1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/mm_types_task.h> 31 #include <linux/task_io_accounting.h> 32 #include <linux/posix-timers.h> 33 #include <linux/rseq.h> 34 35 /* task_struct member predeclarations (sorted alphabetically): */ 36 struct audit_context; 37 struct backing_dev_info; 38 struct bio_list; 39 struct blk_plug; 40 struct capture_control; 41 struct cfs_rq; 42 struct fs_struct; 43 struct futex_pi_state; 44 struct io_context; 45 struct mempolicy; 46 struct nameidata; 47 struct nsproxy; 48 struct perf_event_context; 49 struct pid_namespace; 50 struct pipe_inode_info; 51 struct rcu_node; 52 struct reclaim_state; 53 struct robust_list_head; 54 struct root_domain; 55 struct rq; 56 struct sched_attr; 57 struct sched_param; 58 struct seq_file; 59 struct sighand_struct; 60 struct signal_struct; 61 struct task_delay_info; 62 struct task_group; 63 64 /* 65 * Task state bitmask. NOTE! These bits are also 66 * encoded in fs/proc/array.c: get_task_state(). 67 * 68 * We have two separate sets of flags: task->state 69 * is about runnability, while task->exit_state are 70 * about the task exiting. Confusing, but this way 71 * modifying one set can't modify the other one by 72 * mistake. 73 */ 74 75 /* Used in tsk->state: */ 76 #define TASK_RUNNING 0x0000 77 #define TASK_INTERRUPTIBLE 0x0001 78 #define TASK_UNINTERRUPTIBLE 0x0002 79 #define __TASK_STOPPED 0x0004 80 #define __TASK_TRACED 0x0008 81 /* Used in tsk->exit_state: */ 82 #define EXIT_DEAD 0x0010 83 #define EXIT_ZOMBIE 0x0020 84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 85 /* Used in tsk->state again: */ 86 #define TASK_PARKED 0x0040 87 #define TASK_DEAD 0x0080 88 #define TASK_WAKEKILL 0x0100 89 #define TASK_WAKING 0x0200 90 #define TASK_NOLOAD 0x0400 91 #define TASK_NEW 0x0800 92 #define TASK_STATE_MAX 0x1000 93 94 /* Convenience macros for the sake of set_current_state: */ 95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 98 99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 100 101 /* Convenience macros for the sake of wake_up(): */ 102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 103 104 /* get_task_state(): */ 105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 108 TASK_PARKED) 109 110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 111 112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 113 114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 115 116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 117 (task->flags & PF_FROZEN) == 0 && \ 118 (task->state & TASK_NOLOAD) == 0) 119 120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122 /* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126 #define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129 #define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136 #define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143 #define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 151 } while (0) 152 #else 153 /* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (!need_sleep) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * condition test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * need_sleep = false; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state() executes a full memory barrier before accessing the 177 * task state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190 #define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193 #define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196 /* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202 #define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 208 } while (0) 209 210 #endif 211 212 /* Task command name length: */ 213 #define TASK_COMM_LEN 16 214 215 extern void scheduler_tick(void); 216 217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219 extern long schedule_timeout(long timeout); 220 extern long schedule_timeout_interruptible(long timeout); 221 extern long schedule_timeout_killable(long timeout); 222 extern long schedule_timeout_uninterruptible(long timeout); 223 extern long schedule_timeout_idle(long timeout); 224 asmlinkage void schedule(void); 225 extern void schedule_preempt_disabled(void); 226 227 extern int __must_check io_schedule_prepare(void); 228 extern void io_schedule_finish(int token); 229 extern long io_schedule_timeout(long timeout); 230 extern void io_schedule(void); 231 232 /** 233 * struct prev_cputime - snapshot of system and user cputime 234 * @utime: time spent in user mode 235 * @stime: time spent in system mode 236 * @lock: protects the above two fields 237 * 238 * Stores previous user/system time values such that we can guarantee 239 * monotonicity. 240 */ 241 struct prev_cputime { 242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 243 u64 utime; 244 u64 stime; 245 raw_spinlock_t lock; 246 #endif 247 }; 248 249 enum vtime_state { 250 /* Task is sleeping or running in a CPU with VTIME inactive: */ 251 VTIME_INACTIVE = 0, 252 /* Task runs in userspace in a CPU with VTIME active: */ 253 VTIME_USER, 254 /* Task runs in kernelspace in a CPU with VTIME active: */ 255 VTIME_SYS, 256 }; 257 258 struct vtime { 259 seqcount_t seqcount; 260 unsigned long long starttime; 261 enum vtime_state state; 262 u64 utime; 263 u64 stime; 264 u64 gtime; 265 }; 266 267 /* 268 * Utilization clamp constraints. 269 * @UCLAMP_MIN: Minimum utilization 270 * @UCLAMP_MAX: Maximum utilization 271 * @UCLAMP_CNT: Utilization clamp constraints count 272 */ 273 enum uclamp_id { 274 UCLAMP_MIN = 0, 275 UCLAMP_MAX, 276 UCLAMP_CNT 277 }; 278 279 #ifdef CONFIG_SMP 280 extern struct root_domain def_root_domain; 281 extern struct mutex sched_domains_mutex; 282 #endif 283 284 struct sched_info { 285 #ifdef CONFIG_SCHED_INFO 286 /* Cumulative counters: */ 287 288 /* # of times we have run on this CPU: */ 289 unsigned long pcount; 290 291 /* Time spent waiting on a runqueue: */ 292 unsigned long long run_delay; 293 294 /* Timestamps: */ 295 296 /* When did we last run on a CPU? */ 297 unsigned long long last_arrival; 298 299 /* When were we last queued to run? */ 300 unsigned long long last_queued; 301 302 #endif /* CONFIG_SCHED_INFO */ 303 }; 304 305 /* 306 * Integer metrics need fixed point arithmetic, e.g., sched/fair 307 * has a few: load, load_avg, util_avg, freq, and capacity. 308 * 309 * We define a basic fixed point arithmetic range, and then formalize 310 * all these metrics based on that basic range. 311 */ 312 # define SCHED_FIXEDPOINT_SHIFT 10 313 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 314 315 /* Increase resolution of cpu_capacity calculations */ 316 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 317 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 318 319 struct load_weight { 320 unsigned long weight; 321 u32 inv_weight; 322 }; 323 324 /** 325 * struct util_est - Estimation utilization of FAIR tasks 326 * @enqueued: instantaneous estimated utilization of a task/cpu 327 * @ewma: the Exponential Weighted Moving Average (EWMA) 328 * utilization of a task 329 * 330 * Support data structure to track an Exponential Weighted Moving Average 331 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 332 * average each time a task completes an activation. Sample's weight is chosen 333 * so that the EWMA will be relatively insensitive to transient changes to the 334 * task's workload. 335 * 336 * The enqueued attribute has a slightly different meaning for tasks and cpus: 337 * - task: the task's util_avg at last task dequeue time 338 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 339 * Thus, the util_est.enqueued of a task represents the contribution on the 340 * estimated utilization of the CPU where that task is currently enqueued. 341 * 342 * Only for tasks we track a moving average of the past instantaneous 343 * estimated utilization. This allows to absorb sporadic drops in utilization 344 * of an otherwise almost periodic task. 345 */ 346 struct util_est { 347 unsigned int enqueued; 348 unsigned int ewma; 349 #define UTIL_EST_WEIGHT_SHIFT 2 350 } __attribute__((__aligned__(sizeof(u64)))); 351 352 /* 353 * The load_avg/util_avg accumulates an infinite geometric series 354 * (see __update_load_avg() in kernel/sched/fair.c). 355 * 356 * [load_avg definition] 357 * 358 * load_avg = runnable% * scale_load_down(load) 359 * 360 * where runnable% is the time ratio that a sched_entity is runnable. 361 * For cfs_rq, it is the aggregated load_avg of all runnable and 362 * blocked sched_entities. 363 * 364 * [util_avg definition] 365 * 366 * util_avg = running% * SCHED_CAPACITY_SCALE 367 * 368 * where running% is the time ratio that a sched_entity is running on 369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 370 * and blocked sched_entities. 371 * 372 * load_avg and util_avg don't direcly factor frequency scaling and CPU 373 * capacity scaling. The scaling is done through the rq_clock_pelt that 374 * is used for computing those signals (see update_rq_clock_pelt()) 375 * 376 * N.B., the above ratios (runnable% and running%) themselves are in the 377 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 378 * to as large a range as necessary. This is for example reflected by 379 * util_avg's SCHED_CAPACITY_SCALE. 380 * 381 * [Overflow issue] 382 * 383 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 384 * with the highest load (=88761), always runnable on a single cfs_rq, 385 * and should not overflow as the number already hits PID_MAX_LIMIT. 386 * 387 * For all other cases (including 32-bit kernels), struct load_weight's 388 * weight will overflow first before we do, because: 389 * 390 * Max(load_avg) <= Max(load.weight) 391 * 392 * Then it is the load_weight's responsibility to consider overflow 393 * issues. 394 */ 395 struct sched_avg { 396 u64 last_update_time; 397 u64 load_sum; 398 u64 runnable_load_sum; 399 u32 util_sum; 400 u32 period_contrib; 401 unsigned long load_avg; 402 unsigned long runnable_load_avg; 403 unsigned long util_avg; 404 struct util_est util_est; 405 } ____cacheline_aligned; 406 407 struct sched_statistics { 408 #ifdef CONFIG_SCHEDSTATS 409 u64 wait_start; 410 u64 wait_max; 411 u64 wait_count; 412 u64 wait_sum; 413 u64 iowait_count; 414 u64 iowait_sum; 415 416 u64 sleep_start; 417 u64 sleep_max; 418 s64 sum_sleep_runtime; 419 420 u64 block_start; 421 u64 block_max; 422 u64 exec_max; 423 u64 slice_max; 424 425 u64 nr_migrations_cold; 426 u64 nr_failed_migrations_affine; 427 u64 nr_failed_migrations_running; 428 u64 nr_failed_migrations_hot; 429 u64 nr_forced_migrations; 430 431 u64 nr_wakeups; 432 u64 nr_wakeups_sync; 433 u64 nr_wakeups_migrate; 434 u64 nr_wakeups_local; 435 u64 nr_wakeups_remote; 436 u64 nr_wakeups_affine; 437 u64 nr_wakeups_affine_attempts; 438 u64 nr_wakeups_passive; 439 u64 nr_wakeups_idle; 440 #endif 441 }; 442 443 struct sched_entity { 444 /* For load-balancing: */ 445 struct load_weight load; 446 unsigned long runnable_weight; 447 struct rb_node run_node; 448 struct list_head group_node; 449 unsigned int on_rq; 450 451 u64 exec_start; 452 u64 sum_exec_runtime; 453 u64 vruntime; 454 u64 prev_sum_exec_runtime; 455 456 u64 nr_migrations; 457 458 struct sched_statistics statistics; 459 460 #ifdef CONFIG_FAIR_GROUP_SCHED 461 int depth; 462 struct sched_entity *parent; 463 /* rq on which this entity is (to be) queued: */ 464 struct cfs_rq *cfs_rq; 465 /* rq "owned" by this entity/group: */ 466 struct cfs_rq *my_q; 467 #endif 468 469 #ifdef CONFIG_SMP 470 /* 471 * Per entity load average tracking. 472 * 473 * Put into separate cache line so it does not 474 * collide with read-mostly values above. 475 */ 476 struct sched_avg avg; 477 #endif 478 }; 479 480 struct sched_rt_entity { 481 struct list_head run_list; 482 unsigned long timeout; 483 unsigned long watchdog_stamp; 484 unsigned int time_slice; 485 unsigned short on_rq; 486 unsigned short on_list; 487 488 struct sched_rt_entity *back; 489 #ifdef CONFIG_RT_GROUP_SCHED 490 struct sched_rt_entity *parent; 491 /* rq on which this entity is (to be) queued: */ 492 struct rt_rq *rt_rq; 493 /* rq "owned" by this entity/group: */ 494 struct rt_rq *my_q; 495 #endif 496 } __randomize_layout; 497 498 struct sched_dl_entity { 499 struct rb_node rb_node; 500 501 /* 502 * Original scheduling parameters. Copied here from sched_attr 503 * during sched_setattr(), they will remain the same until 504 * the next sched_setattr(). 505 */ 506 u64 dl_runtime; /* Maximum runtime for each instance */ 507 u64 dl_deadline; /* Relative deadline of each instance */ 508 u64 dl_period; /* Separation of two instances (period) */ 509 u64 dl_bw; /* dl_runtime / dl_period */ 510 u64 dl_density; /* dl_runtime / dl_deadline */ 511 512 /* 513 * Actual scheduling parameters. Initialized with the values above, 514 * they are continuously updated during task execution. Note that 515 * the remaining runtime could be < 0 in case we are in overrun. 516 */ 517 s64 runtime; /* Remaining runtime for this instance */ 518 u64 deadline; /* Absolute deadline for this instance */ 519 unsigned int flags; /* Specifying the scheduler behaviour */ 520 521 /* 522 * Some bool flags: 523 * 524 * @dl_throttled tells if we exhausted the runtime. If so, the 525 * task has to wait for a replenishment to be performed at the 526 * next firing of dl_timer. 527 * 528 * @dl_boosted tells if we are boosted due to DI. If so we are 529 * outside bandwidth enforcement mechanism (but only until we 530 * exit the critical section); 531 * 532 * @dl_yielded tells if task gave up the CPU before consuming 533 * all its available runtime during the last job. 534 * 535 * @dl_non_contending tells if the task is inactive while still 536 * contributing to the active utilization. In other words, it 537 * indicates if the inactive timer has been armed and its handler 538 * has not been executed yet. This flag is useful to avoid race 539 * conditions between the inactive timer handler and the wakeup 540 * code. 541 * 542 * @dl_overrun tells if the task asked to be informed about runtime 543 * overruns. 544 */ 545 unsigned int dl_throttled : 1; 546 unsigned int dl_boosted : 1; 547 unsigned int dl_yielded : 1; 548 unsigned int dl_non_contending : 1; 549 unsigned int dl_overrun : 1; 550 551 /* 552 * Bandwidth enforcement timer. Each -deadline task has its 553 * own bandwidth to be enforced, thus we need one timer per task. 554 */ 555 struct hrtimer dl_timer; 556 557 /* 558 * Inactive timer, responsible for decreasing the active utilization 559 * at the "0-lag time". When a -deadline task blocks, it contributes 560 * to GRUB's active utilization until the "0-lag time", hence a 561 * timer is needed to decrease the active utilization at the correct 562 * time. 563 */ 564 struct hrtimer inactive_timer; 565 }; 566 567 #ifdef CONFIG_UCLAMP_TASK 568 /* Number of utilization clamp buckets (shorter alias) */ 569 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 570 571 /* 572 * Utilization clamp for a scheduling entity 573 * @value: clamp value "assigned" to a se 574 * @bucket_id: bucket index corresponding to the "assigned" value 575 * @active: the se is currently refcounted in a rq's bucket 576 * @user_defined: the requested clamp value comes from user-space 577 * 578 * The bucket_id is the index of the clamp bucket matching the clamp value 579 * which is pre-computed and stored to avoid expensive integer divisions from 580 * the fast path. 581 * 582 * The active bit is set whenever a task has got an "effective" value assigned, 583 * which can be different from the clamp value "requested" from user-space. 584 * This allows to know a task is refcounted in the rq's bucket corresponding 585 * to the "effective" bucket_id. 586 * 587 * The user_defined bit is set whenever a task has got a task-specific clamp 588 * value requested from userspace, i.e. the system defaults apply to this task 589 * just as a restriction. This allows to relax default clamps when a less 590 * restrictive task-specific value has been requested, thus allowing to 591 * implement a "nice" semantic. For example, a task running with a 20% 592 * default boost can still drop its own boosting to 0%. 593 */ 594 struct uclamp_se { 595 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 596 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 597 unsigned int active : 1; 598 unsigned int user_defined : 1; 599 }; 600 #endif /* CONFIG_UCLAMP_TASK */ 601 602 union rcu_special { 603 struct { 604 u8 blocked; 605 u8 need_qs; 606 u8 exp_hint; /* Hint for performance. */ 607 u8 deferred_qs; 608 } b; /* Bits. */ 609 u32 s; /* Set of bits. */ 610 }; 611 612 enum perf_event_task_context { 613 perf_invalid_context = -1, 614 perf_hw_context = 0, 615 perf_sw_context, 616 perf_nr_task_contexts, 617 }; 618 619 struct wake_q_node { 620 struct wake_q_node *next; 621 }; 622 623 struct task_struct { 624 #ifdef CONFIG_THREAD_INFO_IN_TASK 625 /* 626 * For reasons of header soup (see current_thread_info()), this 627 * must be the first element of task_struct. 628 */ 629 struct thread_info thread_info; 630 #endif 631 /* -1 unrunnable, 0 runnable, >0 stopped: */ 632 volatile long state; 633 634 /* 635 * This begins the randomizable portion of task_struct. Only 636 * scheduling-critical items should be added above here. 637 */ 638 randomized_struct_fields_start 639 640 void *stack; 641 refcount_t usage; 642 /* Per task flags (PF_*), defined further below: */ 643 unsigned int flags; 644 unsigned int ptrace; 645 646 #ifdef CONFIG_SMP 647 struct llist_node wake_entry; 648 int on_cpu; 649 #ifdef CONFIG_THREAD_INFO_IN_TASK 650 /* Current CPU: */ 651 unsigned int cpu; 652 #endif 653 unsigned int wakee_flips; 654 unsigned long wakee_flip_decay_ts; 655 struct task_struct *last_wakee; 656 657 /* 658 * recent_used_cpu is initially set as the last CPU used by a task 659 * that wakes affine another task. Waker/wakee relationships can 660 * push tasks around a CPU where each wakeup moves to the next one. 661 * Tracking a recently used CPU allows a quick search for a recently 662 * used CPU that may be idle. 663 */ 664 int recent_used_cpu; 665 int wake_cpu; 666 #endif 667 int on_rq; 668 669 int prio; 670 int static_prio; 671 int normal_prio; 672 unsigned int rt_priority; 673 674 const struct sched_class *sched_class; 675 struct sched_entity se; 676 struct sched_rt_entity rt; 677 #ifdef CONFIG_CGROUP_SCHED 678 struct task_group *sched_task_group; 679 #endif 680 struct sched_dl_entity dl; 681 682 #ifdef CONFIG_UCLAMP_TASK 683 /* Clamp values requested for a scheduling entity */ 684 struct uclamp_se uclamp_req[UCLAMP_CNT]; 685 /* Effective clamp values used for a scheduling entity */ 686 struct uclamp_se uclamp[UCLAMP_CNT]; 687 #endif 688 689 #ifdef CONFIG_PREEMPT_NOTIFIERS 690 /* List of struct preempt_notifier: */ 691 struct hlist_head preempt_notifiers; 692 #endif 693 694 #ifdef CONFIG_BLK_DEV_IO_TRACE 695 unsigned int btrace_seq; 696 #endif 697 698 unsigned int policy; 699 int nr_cpus_allowed; 700 const cpumask_t *cpus_ptr; 701 cpumask_t cpus_mask; 702 703 #ifdef CONFIG_PREEMPT_RCU 704 int rcu_read_lock_nesting; 705 union rcu_special rcu_read_unlock_special; 706 struct list_head rcu_node_entry; 707 struct rcu_node *rcu_blocked_node; 708 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 709 710 #ifdef CONFIG_TASKS_RCU 711 unsigned long rcu_tasks_nvcsw; 712 u8 rcu_tasks_holdout; 713 u8 rcu_tasks_idx; 714 int rcu_tasks_idle_cpu; 715 struct list_head rcu_tasks_holdout_list; 716 #endif /* #ifdef CONFIG_TASKS_RCU */ 717 718 struct sched_info sched_info; 719 720 struct list_head tasks; 721 #ifdef CONFIG_SMP 722 struct plist_node pushable_tasks; 723 struct rb_node pushable_dl_tasks; 724 #endif 725 726 struct mm_struct *mm; 727 struct mm_struct *active_mm; 728 729 /* Per-thread vma caching: */ 730 struct vmacache vmacache; 731 732 #ifdef SPLIT_RSS_COUNTING 733 struct task_rss_stat rss_stat; 734 #endif 735 int exit_state; 736 int exit_code; 737 int exit_signal; 738 /* The signal sent when the parent dies: */ 739 int pdeath_signal; 740 /* JOBCTL_*, siglock protected: */ 741 unsigned long jobctl; 742 743 /* Used for emulating ABI behavior of previous Linux versions: */ 744 unsigned int personality; 745 746 /* Scheduler bits, serialized by scheduler locks: */ 747 unsigned sched_reset_on_fork:1; 748 unsigned sched_contributes_to_load:1; 749 unsigned sched_migrated:1; 750 unsigned sched_remote_wakeup:1; 751 #ifdef CONFIG_PSI 752 unsigned sched_psi_wake_requeue:1; 753 #endif 754 755 /* Force alignment to the next boundary: */ 756 unsigned :0; 757 758 /* Unserialized, strictly 'current' */ 759 760 /* Bit to tell LSMs we're in execve(): */ 761 unsigned in_execve:1; 762 unsigned in_iowait:1; 763 #ifndef TIF_RESTORE_SIGMASK 764 unsigned restore_sigmask:1; 765 #endif 766 #ifdef CONFIG_MEMCG 767 unsigned in_user_fault:1; 768 #endif 769 #ifdef CONFIG_COMPAT_BRK 770 unsigned brk_randomized:1; 771 #endif 772 #ifdef CONFIG_CGROUPS 773 /* disallow userland-initiated cgroup migration */ 774 unsigned no_cgroup_migration:1; 775 /* task is frozen/stopped (used by the cgroup freezer) */ 776 unsigned frozen:1; 777 #endif 778 #ifdef CONFIG_BLK_CGROUP 779 /* to be used once the psi infrastructure lands upstream. */ 780 unsigned use_memdelay:1; 781 #endif 782 783 unsigned long atomic_flags; /* Flags requiring atomic access. */ 784 785 struct restart_block restart_block; 786 787 pid_t pid; 788 pid_t tgid; 789 790 #ifdef CONFIG_STACKPROTECTOR 791 /* Canary value for the -fstack-protector GCC feature: */ 792 unsigned long stack_canary; 793 #endif 794 /* 795 * Pointers to the (original) parent process, youngest child, younger sibling, 796 * older sibling, respectively. (p->father can be replaced with 797 * p->real_parent->pid) 798 */ 799 800 /* Real parent process: */ 801 struct task_struct __rcu *real_parent; 802 803 /* Recipient of SIGCHLD, wait4() reports: */ 804 struct task_struct __rcu *parent; 805 806 /* 807 * Children/sibling form the list of natural children: 808 */ 809 struct list_head children; 810 struct list_head sibling; 811 struct task_struct *group_leader; 812 813 /* 814 * 'ptraced' is the list of tasks this task is using ptrace() on. 815 * 816 * This includes both natural children and PTRACE_ATTACH targets. 817 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 818 */ 819 struct list_head ptraced; 820 struct list_head ptrace_entry; 821 822 /* PID/PID hash table linkage. */ 823 struct pid *thread_pid; 824 struct hlist_node pid_links[PIDTYPE_MAX]; 825 struct list_head thread_group; 826 struct list_head thread_node; 827 828 struct completion *vfork_done; 829 830 /* CLONE_CHILD_SETTID: */ 831 int __user *set_child_tid; 832 833 /* CLONE_CHILD_CLEARTID: */ 834 int __user *clear_child_tid; 835 836 u64 utime; 837 u64 stime; 838 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 839 u64 utimescaled; 840 u64 stimescaled; 841 #endif 842 u64 gtime; 843 struct prev_cputime prev_cputime; 844 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 845 struct vtime vtime; 846 #endif 847 848 #ifdef CONFIG_NO_HZ_FULL 849 atomic_t tick_dep_mask; 850 #endif 851 /* Context switch counts: */ 852 unsigned long nvcsw; 853 unsigned long nivcsw; 854 855 /* Monotonic time in nsecs: */ 856 u64 start_time; 857 858 /* Boot based time in nsecs: */ 859 u64 real_start_time; 860 861 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 862 unsigned long min_flt; 863 unsigned long maj_flt; 864 865 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 866 struct posix_cputimers posix_cputimers; 867 868 /* Process credentials: */ 869 870 /* Tracer's credentials at attach: */ 871 const struct cred __rcu *ptracer_cred; 872 873 /* Objective and real subjective task credentials (COW): */ 874 const struct cred __rcu *real_cred; 875 876 /* Effective (overridable) subjective task credentials (COW): */ 877 const struct cred __rcu *cred; 878 879 #ifdef CONFIG_KEYS 880 /* Cached requested key. */ 881 struct key *cached_requested_key; 882 #endif 883 884 /* 885 * executable name, excluding path. 886 * 887 * - normally initialized setup_new_exec() 888 * - access it with [gs]et_task_comm() 889 * - lock it with task_lock() 890 */ 891 char comm[TASK_COMM_LEN]; 892 893 struct nameidata *nameidata; 894 895 #ifdef CONFIG_SYSVIPC 896 struct sysv_sem sysvsem; 897 struct sysv_shm sysvshm; 898 #endif 899 #ifdef CONFIG_DETECT_HUNG_TASK 900 unsigned long last_switch_count; 901 unsigned long last_switch_time; 902 #endif 903 /* Filesystem information: */ 904 struct fs_struct *fs; 905 906 /* Open file information: */ 907 struct files_struct *files; 908 909 /* Namespaces: */ 910 struct nsproxy *nsproxy; 911 912 /* Signal handlers: */ 913 struct signal_struct *signal; 914 struct sighand_struct *sighand; 915 sigset_t blocked; 916 sigset_t real_blocked; 917 /* Restored if set_restore_sigmask() was used: */ 918 sigset_t saved_sigmask; 919 struct sigpending pending; 920 unsigned long sas_ss_sp; 921 size_t sas_ss_size; 922 unsigned int sas_ss_flags; 923 924 struct callback_head *task_works; 925 926 #ifdef CONFIG_AUDIT 927 #ifdef CONFIG_AUDITSYSCALL 928 struct audit_context *audit_context; 929 #endif 930 kuid_t loginuid; 931 unsigned int sessionid; 932 #endif 933 struct seccomp seccomp; 934 935 /* Thread group tracking: */ 936 u32 parent_exec_id; 937 u32 self_exec_id; 938 939 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 940 spinlock_t alloc_lock; 941 942 /* Protection of the PI data structures: */ 943 raw_spinlock_t pi_lock; 944 945 struct wake_q_node wake_q; 946 947 #ifdef CONFIG_RT_MUTEXES 948 /* PI waiters blocked on a rt_mutex held by this task: */ 949 struct rb_root_cached pi_waiters; 950 /* Updated under owner's pi_lock and rq lock */ 951 struct task_struct *pi_top_task; 952 /* Deadlock detection and priority inheritance handling: */ 953 struct rt_mutex_waiter *pi_blocked_on; 954 #endif 955 956 #ifdef CONFIG_DEBUG_MUTEXES 957 /* Mutex deadlock detection: */ 958 struct mutex_waiter *blocked_on; 959 #endif 960 961 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 962 int non_block_count; 963 #endif 964 965 #ifdef CONFIG_TRACE_IRQFLAGS 966 unsigned int irq_events; 967 unsigned long hardirq_enable_ip; 968 unsigned long hardirq_disable_ip; 969 unsigned int hardirq_enable_event; 970 unsigned int hardirq_disable_event; 971 int hardirqs_enabled; 972 int hardirq_context; 973 unsigned long softirq_disable_ip; 974 unsigned long softirq_enable_ip; 975 unsigned int softirq_disable_event; 976 unsigned int softirq_enable_event; 977 int softirqs_enabled; 978 int softirq_context; 979 #endif 980 981 #ifdef CONFIG_LOCKDEP 982 # define MAX_LOCK_DEPTH 48UL 983 u64 curr_chain_key; 984 int lockdep_depth; 985 unsigned int lockdep_recursion; 986 struct held_lock held_locks[MAX_LOCK_DEPTH]; 987 #endif 988 989 #ifdef CONFIG_UBSAN 990 unsigned int in_ubsan; 991 #endif 992 993 /* Journalling filesystem info: */ 994 void *journal_info; 995 996 /* Stacked block device info: */ 997 struct bio_list *bio_list; 998 999 #ifdef CONFIG_BLOCK 1000 /* Stack plugging: */ 1001 struct blk_plug *plug; 1002 #endif 1003 1004 /* VM state: */ 1005 struct reclaim_state *reclaim_state; 1006 1007 struct backing_dev_info *backing_dev_info; 1008 1009 struct io_context *io_context; 1010 1011 #ifdef CONFIG_COMPACTION 1012 struct capture_control *capture_control; 1013 #endif 1014 /* Ptrace state: */ 1015 unsigned long ptrace_message; 1016 kernel_siginfo_t *last_siginfo; 1017 1018 struct task_io_accounting ioac; 1019 #ifdef CONFIG_PSI 1020 /* Pressure stall state */ 1021 unsigned int psi_flags; 1022 #endif 1023 #ifdef CONFIG_TASK_XACCT 1024 /* Accumulated RSS usage: */ 1025 u64 acct_rss_mem1; 1026 /* Accumulated virtual memory usage: */ 1027 u64 acct_vm_mem1; 1028 /* stime + utime since last update: */ 1029 u64 acct_timexpd; 1030 #endif 1031 #ifdef CONFIG_CPUSETS 1032 /* Protected by ->alloc_lock: */ 1033 nodemask_t mems_allowed; 1034 /* Seqence number to catch updates: */ 1035 seqcount_t mems_allowed_seq; 1036 int cpuset_mem_spread_rotor; 1037 int cpuset_slab_spread_rotor; 1038 #endif 1039 #ifdef CONFIG_CGROUPS 1040 /* Control Group info protected by css_set_lock: */ 1041 struct css_set __rcu *cgroups; 1042 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1043 struct list_head cg_list; 1044 #endif 1045 #ifdef CONFIG_X86_CPU_RESCTRL 1046 u32 closid; 1047 u32 rmid; 1048 #endif 1049 #ifdef CONFIG_FUTEX 1050 struct robust_list_head __user *robust_list; 1051 #ifdef CONFIG_COMPAT 1052 struct compat_robust_list_head __user *compat_robust_list; 1053 #endif 1054 struct list_head pi_state_list; 1055 struct futex_pi_state *pi_state_cache; 1056 #endif 1057 #ifdef CONFIG_PERF_EVENTS 1058 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1059 struct mutex perf_event_mutex; 1060 struct list_head perf_event_list; 1061 #endif 1062 #ifdef CONFIG_DEBUG_PREEMPT 1063 unsigned long preempt_disable_ip; 1064 #endif 1065 #ifdef CONFIG_NUMA 1066 /* Protected by alloc_lock: */ 1067 struct mempolicy *mempolicy; 1068 short il_prev; 1069 short pref_node_fork; 1070 #endif 1071 #ifdef CONFIG_NUMA_BALANCING 1072 int numa_scan_seq; 1073 unsigned int numa_scan_period; 1074 unsigned int numa_scan_period_max; 1075 int numa_preferred_nid; 1076 unsigned long numa_migrate_retry; 1077 /* Migration stamp: */ 1078 u64 node_stamp; 1079 u64 last_task_numa_placement; 1080 u64 last_sum_exec_runtime; 1081 struct callback_head numa_work; 1082 1083 /* 1084 * This pointer is only modified for current in syscall and 1085 * pagefault context (and for tasks being destroyed), so it can be read 1086 * from any of the following contexts: 1087 * - RCU read-side critical section 1088 * - current->numa_group from everywhere 1089 * - task's runqueue locked, task not running 1090 */ 1091 struct numa_group __rcu *numa_group; 1092 1093 /* 1094 * numa_faults is an array split into four regions: 1095 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1096 * in this precise order. 1097 * 1098 * faults_memory: Exponential decaying average of faults on a per-node 1099 * basis. Scheduling placement decisions are made based on these 1100 * counts. The values remain static for the duration of a PTE scan. 1101 * faults_cpu: Track the nodes the process was running on when a NUMA 1102 * hinting fault was incurred. 1103 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1104 * during the current scan window. When the scan completes, the counts 1105 * in faults_memory and faults_cpu decay and these values are copied. 1106 */ 1107 unsigned long *numa_faults; 1108 unsigned long total_numa_faults; 1109 1110 /* 1111 * numa_faults_locality tracks if faults recorded during the last 1112 * scan window were remote/local or failed to migrate. The task scan 1113 * period is adapted based on the locality of the faults with different 1114 * weights depending on whether they were shared or private faults 1115 */ 1116 unsigned long numa_faults_locality[3]; 1117 1118 unsigned long numa_pages_migrated; 1119 #endif /* CONFIG_NUMA_BALANCING */ 1120 1121 #ifdef CONFIG_RSEQ 1122 struct rseq __user *rseq; 1123 u32 rseq_sig; 1124 /* 1125 * RmW on rseq_event_mask must be performed atomically 1126 * with respect to preemption. 1127 */ 1128 unsigned long rseq_event_mask; 1129 #endif 1130 1131 struct tlbflush_unmap_batch tlb_ubc; 1132 1133 union { 1134 refcount_t rcu_users; 1135 struct rcu_head rcu; 1136 }; 1137 1138 /* Cache last used pipe for splice(): */ 1139 struct pipe_inode_info *splice_pipe; 1140 1141 struct page_frag task_frag; 1142 1143 #ifdef CONFIG_TASK_DELAY_ACCT 1144 struct task_delay_info *delays; 1145 #endif 1146 1147 #ifdef CONFIG_FAULT_INJECTION 1148 int make_it_fail; 1149 unsigned int fail_nth; 1150 #endif 1151 /* 1152 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1153 * balance_dirty_pages() for a dirty throttling pause: 1154 */ 1155 int nr_dirtied; 1156 int nr_dirtied_pause; 1157 /* Start of a write-and-pause period: */ 1158 unsigned long dirty_paused_when; 1159 1160 #ifdef CONFIG_LATENCYTOP 1161 int latency_record_count; 1162 struct latency_record latency_record[LT_SAVECOUNT]; 1163 #endif 1164 /* 1165 * Time slack values; these are used to round up poll() and 1166 * select() etc timeout values. These are in nanoseconds. 1167 */ 1168 u64 timer_slack_ns; 1169 u64 default_timer_slack_ns; 1170 1171 #ifdef CONFIG_KASAN 1172 unsigned int kasan_depth; 1173 #endif 1174 1175 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1176 /* Index of current stored address in ret_stack: */ 1177 int curr_ret_stack; 1178 int curr_ret_depth; 1179 1180 /* Stack of return addresses for return function tracing: */ 1181 struct ftrace_ret_stack *ret_stack; 1182 1183 /* Timestamp for last schedule: */ 1184 unsigned long long ftrace_timestamp; 1185 1186 /* 1187 * Number of functions that haven't been traced 1188 * because of depth overrun: 1189 */ 1190 atomic_t trace_overrun; 1191 1192 /* Pause tracing: */ 1193 atomic_t tracing_graph_pause; 1194 #endif 1195 1196 #ifdef CONFIG_TRACING 1197 /* State flags for use by tracers: */ 1198 unsigned long trace; 1199 1200 /* Bitmask and counter of trace recursion: */ 1201 unsigned long trace_recursion; 1202 #endif /* CONFIG_TRACING */ 1203 1204 #ifdef CONFIG_KCOV 1205 /* Coverage collection mode enabled for this task (0 if disabled): */ 1206 unsigned int kcov_mode; 1207 1208 /* Size of the kcov_area: */ 1209 unsigned int kcov_size; 1210 1211 /* Buffer for coverage collection: */ 1212 void *kcov_area; 1213 1214 /* KCOV descriptor wired with this task or NULL: */ 1215 struct kcov *kcov; 1216 #endif 1217 1218 #ifdef CONFIG_MEMCG 1219 struct mem_cgroup *memcg_in_oom; 1220 gfp_t memcg_oom_gfp_mask; 1221 int memcg_oom_order; 1222 1223 /* Number of pages to reclaim on returning to userland: */ 1224 unsigned int memcg_nr_pages_over_high; 1225 1226 /* Used by memcontrol for targeted memcg charge: */ 1227 struct mem_cgroup *active_memcg; 1228 #endif 1229 1230 #ifdef CONFIG_BLK_CGROUP 1231 struct request_queue *throttle_queue; 1232 #endif 1233 1234 #ifdef CONFIG_UPROBES 1235 struct uprobe_task *utask; 1236 #endif 1237 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1238 unsigned int sequential_io; 1239 unsigned int sequential_io_avg; 1240 #endif 1241 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1242 unsigned long task_state_change; 1243 #endif 1244 int pagefault_disabled; 1245 #ifdef CONFIG_MMU 1246 struct task_struct *oom_reaper_list; 1247 #endif 1248 #ifdef CONFIG_VMAP_STACK 1249 struct vm_struct *stack_vm_area; 1250 #endif 1251 #ifdef CONFIG_THREAD_INFO_IN_TASK 1252 /* A live task holds one reference: */ 1253 refcount_t stack_refcount; 1254 #endif 1255 #ifdef CONFIG_LIVEPATCH 1256 int patch_state; 1257 #endif 1258 #ifdef CONFIG_SECURITY 1259 /* Used by LSM modules for access restriction: */ 1260 void *security; 1261 #endif 1262 1263 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1264 unsigned long lowest_stack; 1265 unsigned long prev_lowest_stack; 1266 #endif 1267 1268 /* 1269 * New fields for task_struct should be added above here, so that 1270 * they are included in the randomized portion of task_struct. 1271 */ 1272 randomized_struct_fields_end 1273 1274 /* CPU-specific state of this task: */ 1275 struct thread_struct thread; 1276 1277 /* 1278 * WARNING: on x86, 'thread_struct' contains a variable-sized 1279 * structure. It *MUST* be at the end of 'task_struct'. 1280 * 1281 * Do not put anything below here! 1282 */ 1283 }; 1284 1285 static inline struct pid *task_pid(struct task_struct *task) 1286 { 1287 return task->thread_pid; 1288 } 1289 1290 /* 1291 * the helpers to get the task's different pids as they are seen 1292 * from various namespaces 1293 * 1294 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1295 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1296 * current. 1297 * task_xid_nr_ns() : id seen from the ns specified; 1298 * 1299 * see also pid_nr() etc in include/linux/pid.h 1300 */ 1301 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1302 1303 static inline pid_t task_pid_nr(struct task_struct *tsk) 1304 { 1305 return tsk->pid; 1306 } 1307 1308 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1309 { 1310 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1311 } 1312 1313 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1314 { 1315 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1316 } 1317 1318 1319 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1320 { 1321 return tsk->tgid; 1322 } 1323 1324 /** 1325 * pid_alive - check that a task structure is not stale 1326 * @p: Task structure to be checked. 1327 * 1328 * Test if a process is not yet dead (at most zombie state) 1329 * If pid_alive fails, then pointers within the task structure 1330 * can be stale and must not be dereferenced. 1331 * 1332 * Return: 1 if the process is alive. 0 otherwise. 1333 */ 1334 static inline int pid_alive(const struct task_struct *p) 1335 { 1336 return p->thread_pid != NULL; 1337 } 1338 1339 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1340 { 1341 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1342 } 1343 1344 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1345 { 1346 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1347 } 1348 1349 1350 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1351 { 1352 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1353 } 1354 1355 static inline pid_t task_session_vnr(struct task_struct *tsk) 1356 { 1357 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1358 } 1359 1360 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1361 { 1362 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1363 } 1364 1365 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1366 { 1367 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1368 } 1369 1370 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1371 { 1372 pid_t pid = 0; 1373 1374 rcu_read_lock(); 1375 if (pid_alive(tsk)) 1376 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1377 rcu_read_unlock(); 1378 1379 return pid; 1380 } 1381 1382 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1383 { 1384 return task_ppid_nr_ns(tsk, &init_pid_ns); 1385 } 1386 1387 /* Obsolete, do not use: */ 1388 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1389 { 1390 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1391 } 1392 1393 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1394 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1395 1396 static inline unsigned int task_state_index(struct task_struct *tsk) 1397 { 1398 unsigned int tsk_state = READ_ONCE(tsk->state); 1399 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1400 1401 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1402 1403 if (tsk_state == TASK_IDLE) 1404 state = TASK_REPORT_IDLE; 1405 1406 return fls(state); 1407 } 1408 1409 static inline char task_index_to_char(unsigned int state) 1410 { 1411 static const char state_char[] = "RSDTtXZPI"; 1412 1413 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1414 1415 return state_char[state]; 1416 } 1417 1418 static inline char task_state_to_char(struct task_struct *tsk) 1419 { 1420 return task_index_to_char(task_state_index(tsk)); 1421 } 1422 1423 /** 1424 * is_global_init - check if a task structure is init. Since init 1425 * is free to have sub-threads we need to check tgid. 1426 * @tsk: Task structure to be checked. 1427 * 1428 * Check if a task structure is the first user space task the kernel created. 1429 * 1430 * Return: 1 if the task structure is init. 0 otherwise. 1431 */ 1432 static inline int is_global_init(struct task_struct *tsk) 1433 { 1434 return task_tgid_nr(tsk) == 1; 1435 } 1436 1437 extern struct pid *cad_pid; 1438 1439 /* 1440 * Per process flags 1441 */ 1442 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1443 #define PF_EXITING 0x00000004 /* Getting shut down */ 1444 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1445 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1446 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1447 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1448 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1449 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1450 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1451 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1452 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1453 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1454 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1455 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1456 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1457 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1458 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1459 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1460 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1461 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1462 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1463 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1464 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1465 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1466 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1467 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1468 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1469 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1470 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1471 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1472 1473 /* 1474 * Only the _current_ task can read/write to tsk->flags, but other 1475 * tasks can access tsk->flags in readonly mode for example 1476 * with tsk_used_math (like during threaded core dumping). 1477 * There is however an exception to this rule during ptrace 1478 * or during fork: the ptracer task is allowed to write to the 1479 * child->flags of its traced child (same goes for fork, the parent 1480 * can write to the child->flags), because we're guaranteed the 1481 * child is not running and in turn not changing child->flags 1482 * at the same time the parent does it. 1483 */ 1484 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1485 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1486 #define clear_used_math() clear_stopped_child_used_math(current) 1487 #define set_used_math() set_stopped_child_used_math(current) 1488 1489 #define conditional_stopped_child_used_math(condition, child) \ 1490 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1491 1492 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1493 1494 #define copy_to_stopped_child_used_math(child) \ 1495 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1496 1497 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1498 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1499 #define used_math() tsk_used_math(current) 1500 1501 static inline bool is_percpu_thread(void) 1502 { 1503 #ifdef CONFIG_SMP 1504 return (current->flags & PF_NO_SETAFFINITY) && 1505 (current->nr_cpus_allowed == 1); 1506 #else 1507 return true; 1508 #endif 1509 } 1510 1511 /* Per-process atomic flags. */ 1512 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1513 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1514 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1515 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1516 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1517 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1518 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1519 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1520 1521 #define TASK_PFA_TEST(name, func) \ 1522 static inline bool task_##func(struct task_struct *p) \ 1523 { return test_bit(PFA_##name, &p->atomic_flags); } 1524 1525 #define TASK_PFA_SET(name, func) \ 1526 static inline void task_set_##func(struct task_struct *p) \ 1527 { set_bit(PFA_##name, &p->atomic_flags); } 1528 1529 #define TASK_PFA_CLEAR(name, func) \ 1530 static inline void task_clear_##func(struct task_struct *p) \ 1531 { clear_bit(PFA_##name, &p->atomic_flags); } 1532 1533 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1534 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1535 1536 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1537 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1538 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1539 1540 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1541 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1542 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1543 1544 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1545 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1546 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1547 1548 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1549 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1550 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1551 1552 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1553 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1554 1555 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1556 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1557 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1558 1559 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1560 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1561 1562 static inline void 1563 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1564 { 1565 current->flags &= ~flags; 1566 current->flags |= orig_flags & flags; 1567 } 1568 1569 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1570 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1571 #ifdef CONFIG_SMP 1572 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1573 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1574 #else 1575 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1576 { 1577 } 1578 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1579 { 1580 if (!cpumask_test_cpu(0, new_mask)) 1581 return -EINVAL; 1582 return 0; 1583 } 1584 #endif 1585 1586 extern int yield_to(struct task_struct *p, bool preempt); 1587 extern void set_user_nice(struct task_struct *p, long nice); 1588 extern int task_prio(const struct task_struct *p); 1589 1590 /** 1591 * task_nice - return the nice value of a given task. 1592 * @p: the task in question. 1593 * 1594 * Return: The nice value [ -20 ... 0 ... 19 ]. 1595 */ 1596 static inline int task_nice(const struct task_struct *p) 1597 { 1598 return PRIO_TO_NICE((p)->static_prio); 1599 } 1600 1601 extern int can_nice(const struct task_struct *p, const int nice); 1602 extern int task_curr(const struct task_struct *p); 1603 extern int idle_cpu(int cpu); 1604 extern int available_idle_cpu(int cpu); 1605 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1606 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1607 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1608 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1609 extern struct task_struct *idle_task(int cpu); 1610 1611 /** 1612 * is_idle_task - is the specified task an idle task? 1613 * @p: the task in question. 1614 * 1615 * Return: 1 if @p is an idle task. 0 otherwise. 1616 */ 1617 static inline bool is_idle_task(const struct task_struct *p) 1618 { 1619 return !!(p->flags & PF_IDLE); 1620 } 1621 1622 extern struct task_struct *curr_task(int cpu); 1623 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1624 1625 void yield(void); 1626 1627 union thread_union { 1628 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1629 struct task_struct task; 1630 #endif 1631 #ifndef CONFIG_THREAD_INFO_IN_TASK 1632 struct thread_info thread_info; 1633 #endif 1634 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1635 }; 1636 1637 #ifndef CONFIG_THREAD_INFO_IN_TASK 1638 extern struct thread_info init_thread_info; 1639 #endif 1640 1641 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1642 1643 #ifdef CONFIG_THREAD_INFO_IN_TASK 1644 static inline struct thread_info *task_thread_info(struct task_struct *task) 1645 { 1646 return &task->thread_info; 1647 } 1648 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1649 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1650 #endif 1651 1652 /* 1653 * find a task by one of its numerical ids 1654 * 1655 * find_task_by_pid_ns(): 1656 * finds a task by its pid in the specified namespace 1657 * find_task_by_vpid(): 1658 * finds a task by its virtual pid 1659 * 1660 * see also find_vpid() etc in include/linux/pid.h 1661 */ 1662 1663 extern struct task_struct *find_task_by_vpid(pid_t nr); 1664 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1665 1666 /* 1667 * find a task by its virtual pid and get the task struct 1668 */ 1669 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1670 1671 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1672 extern int wake_up_process(struct task_struct *tsk); 1673 extern void wake_up_new_task(struct task_struct *tsk); 1674 1675 #ifdef CONFIG_SMP 1676 extern void kick_process(struct task_struct *tsk); 1677 #else 1678 static inline void kick_process(struct task_struct *tsk) { } 1679 #endif 1680 1681 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1682 1683 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1684 { 1685 __set_task_comm(tsk, from, false); 1686 } 1687 1688 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1689 #define get_task_comm(buf, tsk) ({ \ 1690 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1691 __get_task_comm(buf, sizeof(buf), tsk); \ 1692 }) 1693 1694 #ifdef CONFIG_SMP 1695 void scheduler_ipi(void); 1696 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1697 #else 1698 static inline void scheduler_ipi(void) { } 1699 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1700 { 1701 return 1; 1702 } 1703 #endif 1704 1705 /* 1706 * Set thread flags in other task's structures. 1707 * See asm/thread_info.h for TIF_xxxx flags available: 1708 */ 1709 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1710 { 1711 set_ti_thread_flag(task_thread_info(tsk), flag); 1712 } 1713 1714 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1715 { 1716 clear_ti_thread_flag(task_thread_info(tsk), flag); 1717 } 1718 1719 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1720 bool value) 1721 { 1722 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1723 } 1724 1725 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1726 { 1727 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1728 } 1729 1730 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1731 { 1732 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1733 } 1734 1735 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1736 { 1737 return test_ti_thread_flag(task_thread_info(tsk), flag); 1738 } 1739 1740 static inline void set_tsk_need_resched(struct task_struct *tsk) 1741 { 1742 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1743 } 1744 1745 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1746 { 1747 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1748 } 1749 1750 static inline int test_tsk_need_resched(struct task_struct *tsk) 1751 { 1752 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1753 } 1754 1755 /* 1756 * cond_resched() and cond_resched_lock(): latency reduction via 1757 * explicit rescheduling in places that are safe. The return 1758 * value indicates whether a reschedule was done in fact. 1759 * cond_resched_lock() will drop the spinlock before scheduling, 1760 */ 1761 #ifndef CONFIG_PREEMPTION 1762 extern int _cond_resched(void); 1763 #else 1764 static inline int _cond_resched(void) { return 0; } 1765 #endif 1766 1767 #define cond_resched() ({ \ 1768 ___might_sleep(__FILE__, __LINE__, 0); \ 1769 _cond_resched(); \ 1770 }) 1771 1772 extern int __cond_resched_lock(spinlock_t *lock); 1773 1774 #define cond_resched_lock(lock) ({ \ 1775 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1776 __cond_resched_lock(lock); \ 1777 }) 1778 1779 static inline void cond_resched_rcu(void) 1780 { 1781 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1782 rcu_read_unlock(); 1783 cond_resched(); 1784 rcu_read_lock(); 1785 #endif 1786 } 1787 1788 /* 1789 * Does a critical section need to be broken due to another 1790 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1791 * but a general need for low latency) 1792 */ 1793 static inline int spin_needbreak(spinlock_t *lock) 1794 { 1795 #ifdef CONFIG_PREEMPTION 1796 return spin_is_contended(lock); 1797 #else 1798 return 0; 1799 #endif 1800 } 1801 1802 static __always_inline bool need_resched(void) 1803 { 1804 return unlikely(tif_need_resched()); 1805 } 1806 1807 /* 1808 * Wrappers for p->thread_info->cpu access. No-op on UP. 1809 */ 1810 #ifdef CONFIG_SMP 1811 1812 static inline unsigned int task_cpu(const struct task_struct *p) 1813 { 1814 #ifdef CONFIG_THREAD_INFO_IN_TASK 1815 return READ_ONCE(p->cpu); 1816 #else 1817 return READ_ONCE(task_thread_info(p)->cpu); 1818 #endif 1819 } 1820 1821 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1822 1823 #else 1824 1825 static inline unsigned int task_cpu(const struct task_struct *p) 1826 { 1827 return 0; 1828 } 1829 1830 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1831 { 1832 } 1833 1834 #endif /* CONFIG_SMP */ 1835 1836 /* 1837 * In order to reduce various lock holder preemption latencies provide an 1838 * interface to see if a vCPU is currently running or not. 1839 * 1840 * This allows us to terminate optimistic spin loops and block, analogous to 1841 * the native optimistic spin heuristic of testing if the lock owner task is 1842 * running or not. 1843 */ 1844 #ifndef vcpu_is_preempted 1845 static inline bool vcpu_is_preempted(int cpu) 1846 { 1847 return false; 1848 } 1849 #endif 1850 1851 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1852 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1853 1854 #ifndef TASK_SIZE_OF 1855 #define TASK_SIZE_OF(tsk) TASK_SIZE 1856 #endif 1857 1858 #ifdef CONFIG_RSEQ 1859 1860 /* 1861 * Map the event mask on the user-space ABI enum rseq_cs_flags 1862 * for direct mask checks. 1863 */ 1864 enum rseq_event_mask_bits { 1865 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1866 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1867 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1868 }; 1869 1870 enum rseq_event_mask { 1871 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1872 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1873 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1874 }; 1875 1876 static inline void rseq_set_notify_resume(struct task_struct *t) 1877 { 1878 if (t->rseq) 1879 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1880 } 1881 1882 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1883 1884 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1885 struct pt_regs *regs) 1886 { 1887 if (current->rseq) 1888 __rseq_handle_notify_resume(ksig, regs); 1889 } 1890 1891 static inline void rseq_signal_deliver(struct ksignal *ksig, 1892 struct pt_regs *regs) 1893 { 1894 preempt_disable(); 1895 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1896 preempt_enable(); 1897 rseq_handle_notify_resume(ksig, regs); 1898 } 1899 1900 /* rseq_preempt() requires preemption to be disabled. */ 1901 static inline void rseq_preempt(struct task_struct *t) 1902 { 1903 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1904 rseq_set_notify_resume(t); 1905 } 1906 1907 /* rseq_migrate() requires preemption to be disabled. */ 1908 static inline void rseq_migrate(struct task_struct *t) 1909 { 1910 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1911 rseq_set_notify_resume(t); 1912 } 1913 1914 /* 1915 * If parent process has a registered restartable sequences area, the 1916 * child inherits. Only applies when forking a process, not a thread. 1917 */ 1918 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1919 { 1920 if (clone_flags & CLONE_THREAD) { 1921 t->rseq = NULL; 1922 t->rseq_sig = 0; 1923 t->rseq_event_mask = 0; 1924 } else { 1925 t->rseq = current->rseq; 1926 t->rseq_sig = current->rseq_sig; 1927 t->rseq_event_mask = current->rseq_event_mask; 1928 } 1929 } 1930 1931 static inline void rseq_execve(struct task_struct *t) 1932 { 1933 t->rseq = NULL; 1934 t->rseq_sig = 0; 1935 t->rseq_event_mask = 0; 1936 } 1937 1938 #else 1939 1940 static inline void rseq_set_notify_resume(struct task_struct *t) 1941 { 1942 } 1943 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1944 struct pt_regs *regs) 1945 { 1946 } 1947 static inline void rseq_signal_deliver(struct ksignal *ksig, 1948 struct pt_regs *regs) 1949 { 1950 } 1951 static inline void rseq_preempt(struct task_struct *t) 1952 { 1953 } 1954 static inline void rseq_migrate(struct task_struct *t) 1955 { 1956 } 1957 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1958 { 1959 } 1960 static inline void rseq_execve(struct task_struct *t) 1961 { 1962 } 1963 1964 #endif 1965 1966 void __exit_umh(struct task_struct *tsk); 1967 1968 static inline void exit_umh(struct task_struct *tsk) 1969 { 1970 if (unlikely(tsk->flags & PF_UMH)) 1971 __exit_umh(tsk); 1972 } 1973 1974 #ifdef CONFIG_DEBUG_RSEQ 1975 1976 void rseq_syscall(struct pt_regs *regs); 1977 1978 #else 1979 1980 static inline void rseq_syscall(struct pt_regs *regs) 1981 { 1982 } 1983 1984 #endif 1985 1986 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 1987 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 1988 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 1989 1990 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 1991 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 1992 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 1993 1994 int sched_trace_rq_cpu(struct rq *rq); 1995 1996 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 1997 1998 #endif 1999