1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/mm_types_task.h> 31 #include <linux/task_io_accounting.h> 32 #include <linux/posix-timers.h> 33 #include <linux/rseq.h> 34 35 /* task_struct member predeclarations (sorted alphabetically): */ 36 struct audit_context; 37 struct backing_dev_info; 38 struct bio_list; 39 struct blk_plug; 40 struct capture_control; 41 struct cfs_rq; 42 struct fs_struct; 43 struct futex_pi_state; 44 struct io_context; 45 struct mempolicy; 46 struct nameidata; 47 struct nsproxy; 48 struct perf_event_context; 49 struct pid_namespace; 50 struct pipe_inode_info; 51 struct rcu_node; 52 struct reclaim_state; 53 struct robust_list_head; 54 struct root_domain; 55 struct rq; 56 struct sched_attr; 57 struct sched_param; 58 struct seq_file; 59 struct sighand_struct; 60 struct signal_struct; 61 struct task_delay_info; 62 struct task_group; 63 64 /* 65 * Task state bitmask. NOTE! These bits are also 66 * encoded in fs/proc/array.c: get_task_state(). 67 * 68 * We have two separate sets of flags: task->state 69 * is about runnability, while task->exit_state are 70 * about the task exiting. Confusing, but this way 71 * modifying one set can't modify the other one by 72 * mistake. 73 */ 74 75 /* Used in tsk->state: */ 76 #define TASK_RUNNING 0x0000 77 #define TASK_INTERRUPTIBLE 0x0001 78 #define TASK_UNINTERRUPTIBLE 0x0002 79 #define __TASK_STOPPED 0x0004 80 #define __TASK_TRACED 0x0008 81 /* Used in tsk->exit_state: */ 82 #define EXIT_DEAD 0x0010 83 #define EXIT_ZOMBIE 0x0020 84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 85 /* Used in tsk->state again: */ 86 #define TASK_PARKED 0x0040 87 #define TASK_DEAD 0x0080 88 #define TASK_WAKEKILL 0x0100 89 #define TASK_WAKING 0x0200 90 #define TASK_NOLOAD 0x0400 91 #define TASK_NEW 0x0800 92 #define TASK_STATE_MAX 0x1000 93 94 /* Convenience macros for the sake of set_current_state: */ 95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 98 99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 100 101 /* Convenience macros for the sake of wake_up(): */ 102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 103 104 /* get_task_state(): */ 105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 108 TASK_PARKED) 109 110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 111 112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 113 114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 115 116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 117 (task->flags & PF_FROZEN) == 0 && \ 118 (task->state & TASK_NOLOAD) == 0) 119 120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122 /* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126 #define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129 #define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136 #define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143 #define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 151 } while (0) 152 #else 153 /* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (!need_sleep) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * condition test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * need_sleep = false; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state() executes a full memory barrier before accessing the 177 * task state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190 #define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193 #define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196 /* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202 #define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 208 } while (0) 209 210 #endif 211 212 /* Task command name length: */ 213 #define TASK_COMM_LEN 16 214 215 extern void scheduler_tick(void); 216 217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219 extern long schedule_timeout(long timeout); 220 extern long schedule_timeout_interruptible(long timeout); 221 extern long schedule_timeout_killable(long timeout); 222 extern long schedule_timeout_uninterruptible(long timeout); 223 extern long schedule_timeout_idle(long timeout); 224 asmlinkage void schedule(void); 225 extern void schedule_preempt_disabled(void); 226 asmlinkage void preempt_schedule_irq(void); 227 228 extern int __must_check io_schedule_prepare(void); 229 extern void io_schedule_finish(int token); 230 extern long io_schedule_timeout(long timeout); 231 extern void io_schedule(void); 232 233 /** 234 * struct prev_cputime - snapshot of system and user cputime 235 * @utime: time spent in user mode 236 * @stime: time spent in system mode 237 * @lock: protects the above two fields 238 * 239 * Stores previous user/system time values such that we can guarantee 240 * monotonicity. 241 */ 242 struct prev_cputime { 243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 244 u64 utime; 245 u64 stime; 246 raw_spinlock_t lock; 247 #endif 248 }; 249 250 enum vtime_state { 251 /* Task is sleeping or running in a CPU with VTIME inactive: */ 252 VTIME_INACTIVE = 0, 253 /* Task runs in userspace in a CPU with VTIME active: */ 254 VTIME_USER, 255 /* Task runs in kernelspace in a CPU with VTIME active: */ 256 VTIME_SYS, 257 }; 258 259 struct vtime { 260 seqcount_t seqcount; 261 unsigned long long starttime; 262 enum vtime_state state; 263 u64 utime; 264 u64 stime; 265 u64 gtime; 266 }; 267 268 /* 269 * Utilization clamp constraints. 270 * @UCLAMP_MIN: Minimum utilization 271 * @UCLAMP_MAX: Maximum utilization 272 * @UCLAMP_CNT: Utilization clamp constraints count 273 */ 274 enum uclamp_id { 275 UCLAMP_MIN = 0, 276 UCLAMP_MAX, 277 UCLAMP_CNT 278 }; 279 280 #ifdef CONFIG_SMP 281 extern struct root_domain def_root_domain; 282 extern struct mutex sched_domains_mutex; 283 #endif 284 285 struct sched_info { 286 #ifdef CONFIG_SCHED_INFO 287 /* Cumulative counters: */ 288 289 /* # of times we have run on this CPU: */ 290 unsigned long pcount; 291 292 /* Time spent waiting on a runqueue: */ 293 unsigned long long run_delay; 294 295 /* Timestamps: */ 296 297 /* When did we last run on a CPU? */ 298 unsigned long long last_arrival; 299 300 /* When were we last queued to run? */ 301 unsigned long long last_queued; 302 303 #endif /* CONFIG_SCHED_INFO */ 304 }; 305 306 /* 307 * Integer metrics need fixed point arithmetic, e.g., sched/fair 308 * has a few: load, load_avg, util_avg, freq, and capacity. 309 * 310 * We define a basic fixed point arithmetic range, and then formalize 311 * all these metrics based on that basic range. 312 */ 313 # define SCHED_FIXEDPOINT_SHIFT 10 314 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 315 316 /* Increase resolution of cpu_capacity calculations */ 317 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 318 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 319 320 struct load_weight { 321 unsigned long weight; 322 u32 inv_weight; 323 }; 324 325 /** 326 * struct util_est - Estimation utilization of FAIR tasks 327 * @enqueued: instantaneous estimated utilization of a task/cpu 328 * @ewma: the Exponential Weighted Moving Average (EWMA) 329 * utilization of a task 330 * 331 * Support data structure to track an Exponential Weighted Moving Average 332 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 333 * average each time a task completes an activation. Sample's weight is chosen 334 * so that the EWMA will be relatively insensitive to transient changes to the 335 * task's workload. 336 * 337 * The enqueued attribute has a slightly different meaning for tasks and cpus: 338 * - task: the task's util_avg at last task dequeue time 339 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 340 * Thus, the util_est.enqueued of a task represents the contribution on the 341 * estimated utilization of the CPU where that task is currently enqueued. 342 * 343 * Only for tasks we track a moving average of the past instantaneous 344 * estimated utilization. This allows to absorb sporadic drops in utilization 345 * of an otherwise almost periodic task. 346 */ 347 struct util_est { 348 unsigned int enqueued; 349 unsigned int ewma; 350 #define UTIL_EST_WEIGHT_SHIFT 2 351 } __attribute__((__aligned__(sizeof(u64)))); 352 353 /* 354 * The load_avg/util_avg accumulates an infinite geometric series 355 * (see __update_load_avg() in kernel/sched/fair.c). 356 * 357 * [load_avg definition] 358 * 359 * load_avg = runnable% * scale_load_down(load) 360 * 361 * where runnable% is the time ratio that a sched_entity is runnable. 362 * For cfs_rq, it is the aggregated load_avg of all runnable and 363 * blocked sched_entities. 364 * 365 * [util_avg definition] 366 * 367 * util_avg = running% * SCHED_CAPACITY_SCALE 368 * 369 * where running% is the time ratio that a sched_entity is running on 370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 371 * and blocked sched_entities. 372 * 373 * load_avg and util_avg don't direcly factor frequency scaling and CPU 374 * capacity scaling. The scaling is done through the rq_clock_pelt that 375 * is used for computing those signals (see update_rq_clock_pelt()) 376 * 377 * N.B., the above ratios (runnable% and running%) themselves are in the 378 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 379 * to as large a range as necessary. This is for example reflected by 380 * util_avg's SCHED_CAPACITY_SCALE. 381 * 382 * [Overflow issue] 383 * 384 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 385 * with the highest load (=88761), always runnable on a single cfs_rq, 386 * and should not overflow as the number already hits PID_MAX_LIMIT. 387 * 388 * For all other cases (including 32-bit kernels), struct load_weight's 389 * weight will overflow first before we do, because: 390 * 391 * Max(load_avg) <= Max(load.weight) 392 * 393 * Then it is the load_weight's responsibility to consider overflow 394 * issues. 395 */ 396 struct sched_avg { 397 u64 last_update_time; 398 u64 load_sum; 399 u64 runnable_load_sum; 400 u32 util_sum; 401 u32 period_contrib; 402 unsigned long load_avg; 403 unsigned long runnable_load_avg; 404 unsigned long util_avg; 405 struct util_est util_est; 406 } ____cacheline_aligned; 407 408 struct sched_statistics { 409 #ifdef CONFIG_SCHEDSTATS 410 u64 wait_start; 411 u64 wait_max; 412 u64 wait_count; 413 u64 wait_sum; 414 u64 iowait_count; 415 u64 iowait_sum; 416 417 u64 sleep_start; 418 u64 sleep_max; 419 s64 sum_sleep_runtime; 420 421 u64 block_start; 422 u64 block_max; 423 u64 exec_max; 424 u64 slice_max; 425 426 u64 nr_migrations_cold; 427 u64 nr_failed_migrations_affine; 428 u64 nr_failed_migrations_running; 429 u64 nr_failed_migrations_hot; 430 u64 nr_forced_migrations; 431 432 u64 nr_wakeups; 433 u64 nr_wakeups_sync; 434 u64 nr_wakeups_migrate; 435 u64 nr_wakeups_local; 436 u64 nr_wakeups_remote; 437 u64 nr_wakeups_affine; 438 u64 nr_wakeups_affine_attempts; 439 u64 nr_wakeups_passive; 440 u64 nr_wakeups_idle; 441 #endif 442 }; 443 444 struct sched_entity { 445 /* For load-balancing: */ 446 struct load_weight load; 447 unsigned long runnable_weight; 448 struct rb_node run_node; 449 struct list_head group_node; 450 unsigned int on_rq; 451 452 u64 exec_start; 453 u64 sum_exec_runtime; 454 u64 vruntime; 455 u64 prev_sum_exec_runtime; 456 457 u64 nr_migrations; 458 459 struct sched_statistics statistics; 460 461 #ifdef CONFIG_FAIR_GROUP_SCHED 462 int depth; 463 struct sched_entity *parent; 464 /* rq on which this entity is (to be) queued: */ 465 struct cfs_rq *cfs_rq; 466 /* rq "owned" by this entity/group: */ 467 struct cfs_rq *my_q; 468 #endif 469 470 #ifdef CONFIG_SMP 471 /* 472 * Per entity load average tracking. 473 * 474 * Put into separate cache line so it does not 475 * collide with read-mostly values above. 476 */ 477 struct sched_avg avg; 478 #endif 479 }; 480 481 struct sched_rt_entity { 482 struct list_head run_list; 483 unsigned long timeout; 484 unsigned long watchdog_stamp; 485 unsigned int time_slice; 486 unsigned short on_rq; 487 unsigned short on_list; 488 489 struct sched_rt_entity *back; 490 #ifdef CONFIG_RT_GROUP_SCHED 491 struct sched_rt_entity *parent; 492 /* rq on which this entity is (to be) queued: */ 493 struct rt_rq *rt_rq; 494 /* rq "owned" by this entity/group: */ 495 struct rt_rq *my_q; 496 #endif 497 } __randomize_layout; 498 499 struct sched_dl_entity { 500 struct rb_node rb_node; 501 502 /* 503 * Original scheduling parameters. Copied here from sched_attr 504 * during sched_setattr(), they will remain the same until 505 * the next sched_setattr(). 506 */ 507 u64 dl_runtime; /* Maximum runtime for each instance */ 508 u64 dl_deadline; /* Relative deadline of each instance */ 509 u64 dl_period; /* Separation of two instances (period) */ 510 u64 dl_bw; /* dl_runtime / dl_period */ 511 u64 dl_density; /* dl_runtime / dl_deadline */ 512 513 /* 514 * Actual scheduling parameters. Initialized with the values above, 515 * they are continuously updated during task execution. Note that 516 * the remaining runtime could be < 0 in case we are in overrun. 517 */ 518 s64 runtime; /* Remaining runtime for this instance */ 519 u64 deadline; /* Absolute deadline for this instance */ 520 unsigned int flags; /* Specifying the scheduler behaviour */ 521 522 /* 523 * Some bool flags: 524 * 525 * @dl_throttled tells if we exhausted the runtime. If so, the 526 * task has to wait for a replenishment to be performed at the 527 * next firing of dl_timer. 528 * 529 * @dl_boosted tells if we are boosted due to DI. If so we are 530 * outside bandwidth enforcement mechanism (but only until we 531 * exit the critical section); 532 * 533 * @dl_yielded tells if task gave up the CPU before consuming 534 * all its available runtime during the last job. 535 * 536 * @dl_non_contending tells if the task is inactive while still 537 * contributing to the active utilization. In other words, it 538 * indicates if the inactive timer has been armed and its handler 539 * has not been executed yet. This flag is useful to avoid race 540 * conditions between the inactive timer handler and the wakeup 541 * code. 542 * 543 * @dl_overrun tells if the task asked to be informed about runtime 544 * overruns. 545 */ 546 unsigned int dl_throttled : 1; 547 unsigned int dl_boosted : 1; 548 unsigned int dl_yielded : 1; 549 unsigned int dl_non_contending : 1; 550 unsigned int dl_overrun : 1; 551 552 /* 553 * Bandwidth enforcement timer. Each -deadline task has its 554 * own bandwidth to be enforced, thus we need one timer per task. 555 */ 556 struct hrtimer dl_timer; 557 558 /* 559 * Inactive timer, responsible for decreasing the active utilization 560 * at the "0-lag time". When a -deadline task blocks, it contributes 561 * to GRUB's active utilization until the "0-lag time", hence a 562 * timer is needed to decrease the active utilization at the correct 563 * time. 564 */ 565 struct hrtimer inactive_timer; 566 }; 567 568 #ifdef CONFIG_UCLAMP_TASK 569 /* Number of utilization clamp buckets (shorter alias) */ 570 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 571 572 /* 573 * Utilization clamp for a scheduling entity 574 * @value: clamp value "assigned" to a se 575 * @bucket_id: bucket index corresponding to the "assigned" value 576 * @active: the se is currently refcounted in a rq's bucket 577 * @user_defined: the requested clamp value comes from user-space 578 * 579 * The bucket_id is the index of the clamp bucket matching the clamp value 580 * which is pre-computed and stored to avoid expensive integer divisions from 581 * the fast path. 582 * 583 * The active bit is set whenever a task has got an "effective" value assigned, 584 * which can be different from the clamp value "requested" from user-space. 585 * This allows to know a task is refcounted in the rq's bucket corresponding 586 * to the "effective" bucket_id. 587 * 588 * The user_defined bit is set whenever a task has got a task-specific clamp 589 * value requested from userspace, i.e. the system defaults apply to this task 590 * just as a restriction. This allows to relax default clamps when a less 591 * restrictive task-specific value has been requested, thus allowing to 592 * implement a "nice" semantic. For example, a task running with a 20% 593 * default boost can still drop its own boosting to 0%. 594 */ 595 struct uclamp_se { 596 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 597 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 598 unsigned int active : 1; 599 unsigned int user_defined : 1; 600 }; 601 #endif /* CONFIG_UCLAMP_TASK */ 602 603 union rcu_special { 604 struct { 605 u8 blocked; 606 u8 need_qs; 607 u8 exp_hint; /* Hint for performance. */ 608 u8 deferred_qs; 609 } b; /* Bits. */ 610 u32 s; /* Set of bits. */ 611 }; 612 613 enum perf_event_task_context { 614 perf_invalid_context = -1, 615 perf_hw_context = 0, 616 perf_sw_context, 617 perf_nr_task_contexts, 618 }; 619 620 struct wake_q_node { 621 struct wake_q_node *next; 622 }; 623 624 struct task_struct { 625 #ifdef CONFIG_THREAD_INFO_IN_TASK 626 /* 627 * For reasons of header soup (see current_thread_info()), this 628 * must be the first element of task_struct. 629 */ 630 struct thread_info thread_info; 631 #endif 632 /* -1 unrunnable, 0 runnable, >0 stopped: */ 633 volatile long state; 634 635 /* 636 * This begins the randomizable portion of task_struct. Only 637 * scheduling-critical items should be added above here. 638 */ 639 randomized_struct_fields_start 640 641 void *stack; 642 refcount_t usage; 643 /* Per task flags (PF_*), defined further below: */ 644 unsigned int flags; 645 unsigned int ptrace; 646 647 #ifdef CONFIG_SMP 648 struct llist_node wake_entry; 649 int on_cpu; 650 #ifdef CONFIG_THREAD_INFO_IN_TASK 651 /* Current CPU: */ 652 unsigned int cpu; 653 #endif 654 unsigned int wakee_flips; 655 unsigned long wakee_flip_decay_ts; 656 struct task_struct *last_wakee; 657 658 /* 659 * recent_used_cpu is initially set as the last CPU used by a task 660 * that wakes affine another task. Waker/wakee relationships can 661 * push tasks around a CPU where each wakeup moves to the next one. 662 * Tracking a recently used CPU allows a quick search for a recently 663 * used CPU that may be idle. 664 */ 665 int recent_used_cpu; 666 int wake_cpu; 667 #endif 668 int on_rq; 669 670 int prio; 671 int static_prio; 672 int normal_prio; 673 unsigned int rt_priority; 674 675 const struct sched_class *sched_class; 676 struct sched_entity se; 677 struct sched_rt_entity rt; 678 #ifdef CONFIG_CGROUP_SCHED 679 struct task_group *sched_task_group; 680 #endif 681 struct sched_dl_entity dl; 682 683 #ifdef CONFIG_UCLAMP_TASK 684 /* Clamp values requested for a scheduling entity */ 685 struct uclamp_se uclamp_req[UCLAMP_CNT]; 686 /* Effective clamp values used for a scheduling entity */ 687 struct uclamp_se uclamp[UCLAMP_CNT]; 688 #endif 689 690 #ifdef CONFIG_PREEMPT_NOTIFIERS 691 /* List of struct preempt_notifier: */ 692 struct hlist_head preempt_notifiers; 693 #endif 694 695 #ifdef CONFIG_BLK_DEV_IO_TRACE 696 unsigned int btrace_seq; 697 #endif 698 699 unsigned int policy; 700 int nr_cpus_allowed; 701 const cpumask_t *cpus_ptr; 702 cpumask_t cpus_mask; 703 704 #ifdef CONFIG_PREEMPT_RCU 705 int rcu_read_lock_nesting; 706 union rcu_special rcu_read_unlock_special; 707 struct list_head rcu_node_entry; 708 struct rcu_node *rcu_blocked_node; 709 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 710 711 #ifdef CONFIG_TASKS_RCU 712 unsigned long rcu_tasks_nvcsw; 713 u8 rcu_tasks_holdout; 714 u8 rcu_tasks_idx; 715 int rcu_tasks_idle_cpu; 716 struct list_head rcu_tasks_holdout_list; 717 #endif /* #ifdef CONFIG_TASKS_RCU */ 718 719 struct sched_info sched_info; 720 721 struct list_head tasks; 722 #ifdef CONFIG_SMP 723 struct plist_node pushable_tasks; 724 struct rb_node pushable_dl_tasks; 725 #endif 726 727 struct mm_struct *mm; 728 struct mm_struct *active_mm; 729 730 /* Per-thread vma caching: */ 731 struct vmacache vmacache; 732 733 #ifdef SPLIT_RSS_COUNTING 734 struct task_rss_stat rss_stat; 735 #endif 736 int exit_state; 737 int exit_code; 738 int exit_signal; 739 /* The signal sent when the parent dies: */ 740 int pdeath_signal; 741 /* JOBCTL_*, siglock protected: */ 742 unsigned long jobctl; 743 744 /* Used for emulating ABI behavior of previous Linux versions: */ 745 unsigned int personality; 746 747 /* Scheduler bits, serialized by scheduler locks: */ 748 unsigned sched_reset_on_fork:1; 749 unsigned sched_contributes_to_load:1; 750 unsigned sched_migrated:1; 751 unsigned sched_remote_wakeup:1; 752 #ifdef CONFIG_PSI 753 unsigned sched_psi_wake_requeue:1; 754 #endif 755 756 /* Force alignment to the next boundary: */ 757 unsigned :0; 758 759 /* Unserialized, strictly 'current' */ 760 761 /* Bit to tell LSMs we're in execve(): */ 762 unsigned in_execve:1; 763 unsigned in_iowait:1; 764 #ifndef TIF_RESTORE_SIGMASK 765 unsigned restore_sigmask:1; 766 #endif 767 #ifdef CONFIG_MEMCG 768 unsigned in_user_fault:1; 769 #endif 770 #ifdef CONFIG_COMPAT_BRK 771 unsigned brk_randomized:1; 772 #endif 773 #ifdef CONFIG_CGROUPS 774 /* disallow userland-initiated cgroup migration */ 775 unsigned no_cgroup_migration:1; 776 /* task is frozen/stopped (used by the cgroup freezer) */ 777 unsigned frozen:1; 778 #endif 779 #ifdef CONFIG_BLK_CGROUP 780 /* to be used once the psi infrastructure lands upstream. */ 781 unsigned use_memdelay:1; 782 #endif 783 784 unsigned long atomic_flags; /* Flags requiring atomic access. */ 785 786 struct restart_block restart_block; 787 788 pid_t pid; 789 pid_t tgid; 790 791 #ifdef CONFIG_STACKPROTECTOR 792 /* Canary value for the -fstack-protector GCC feature: */ 793 unsigned long stack_canary; 794 #endif 795 /* 796 * Pointers to the (original) parent process, youngest child, younger sibling, 797 * older sibling, respectively. (p->father can be replaced with 798 * p->real_parent->pid) 799 */ 800 801 /* Real parent process: */ 802 struct task_struct __rcu *real_parent; 803 804 /* Recipient of SIGCHLD, wait4() reports: */ 805 struct task_struct __rcu *parent; 806 807 /* 808 * Children/sibling form the list of natural children: 809 */ 810 struct list_head children; 811 struct list_head sibling; 812 struct task_struct *group_leader; 813 814 /* 815 * 'ptraced' is the list of tasks this task is using ptrace() on. 816 * 817 * This includes both natural children and PTRACE_ATTACH targets. 818 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 819 */ 820 struct list_head ptraced; 821 struct list_head ptrace_entry; 822 823 /* PID/PID hash table linkage. */ 824 struct pid *thread_pid; 825 struct hlist_node pid_links[PIDTYPE_MAX]; 826 struct list_head thread_group; 827 struct list_head thread_node; 828 829 struct completion *vfork_done; 830 831 /* CLONE_CHILD_SETTID: */ 832 int __user *set_child_tid; 833 834 /* CLONE_CHILD_CLEARTID: */ 835 int __user *clear_child_tid; 836 837 u64 utime; 838 u64 stime; 839 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 840 u64 utimescaled; 841 u64 stimescaled; 842 #endif 843 u64 gtime; 844 struct prev_cputime prev_cputime; 845 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 846 struct vtime vtime; 847 #endif 848 849 #ifdef CONFIG_NO_HZ_FULL 850 atomic_t tick_dep_mask; 851 #endif 852 /* Context switch counts: */ 853 unsigned long nvcsw; 854 unsigned long nivcsw; 855 856 /* Monotonic time in nsecs: */ 857 u64 start_time; 858 859 /* Boot based time in nsecs: */ 860 u64 real_start_time; 861 862 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 863 unsigned long min_flt; 864 unsigned long maj_flt; 865 866 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 867 struct posix_cputimers posix_cputimers; 868 869 /* Process credentials: */ 870 871 /* Tracer's credentials at attach: */ 872 const struct cred __rcu *ptracer_cred; 873 874 /* Objective and real subjective task credentials (COW): */ 875 const struct cred __rcu *real_cred; 876 877 /* Effective (overridable) subjective task credentials (COW): */ 878 const struct cred __rcu *cred; 879 880 #ifdef CONFIG_KEYS 881 /* Cached requested key. */ 882 struct key *cached_requested_key; 883 #endif 884 885 /* 886 * executable name, excluding path. 887 * 888 * - normally initialized setup_new_exec() 889 * - access it with [gs]et_task_comm() 890 * - lock it with task_lock() 891 */ 892 char comm[TASK_COMM_LEN]; 893 894 struct nameidata *nameidata; 895 896 #ifdef CONFIG_SYSVIPC 897 struct sysv_sem sysvsem; 898 struct sysv_shm sysvshm; 899 #endif 900 #ifdef CONFIG_DETECT_HUNG_TASK 901 unsigned long last_switch_count; 902 unsigned long last_switch_time; 903 #endif 904 /* Filesystem information: */ 905 struct fs_struct *fs; 906 907 /* Open file information: */ 908 struct files_struct *files; 909 910 /* Namespaces: */ 911 struct nsproxy *nsproxy; 912 913 /* Signal handlers: */ 914 struct signal_struct *signal; 915 struct sighand_struct *sighand; 916 sigset_t blocked; 917 sigset_t real_blocked; 918 /* Restored if set_restore_sigmask() was used: */ 919 sigset_t saved_sigmask; 920 struct sigpending pending; 921 unsigned long sas_ss_sp; 922 size_t sas_ss_size; 923 unsigned int sas_ss_flags; 924 925 struct callback_head *task_works; 926 927 #ifdef CONFIG_AUDIT 928 #ifdef CONFIG_AUDITSYSCALL 929 struct audit_context *audit_context; 930 #endif 931 kuid_t loginuid; 932 unsigned int sessionid; 933 #endif 934 struct seccomp seccomp; 935 936 /* Thread group tracking: */ 937 u32 parent_exec_id; 938 u32 self_exec_id; 939 940 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 941 spinlock_t alloc_lock; 942 943 /* Protection of the PI data structures: */ 944 raw_spinlock_t pi_lock; 945 946 struct wake_q_node wake_q; 947 948 #ifdef CONFIG_RT_MUTEXES 949 /* PI waiters blocked on a rt_mutex held by this task: */ 950 struct rb_root_cached pi_waiters; 951 /* Updated under owner's pi_lock and rq lock */ 952 struct task_struct *pi_top_task; 953 /* Deadlock detection and priority inheritance handling: */ 954 struct rt_mutex_waiter *pi_blocked_on; 955 #endif 956 957 #ifdef CONFIG_DEBUG_MUTEXES 958 /* Mutex deadlock detection: */ 959 struct mutex_waiter *blocked_on; 960 #endif 961 962 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 963 int non_block_count; 964 #endif 965 966 #ifdef CONFIG_TRACE_IRQFLAGS 967 unsigned int irq_events; 968 unsigned long hardirq_enable_ip; 969 unsigned long hardirq_disable_ip; 970 unsigned int hardirq_enable_event; 971 unsigned int hardirq_disable_event; 972 int hardirqs_enabled; 973 int hardirq_context; 974 unsigned long softirq_disable_ip; 975 unsigned long softirq_enable_ip; 976 unsigned int softirq_disable_event; 977 unsigned int softirq_enable_event; 978 int softirqs_enabled; 979 int softirq_context; 980 #endif 981 982 #ifdef CONFIG_LOCKDEP 983 # define MAX_LOCK_DEPTH 48UL 984 u64 curr_chain_key; 985 int lockdep_depth; 986 unsigned int lockdep_recursion; 987 struct held_lock held_locks[MAX_LOCK_DEPTH]; 988 #endif 989 990 #ifdef CONFIG_UBSAN 991 unsigned int in_ubsan; 992 #endif 993 994 /* Journalling filesystem info: */ 995 void *journal_info; 996 997 /* Stacked block device info: */ 998 struct bio_list *bio_list; 999 1000 #ifdef CONFIG_BLOCK 1001 /* Stack plugging: */ 1002 struct blk_plug *plug; 1003 #endif 1004 1005 /* VM state: */ 1006 struct reclaim_state *reclaim_state; 1007 1008 struct backing_dev_info *backing_dev_info; 1009 1010 struct io_context *io_context; 1011 1012 #ifdef CONFIG_COMPACTION 1013 struct capture_control *capture_control; 1014 #endif 1015 /* Ptrace state: */ 1016 unsigned long ptrace_message; 1017 kernel_siginfo_t *last_siginfo; 1018 1019 struct task_io_accounting ioac; 1020 #ifdef CONFIG_PSI 1021 /* Pressure stall state */ 1022 unsigned int psi_flags; 1023 #endif 1024 #ifdef CONFIG_TASK_XACCT 1025 /* Accumulated RSS usage: */ 1026 u64 acct_rss_mem1; 1027 /* Accumulated virtual memory usage: */ 1028 u64 acct_vm_mem1; 1029 /* stime + utime since last update: */ 1030 u64 acct_timexpd; 1031 #endif 1032 #ifdef CONFIG_CPUSETS 1033 /* Protected by ->alloc_lock: */ 1034 nodemask_t mems_allowed; 1035 /* Seqence number to catch updates: */ 1036 seqcount_t mems_allowed_seq; 1037 int cpuset_mem_spread_rotor; 1038 int cpuset_slab_spread_rotor; 1039 #endif 1040 #ifdef CONFIG_CGROUPS 1041 /* Control Group info protected by css_set_lock: */ 1042 struct css_set __rcu *cgroups; 1043 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1044 struct list_head cg_list; 1045 #endif 1046 #ifdef CONFIG_X86_CPU_RESCTRL 1047 u32 closid; 1048 u32 rmid; 1049 #endif 1050 #ifdef CONFIG_FUTEX 1051 struct robust_list_head __user *robust_list; 1052 #ifdef CONFIG_COMPAT 1053 struct compat_robust_list_head __user *compat_robust_list; 1054 #endif 1055 struct list_head pi_state_list; 1056 struct futex_pi_state *pi_state_cache; 1057 #endif 1058 #ifdef CONFIG_PERF_EVENTS 1059 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1060 struct mutex perf_event_mutex; 1061 struct list_head perf_event_list; 1062 #endif 1063 #ifdef CONFIG_DEBUG_PREEMPT 1064 unsigned long preempt_disable_ip; 1065 #endif 1066 #ifdef CONFIG_NUMA 1067 /* Protected by alloc_lock: */ 1068 struct mempolicy *mempolicy; 1069 short il_prev; 1070 short pref_node_fork; 1071 #endif 1072 #ifdef CONFIG_NUMA_BALANCING 1073 int numa_scan_seq; 1074 unsigned int numa_scan_period; 1075 unsigned int numa_scan_period_max; 1076 int numa_preferred_nid; 1077 unsigned long numa_migrate_retry; 1078 /* Migration stamp: */ 1079 u64 node_stamp; 1080 u64 last_task_numa_placement; 1081 u64 last_sum_exec_runtime; 1082 struct callback_head numa_work; 1083 1084 /* 1085 * This pointer is only modified for current in syscall and 1086 * pagefault context (and for tasks being destroyed), so it can be read 1087 * from any of the following contexts: 1088 * - RCU read-side critical section 1089 * - current->numa_group from everywhere 1090 * - task's runqueue locked, task not running 1091 */ 1092 struct numa_group __rcu *numa_group; 1093 1094 /* 1095 * numa_faults is an array split into four regions: 1096 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1097 * in this precise order. 1098 * 1099 * faults_memory: Exponential decaying average of faults on a per-node 1100 * basis. Scheduling placement decisions are made based on these 1101 * counts. The values remain static for the duration of a PTE scan. 1102 * faults_cpu: Track the nodes the process was running on when a NUMA 1103 * hinting fault was incurred. 1104 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1105 * during the current scan window. When the scan completes, the counts 1106 * in faults_memory and faults_cpu decay and these values are copied. 1107 */ 1108 unsigned long *numa_faults; 1109 unsigned long total_numa_faults; 1110 1111 /* 1112 * numa_faults_locality tracks if faults recorded during the last 1113 * scan window were remote/local or failed to migrate. The task scan 1114 * period is adapted based on the locality of the faults with different 1115 * weights depending on whether they were shared or private faults 1116 */ 1117 unsigned long numa_faults_locality[3]; 1118 1119 unsigned long numa_pages_migrated; 1120 #endif /* CONFIG_NUMA_BALANCING */ 1121 1122 #ifdef CONFIG_RSEQ 1123 struct rseq __user *rseq; 1124 u32 rseq_sig; 1125 /* 1126 * RmW on rseq_event_mask must be performed atomically 1127 * with respect to preemption. 1128 */ 1129 unsigned long rseq_event_mask; 1130 #endif 1131 1132 struct tlbflush_unmap_batch tlb_ubc; 1133 1134 union { 1135 refcount_t rcu_users; 1136 struct rcu_head rcu; 1137 }; 1138 1139 /* Cache last used pipe for splice(): */ 1140 struct pipe_inode_info *splice_pipe; 1141 1142 struct page_frag task_frag; 1143 1144 #ifdef CONFIG_TASK_DELAY_ACCT 1145 struct task_delay_info *delays; 1146 #endif 1147 1148 #ifdef CONFIG_FAULT_INJECTION 1149 int make_it_fail; 1150 unsigned int fail_nth; 1151 #endif 1152 /* 1153 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1154 * balance_dirty_pages() for a dirty throttling pause: 1155 */ 1156 int nr_dirtied; 1157 int nr_dirtied_pause; 1158 /* Start of a write-and-pause period: */ 1159 unsigned long dirty_paused_when; 1160 1161 #ifdef CONFIG_LATENCYTOP 1162 int latency_record_count; 1163 struct latency_record latency_record[LT_SAVECOUNT]; 1164 #endif 1165 /* 1166 * Time slack values; these are used to round up poll() and 1167 * select() etc timeout values. These are in nanoseconds. 1168 */ 1169 u64 timer_slack_ns; 1170 u64 default_timer_slack_ns; 1171 1172 #ifdef CONFIG_KASAN 1173 unsigned int kasan_depth; 1174 #endif 1175 1176 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1177 /* Index of current stored address in ret_stack: */ 1178 int curr_ret_stack; 1179 int curr_ret_depth; 1180 1181 /* Stack of return addresses for return function tracing: */ 1182 struct ftrace_ret_stack *ret_stack; 1183 1184 /* Timestamp for last schedule: */ 1185 unsigned long long ftrace_timestamp; 1186 1187 /* 1188 * Number of functions that haven't been traced 1189 * because of depth overrun: 1190 */ 1191 atomic_t trace_overrun; 1192 1193 /* Pause tracing: */ 1194 atomic_t tracing_graph_pause; 1195 #endif 1196 1197 #ifdef CONFIG_TRACING 1198 /* State flags for use by tracers: */ 1199 unsigned long trace; 1200 1201 /* Bitmask and counter of trace recursion: */ 1202 unsigned long trace_recursion; 1203 #endif /* CONFIG_TRACING */ 1204 1205 #ifdef CONFIG_KCOV 1206 /* Coverage collection mode enabled for this task (0 if disabled): */ 1207 unsigned int kcov_mode; 1208 1209 /* Size of the kcov_area: */ 1210 unsigned int kcov_size; 1211 1212 /* Buffer for coverage collection: */ 1213 void *kcov_area; 1214 1215 /* KCOV descriptor wired with this task or NULL: */ 1216 struct kcov *kcov; 1217 #endif 1218 1219 #ifdef CONFIG_MEMCG 1220 struct mem_cgroup *memcg_in_oom; 1221 gfp_t memcg_oom_gfp_mask; 1222 int memcg_oom_order; 1223 1224 /* Number of pages to reclaim on returning to userland: */ 1225 unsigned int memcg_nr_pages_over_high; 1226 1227 /* Used by memcontrol for targeted memcg charge: */ 1228 struct mem_cgroup *active_memcg; 1229 #endif 1230 1231 #ifdef CONFIG_BLK_CGROUP 1232 struct request_queue *throttle_queue; 1233 #endif 1234 1235 #ifdef CONFIG_UPROBES 1236 struct uprobe_task *utask; 1237 #endif 1238 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1239 unsigned int sequential_io; 1240 unsigned int sequential_io_avg; 1241 #endif 1242 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1243 unsigned long task_state_change; 1244 #endif 1245 int pagefault_disabled; 1246 #ifdef CONFIG_MMU 1247 struct task_struct *oom_reaper_list; 1248 #endif 1249 #ifdef CONFIG_VMAP_STACK 1250 struct vm_struct *stack_vm_area; 1251 #endif 1252 #ifdef CONFIG_THREAD_INFO_IN_TASK 1253 /* A live task holds one reference: */ 1254 refcount_t stack_refcount; 1255 #endif 1256 #ifdef CONFIG_LIVEPATCH 1257 int patch_state; 1258 #endif 1259 #ifdef CONFIG_SECURITY 1260 /* Used by LSM modules for access restriction: */ 1261 void *security; 1262 #endif 1263 1264 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1265 unsigned long lowest_stack; 1266 unsigned long prev_lowest_stack; 1267 #endif 1268 1269 /* 1270 * New fields for task_struct should be added above here, so that 1271 * they are included in the randomized portion of task_struct. 1272 */ 1273 randomized_struct_fields_end 1274 1275 /* CPU-specific state of this task: */ 1276 struct thread_struct thread; 1277 1278 /* 1279 * WARNING: on x86, 'thread_struct' contains a variable-sized 1280 * structure. It *MUST* be at the end of 'task_struct'. 1281 * 1282 * Do not put anything below here! 1283 */ 1284 }; 1285 1286 static inline struct pid *task_pid(struct task_struct *task) 1287 { 1288 return task->thread_pid; 1289 } 1290 1291 /* 1292 * the helpers to get the task's different pids as they are seen 1293 * from various namespaces 1294 * 1295 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1296 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1297 * current. 1298 * task_xid_nr_ns() : id seen from the ns specified; 1299 * 1300 * see also pid_nr() etc in include/linux/pid.h 1301 */ 1302 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1303 1304 static inline pid_t task_pid_nr(struct task_struct *tsk) 1305 { 1306 return tsk->pid; 1307 } 1308 1309 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1310 { 1311 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1312 } 1313 1314 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1315 { 1316 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1317 } 1318 1319 1320 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1321 { 1322 return tsk->tgid; 1323 } 1324 1325 /** 1326 * pid_alive - check that a task structure is not stale 1327 * @p: Task structure to be checked. 1328 * 1329 * Test if a process is not yet dead (at most zombie state) 1330 * If pid_alive fails, then pointers within the task structure 1331 * can be stale and must not be dereferenced. 1332 * 1333 * Return: 1 if the process is alive. 0 otherwise. 1334 */ 1335 static inline int pid_alive(const struct task_struct *p) 1336 { 1337 return p->thread_pid != NULL; 1338 } 1339 1340 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1341 { 1342 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1343 } 1344 1345 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1346 { 1347 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1348 } 1349 1350 1351 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1352 { 1353 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1354 } 1355 1356 static inline pid_t task_session_vnr(struct task_struct *tsk) 1357 { 1358 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1359 } 1360 1361 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1362 { 1363 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1364 } 1365 1366 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1367 { 1368 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1369 } 1370 1371 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1372 { 1373 pid_t pid = 0; 1374 1375 rcu_read_lock(); 1376 if (pid_alive(tsk)) 1377 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1378 rcu_read_unlock(); 1379 1380 return pid; 1381 } 1382 1383 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1384 { 1385 return task_ppid_nr_ns(tsk, &init_pid_ns); 1386 } 1387 1388 /* Obsolete, do not use: */ 1389 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1390 { 1391 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1392 } 1393 1394 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1395 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1396 1397 static inline unsigned int task_state_index(struct task_struct *tsk) 1398 { 1399 unsigned int tsk_state = READ_ONCE(tsk->state); 1400 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1401 1402 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1403 1404 if (tsk_state == TASK_IDLE) 1405 state = TASK_REPORT_IDLE; 1406 1407 return fls(state); 1408 } 1409 1410 static inline char task_index_to_char(unsigned int state) 1411 { 1412 static const char state_char[] = "RSDTtXZPI"; 1413 1414 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1415 1416 return state_char[state]; 1417 } 1418 1419 static inline char task_state_to_char(struct task_struct *tsk) 1420 { 1421 return task_index_to_char(task_state_index(tsk)); 1422 } 1423 1424 /** 1425 * is_global_init - check if a task structure is init. Since init 1426 * is free to have sub-threads we need to check tgid. 1427 * @tsk: Task structure to be checked. 1428 * 1429 * Check if a task structure is the first user space task the kernel created. 1430 * 1431 * Return: 1 if the task structure is init. 0 otherwise. 1432 */ 1433 static inline int is_global_init(struct task_struct *tsk) 1434 { 1435 return task_tgid_nr(tsk) == 1; 1436 } 1437 1438 extern struct pid *cad_pid; 1439 1440 /* 1441 * Per process flags 1442 */ 1443 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1444 #define PF_EXITING 0x00000004 /* Getting shut down */ 1445 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1446 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1447 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1448 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1449 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1450 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1451 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1452 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1453 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1454 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1455 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1456 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1457 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1458 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1459 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1460 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1461 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1462 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1463 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1464 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1465 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1466 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1467 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1468 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1469 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1470 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1471 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */ 1472 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1473 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1474 1475 /* 1476 * Only the _current_ task can read/write to tsk->flags, but other 1477 * tasks can access tsk->flags in readonly mode for example 1478 * with tsk_used_math (like during threaded core dumping). 1479 * There is however an exception to this rule during ptrace 1480 * or during fork: the ptracer task is allowed to write to the 1481 * child->flags of its traced child (same goes for fork, the parent 1482 * can write to the child->flags), because we're guaranteed the 1483 * child is not running and in turn not changing child->flags 1484 * at the same time the parent does it. 1485 */ 1486 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1487 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1488 #define clear_used_math() clear_stopped_child_used_math(current) 1489 #define set_used_math() set_stopped_child_used_math(current) 1490 1491 #define conditional_stopped_child_used_math(condition, child) \ 1492 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1493 1494 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1495 1496 #define copy_to_stopped_child_used_math(child) \ 1497 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1498 1499 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1500 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1501 #define used_math() tsk_used_math(current) 1502 1503 static inline bool is_percpu_thread(void) 1504 { 1505 #ifdef CONFIG_SMP 1506 return (current->flags & PF_NO_SETAFFINITY) && 1507 (current->nr_cpus_allowed == 1); 1508 #else 1509 return true; 1510 #endif 1511 } 1512 1513 /* Per-process atomic flags. */ 1514 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1515 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1516 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1517 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1518 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1519 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1520 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1521 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1522 1523 #define TASK_PFA_TEST(name, func) \ 1524 static inline bool task_##func(struct task_struct *p) \ 1525 { return test_bit(PFA_##name, &p->atomic_flags); } 1526 1527 #define TASK_PFA_SET(name, func) \ 1528 static inline void task_set_##func(struct task_struct *p) \ 1529 { set_bit(PFA_##name, &p->atomic_flags); } 1530 1531 #define TASK_PFA_CLEAR(name, func) \ 1532 static inline void task_clear_##func(struct task_struct *p) \ 1533 { clear_bit(PFA_##name, &p->atomic_flags); } 1534 1535 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1536 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1537 1538 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1539 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1540 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1541 1542 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1543 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1544 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1545 1546 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1547 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1548 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1549 1550 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1551 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1552 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1553 1554 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1555 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1556 1557 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1558 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1559 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1560 1561 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1562 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1563 1564 static inline void 1565 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1566 { 1567 current->flags &= ~flags; 1568 current->flags |= orig_flags & flags; 1569 } 1570 1571 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1572 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1573 #ifdef CONFIG_SMP 1574 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1575 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1576 #else 1577 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1578 { 1579 } 1580 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1581 { 1582 if (!cpumask_test_cpu(0, new_mask)) 1583 return -EINVAL; 1584 return 0; 1585 } 1586 #endif 1587 1588 extern int yield_to(struct task_struct *p, bool preempt); 1589 extern void set_user_nice(struct task_struct *p, long nice); 1590 extern int task_prio(const struct task_struct *p); 1591 1592 /** 1593 * task_nice - return the nice value of a given task. 1594 * @p: the task in question. 1595 * 1596 * Return: The nice value [ -20 ... 0 ... 19 ]. 1597 */ 1598 static inline int task_nice(const struct task_struct *p) 1599 { 1600 return PRIO_TO_NICE((p)->static_prio); 1601 } 1602 1603 extern int can_nice(const struct task_struct *p, const int nice); 1604 extern int task_curr(const struct task_struct *p); 1605 extern int idle_cpu(int cpu); 1606 extern int available_idle_cpu(int cpu); 1607 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1608 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1609 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1610 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1611 extern struct task_struct *idle_task(int cpu); 1612 1613 /** 1614 * is_idle_task - is the specified task an idle task? 1615 * @p: the task in question. 1616 * 1617 * Return: 1 if @p is an idle task. 0 otherwise. 1618 */ 1619 static inline bool is_idle_task(const struct task_struct *p) 1620 { 1621 return !!(p->flags & PF_IDLE); 1622 } 1623 1624 extern struct task_struct *curr_task(int cpu); 1625 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1626 1627 void yield(void); 1628 1629 union thread_union { 1630 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1631 struct task_struct task; 1632 #endif 1633 #ifndef CONFIG_THREAD_INFO_IN_TASK 1634 struct thread_info thread_info; 1635 #endif 1636 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1637 }; 1638 1639 #ifndef CONFIG_THREAD_INFO_IN_TASK 1640 extern struct thread_info init_thread_info; 1641 #endif 1642 1643 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1644 1645 #ifdef CONFIG_THREAD_INFO_IN_TASK 1646 static inline struct thread_info *task_thread_info(struct task_struct *task) 1647 { 1648 return &task->thread_info; 1649 } 1650 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1651 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1652 #endif 1653 1654 /* 1655 * find a task by one of its numerical ids 1656 * 1657 * find_task_by_pid_ns(): 1658 * finds a task by its pid in the specified namespace 1659 * find_task_by_vpid(): 1660 * finds a task by its virtual pid 1661 * 1662 * see also find_vpid() etc in include/linux/pid.h 1663 */ 1664 1665 extern struct task_struct *find_task_by_vpid(pid_t nr); 1666 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1667 1668 /* 1669 * find a task by its virtual pid and get the task struct 1670 */ 1671 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1672 1673 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1674 extern int wake_up_process(struct task_struct *tsk); 1675 extern void wake_up_new_task(struct task_struct *tsk); 1676 1677 #ifdef CONFIG_SMP 1678 extern void kick_process(struct task_struct *tsk); 1679 #else 1680 static inline void kick_process(struct task_struct *tsk) { } 1681 #endif 1682 1683 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1684 1685 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1686 { 1687 __set_task_comm(tsk, from, false); 1688 } 1689 1690 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1691 #define get_task_comm(buf, tsk) ({ \ 1692 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1693 __get_task_comm(buf, sizeof(buf), tsk); \ 1694 }) 1695 1696 #ifdef CONFIG_SMP 1697 void scheduler_ipi(void); 1698 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1699 #else 1700 static inline void scheduler_ipi(void) { } 1701 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1702 { 1703 return 1; 1704 } 1705 #endif 1706 1707 /* 1708 * Set thread flags in other task's structures. 1709 * See asm/thread_info.h for TIF_xxxx flags available: 1710 */ 1711 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1712 { 1713 set_ti_thread_flag(task_thread_info(tsk), flag); 1714 } 1715 1716 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1717 { 1718 clear_ti_thread_flag(task_thread_info(tsk), flag); 1719 } 1720 1721 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1722 bool value) 1723 { 1724 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1725 } 1726 1727 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1728 { 1729 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1730 } 1731 1732 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1733 { 1734 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1735 } 1736 1737 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1738 { 1739 return test_ti_thread_flag(task_thread_info(tsk), flag); 1740 } 1741 1742 static inline void set_tsk_need_resched(struct task_struct *tsk) 1743 { 1744 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1745 } 1746 1747 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1748 { 1749 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1750 } 1751 1752 static inline int test_tsk_need_resched(struct task_struct *tsk) 1753 { 1754 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1755 } 1756 1757 /* 1758 * cond_resched() and cond_resched_lock(): latency reduction via 1759 * explicit rescheduling in places that are safe. The return 1760 * value indicates whether a reschedule was done in fact. 1761 * cond_resched_lock() will drop the spinlock before scheduling, 1762 */ 1763 #ifndef CONFIG_PREEMPTION 1764 extern int _cond_resched(void); 1765 #else 1766 static inline int _cond_resched(void) { return 0; } 1767 #endif 1768 1769 #define cond_resched() ({ \ 1770 ___might_sleep(__FILE__, __LINE__, 0); \ 1771 _cond_resched(); \ 1772 }) 1773 1774 extern int __cond_resched_lock(spinlock_t *lock); 1775 1776 #define cond_resched_lock(lock) ({ \ 1777 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1778 __cond_resched_lock(lock); \ 1779 }) 1780 1781 static inline void cond_resched_rcu(void) 1782 { 1783 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1784 rcu_read_unlock(); 1785 cond_resched(); 1786 rcu_read_lock(); 1787 #endif 1788 } 1789 1790 /* 1791 * Does a critical section need to be broken due to another 1792 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1793 * but a general need for low latency) 1794 */ 1795 static inline int spin_needbreak(spinlock_t *lock) 1796 { 1797 #ifdef CONFIG_PREEMPTION 1798 return spin_is_contended(lock); 1799 #else 1800 return 0; 1801 #endif 1802 } 1803 1804 static __always_inline bool need_resched(void) 1805 { 1806 return unlikely(tif_need_resched()); 1807 } 1808 1809 /* 1810 * Wrappers for p->thread_info->cpu access. No-op on UP. 1811 */ 1812 #ifdef CONFIG_SMP 1813 1814 static inline unsigned int task_cpu(const struct task_struct *p) 1815 { 1816 #ifdef CONFIG_THREAD_INFO_IN_TASK 1817 return READ_ONCE(p->cpu); 1818 #else 1819 return READ_ONCE(task_thread_info(p)->cpu); 1820 #endif 1821 } 1822 1823 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1824 1825 #else 1826 1827 static inline unsigned int task_cpu(const struct task_struct *p) 1828 { 1829 return 0; 1830 } 1831 1832 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1833 { 1834 } 1835 1836 #endif /* CONFIG_SMP */ 1837 1838 /* 1839 * In order to reduce various lock holder preemption latencies provide an 1840 * interface to see if a vCPU is currently running or not. 1841 * 1842 * This allows us to terminate optimistic spin loops and block, analogous to 1843 * the native optimistic spin heuristic of testing if the lock owner task is 1844 * running or not. 1845 */ 1846 #ifndef vcpu_is_preempted 1847 static inline bool vcpu_is_preempted(int cpu) 1848 { 1849 return false; 1850 } 1851 #endif 1852 1853 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1854 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1855 1856 #ifndef TASK_SIZE_OF 1857 #define TASK_SIZE_OF(tsk) TASK_SIZE 1858 #endif 1859 1860 #ifdef CONFIG_RSEQ 1861 1862 /* 1863 * Map the event mask on the user-space ABI enum rseq_cs_flags 1864 * for direct mask checks. 1865 */ 1866 enum rseq_event_mask_bits { 1867 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1868 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1869 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1870 }; 1871 1872 enum rseq_event_mask { 1873 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1874 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1875 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1876 }; 1877 1878 static inline void rseq_set_notify_resume(struct task_struct *t) 1879 { 1880 if (t->rseq) 1881 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1882 } 1883 1884 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1885 1886 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1887 struct pt_regs *regs) 1888 { 1889 if (current->rseq) 1890 __rseq_handle_notify_resume(ksig, regs); 1891 } 1892 1893 static inline void rseq_signal_deliver(struct ksignal *ksig, 1894 struct pt_regs *regs) 1895 { 1896 preempt_disable(); 1897 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1898 preempt_enable(); 1899 rseq_handle_notify_resume(ksig, regs); 1900 } 1901 1902 /* rseq_preempt() requires preemption to be disabled. */ 1903 static inline void rseq_preempt(struct task_struct *t) 1904 { 1905 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1906 rseq_set_notify_resume(t); 1907 } 1908 1909 /* rseq_migrate() requires preemption to be disabled. */ 1910 static inline void rseq_migrate(struct task_struct *t) 1911 { 1912 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1913 rseq_set_notify_resume(t); 1914 } 1915 1916 /* 1917 * If parent process has a registered restartable sequences area, the 1918 * child inherits. Only applies when forking a process, not a thread. 1919 */ 1920 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1921 { 1922 if (clone_flags & CLONE_THREAD) { 1923 t->rseq = NULL; 1924 t->rseq_sig = 0; 1925 t->rseq_event_mask = 0; 1926 } else { 1927 t->rseq = current->rseq; 1928 t->rseq_sig = current->rseq_sig; 1929 t->rseq_event_mask = current->rseq_event_mask; 1930 } 1931 } 1932 1933 static inline void rseq_execve(struct task_struct *t) 1934 { 1935 t->rseq = NULL; 1936 t->rseq_sig = 0; 1937 t->rseq_event_mask = 0; 1938 } 1939 1940 #else 1941 1942 static inline void rseq_set_notify_resume(struct task_struct *t) 1943 { 1944 } 1945 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1946 struct pt_regs *regs) 1947 { 1948 } 1949 static inline void rseq_signal_deliver(struct ksignal *ksig, 1950 struct pt_regs *regs) 1951 { 1952 } 1953 static inline void rseq_preempt(struct task_struct *t) 1954 { 1955 } 1956 static inline void rseq_migrate(struct task_struct *t) 1957 { 1958 } 1959 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1960 { 1961 } 1962 static inline void rseq_execve(struct task_struct *t) 1963 { 1964 } 1965 1966 #endif 1967 1968 void __exit_umh(struct task_struct *tsk); 1969 1970 static inline void exit_umh(struct task_struct *tsk) 1971 { 1972 if (unlikely(tsk->flags & PF_UMH)) 1973 __exit_umh(tsk); 1974 } 1975 1976 #ifdef CONFIG_DEBUG_RSEQ 1977 1978 void rseq_syscall(struct pt_regs *regs); 1979 1980 #else 1981 1982 static inline void rseq_syscall(struct pt_regs *regs) 1983 { 1984 } 1985 1986 #endif 1987 1988 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 1989 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 1990 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 1991 1992 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 1993 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 1994 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 1995 1996 int sched_trace_rq_cpu(struct rq *rq); 1997 1998 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 1999 2000 #endif 2001