * numa_faults is an array split into four regions: 1611 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1612 * in this precise order. 1613 * 1614 * faults_memory: Exponential decaying average of faults on a per-node 1615 * basis. Scheduling placement decisions are made based on these 1616 * counts. The values remain static for the duration of a PTE scan. 1617 * faults_cpu: Track the nodes the process was running on when a NUMA 1618 * hinting fault was incurred. 1619 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1620 * during the current scan window. When the scan completes, the counts 1621 * in faults_memory and faults_cpu decay and these values are copied. 1622 */ 1623 unsigned long *numa_faults; 1624 unsigned long total_numa_faults; 1625 1626 /* 1627 * numa_faults_locality tracks if faults recorded during the last 1628 * scan window were remote/local or failed to migrate. The task scan 1629 * period is adapted based on the locality of the faults with different 1630 * weights depending on whether they were shared or private faults 1631 */ 1632 unsigned long numa_faults_locality[3]; 1633 1634 unsigned long numa_pages_migrated; 1635 #endif /* CONFIG_NUMA_BALANCING */ 1636 1637 struct rcu_head rcu; 1638 1639 /* 1640 * cache last used pipe for splice 1641 */ 1642 struct pipe_inode_info *splice_pipe; 1643 1644 struct page_frag task_frag; 1645 1646 #ifdef CONFIG_TASK_DELAY_ACCT 1647 struct task_delay_info *delays; 1648 #endif 1649 #ifdef CONFIG_FAULT_INJECTION 1650 int make_it_fail; 1651 #endif 1652 /* 1653 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1654 * balance_dirty_pages() for some dirty throttling pause 1655 */ 1656 int nr_dirtied; 1657 int nr_dirtied_pause; 1658 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1659 1660 #ifdef CONFIG_LATENCYTOP 1661 int latency_record_count; 1662 struct latency_record latency_record[LT_SAVECOUNT]; 1663 #endif 1664 /* 1665 * time slack values; these are used to round up poll() and 1666 * select() etc timeout values. These are in nanoseconds. 1667 */ 1668 unsigned long timer_slack_ns; 1669 unsigned long default_timer_slack_ns; 1670 1671 #ifdef CONFIG_KASAN 1672 unsigned int kasan_depth; 1673 #endif 1674 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1675 /* Index of current stored address in ret_stack */ 1676 int curr_ret_stack; 1677 /* Stack of return addresses for return function tracing */ 1678 struct ftrace_ret_stack *ret_stack; 1679 /* time stamp for last schedule */ 1680 unsigned long long ftrace_timestamp; 1681 /* 1682 * Number of functions that haven't been traced 1683 * because of depth overrun. 1684 */ 1685 atomic_t trace_overrun; 1686 /* Pause for the tracing */ 1687 atomic_t tracing_graph_pause; 1688 #endif 1689 #ifdef CONFIG_TRACING 1690 /* state flags for use by tracers */ 1691 unsigned long trace; 1692 /* bitmask and counter of trace recursion */ 1693 unsigned long trace_recursion; 1694 #endif /* CONFIG_TRACING */ 1695 #ifdef CONFIG_MEMCG 1696 struct memcg_oom_info { 1697 struct mem_cgroup *memcg; 1698 gfp_t gfp_mask; 1699 int order; 1700 unsigned int may_oom:1; 1701 } memcg_oom; 1702 #endif 1703 #ifdef CONFIG_UPROBES 1704 struct uprobe_task *utask; 1705 #endif 1706 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1707 unsigned int sequential_io; 1708 unsigned int sequential_io_avg; 1709 #endif 1710 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1711 unsigned long task_state_change; 1712 #endif 1713 }; 1714 1715 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1716 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1717 1718 #define TNF_MIGRATED 0x01 1719 #define TNF_NO_GROUP 0x02 1720 #define TNF_SHARED 0x04 1721 #define TNF_FAULT_LOCAL 0x08 1722 #define TNF_MIGRATE_FAIL 0x10 1723 1724 #ifdef CONFIG_NUMA_BALANCING 1725 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1726 extern pid_t task_numa_group_id(struct task_struct *p); 1727 extern void set_numabalancing_state(bool enabled); 1728 extern void task_numa_free(struct task_struct *p); 1729 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1730 int src_nid, int dst_cpu); 1731 #else 1732 static inline void task_numa_fault(int last_node, int node, int pages, 1733 int flags) 1734 { 1735 } 1736 static inline pid_t task_numa_group_id(struct task_struct *p) 1737 { 1738 return 0; 1739 } 1740 static inline void set_numabalancing_state(bool enabled) 1741 { 1742 } 1743 static inline void task_numa_free(struct task_struct *p) 1744 { 1745 } 1746 static inline bool should_numa_migrate_memory(struct task_struct *p, 1747 struct page *page, int src_nid, int dst_cpu) 1748 { 1749 return true; 1750 } 1751 #endif 1752 1753 static inline struct pid *task_pid(struct task_struct *task) 1754 { 1755 return task->pids[PIDTYPE_PID].pid; 1756 } 1757 1758 static inline struct pid *task_tgid(struct task_struct *task) 1759 { 1760 return task->group_leader->pids[PIDTYPE_PID].pid; 1761 } 1762 1763 /* 1764 * Without tasklist or rcu lock it is not safe to dereference 1765 * the result of task_pgrp/task_session even if task == current, 1766 * we can race with another thread doing sys_setsid/sys_setpgid. 1767 */ 1768 static inline struct pid *task_pgrp(struct task_struct *task) 1769 { 1770 return task->group_leader->pids[PIDTYPE_PGID].pid; 1771 } 1772 1773 static inline struct pid *task_session(struct task_struct *task) 1774 { 1775 return task->group_leader->pids[PIDTYPE_SID].pid; 1776 } 1777 1778 struct pid_namespace; 1779 1780 /* 1781 * the helpers to get the task's different pids as they are seen 1782 * from various namespaces 1783 * 1784 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1785 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1786 * current. 1787 * task_xid_nr_ns() : id seen from the ns specified; 1788 * 1789 * set_task_vxid() : assigns a virtual id to a task; 1790 * 1791 * see also pid_nr() etc in include/linux/pid.h 1792 */ 1793 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1794 struct pid_namespace *ns); 1795 1796 static inline pid_t task_pid_nr(struct task_struct *tsk) 1797 { 1798 return tsk->pid; 1799 } 1800 1801 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1802 struct pid_namespace *ns) 1803 { 1804 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1805 } 1806 1807 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1808 { 1809 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1810 } 1811 1812 1813 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1814 { 1815 return tsk->tgid; 1816 } 1817 1818 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1819 1820 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1821 { 1822 return pid_vnr(task_tgid(tsk)); 1823 } 1824 1825 1826 static inline int pid_alive(const struct task_struct *p); 1827 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1828 { 1829 pid_t pid = 0; 1830 1831 rcu_read_lock(); 1832 if (pid_alive(tsk)) 1833 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1834 rcu_read_unlock(); 1835 1836 return pid; 1837 } 1838 1839 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1840 { 1841 return task_ppid_nr_ns(tsk, &init_pid_ns); 1842 } 1843 1844 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1845 struct pid_namespace *ns) 1846 { 1847 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1848 } 1849 1850 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1851 { 1852 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1853 } 1854 1855 1856 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1857 struct pid_namespace *ns) 1858 { 1859 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1860 } 1861 1862 static inline pid_t task_session_vnr(struct task_struct *tsk) 1863 { 1864 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1865 } 1866 1867 /* obsolete, do not use */ 1868 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1869 { 1870 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1871 } 1872 1873 /** 1874 * pid_alive - check that a task structure is not stale 1875 * @p: Task structure to be checked. 1876 * 1877 * Test if a process is not yet dead (at most zombie state) 1878 * If pid_alive fails, then pointers within the task structure 1879 * can be stale and must not be dereferenced. 1880 * 1881 * Return: 1 if the process is alive. 0 otherwise. 1882 */ 1883 static inline int pid_alive(const struct task_struct *p) 1884 { 1885 return p->pids[PIDTYPE_PID].pid != NULL; 1886 } 1887 1888 /** 1889 * is_global_init - check if a task structure is init 1890 * @tsk: Task structure to be checked. 1891 * 1892 * Check if a task structure is the first user space task the kernel created. 1893 * 1894 * Return: 1 if the task structure is init. 0 otherwise. 1895 */ 1896 static inline int is_global_init(struct task_struct *tsk) 1897 { 1898 return tsk->pid == 1; 1899 } 1900 1901 extern struct pid *cad_pid; 1902 1903 extern void free_task(struct task_struct *tsk); 1904 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1905 1906 extern void __put_task_struct(struct task_struct *t); 1907 1908 static inline void put_task_struct(struct task_struct *t) 1909 { 1910 if (atomic_dec_and_test(&t->usage)) 1911 __put_task_struct(t); 1912 } 1913 1914 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1915 extern void task_cputime(struct task_struct *t, 1916 cputime_t *utime, cputime_t *stime); 1917 extern void task_cputime_scaled(struct task_struct *t, 1918 cputime_t *utimescaled, cputime_t *stimescaled); 1919 extern cputime_t task_gtime(struct task_struct *t); 1920 #else 1921 static inline void task_cputime(struct task_struct *t, 1922 cputime_t *utime, cputime_t *stime) 1923 { 1924 if (utime) 1925 *utime = t->utime; 1926 if (stime) 1927 *stime = t->stime; 1928 } 1929 1930 static inline void task_cputime_scaled(struct task_struct *t, 1931 cputime_t *utimescaled, 1932 cputime_t *stimescaled) 1933 { 1934 if (utimescaled) 1935 *utimescaled = t->utimescaled; 1936 if (stimescaled) 1937 *stimescaled = t->stimescaled; 1938 } 1939 1940 static inline cputime_t task_gtime(struct task_struct *t) 1941 { 1942 return t->gtime; 1943 } 1944 #endif 1945 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1946 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1947 1948 /* 1949 * Per process flags 1950 */ 1951 #define PF_EXITING 0x00000004 /* getting shut down */ 1952 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1953 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1954 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1955 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1956 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1957 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1958 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1959 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1960 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1961 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1962 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1963 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1964 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1965 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1966 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1967 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1968 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1969 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1970 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1971 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1972 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1973 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1974 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1975 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1976 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1977 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1978 1979 /* 1980 * Only the _current_ task can read/write to tsk->flags, but other 1981 * tasks can access tsk->flags in readonly mode for example 1982 * with tsk_used_math (like during threaded core dumping). 1983 * There is however an exception to this rule during ptrace 1984 * or during fork: the ptracer task is allowed to write to the 1985 * child->flags of its traced child (same goes for fork, the parent 1986 * can write to the child->flags), because we're guaranteed the 1987 * child is not running and in turn not changing child->flags 1988 * at the same time the parent does it. 1989 */ 1990 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1991 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1992 #define clear_used_math() clear_stopped_child_used_math(current) 1993 #define set_used_math() set_stopped_child_used_math(current) 1994 #define conditional_stopped_child_used_math(condition, child) \ 1995 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1996 #define conditional_used_math(condition) \ 1997 conditional_stopped_child_used_math(condition, current) 1998 #define copy_to_stopped_child_used_math(child) \ 1999 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2000 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2001 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2002 #define used_math() tsk_used_math(current) 2003 2004 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2005 * __GFP_FS is also cleared as it implies __GFP_IO. 2006 */ 2007 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2008 { 2009 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2010 flags &= ~(__GFP_IO | __GFP_FS); 2011 return flags; 2012 } 2013 2014 static inline unsigned int memalloc_noio_save(void) 2015 { 2016 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2017 current->flags |= PF_MEMALLOC_NOIO; 2018 return flags; 2019 } 2020 2021 static inline void memalloc_noio_restore(unsigned int flags) 2022 { 2023 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2024 } 2025 2026 /* Per-process atomic flags. */ 2027 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2028 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2029 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2030 2031 2032 #define TASK_PFA_TEST(name, func) \ 2033 static inline bool task_##func(struct task_struct *p) \ 2034 { return test_bit(PFA_##name, &p->atomic_flags); } 2035 #define TASK_PFA_SET(name, func) \ 2036 static inline void task_set_##func(struct task_struct *p) \ 2037 { set_bit(PFA_##name, &p->atomic_flags); } 2038 #define TASK_PFA_CLEAR(name, func) \ 2039 static inline void task_clear_##func(struct task_struct *p) \ 2040 { clear_bit(PFA_##name, &p->atomic_flags); } 2041 2042 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2043 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2044 2045 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2046 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2047 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2048 2049 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2050 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2051 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2052 2053 /* 2054 * task->jobctl flags 2055 */ 2056 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2057 2058 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2059 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2060 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2061 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2062 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2063 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2064 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2065 2066 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 2067 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 2068 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 2069 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 2070 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 2071 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 2072 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 2073 2074 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2075 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2076 2077 extern bool task_set_jobctl_pending(struct task_struct *task, 2078 unsigned int mask); 2079 extern void task_clear_jobctl_trapping(struct task_struct *task); 2080 extern void task_clear_jobctl_pending(struct task_struct *task, 2081 unsigned int mask); 2082 2083 static inline void rcu_copy_process(struct task_struct *p) 2084 { 2085 #ifdef CONFIG_PREEMPT_RCU 2086 p->rcu_read_lock_nesting = 0; 2087 p->rcu_read_unlock_special.s = 0; 2088 p->rcu_blocked_node = NULL; 2089 INIT_LIST_HEAD(&p->rcu_node_entry); 2090 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2091 #ifdef CONFIG_TASKS_RCU 2092 p->rcu_tasks_holdout = false; 2093 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2094 p->rcu_tasks_idle_cpu = -1; 2095 #endif /* #ifdef CONFIG_TASKS_RCU */ 2096 } 2097 2098 static inline void tsk_restore_flags(struct task_struct *task, 2099 unsigned long orig_flags, unsigned long flags) 2100 { 2101 task->flags &= ~flags; 2102 task->flags |= orig_flags & flags; 2103 } 2104 2105 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2106 const struct cpumask *trial); 2107 extern int task_can_attach(struct task_struct *p, 2108 const struct cpumask *cs_cpus_allowed); 2109 #ifdef CONFIG_SMP 2110 extern void do_set_cpus_allowed(struct task_struct *p, 2111 const struct cpumask *new_mask); 2112 2113 extern int set_cpus_allowed_ptr(struct task_struct *p, 2114 const struct cpumask *new_mask); 2115 #else 2116 static inline void do_set_cpus_allowed(struct task_struct *p, 2117 const struct cpumask *new_mask) 2118 { 2119 } 2120 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2121 const struct cpumask *new_mask) 2122 { 2123 if (!cpumask_test_cpu(0, new_mask)) 2124 return -EINVAL; 2125 return 0; 2126 } 2127 #endif 2128 2129 #ifdef CONFIG_NO_HZ_COMMON 2130 void calc_load_enter_idle(void); 2131 void calc_load_exit_idle(void); 2132 #else 2133 static inline void calc_load_enter_idle(void) { } 2134 static inline void calc_load_exit_idle(void) { } 2135 #endif /* CONFIG_NO_HZ_COMMON */ 2136 2137 #ifndef CONFIG_CPUMASK_OFFSTACK 2138 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2139 { 2140 return set_cpus_allowed_ptr(p, &new_mask); 2141 } 2142 #endif 2143 2144 /* 2145 * Do not use outside of architecture code which knows its limitations. 2146 * 2147 * sched_clock() has no promise of monotonicity or bounded drift between 2148 * CPUs, use (which you should not) requires disabling IRQs. 2149 * 2150 * Please use one of the three interfaces below. 2151 */ 2152 extern unsigned long long notrace sched_clock(void); 2153 /* 2154 * See the comment in kernel/sched/clock.c 2155 */ 2156 extern u64 cpu_clock(int cpu); 2157 extern u64 local_clock(void); 2158 extern u64 running_clock(void); 2159 extern u64 sched_clock_cpu(int cpu); 2160 2161 2162 extern void sched_clock_init(void); 2163 2164 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2165 static inline void sched_clock_tick(void) 2166 { 2167 } 2168 2169 static inline void sched_clock_idle_sleep_event(void) 2170 { 2171 } 2172 2173 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2174 { 2175 } 2176 #else 2177 /* 2178 * Architectures can set this to 1 if they have specified 2179 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2180 * but then during bootup it turns out that sched_clock() 2181 * is reliable after all: 2182 */ 2183 extern int sched_clock_stable(void); 2184 extern void set_sched_clock_stable(void); 2185 extern void clear_sched_clock_stable(void); 2186 2187 extern void sched_clock_tick(void); 2188 extern void sched_clock_idle_sleep_event(void); 2189 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2190 #endif 2191 2192 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2193 /* 2194 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2195 * The reason for this explicit opt-in is not to have perf penalty with 2196 * slow sched_clocks. 2197 */ 2198 extern void enable_sched_clock_irqtime(void); 2199 extern void disable_sched_clock_irqtime(void); 2200 #else 2201 static inline void enable_sched_clock_irqtime(void) {} 2202 static inline void disable_sched_clock_irqtime(void) {} 2203 #endif 2204 2205 extern unsigned long long 2206 task_sched_runtime(struct task_struct *task); 2207 2208 /* sched_exec is called by processes performing an exec */ 2209 #ifdef CONFIG_SMP 2210 extern void sched_exec(void); 2211 #else 2212 #define sched_exec() {} 2213 #endif 2214 2215 extern void sched_clock_idle_sleep_event(void); 2216 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2217 2218 #ifdef CONFIG_HOTPLUG_CPU 2219 extern void idle_task_exit(void); 2220 #else 2221 static inline void idle_task_exit(void) {} 2222 #endif 2223 2224 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2225 extern void wake_up_nohz_cpu(int cpu); 2226 #else 2227 static inline void wake_up_nohz_cpu(int cpu) { } 2228 #endif 2229 2230 #ifdef CONFIG_NO_HZ_FULL 2231 extern bool sched_can_stop_tick(void); 2232 extern u64 scheduler_tick_max_deferment(void); 2233 #else 2234 static inline bool sched_can_stop_tick(void) { return false; } 2235 #endif 2236 2237 #ifdef CONFIG_SCHED_AUTOGROUP 2238 extern void sched_autogroup_create_attach(struct task_struct *p); 2239 extern void sched_autogroup_detach(struct task_struct *p); 2240 extern void sched_autogroup_fork(struct signal_struct *sig); 2241 extern void sched_autogroup_exit(struct signal_struct *sig); 2242 #ifdef CONFIG_PROC_FS 2243 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2244 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2245 #endif 2246 #else 2247 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2248 static inline void sched_autogroup_detach(struct task_struct *p) { } 2249 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2250 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2251 #endif 2252 2253 extern int yield_to(struct task_struct *p, bool preempt); 2254 extern void set_user_nice(struct task_struct *p, long nice); 2255 extern int task_prio(const struct task_struct *p); 2256 /** 2257 * task_nice - return the nice value of a given task. 2258 * @p: the task in question. 2259 * 2260 * Return: The nice value [ -20 ... 0 ... 19 ]. 2261 */ 2262 static inline int task_nice(const struct task_struct *p) 2263 { 2264 return PRIO_TO_NICE((p)->static_prio); 2265 } 2266 extern int can_nice(const struct task_struct *p, const int nice); 2267 extern int task_curr(const struct task_struct *p); 2268 extern int idle_cpu(int cpu); 2269 extern int sched_setscheduler(struct task_struct *, int, 2270 const struct sched_param *); 2271 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2272 const struct sched_param *); 2273 extern int sched_setattr(struct task_struct *, 2274 const struct sched_attr *); 2275 extern struct task_struct *idle_task(int cpu); 2276 /** 2277 * is_idle_task - is the specified task an idle task? 2278 * @p: the task in question. 2279 * 2280 * Return: 1 if @p is an idle task. 0 otherwise. 2281 */ 2282 static inline bool is_idle_task(const struct task_struct *p) 2283 { 2284 return p->pid == 0; 2285 } 2286 extern struct task_struct *curr_task(int cpu); 2287 extern void set_curr_task(int cpu, struct task_struct *p); 2288 2289 void yield(void); 2290 2291 /* 2292 * The default (Linux) execution domain. 2293 */ 2294 extern struct exec_domain default_exec_domain; 2295 2296 union thread_union { 2297 struct thread_info thread_info; 2298 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2299 }; 2300 2301 #ifndef __HAVE_ARCH_KSTACK_END 2302 static inline int kstack_end(void *addr) 2303 { 2304 /* Reliable end of stack detection: 2305 * Some APM bios versions misalign the stack 2306 */ 2307 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2308 } 2309 #endif 2310 2311 extern union thread_union init_thread_union; 2312 extern struct task_struct init_task; 2313 2314 extern struct mm_struct init_mm; 2315 2316 extern struct pid_namespace init_pid_ns; 2317 2318 /* 2319 * find a task by one of its numerical ids 2320 * 2321 * find_task_by_pid_ns(): 2322 * finds a task by its pid in the specified namespace 2323 * find_task_by_vpid(): 2324 * finds a task by its virtual pid 2325 * 2326 * see also find_vpid() etc in include/linux/pid.h 2327 */ 2328 2329 extern struct task_struct *find_task_by_vpid(pid_t nr); 2330 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2331 struct pid_namespace *ns); 2332 2333 /* per-UID process charging. */ 2334 extern struct user_struct * alloc_uid(kuid_t); 2335 static inline struct user_struct *get_uid(struct user_struct *u) 2336 { 2337 atomic_inc(&u->__count); 2338 return u; 2339 } 2340 extern void free_uid(struct user_struct *); 2341 2342 #include <asm/current.h> 2343 2344 extern void xtime_update(unsigned long ticks); 2345 2346 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2347 extern int wake_up_process(struct task_struct *tsk); 2348 extern void wake_up_new_task(struct task_struct *tsk); 2349 #ifdef CONFIG_SMP 2350 extern void kick_process(struct task_struct *tsk); 2351 #else 2352 static inline void kick_process(struct task_struct *tsk) { } 2353 #endif 2354 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2355 extern void sched_dead(struct task_struct *p); 2356 2357 extern void proc_caches_init(void); 2358 extern void flush_signals(struct task_struct *); 2359 extern void __flush_signals(struct task_struct *); 2360 extern void ignore_signals(struct task_struct *); 2361 extern void flush_signal_handlers(struct task_struct *, int force_default); 2362 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2363 2364 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2365 { 2366 unsigned long flags; 2367 int ret; 2368 2369 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2370 ret = dequeue_signal(tsk, mask, info); 2371 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2372 2373 return ret; 2374 } 2375 2376 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2377 sigset_t *mask); 2378 extern void unblock_all_signals(void); 2379 extern void release_task(struct task_struct * p); 2380 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2381 extern int force_sigsegv(int, struct task_struct *); 2382 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2383 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2384 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2385 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2386 const struct cred *, u32); 2387 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2388 extern int kill_pid(struct pid *pid, int sig, int priv); 2389 extern int kill_proc_info(int, struct siginfo *, pid_t); 2390 extern __must_check bool do_notify_parent(struct task_struct *, int); 2391 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2392 extern void force_sig(int, struct task_struct *); 2393 extern int send_sig(int, struct task_struct *, int); 2394 extern int zap_other_threads(struct task_struct *p); 2395 extern struct sigqueue *sigqueue_alloc(void); 2396 extern void sigqueue_free(struct sigqueue *); 2397 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2398 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2399 2400 static inline void restore_saved_sigmask(void) 2401 { 2402 if (test_and_clear_restore_sigmask()) 2403 __set_current_blocked(¤t->saved_sigmask); 2404 } 2405 2406 static inline sigset_t *sigmask_to_save(void) 2407 { 2408 sigset_t *res = ¤t->blocked; 2409 if (unlikely(test_restore_sigmask())) 2410 res = ¤t->saved_sigmask; 2411 return res; 2412 } 2413 2414 static inline int kill_cad_pid(int sig, int priv) 2415 { 2416 return kill_pid(cad_pid, sig, priv); 2417 } 2418 2419 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2420 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2421 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2422 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2423 2424 /* 2425 * True if we are on the alternate signal stack. 2426 */ 2427 static inline int on_sig_stack(unsigned long sp) 2428 { 2429 #ifdef CONFIG_STACK_GROWSUP 2430 return sp >= current->sas_ss_sp && 2431 sp - current->sas_ss_sp < current->sas_ss_size; 2432 #else 2433 return sp > current->sas_ss_sp && 2434 sp - current->sas_ss_sp <= current->sas_ss_size; 2435 #endif 2436 } 2437 2438 static inline int sas_ss_flags(unsigned long sp) 2439 { 2440 if (!current->sas_ss_size) 2441 return SS_DISABLE; 2442 2443 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2444 } 2445 2446 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2447 { 2448 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2449 #ifdef CONFIG_STACK_GROWSUP 2450 return current->sas_ss_sp; 2451 #else 2452 return current->sas_ss_sp + current->sas_ss_size; 2453 #endif 2454 return sp; 2455 } 2456 2457 /* 2458 * Routines for handling mm_structs 2459 */ 2460 extern struct mm_struct * mm_alloc(void); 2461 2462 /* mmdrop drops the mm and the page tables */ 2463 extern void __mmdrop(struct mm_struct *); 2464 static inline void mmdrop(struct mm_struct * mm) 2465 { 2466 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2467 __mmdrop(mm); 2468 } 2469 2470 /* mmput gets rid of the mappings and all user-space */ 2471 extern void mmput(struct mm_struct *); 2472 /* Grab a reference to a task's mm, if it is not already going away */ 2473 extern struct mm_struct *get_task_mm(struct task_struct *task); 2474 /* 2475 * Grab a reference to a task's mm, if it is not already going away 2476 * and ptrace_may_access with the mode parameter passed to it 2477 * succeeds. 2478 */ 2479 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2480 /* Remove the current tasks stale references to the old mm_struct */ 2481 extern void mm_release(struct task_struct *, struct mm_struct *); 2482 2483 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2484 struct task_struct *); 2485 extern void flush_thread(void); 2486 extern void exit_thread(void); 2487 2488 extern void exit_files(struct task_struct *); 2489 extern void __cleanup_sighand(struct sighand_struct *); 2490 2491 extern void exit_itimers(struct signal_struct *); 2492 extern void flush_itimer_signals(void); 2493 2494 extern void do_group_exit(int); 2495 2496 extern int do_execve(struct filename *, 2497 const char __user * const __user *, 2498 const char __user * const __user *); 2499 extern int do_execveat(int, struct filename *, 2500 const char __user * const __user *, 2501 const char __user * const __user *, 2502 int); 2503 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2504 struct task_struct *fork_idle(int); 2505 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2506 2507 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2508 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2509 { 2510 __set_task_comm(tsk, from, false); 2511 } 2512 extern char *get_task_comm(char *to, struct task_struct *tsk); 2513 2514 #ifdef CONFIG_SMP 2515 void scheduler_ipi(void); 2516 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2517 #else 2518 static inline void scheduler_ipi(void) { } 2519 static inline unsigned long wait_task_inactive(struct task_struct *p, 2520 long match_state) 2521 { 2522 return 1; 2523 } 2524 #endif 2525 2526 #define next_task(p) \ 2527 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2528 2529 #define for_each_process(p) \ 2530 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2531 2532 extern bool current_is_single_threaded(void); 2533 2534 /* 2535 * Careful: do_each_thread/while_each_thread is a double loop so 2536 * 'break' will not work as expected - use goto instead. 2537 */ 2538 #define do_each_thread(g, t) \ 2539 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2540 2541 #define while_each_thread(g, t) \ 2542 while ((t = next_thread(t)) != g) 2543 2544 #define __for_each_thread(signal, t) \ 2545 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2546 2547 #define for_each_thread(p, t) \ 2548 __for_each_thread((p)->signal, t) 2549 2550 /* Careful: this is a double loop, 'break' won't work as expected. */ 2551 #define for_each_process_thread(p, t) \ 2552 for_each_process(p) for_each_thread(p, t) 2553 2554 static inline int get_nr_threads(struct task_struct *tsk) 2555 { 2556 return tsk->signal->nr_threads; 2557 } 2558 2559 static inline bool thread_group_leader(struct task_struct *p) 2560 { 2561 return p->exit_signal >= 0; 2562 } 2563 2564 /* Do to the insanities of de_thread it is possible for a process 2565 * to have the pid of the thread group leader without actually being 2566 * the thread group leader. For iteration through the pids in proc 2567 * all we care about is that we have a task with the appropriate 2568 * pid, we don't actually care if we have the right task. 2569 */ 2570 static inline bool has_group_leader_pid(struct task_struct *p) 2571 { 2572 return task_pid(p) == p->signal->leader_pid; 2573 } 2574 2575 static inline 2576 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2577 { 2578 return p1->signal == p2->signal; 2579 } 2580 2581 static inline struct task_struct *next_thread(const struct task_struct *p) 2582 { 2583 return list_entry_rcu(p->thread_group.next, 2584 struct task_struct, thread_group); 2585 } 2586 2587 static inline int thread_group_empty(struct task_struct *p) 2588 { 2589 return list_empty(&p->thread_group); 2590 } 2591 2592 #define delay_group_leader(p) \ 2593 (thread_group_leader(p) && !thread_group_empty(p)) 2594 2595 /* 2596 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2597 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2598 * pins the final release of task.io_context. Also protects ->cpuset and 2599 * ->cgroup.subsys[]. And ->vfork_done. 2600 * 2601 * Nests both inside and outside of read_lock(&tasklist_lock). 2602 * It must not be nested with write_lock_irq(&tasklist_lock), 2603 * neither inside nor outside. 2604 */ 2605 static inline void task_lock(struct task_struct *p) 2606 { 2607 spin_lock(&p->alloc_lock); 2608 } 2609 2610 static inline void task_unlock(struct task_struct *p) 2611 { 2612 spin_unlock(&p->alloc_lock); 2613 } 2614 2615 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2616 unsigned long *flags); 2617 2618 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2619 unsigned long *flags) 2620 { 2621 struct sighand_struct *ret; 2622 2623 ret = __lock_task_sighand(tsk, flags); 2624 (void)__cond_lock(&tsk->sighand->siglock, ret); 2625 return ret; 2626 } 2627 2628 static inline void unlock_task_sighand(struct task_struct *tsk, 2629 unsigned long *flags) 2630 { 2631 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2632 } 2633 2634 #ifdef CONFIG_CGROUPS 2635 static inline void threadgroup_change_begin(struct task_struct *tsk) 2636 { 2637 down_read(&tsk->signal->group_rwsem); 2638 } 2639 static inline void threadgroup_change_end(struct task_struct *tsk) 2640 { 2641 up_read(&tsk->signal->group_rwsem); 2642 } 2643 2644 /** 2645 * threadgroup_lock - lock threadgroup 2646 * @tsk: member task of the threadgroup to lock 2647 * 2648 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2649 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2650 * change ->group_leader/pid. This is useful for cases where the threadgroup 2651 * needs to stay stable across blockable operations. 2652 * 2653 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2654 * synchronization. While held, no new task will be added to threadgroup 2655 * and no existing live task will have its PF_EXITING set. 2656 * 2657 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2658 * sub-thread becomes a new leader. 2659 */ 2660 static inline void threadgroup_lock(struct task_struct *tsk) 2661 { 2662 down_write(&tsk->signal->group_rwsem); 2663 } 2664 2665 /** 2666 * threadgroup_unlock - unlock threadgroup 2667 * @tsk: member task of the threadgroup to unlock 2668 * 2669 * Reverse threadgroup_lock(). 2670 */ 2671 static inline void threadgroup_unlock(struct task_struct *tsk) 2672 { 2673 up_write(&tsk->signal->group_rwsem); 2674 } 2675 #else 2676 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2677 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2678 static inline void threadgroup_lock(struct task_struct *tsk) {} 2679 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2680 #endif 2681 2682 #ifndef __HAVE_THREAD_FUNCTIONS 2683 2684 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2685 #define task_stack_page(task) ((task)->stack) 2686 2687 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2688 { 2689 *task_thread_info(p) = *task_thread_info(org); 2690 task_thread_info(p)->task = p; 2691 } 2692 2693 /* 2694 * Return the address of the last usable long on the stack. 2695 * 2696 * When the stack grows down, this is just above the thread 2697 * info struct. Going any lower will corrupt the threadinfo. 2698 * 2699 * When the stack grows up, this is the highest address. 2700 * Beyond that position, we corrupt data on the next page. 2701 */ 2702 static inline unsigned long *end_of_stack(struct task_struct *p) 2703 { 2704 #ifdef CONFIG_STACK_GROWSUP 2705 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2706 #else 2707 return (unsigned long *)(task_thread_info(p) + 1); 2708 #endif 2709 } 2710 2711 #endif 2712 #define task_stack_end_corrupted(task) \ 2713 (*(end_of_stack(task)) != STACK_END_MAGIC) 2714 2715 static inline int object_is_on_stack(void *obj) 2716 { 2717 void *stack = task_stack_page(current); 2718 2719 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2720 } 2721 2722 extern void thread_info_cache_init(void); 2723 2724 #ifdef CONFIG_DEBUG_STACK_USAGE 2725 static inline unsigned long stack_not_used(struct task_struct *p) 2726 { 2727 unsigned long *n = end_of_stack(p); 2728 2729 do { /* Skip over canary */ 2730 n++; 2731 } while (!*n); 2732 2733 return (unsigned long)n - (unsigned long)end_of_stack(p); 2734 } 2735 #endif 2736 extern void set_task_stack_end_magic(struct task_struct *tsk); 2737 2738 /* set thread flags in other task's structures 2739 * - see asm/thread_info.h for TIF_xxxx flags available 2740 */ 2741 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2742 { 2743 set_ti_thread_flag(task_thread_info(tsk), flag); 2744 } 2745 2746 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2747 { 2748 clear_ti_thread_flag(task_thread_info(tsk), flag); 2749 } 2750 2751 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2752 { 2753 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2754 } 2755 2756 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2757 { 2758 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2759 } 2760 2761 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2762 { 2763 return test_ti_thread_flag(task_thread_info(tsk), flag); 2764 } 2765 2766 static inline void set_tsk_need_resched(struct task_struct *tsk) 2767 { 2768 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2769 } 2770 2771 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2772 { 2773 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2774 } 2775 2776 static inline int test_tsk_need_resched(struct task_struct *tsk) 2777 { 2778 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2779 } 2780 2781 static inline int restart_syscall(void) 2782 { 2783 set_tsk_thread_flag(current, TIF_SIGPENDING); 2784 return -ERESTARTNOINTR; 2785 } 2786 2787 static inline int signal_pending(struct task_struct *p) 2788 { 2789 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2790 } 2791 2792 static inline int __fatal_signal_pending(struct task_struct *p) 2793 { 2794 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2795 } 2796 2797 static inline int fatal_signal_pending(struct task_struct *p) 2798 { 2799 return signal_pending(p) && __fatal_signal_pending(p); 2800 } 2801 2802 static inline int signal_pending_state(long state, struct task_struct *p) 2803 { 2804 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2805 return 0; 2806 if (!signal_pending(p)) 2807 return 0; 2808 2809 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2810 } 2811 2812 /* 2813 * cond_resched() and cond_resched_lock(): latency reduction via 2814 * explicit rescheduling in places that are safe. The return 2815 * value indicates whether a reschedule was done in fact. 2816 * cond_resched_lock() will drop the spinlock before scheduling, 2817 * cond_resched_softirq() will enable bhs before scheduling. 2818 */ 2819 extern int _cond_resched(void); 2820 2821 #define cond_resched() ({ \ 2822 ___might_sleep(__FILE__, __LINE__, 0); \ 2823 _cond_resched(); \ 2824 }) 2825 2826 extern int __cond_resched_lock(spinlock_t *lock); 2827 2828 #ifdef CONFIG_PREEMPT_COUNT 2829 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2830 #else 2831 #define PREEMPT_LOCK_OFFSET 0 2832 #endif 2833 2834 #define cond_resched_lock(lock) ({ \ 2835 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2836 __cond_resched_lock(lock); \ 2837 }) 2838 2839 extern int __cond_resched_softirq(void); 2840 2841 #define cond_resched_softirq() ({ \ 2842 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2843 __cond_resched_softirq(); \ 2844 }) 2845 2846 static inline void cond_resched_rcu(void) 2847 { 2848 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2849 rcu_read_unlock(); 2850 cond_resched(); 2851 rcu_read_lock(); 2852 #endif 2853 } 2854 2855 /* 2856 * Does a critical section need to be broken due to another 2857 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2858 * but a general need for low latency) 2859 */ 2860 static inline int spin_needbreak(spinlock_t *lock) 2861 { 2862 #ifdef CONFIG_PREEMPT 2863 return spin_is_contended(lock); 2864 #else 2865 return 0; 2866 #endif 2867 } 2868 2869 /* 2870 * Idle thread specific functions to determine the need_resched 2871 * polling state. 2872 */ 2873 #ifdef TIF_POLLING_NRFLAG 2874 static inline int tsk_is_polling(struct task_struct *p) 2875 { 2876 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2877 } 2878 2879 static inline void __current_set_polling(void) 2880 { 2881 set_thread_flag(TIF_POLLING_NRFLAG); 2882 } 2883 2884 static inline bool __must_check current_set_polling_and_test(void) 2885 { 2886 __current_set_polling(); 2887 2888 /* 2889 * Polling state must be visible before we test NEED_RESCHED, 2890 * paired by resched_curr() 2891 */ 2892 smp_mb__after_atomic(); 2893 2894 return unlikely(tif_need_resched()); 2895 } 2896 2897 static inline void __current_clr_polling(void) 2898 { 2899 clear_thread_flag(TIF_POLLING_NRFLAG); 2900 } 2901 2902 static inline bool __must_check current_clr_polling_and_test(void) 2903 { 2904 __current_clr_polling(); 2905 2906 /* 2907 * Polling state must be visible before we test NEED_RESCHED, 2908 * paired by resched_curr() 2909 */ 2910 smp_mb__after_atomic(); 2911 2912 return unlikely(tif_need_resched()); 2913 } 2914 2915 #else 2916 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2917 static inline void __current_set_polling(void) { } 2918 static inline void __current_clr_polling(void) { } 2919 2920 static inline bool __must_check current_set_polling_and_test(void) 2921 { 2922 return unlikely(tif_need_resched()); 2923 } 2924 static inline bool __must_check current_clr_polling_and_test(void) 2925 { 2926 return unlikely(tif_need_resched()); 2927 } 2928 #endif 2929 2930 static inline void current_clr_polling(void) 2931 { 2932 __current_clr_polling(); 2933 2934 /* 2935 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2936 * Once the bit is cleared, we'll get IPIs with every new 2937 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2938 * fold. 2939 */ 2940 smp_mb(); /* paired with resched_curr() */ 2941 2942 preempt_fold_need_resched(); 2943 } 2944 2945 static __always_inline bool need_resched(void) 2946 { 2947 return unlikely(tif_need_resched()); 2948 } 2949 2950 /* 2951 * Thread group CPU time accounting. 2952 */ 2953 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2954 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2955 2956 static inline void thread_group_cputime_init(struct signal_struct *sig) 2957 { 2958 raw_spin_lock_init(&sig->cputimer.lock); 2959 } 2960 2961 /* 2962 * Reevaluate whether the task has signals pending delivery. 2963 * Wake the task if so. 2964 * This is required every time the blocked sigset_t changes. 2965 * callers must hold sighand->siglock. 2966 */ 2967 extern void recalc_sigpending_and_wake(struct task_struct *t); 2968 extern void recalc_sigpending(void); 2969 2970 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2971 2972 static inline void signal_wake_up(struct task_struct *t, bool resume) 2973 { 2974 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2975 } 2976 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2977 { 2978 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2979 } 2980 2981 /* 2982 * Wrappers for p->thread_info->cpu access. No-op on UP. 2983 */ 2984 #ifdef CONFIG_SMP 2985 2986 static inline unsigned int task_cpu(const struct task_struct *p) 2987 { 2988 return task_thread_info(p)->cpu; 2989 } 2990 2991 static inline int task_node(const struct task_struct *p) 2992 { 2993 return cpu_to_node(task_cpu(p)); 2994 } 2995 2996 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2997 2998 #else 2999 3000 static inline unsigned int task_cpu(const struct task_struct *p) 3001 { 3002 return 0; 3003 } 3004 3005 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3006 { 3007 } 3008 3009 #endif /* CONFIG_SMP */ 3010 3011 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3012 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3013 3014 #ifdef CONFIG_CGROUP_SCHED 3015 extern struct task_group root_task_group; 3016 #endif /* CONFIG_CGROUP_SCHED */ 3017 3018 extern int task_can_switch_user(struct user_struct *up, 3019 struct task_struct *tsk); 3020 3021 #ifdef CONFIG_TASK_XACCT 3022 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3023 { 3024 tsk->ioac.rchar += amt; 3025 } 3026 3027 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3028 { 3029 tsk->ioac.wchar += amt; 3030 } 3031 3032 static inline void inc_syscr(struct task_struct *tsk) 3033 { 3034 tsk->ioac.syscr++; 3035 } 3036 3037 static inline void inc_syscw(struct task_struct *tsk) 3038 { 3039 tsk->ioac.syscw++; 3040 } 3041 #else 3042 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3043 { 3044 } 3045 3046 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3047 { 3048 } 3049 3050 static inline void inc_syscr(struct task_struct *tsk) 3051 { 3052 } 3053 3054 static inline void inc_syscw(struct task_struct *tsk) 3055 { 3056 } 3057 #endif 3058 3059 #ifndef TASK_SIZE_OF 3060 #define TASK_SIZE_OF(tsk) TASK_SIZE 3061 #endif 3062 3063 #ifdef CONFIG_MEMCG 3064 extern void mm_update_next_owner(struct mm_struct *mm); 3065 #else 3066 static inline void mm_update_next_owner(struct mm_struct *mm) 3067 { 3068 } 3069 #endif /* CONFIG_MEMCG */ 3070 3071 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3072 unsigned int limit) 3073 { 3074 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 3075 } 3076 3077 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3078 unsigned int limit) 3079 { 3080 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 3081 } 3082 3083 static inline unsigned long rlimit(unsigned int limit) 3084 { 3085 return task_rlimit(current, limit); 3086 } 3087 3088 static inline unsigned long rlimit_max(unsigned int limit) 3089 { 3090 return task_rlimit_max(current, limit); 3091 } 3092 3093 #endif 3094