xref: /linux/include/linux/sched.h (revision 6f6fa9cede8f65c5752bf584f4a388d3eded04ed)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT		0x1000
101 #define TASK_STATE_MAX			0x2000
102 
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
107 
108 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109 
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112 
113 /* get_task_state(): */
114 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 					 TASK_PARKED)
118 
119 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120 
121 #define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122 
123 #define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124 
125 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126 
127 /*
128  * Special states are those that do not use the normal wait-loop pattern. See
129  * the comment with set_special_state().
130  */
131 #define is_special_task_state(state)				\
132 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133 
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value)				\
136 	do {								\
137 		WARN_ON_ONCE(is_special_task_state(state_value));	\
138 		current->task_state_change = _THIS_IP_;			\
139 	} while (0)
140 
141 # define debug_special_state_change(state_value)			\
142 	do {								\
143 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
144 		current->task_state_change = _THIS_IP_;			\
145 	} while (0)
146 
147 # define debug_rtlock_wait_set_state()					\
148 	do {								 \
149 		current->saved_state_change = current->task_state_change;\
150 		current->task_state_change = _THIS_IP_;			 \
151 	} while (0)
152 
153 # define debug_rtlock_wait_restore_state()				\
154 	do {								 \
155 		current->task_state_change = current->saved_state_change;\
156 	} while (0)
157 
158 #else
159 # define debug_normal_state_change(cond)	do { } while (0)
160 # define debug_special_state_change(cond)	do { } while (0)
161 # define debug_rtlock_wait_set_state()		do { } while (0)
162 # define debug_rtlock_wait_restore_state()	do { } while (0)
163 #endif
164 
165 /*
166  * set_current_state() includes a barrier so that the write of current->state
167  * is correctly serialised wrt the caller's subsequent test of whether to
168  * actually sleep:
169  *
170  *   for (;;) {
171  *	set_current_state(TASK_UNINTERRUPTIBLE);
172  *	if (CONDITION)
173  *	   break;
174  *
175  *	schedule();
176  *   }
177  *   __set_current_state(TASK_RUNNING);
178  *
179  * If the caller does not need such serialisation (because, for instance, the
180  * CONDITION test and condition change and wakeup are under the same lock) then
181  * use __set_current_state().
182  *
183  * The above is typically ordered against the wakeup, which does:
184  *
185  *   CONDITION = 1;
186  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187  *
188  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189  * accessing p->state.
190  *
191  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194  *
195  * However, with slightly different timing the wakeup TASK_RUNNING store can
196  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197  * a problem either because that will result in one extra go around the loop
198  * and our @cond test will save the day.
199  *
200  * Also see the comments of try_to_wake_up().
201  */
202 #define __set_current_state(state_value)				\
203 	do {								\
204 		debug_normal_state_change((state_value));		\
205 		WRITE_ONCE(current->__state, (state_value));		\
206 	} while (0)
207 
208 #define set_current_state(state_value)					\
209 	do {								\
210 		debug_normal_state_change((state_value));		\
211 		smp_store_mb(current->__state, (state_value));		\
212 	} while (0)
213 
214 /*
215  * set_special_state() should be used for those states when the blocking task
216  * can not use the regular condition based wait-loop. In that case we must
217  * serialize against wakeups such that any possible in-flight TASK_RUNNING
218  * stores will not collide with our state change.
219  */
220 #define set_special_state(state_value)					\
221 	do {								\
222 		unsigned long flags; /* may shadow */			\
223 									\
224 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225 		debug_special_state_change((state_value));		\
226 		WRITE_ONCE(current->__state, (state_value));		\
227 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
228 	} while (0)
229 
230 /*
231  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232  *
233  * RT's spin/rwlock substitutions are state preserving. The state of the
234  * task when blocking on the lock is saved in task_struct::saved_state and
235  * restored after the lock has been acquired.  These operations are
236  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237  * lock related wakeups while the task is blocked on the lock are
238  * redirected to operate on task_struct::saved_state to ensure that these
239  * are not dropped. On restore task_struct::saved_state is set to
240  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241  *
242  * The lock operation looks like this:
243  *
244  *	current_save_and_set_rtlock_wait_state();
245  *	for (;;) {
246  *		if (try_lock())
247  *			break;
248  *		raw_spin_unlock_irq(&lock->wait_lock);
249  *		schedule_rtlock();
250  *		raw_spin_lock_irq(&lock->wait_lock);
251  *		set_current_state(TASK_RTLOCK_WAIT);
252  *	}
253  *	current_restore_rtlock_saved_state();
254  */
255 #define current_save_and_set_rtlock_wait_state()			\
256 	do {								\
257 		lockdep_assert_irqs_disabled();				\
258 		raw_spin_lock(&current->pi_lock);			\
259 		current->saved_state = current->__state;		\
260 		debug_rtlock_wait_set_state();				\
261 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
262 		raw_spin_unlock(&current->pi_lock);			\
263 	} while (0);
264 
265 #define current_restore_rtlock_saved_state()				\
266 	do {								\
267 		lockdep_assert_irqs_disabled();				\
268 		raw_spin_lock(&current->pi_lock);			\
269 		debug_rtlock_wait_restore_state();			\
270 		WRITE_ONCE(current->__state, current->saved_state);	\
271 		current->saved_state = TASK_RUNNING;			\
272 		raw_spin_unlock(&current->pi_lock);			\
273 	} while (0);
274 
275 #define get_current_state()	READ_ONCE(current->__state)
276 
277 /*
278  * Define the task command name length as enum, then it can be visible to
279  * BPF programs.
280  */
281 enum {
282 	TASK_COMM_LEN = 16,
283 };
284 
285 extern void scheduler_tick(void);
286 
287 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
288 
289 extern long schedule_timeout(long timeout);
290 extern long schedule_timeout_interruptible(long timeout);
291 extern long schedule_timeout_killable(long timeout);
292 extern long schedule_timeout_uninterruptible(long timeout);
293 extern long schedule_timeout_idle(long timeout);
294 asmlinkage void schedule(void);
295 extern void schedule_preempt_disabled(void);
296 asmlinkage void preempt_schedule_irq(void);
297 #ifdef CONFIG_PREEMPT_RT
298  extern void schedule_rtlock(void);
299 #endif
300 
301 extern int __must_check io_schedule_prepare(void);
302 extern void io_schedule_finish(int token);
303 extern long io_schedule_timeout(long timeout);
304 extern void io_schedule(void);
305 
306 /**
307  * struct prev_cputime - snapshot of system and user cputime
308  * @utime: time spent in user mode
309  * @stime: time spent in system mode
310  * @lock: protects the above two fields
311  *
312  * Stores previous user/system time values such that we can guarantee
313  * monotonicity.
314  */
315 struct prev_cputime {
316 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
317 	u64				utime;
318 	u64				stime;
319 	raw_spinlock_t			lock;
320 #endif
321 };
322 
323 enum vtime_state {
324 	/* Task is sleeping or running in a CPU with VTIME inactive: */
325 	VTIME_INACTIVE = 0,
326 	/* Task is idle */
327 	VTIME_IDLE,
328 	/* Task runs in kernelspace in a CPU with VTIME active: */
329 	VTIME_SYS,
330 	/* Task runs in userspace in a CPU with VTIME active: */
331 	VTIME_USER,
332 	/* Task runs as guests in a CPU with VTIME active: */
333 	VTIME_GUEST,
334 };
335 
336 struct vtime {
337 	seqcount_t		seqcount;
338 	unsigned long long	starttime;
339 	enum vtime_state	state;
340 	unsigned int		cpu;
341 	u64			utime;
342 	u64			stime;
343 	u64			gtime;
344 };
345 
346 /*
347  * Utilization clamp constraints.
348  * @UCLAMP_MIN:	Minimum utilization
349  * @UCLAMP_MAX:	Maximum utilization
350  * @UCLAMP_CNT:	Utilization clamp constraints count
351  */
352 enum uclamp_id {
353 	UCLAMP_MIN = 0,
354 	UCLAMP_MAX,
355 	UCLAMP_CNT
356 };
357 
358 #ifdef CONFIG_SMP
359 extern struct root_domain def_root_domain;
360 extern struct mutex sched_domains_mutex;
361 #endif
362 
363 struct sched_info {
364 #ifdef CONFIG_SCHED_INFO
365 	/* Cumulative counters: */
366 
367 	/* # of times we have run on this CPU: */
368 	unsigned long			pcount;
369 
370 	/* Time spent waiting on a runqueue: */
371 	unsigned long long		run_delay;
372 
373 	/* Timestamps: */
374 
375 	/* When did we last run on a CPU? */
376 	unsigned long long		last_arrival;
377 
378 	/* When were we last queued to run? */
379 	unsigned long long		last_queued;
380 
381 #endif /* CONFIG_SCHED_INFO */
382 };
383 
384 /*
385  * Integer metrics need fixed point arithmetic, e.g., sched/fair
386  * has a few: load, load_avg, util_avg, freq, and capacity.
387  *
388  * We define a basic fixed point arithmetic range, and then formalize
389  * all these metrics based on that basic range.
390  */
391 # define SCHED_FIXEDPOINT_SHIFT		10
392 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
393 
394 /* Increase resolution of cpu_capacity calculations */
395 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
396 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
397 
398 struct load_weight {
399 	unsigned long			weight;
400 	u32				inv_weight;
401 };
402 
403 /**
404  * struct util_est - Estimation utilization of FAIR tasks
405  * @enqueued: instantaneous estimated utilization of a task/cpu
406  * @ewma:     the Exponential Weighted Moving Average (EWMA)
407  *            utilization of a task
408  *
409  * Support data structure to track an Exponential Weighted Moving Average
410  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
411  * average each time a task completes an activation. Sample's weight is chosen
412  * so that the EWMA will be relatively insensitive to transient changes to the
413  * task's workload.
414  *
415  * The enqueued attribute has a slightly different meaning for tasks and cpus:
416  * - task:   the task's util_avg at last task dequeue time
417  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
418  * Thus, the util_est.enqueued of a task represents the contribution on the
419  * estimated utilization of the CPU where that task is currently enqueued.
420  *
421  * Only for tasks we track a moving average of the past instantaneous
422  * estimated utilization. This allows to absorb sporadic drops in utilization
423  * of an otherwise almost periodic task.
424  *
425  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
426  * updates. When a task is dequeued, its util_est should not be updated if its
427  * util_avg has not been updated in the meantime.
428  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
429  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
430  * for a task) it is safe to use MSB.
431  */
432 struct util_est {
433 	unsigned int			enqueued;
434 	unsigned int			ewma;
435 #define UTIL_EST_WEIGHT_SHIFT		2
436 #define UTIL_AVG_UNCHANGED		0x80000000
437 } __attribute__((__aligned__(sizeof(u64))));
438 
439 /*
440  * The load/runnable/util_avg accumulates an infinite geometric series
441  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
442  *
443  * [load_avg definition]
444  *
445  *   load_avg = runnable% * scale_load_down(load)
446  *
447  * [runnable_avg definition]
448  *
449  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
450  *
451  * [util_avg definition]
452  *
453  *   util_avg = running% * SCHED_CAPACITY_SCALE
454  *
455  * where runnable% is the time ratio that a sched_entity is runnable and
456  * running% the time ratio that a sched_entity is running.
457  *
458  * For cfs_rq, they are the aggregated values of all runnable and blocked
459  * sched_entities.
460  *
461  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
462  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
463  * for computing those signals (see update_rq_clock_pelt())
464  *
465  * N.B., the above ratios (runnable% and running%) themselves are in the
466  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
467  * to as large a range as necessary. This is for example reflected by
468  * util_avg's SCHED_CAPACITY_SCALE.
469  *
470  * [Overflow issue]
471  *
472  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
473  * with the highest load (=88761), always runnable on a single cfs_rq,
474  * and should not overflow as the number already hits PID_MAX_LIMIT.
475  *
476  * For all other cases (including 32-bit kernels), struct load_weight's
477  * weight will overflow first before we do, because:
478  *
479  *    Max(load_avg) <= Max(load.weight)
480  *
481  * Then it is the load_weight's responsibility to consider overflow
482  * issues.
483  */
484 struct sched_avg {
485 	u64				last_update_time;
486 	u64				load_sum;
487 	u64				runnable_sum;
488 	u32				util_sum;
489 	u32				period_contrib;
490 	unsigned long			load_avg;
491 	unsigned long			runnable_avg;
492 	unsigned long			util_avg;
493 	struct util_est			util_est;
494 } ____cacheline_aligned;
495 
496 struct sched_statistics {
497 #ifdef CONFIG_SCHEDSTATS
498 	u64				wait_start;
499 	u64				wait_max;
500 	u64				wait_count;
501 	u64				wait_sum;
502 	u64				iowait_count;
503 	u64				iowait_sum;
504 
505 	u64				sleep_start;
506 	u64				sleep_max;
507 	s64				sum_sleep_runtime;
508 
509 	u64				block_start;
510 	u64				block_max;
511 	s64				sum_block_runtime;
512 
513 	u64				exec_max;
514 	u64				slice_max;
515 
516 	u64				nr_migrations_cold;
517 	u64				nr_failed_migrations_affine;
518 	u64				nr_failed_migrations_running;
519 	u64				nr_failed_migrations_hot;
520 	u64				nr_forced_migrations;
521 
522 	u64				nr_wakeups;
523 	u64				nr_wakeups_sync;
524 	u64				nr_wakeups_migrate;
525 	u64				nr_wakeups_local;
526 	u64				nr_wakeups_remote;
527 	u64				nr_wakeups_affine;
528 	u64				nr_wakeups_affine_attempts;
529 	u64				nr_wakeups_passive;
530 	u64				nr_wakeups_idle;
531 
532 #ifdef CONFIG_SCHED_CORE
533 	u64				core_forceidle_sum;
534 #endif
535 #endif /* CONFIG_SCHEDSTATS */
536 } ____cacheline_aligned;
537 
538 struct sched_entity {
539 	/* For load-balancing: */
540 	struct load_weight		load;
541 	struct rb_node			run_node;
542 	struct list_head		group_node;
543 	unsigned int			on_rq;
544 
545 	u64				exec_start;
546 	u64				sum_exec_runtime;
547 	u64				vruntime;
548 	u64				prev_sum_exec_runtime;
549 
550 	u64				nr_migrations;
551 
552 #ifdef CONFIG_FAIR_GROUP_SCHED
553 	int				depth;
554 	struct sched_entity		*parent;
555 	/* rq on which this entity is (to be) queued: */
556 	struct cfs_rq			*cfs_rq;
557 	/* rq "owned" by this entity/group: */
558 	struct cfs_rq			*my_q;
559 	/* cached value of my_q->h_nr_running */
560 	unsigned long			runnable_weight;
561 #endif
562 
563 #ifdef CONFIG_SMP
564 	/*
565 	 * Per entity load average tracking.
566 	 *
567 	 * Put into separate cache line so it does not
568 	 * collide with read-mostly values above.
569 	 */
570 	struct sched_avg		avg;
571 #endif
572 };
573 
574 struct sched_rt_entity {
575 	struct list_head		run_list;
576 	unsigned long			timeout;
577 	unsigned long			watchdog_stamp;
578 	unsigned int			time_slice;
579 	unsigned short			on_rq;
580 	unsigned short			on_list;
581 
582 	struct sched_rt_entity		*back;
583 #ifdef CONFIG_RT_GROUP_SCHED
584 	struct sched_rt_entity		*parent;
585 	/* rq on which this entity is (to be) queued: */
586 	struct rt_rq			*rt_rq;
587 	/* rq "owned" by this entity/group: */
588 	struct rt_rq			*my_q;
589 #endif
590 } __randomize_layout;
591 
592 struct sched_dl_entity {
593 	struct rb_node			rb_node;
594 
595 	/*
596 	 * Original scheduling parameters. Copied here from sched_attr
597 	 * during sched_setattr(), they will remain the same until
598 	 * the next sched_setattr().
599 	 */
600 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
601 	u64				dl_deadline;	/* Relative deadline of each instance	*/
602 	u64				dl_period;	/* Separation of two instances (period) */
603 	u64				dl_bw;		/* dl_runtime / dl_period		*/
604 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
605 
606 	/*
607 	 * Actual scheduling parameters. Initialized with the values above,
608 	 * they are continuously updated during task execution. Note that
609 	 * the remaining runtime could be < 0 in case we are in overrun.
610 	 */
611 	s64				runtime;	/* Remaining runtime for this instance	*/
612 	u64				deadline;	/* Absolute deadline for this instance	*/
613 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
614 
615 	/*
616 	 * Some bool flags:
617 	 *
618 	 * @dl_throttled tells if we exhausted the runtime. If so, the
619 	 * task has to wait for a replenishment to be performed at the
620 	 * next firing of dl_timer.
621 	 *
622 	 * @dl_yielded tells if task gave up the CPU before consuming
623 	 * all its available runtime during the last job.
624 	 *
625 	 * @dl_non_contending tells if the task is inactive while still
626 	 * contributing to the active utilization. In other words, it
627 	 * indicates if the inactive timer has been armed and its handler
628 	 * has not been executed yet. This flag is useful to avoid race
629 	 * conditions between the inactive timer handler and the wakeup
630 	 * code.
631 	 *
632 	 * @dl_overrun tells if the task asked to be informed about runtime
633 	 * overruns.
634 	 */
635 	unsigned int			dl_throttled      : 1;
636 	unsigned int			dl_yielded        : 1;
637 	unsigned int			dl_non_contending : 1;
638 	unsigned int			dl_overrun	  : 1;
639 
640 	/*
641 	 * Bandwidth enforcement timer. Each -deadline task has its
642 	 * own bandwidth to be enforced, thus we need one timer per task.
643 	 */
644 	struct hrtimer			dl_timer;
645 
646 	/*
647 	 * Inactive timer, responsible for decreasing the active utilization
648 	 * at the "0-lag time". When a -deadline task blocks, it contributes
649 	 * to GRUB's active utilization until the "0-lag time", hence a
650 	 * timer is needed to decrease the active utilization at the correct
651 	 * time.
652 	 */
653 	struct hrtimer inactive_timer;
654 
655 #ifdef CONFIG_RT_MUTEXES
656 	/*
657 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
658 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
659 	 * to (the original one/itself).
660 	 */
661 	struct sched_dl_entity *pi_se;
662 #endif
663 };
664 
665 #ifdef CONFIG_UCLAMP_TASK
666 /* Number of utilization clamp buckets (shorter alias) */
667 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
668 
669 /*
670  * Utilization clamp for a scheduling entity
671  * @value:		clamp value "assigned" to a se
672  * @bucket_id:		bucket index corresponding to the "assigned" value
673  * @active:		the se is currently refcounted in a rq's bucket
674  * @user_defined:	the requested clamp value comes from user-space
675  *
676  * The bucket_id is the index of the clamp bucket matching the clamp value
677  * which is pre-computed and stored to avoid expensive integer divisions from
678  * the fast path.
679  *
680  * The active bit is set whenever a task has got an "effective" value assigned,
681  * which can be different from the clamp value "requested" from user-space.
682  * This allows to know a task is refcounted in the rq's bucket corresponding
683  * to the "effective" bucket_id.
684  *
685  * The user_defined bit is set whenever a task has got a task-specific clamp
686  * value requested from userspace, i.e. the system defaults apply to this task
687  * just as a restriction. This allows to relax default clamps when a less
688  * restrictive task-specific value has been requested, thus allowing to
689  * implement a "nice" semantic. For example, a task running with a 20%
690  * default boost can still drop its own boosting to 0%.
691  */
692 struct uclamp_se {
693 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
694 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
695 	unsigned int active		: 1;
696 	unsigned int user_defined	: 1;
697 };
698 #endif /* CONFIG_UCLAMP_TASK */
699 
700 union rcu_special {
701 	struct {
702 		u8			blocked;
703 		u8			need_qs;
704 		u8			exp_hint; /* Hint for performance. */
705 		u8			need_mb; /* Readers need smp_mb(). */
706 	} b; /* Bits. */
707 	u32 s; /* Set of bits. */
708 };
709 
710 enum perf_event_task_context {
711 	perf_invalid_context = -1,
712 	perf_hw_context = 0,
713 	perf_sw_context,
714 	perf_nr_task_contexts,
715 };
716 
717 struct wake_q_node {
718 	struct wake_q_node *next;
719 };
720 
721 struct kmap_ctrl {
722 #ifdef CONFIG_KMAP_LOCAL
723 	int				idx;
724 	pte_t				pteval[KM_MAX_IDX];
725 #endif
726 };
727 
728 struct task_struct {
729 #ifdef CONFIG_THREAD_INFO_IN_TASK
730 	/*
731 	 * For reasons of header soup (see current_thread_info()), this
732 	 * must be the first element of task_struct.
733 	 */
734 	struct thread_info		thread_info;
735 #endif
736 	unsigned int			__state;
737 
738 #ifdef CONFIG_PREEMPT_RT
739 	/* saved state for "spinlock sleepers" */
740 	unsigned int			saved_state;
741 #endif
742 
743 	/*
744 	 * This begins the randomizable portion of task_struct. Only
745 	 * scheduling-critical items should be added above here.
746 	 */
747 	randomized_struct_fields_start
748 
749 	void				*stack;
750 	refcount_t			usage;
751 	/* Per task flags (PF_*), defined further below: */
752 	unsigned int			flags;
753 	unsigned int			ptrace;
754 
755 #ifdef CONFIG_SMP
756 	int				on_cpu;
757 	struct __call_single_node	wake_entry;
758 	unsigned int			wakee_flips;
759 	unsigned long			wakee_flip_decay_ts;
760 	struct task_struct		*last_wakee;
761 
762 	/*
763 	 * recent_used_cpu is initially set as the last CPU used by a task
764 	 * that wakes affine another task. Waker/wakee relationships can
765 	 * push tasks around a CPU where each wakeup moves to the next one.
766 	 * Tracking a recently used CPU allows a quick search for a recently
767 	 * used CPU that may be idle.
768 	 */
769 	int				recent_used_cpu;
770 	int				wake_cpu;
771 #endif
772 	int				on_rq;
773 
774 	int				prio;
775 	int				static_prio;
776 	int				normal_prio;
777 	unsigned int			rt_priority;
778 
779 	struct sched_entity		se;
780 	struct sched_rt_entity		rt;
781 	struct sched_dl_entity		dl;
782 	const struct sched_class	*sched_class;
783 
784 #ifdef CONFIG_SCHED_CORE
785 	struct rb_node			core_node;
786 	unsigned long			core_cookie;
787 	unsigned int			core_occupation;
788 #endif
789 
790 #ifdef CONFIG_CGROUP_SCHED
791 	struct task_group		*sched_task_group;
792 #endif
793 
794 #ifdef CONFIG_UCLAMP_TASK
795 	/*
796 	 * Clamp values requested for a scheduling entity.
797 	 * Must be updated with task_rq_lock() held.
798 	 */
799 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
800 	/*
801 	 * Effective clamp values used for a scheduling entity.
802 	 * Must be updated with task_rq_lock() held.
803 	 */
804 	struct uclamp_se		uclamp[UCLAMP_CNT];
805 #endif
806 
807 	struct sched_statistics         stats;
808 
809 #ifdef CONFIG_PREEMPT_NOTIFIERS
810 	/* List of struct preempt_notifier: */
811 	struct hlist_head		preempt_notifiers;
812 #endif
813 
814 #ifdef CONFIG_BLK_DEV_IO_TRACE
815 	unsigned int			btrace_seq;
816 #endif
817 
818 	unsigned int			policy;
819 	int				nr_cpus_allowed;
820 	const cpumask_t			*cpus_ptr;
821 	cpumask_t			*user_cpus_ptr;
822 	cpumask_t			cpus_mask;
823 	void				*migration_pending;
824 #ifdef CONFIG_SMP
825 	unsigned short			migration_disabled;
826 #endif
827 	unsigned short			migration_flags;
828 
829 #ifdef CONFIG_PREEMPT_RCU
830 	int				rcu_read_lock_nesting;
831 	union rcu_special		rcu_read_unlock_special;
832 	struct list_head		rcu_node_entry;
833 	struct rcu_node			*rcu_blocked_node;
834 #endif /* #ifdef CONFIG_PREEMPT_RCU */
835 
836 #ifdef CONFIG_TASKS_RCU
837 	unsigned long			rcu_tasks_nvcsw;
838 	u8				rcu_tasks_holdout;
839 	u8				rcu_tasks_idx;
840 	int				rcu_tasks_idle_cpu;
841 	struct list_head		rcu_tasks_holdout_list;
842 #endif /* #ifdef CONFIG_TASKS_RCU */
843 
844 #ifdef CONFIG_TASKS_TRACE_RCU
845 	int				trc_reader_nesting;
846 	int				trc_ipi_to_cpu;
847 	union rcu_special		trc_reader_special;
848 	bool				trc_reader_checked;
849 	struct list_head		trc_holdout_list;
850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851 
852 	struct sched_info		sched_info;
853 
854 	struct list_head		tasks;
855 #ifdef CONFIG_SMP
856 	struct plist_node		pushable_tasks;
857 	struct rb_node			pushable_dl_tasks;
858 #endif
859 
860 	struct mm_struct		*mm;
861 	struct mm_struct		*active_mm;
862 
863 	/* Per-thread vma caching: */
864 	struct vmacache			vmacache;
865 
866 #ifdef SPLIT_RSS_COUNTING
867 	struct task_rss_stat		rss_stat;
868 #endif
869 	int				exit_state;
870 	int				exit_code;
871 	int				exit_signal;
872 	/* The signal sent when the parent dies: */
873 	int				pdeath_signal;
874 	/* JOBCTL_*, siglock protected: */
875 	unsigned long			jobctl;
876 
877 	/* Used for emulating ABI behavior of previous Linux versions: */
878 	unsigned int			personality;
879 
880 	/* Scheduler bits, serialized by scheduler locks: */
881 	unsigned			sched_reset_on_fork:1;
882 	unsigned			sched_contributes_to_load:1;
883 	unsigned			sched_migrated:1;
884 #ifdef CONFIG_PSI
885 	unsigned			sched_psi_wake_requeue:1;
886 #endif
887 
888 	/* Force alignment to the next boundary: */
889 	unsigned			:0;
890 
891 	/* Unserialized, strictly 'current' */
892 
893 	/*
894 	 * This field must not be in the scheduler word above due to wakelist
895 	 * queueing no longer being serialized by p->on_cpu. However:
896 	 *
897 	 * p->XXX = X;			ttwu()
898 	 * schedule()			  if (p->on_rq && ..) // false
899 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
900 	 *   deactivate_task()		      ttwu_queue_wakelist())
901 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
902 	 *
903 	 * guarantees all stores of 'current' are visible before
904 	 * ->sched_remote_wakeup gets used, so it can be in this word.
905 	 */
906 	unsigned			sched_remote_wakeup:1;
907 
908 	/* Bit to tell LSMs we're in execve(): */
909 	unsigned			in_execve:1;
910 	unsigned			in_iowait:1;
911 #ifndef TIF_RESTORE_SIGMASK
912 	unsigned			restore_sigmask:1;
913 #endif
914 #ifdef CONFIG_MEMCG
915 	unsigned			in_user_fault:1;
916 #endif
917 #ifdef CONFIG_COMPAT_BRK
918 	unsigned			brk_randomized:1;
919 #endif
920 #ifdef CONFIG_CGROUPS
921 	/* disallow userland-initiated cgroup migration */
922 	unsigned			no_cgroup_migration:1;
923 	/* task is frozen/stopped (used by the cgroup freezer) */
924 	unsigned			frozen:1;
925 #endif
926 #ifdef CONFIG_BLK_CGROUP
927 	unsigned			use_memdelay:1;
928 #endif
929 #ifdef CONFIG_PSI
930 	/* Stalled due to lack of memory */
931 	unsigned			in_memstall:1;
932 #endif
933 #ifdef CONFIG_PAGE_OWNER
934 	/* Used by page_owner=on to detect recursion in page tracking. */
935 	unsigned			in_page_owner:1;
936 #endif
937 #ifdef CONFIG_EVENTFD
938 	/* Recursion prevention for eventfd_signal() */
939 	unsigned			in_eventfd_signal:1;
940 #endif
941 #ifdef CONFIG_IOMMU_SVA
942 	unsigned			pasid_activated:1;
943 #endif
944 
945 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
946 
947 	struct restart_block		restart_block;
948 
949 	pid_t				pid;
950 	pid_t				tgid;
951 
952 #ifdef CONFIG_STACKPROTECTOR
953 	/* Canary value for the -fstack-protector GCC feature: */
954 	unsigned long			stack_canary;
955 #endif
956 	/*
957 	 * Pointers to the (original) parent process, youngest child, younger sibling,
958 	 * older sibling, respectively.  (p->father can be replaced with
959 	 * p->real_parent->pid)
960 	 */
961 
962 	/* Real parent process: */
963 	struct task_struct __rcu	*real_parent;
964 
965 	/* Recipient of SIGCHLD, wait4() reports: */
966 	struct task_struct __rcu	*parent;
967 
968 	/*
969 	 * Children/sibling form the list of natural children:
970 	 */
971 	struct list_head		children;
972 	struct list_head		sibling;
973 	struct task_struct		*group_leader;
974 
975 	/*
976 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
977 	 *
978 	 * This includes both natural children and PTRACE_ATTACH targets.
979 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
980 	 */
981 	struct list_head		ptraced;
982 	struct list_head		ptrace_entry;
983 
984 	/* PID/PID hash table linkage. */
985 	struct pid			*thread_pid;
986 	struct hlist_node		pid_links[PIDTYPE_MAX];
987 	struct list_head		thread_group;
988 	struct list_head		thread_node;
989 
990 	struct completion		*vfork_done;
991 
992 	/* CLONE_CHILD_SETTID: */
993 	int __user			*set_child_tid;
994 
995 	/* CLONE_CHILD_CLEARTID: */
996 	int __user			*clear_child_tid;
997 
998 	/* PF_KTHREAD | PF_IO_WORKER */
999 	void				*worker_private;
1000 
1001 	u64				utime;
1002 	u64				stime;
1003 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1004 	u64				utimescaled;
1005 	u64				stimescaled;
1006 #endif
1007 	u64				gtime;
1008 	struct prev_cputime		prev_cputime;
1009 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1010 	struct vtime			vtime;
1011 #endif
1012 
1013 #ifdef CONFIG_NO_HZ_FULL
1014 	atomic_t			tick_dep_mask;
1015 #endif
1016 	/* Context switch counts: */
1017 	unsigned long			nvcsw;
1018 	unsigned long			nivcsw;
1019 
1020 	/* Monotonic time in nsecs: */
1021 	u64				start_time;
1022 
1023 	/* Boot based time in nsecs: */
1024 	u64				start_boottime;
1025 
1026 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1027 	unsigned long			min_flt;
1028 	unsigned long			maj_flt;
1029 
1030 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1031 	struct posix_cputimers		posix_cputimers;
1032 
1033 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1034 	struct posix_cputimers_work	posix_cputimers_work;
1035 #endif
1036 
1037 	/* Process credentials: */
1038 
1039 	/* Tracer's credentials at attach: */
1040 	const struct cred __rcu		*ptracer_cred;
1041 
1042 	/* Objective and real subjective task credentials (COW): */
1043 	const struct cred __rcu		*real_cred;
1044 
1045 	/* Effective (overridable) subjective task credentials (COW): */
1046 	const struct cred __rcu		*cred;
1047 
1048 #ifdef CONFIG_KEYS
1049 	/* Cached requested key. */
1050 	struct key			*cached_requested_key;
1051 #endif
1052 
1053 	/*
1054 	 * executable name, excluding path.
1055 	 *
1056 	 * - normally initialized setup_new_exec()
1057 	 * - access it with [gs]et_task_comm()
1058 	 * - lock it with task_lock()
1059 	 */
1060 	char				comm[TASK_COMM_LEN];
1061 
1062 	struct nameidata		*nameidata;
1063 
1064 #ifdef CONFIG_SYSVIPC
1065 	struct sysv_sem			sysvsem;
1066 	struct sysv_shm			sysvshm;
1067 #endif
1068 #ifdef CONFIG_DETECT_HUNG_TASK
1069 	unsigned long			last_switch_count;
1070 	unsigned long			last_switch_time;
1071 #endif
1072 	/* Filesystem information: */
1073 	struct fs_struct		*fs;
1074 
1075 	/* Open file information: */
1076 	struct files_struct		*files;
1077 
1078 #ifdef CONFIG_IO_URING
1079 	struct io_uring_task		*io_uring;
1080 #endif
1081 
1082 	/* Namespaces: */
1083 	struct nsproxy			*nsproxy;
1084 
1085 	/* Signal handlers: */
1086 	struct signal_struct		*signal;
1087 	struct sighand_struct __rcu		*sighand;
1088 	sigset_t			blocked;
1089 	sigset_t			real_blocked;
1090 	/* Restored if set_restore_sigmask() was used: */
1091 	sigset_t			saved_sigmask;
1092 	struct sigpending		pending;
1093 	unsigned long			sas_ss_sp;
1094 	size_t				sas_ss_size;
1095 	unsigned int			sas_ss_flags;
1096 
1097 	struct callback_head		*task_works;
1098 
1099 #ifdef CONFIG_AUDIT
1100 #ifdef CONFIG_AUDITSYSCALL
1101 	struct audit_context		*audit_context;
1102 #endif
1103 	kuid_t				loginuid;
1104 	unsigned int			sessionid;
1105 #endif
1106 	struct seccomp			seccomp;
1107 	struct syscall_user_dispatch	syscall_dispatch;
1108 
1109 	/* Thread group tracking: */
1110 	u64				parent_exec_id;
1111 	u64				self_exec_id;
1112 
1113 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1114 	spinlock_t			alloc_lock;
1115 
1116 	/* Protection of the PI data structures: */
1117 	raw_spinlock_t			pi_lock;
1118 
1119 	struct wake_q_node		wake_q;
1120 
1121 #ifdef CONFIG_RT_MUTEXES
1122 	/* PI waiters blocked on a rt_mutex held by this task: */
1123 	struct rb_root_cached		pi_waiters;
1124 	/* Updated under owner's pi_lock and rq lock */
1125 	struct task_struct		*pi_top_task;
1126 	/* Deadlock detection and priority inheritance handling: */
1127 	struct rt_mutex_waiter		*pi_blocked_on;
1128 #endif
1129 
1130 #ifdef CONFIG_DEBUG_MUTEXES
1131 	/* Mutex deadlock detection: */
1132 	struct mutex_waiter		*blocked_on;
1133 #endif
1134 
1135 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1136 	int				non_block_count;
1137 #endif
1138 
1139 #ifdef CONFIG_TRACE_IRQFLAGS
1140 	struct irqtrace_events		irqtrace;
1141 	unsigned int			hardirq_threaded;
1142 	u64				hardirq_chain_key;
1143 	int				softirqs_enabled;
1144 	int				softirq_context;
1145 	int				irq_config;
1146 #endif
1147 #ifdef CONFIG_PREEMPT_RT
1148 	int				softirq_disable_cnt;
1149 #endif
1150 
1151 #ifdef CONFIG_LOCKDEP
1152 # define MAX_LOCK_DEPTH			48UL
1153 	u64				curr_chain_key;
1154 	int				lockdep_depth;
1155 	unsigned int			lockdep_recursion;
1156 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1157 #endif
1158 
1159 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1160 	unsigned int			in_ubsan;
1161 #endif
1162 
1163 	/* Journalling filesystem info: */
1164 	void				*journal_info;
1165 
1166 	/* Stacked block device info: */
1167 	struct bio_list			*bio_list;
1168 
1169 	/* Stack plugging: */
1170 	struct blk_plug			*plug;
1171 
1172 	/* VM state: */
1173 	struct reclaim_state		*reclaim_state;
1174 
1175 	struct backing_dev_info		*backing_dev_info;
1176 
1177 	struct io_context		*io_context;
1178 
1179 #ifdef CONFIG_COMPACTION
1180 	struct capture_control		*capture_control;
1181 #endif
1182 	/* Ptrace state: */
1183 	unsigned long			ptrace_message;
1184 	kernel_siginfo_t		*last_siginfo;
1185 
1186 	struct task_io_accounting	ioac;
1187 #ifdef CONFIG_PSI
1188 	/* Pressure stall state */
1189 	unsigned int			psi_flags;
1190 #endif
1191 #ifdef CONFIG_TASK_XACCT
1192 	/* Accumulated RSS usage: */
1193 	u64				acct_rss_mem1;
1194 	/* Accumulated virtual memory usage: */
1195 	u64				acct_vm_mem1;
1196 	/* stime + utime since last update: */
1197 	u64				acct_timexpd;
1198 #endif
1199 #ifdef CONFIG_CPUSETS
1200 	/* Protected by ->alloc_lock: */
1201 	nodemask_t			mems_allowed;
1202 	/* Sequence number to catch updates: */
1203 	seqcount_spinlock_t		mems_allowed_seq;
1204 	int				cpuset_mem_spread_rotor;
1205 	int				cpuset_slab_spread_rotor;
1206 #endif
1207 #ifdef CONFIG_CGROUPS
1208 	/* Control Group info protected by css_set_lock: */
1209 	struct css_set __rcu		*cgroups;
1210 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1211 	struct list_head		cg_list;
1212 #endif
1213 #ifdef CONFIG_X86_CPU_RESCTRL
1214 	u32				closid;
1215 	u32				rmid;
1216 #endif
1217 #ifdef CONFIG_FUTEX
1218 	struct robust_list_head __user	*robust_list;
1219 #ifdef CONFIG_COMPAT
1220 	struct compat_robust_list_head __user *compat_robust_list;
1221 #endif
1222 	struct list_head		pi_state_list;
1223 	struct futex_pi_state		*pi_state_cache;
1224 	struct mutex			futex_exit_mutex;
1225 	unsigned int			futex_state;
1226 #endif
1227 #ifdef CONFIG_PERF_EVENTS
1228 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1229 	struct mutex			perf_event_mutex;
1230 	struct list_head		perf_event_list;
1231 #endif
1232 #ifdef CONFIG_DEBUG_PREEMPT
1233 	unsigned long			preempt_disable_ip;
1234 #endif
1235 #ifdef CONFIG_NUMA
1236 	/* Protected by alloc_lock: */
1237 	struct mempolicy		*mempolicy;
1238 	short				il_prev;
1239 	short				pref_node_fork;
1240 #endif
1241 #ifdef CONFIG_NUMA_BALANCING
1242 	int				numa_scan_seq;
1243 	unsigned int			numa_scan_period;
1244 	unsigned int			numa_scan_period_max;
1245 	int				numa_preferred_nid;
1246 	unsigned long			numa_migrate_retry;
1247 	/* Migration stamp: */
1248 	u64				node_stamp;
1249 	u64				last_task_numa_placement;
1250 	u64				last_sum_exec_runtime;
1251 	struct callback_head		numa_work;
1252 
1253 	/*
1254 	 * This pointer is only modified for current in syscall and
1255 	 * pagefault context (and for tasks being destroyed), so it can be read
1256 	 * from any of the following contexts:
1257 	 *  - RCU read-side critical section
1258 	 *  - current->numa_group from everywhere
1259 	 *  - task's runqueue locked, task not running
1260 	 */
1261 	struct numa_group __rcu		*numa_group;
1262 
1263 	/*
1264 	 * numa_faults is an array split into four regions:
1265 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1266 	 * in this precise order.
1267 	 *
1268 	 * faults_memory: Exponential decaying average of faults on a per-node
1269 	 * basis. Scheduling placement decisions are made based on these
1270 	 * counts. The values remain static for the duration of a PTE scan.
1271 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1272 	 * hinting fault was incurred.
1273 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1274 	 * during the current scan window. When the scan completes, the counts
1275 	 * in faults_memory and faults_cpu decay and these values are copied.
1276 	 */
1277 	unsigned long			*numa_faults;
1278 	unsigned long			total_numa_faults;
1279 
1280 	/*
1281 	 * numa_faults_locality tracks if faults recorded during the last
1282 	 * scan window were remote/local or failed to migrate. The task scan
1283 	 * period is adapted based on the locality of the faults with different
1284 	 * weights depending on whether they were shared or private faults
1285 	 */
1286 	unsigned long			numa_faults_locality[3];
1287 
1288 	unsigned long			numa_pages_migrated;
1289 #endif /* CONFIG_NUMA_BALANCING */
1290 
1291 #ifdef CONFIG_RSEQ
1292 	struct rseq __user *rseq;
1293 	u32 rseq_sig;
1294 	/*
1295 	 * RmW on rseq_event_mask must be performed atomically
1296 	 * with respect to preemption.
1297 	 */
1298 	unsigned long rseq_event_mask;
1299 #endif
1300 
1301 	struct tlbflush_unmap_batch	tlb_ubc;
1302 
1303 	union {
1304 		refcount_t		rcu_users;
1305 		struct rcu_head		rcu;
1306 	};
1307 
1308 	/* Cache last used pipe for splice(): */
1309 	struct pipe_inode_info		*splice_pipe;
1310 
1311 	struct page_frag		task_frag;
1312 
1313 #ifdef CONFIG_TASK_DELAY_ACCT
1314 	struct task_delay_info		*delays;
1315 #endif
1316 
1317 #ifdef CONFIG_FAULT_INJECTION
1318 	int				make_it_fail;
1319 	unsigned int			fail_nth;
1320 #endif
1321 	/*
1322 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1323 	 * balance_dirty_pages() for a dirty throttling pause:
1324 	 */
1325 	int				nr_dirtied;
1326 	int				nr_dirtied_pause;
1327 	/* Start of a write-and-pause period: */
1328 	unsigned long			dirty_paused_when;
1329 
1330 #ifdef CONFIG_LATENCYTOP
1331 	int				latency_record_count;
1332 	struct latency_record		latency_record[LT_SAVECOUNT];
1333 #endif
1334 	/*
1335 	 * Time slack values; these are used to round up poll() and
1336 	 * select() etc timeout values. These are in nanoseconds.
1337 	 */
1338 	u64				timer_slack_ns;
1339 	u64				default_timer_slack_ns;
1340 
1341 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1342 	unsigned int			kasan_depth;
1343 #endif
1344 
1345 #ifdef CONFIG_KCSAN
1346 	struct kcsan_ctx		kcsan_ctx;
1347 #ifdef CONFIG_TRACE_IRQFLAGS
1348 	struct irqtrace_events		kcsan_save_irqtrace;
1349 #endif
1350 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1351 	int				kcsan_stack_depth;
1352 #endif
1353 #endif
1354 
1355 #if IS_ENABLED(CONFIG_KUNIT)
1356 	struct kunit			*kunit_test;
1357 #endif
1358 
1359 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1360 	/* Index of current stored address in ret_stack: */
1361 	int				curr_ret_stack;
1362 	int				curr_ret_depth;
1363 
1364 	/* Stack of return addresses for return function tracing: */
1365 	struct ftrace_ret_stack		*ret_stack;
1366 
1367 	/* Timestamp for last schedule: */
1368 	unsigned long long		ftrace_timestamp;
1369 
1370 	/*
1371 	 * Number of functions that haven't been traced
1372 	 * because of depth overrun:
1373 	 */
1374 	atomic_t			trace_overrun;
1375 
1376 	/* Pause tracing: */
1377 	atomic_t			tracing_graph_pause;
1378 #endif
1379 
1380 #ifdef CONFIG_TRACING
1381 	/* State flags for use by tracers: */
1382 	unsigned long			trace;
1383 
1384 	/* Bitmask and counter of trace recursion: */
1385 	unsigned long			trace_recursion;
1386 #endif /* CONFIG_TRACING */
1387 
1388 #ifdef CONFIG_KCOV
1389 	/* See kernel/kcov.c for more details. */
1390 
1391 	/* Coverage collection mode enabled for this task (0 if disabled): */
1392 	unsigned int			kcov_mode;
1393 
1394 	/* Size of the kcov_area: */
1395 	unsigned int			kcov_size;
1396 
1397 	/* Buffer for coverage collection: */
1398 	void				*kcov_area;
1399 
1400 	/* KCOV descriptor wired with this task or NULL: */
1401 	struct kcov			*kcov;
1402 
1403 	/* KCOV common handle for remote coverage collection: */
1404 	u64				kcov_handle;
1405 
1406 	/* KCOV sequence number: */
1407 	int				kcov_sequence;
1408 
1409 	/* Collect coverage from softirq context: */
1410 	unsigned int			kcov_softirq;
1411 #endif
1412 
1413 #ifdef CONFIG_MEMCG
1414 	struct mem_cgroup		*memcg_in_oom;
1415 	gfp_t				memcg_oom_gfp_mask;
1416 	int				memcg_oom_order;
1417 
1418 	/* Number of pages to reclaim on returning to userland: */
1419 	unsigned int			memcg_nr_pages_over_high;
1420 
1421 	/* Used by memcontrol for targeted memcg charge: */
1422 	struct mem_cgroup		*active_memcg;
1423 #endif
1424 
1425 #ifdef CONFIG_BLK_CGROUP
1426 	struct request_queue		*throttle_queue;
1427 #endif
1428 
1429 #ifdef CONFIG_UPROBES
1430 	struct uprobe_task		*utask;
1431 #endif
1432 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1433 	unsigned int			sequential_io;
1434 	unsigned int			sequential_io_avg;
1435 #endif
1436 	struct kmap_ctrl		kmap_ctrl;
1437 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1438 	unsigned long			task_state_change;
1439 # ifdef CONFIG_PREEMPT_RT
1440 	unsigned long			saved_state_change;
1441 # endif
1442 #endif
1443 	int				pagefault_disabled;
1444 #ifdef CONFIG_MMU
1445 	struct task_struct		*oom_reaper_list;
1446 #endif
1447 #ifdef CONFIG_VMAP_STACK
1448 	struct vm_struct		*stack_vm_area;
1449 #endif
1450 #ifdef CONFIG_THREAD_INFO_IN_TASK
1451 	/* A live task holds one reference: */
1452 	refcount_t			stack_refcount;
1453 #endif
1454 #ifdef CONFIG_LIVEPATCH
1455 	int patch_state;
1456 #endif
1457 #ifdef CONFIG_SECURITY
1458 	/* Used by LSM modules for access restriction: */
1459 	void				*security;
1460 #endif
1461 #ifdef CONFIG_BPF_SYSCALL
1462 	/* Used by BPF task local storage */
1463 	struct bpf_local_storage __rcu	*bpf_storage;
1464 	/* Used for BPF run context */
1465 	struct bpf_run_ctx		*bpf_ctx;
1466 #endif
1467 
1468 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1469 	unsigned long			lowest_stack;
1470 	unsigned long			prev_lowest_stack;
1471 #endif
1472 
1473 #ifdef CONFIG_X86_MCE
1474 	void __user			*mce_vaddr;
1475 	__u64				mce_kflags;
1476 	u64				mce_addr;
1477 	__u64				mce_ripv : 1,
1478 					mce_whole_page : 1,
1479 					__mce_reserved : 62;
1480 	struct callback_head		mce_kill_me;
1481 	int				mce_count;
1482 #endif
1483 
1484 #ifdef CONFIG_KRETPROBES
1485 	struct llist_head               kretprobe_instances;
1486 #endif
1487 #ifdef CONFIG_RETHOOK
1488 	struct llist_head               rethooks;
1489 #endif
1490 
1491 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1492 	/*
1493 	 * If L1D flush is supported on mm context switch
1494 	 * then we use this callback head to queue kill work
1495 	 * to kill tasks that are not running on SMT disabled
1496 	 * cores
1497 	 */
1498 	struct callback_head		l1d_flush_kill;
1499 #endif
1500 
1501 	/*
1502 	 * New fields for task_struct should be added above here, so that
1503 	 * they are included in the randomized portion of task_struct.
1504 	 */
1505 	randomized_struct_fields_end
1506 
1507 	/* CPU-specific state of this task: */
1508 	struct thread_struct		thread;
1509 
1510 	/*
1511 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1512 	 * structure.  It *MUST* be at the end of 'task_struct'.
1513 	 *
1514 	 * Do not put anything below here!
1515 	 */
1516 };
1517 
1518 static inline struct pid *task_pid(struct task_struct *task)
1519 {
1520 	return task->thread_pid;
1521 }
1522 
1523 /*
1524  * the helpers to get the task's different pids as they are seen
1525  * from various namespaces
1526  *
1527  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1528  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1529  *                     current.
1530  * task_xid_nr_ns()  : id seen from the ns specified;
1531  *
1532  * see also pid_nr() etc in include/linux/pid.h
1533  */
1534 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1535 
1536 static inline pid_t task_pid_nr(struct task_struct *tsk)
1537 {
1538 	return tsk->pid;
1539 }
1540 
1541 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1542 {
1543 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1544 }
1545 
1546 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1547 {
1548 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1549 }
1550 
1551 
1552 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1553 {
1554 	return tsk->tgid;
1555 }
1556 
1557 /**
1558  * pid_alive - check that a task structure is not stale
1559  * @p: Task structure to be checked.
1560  *
1561  * Test if a process is not yet dead (at most zombie state)
1562  * If pid_alive fails, then pointers within the task structure
1563  * can be stale and must not be dereferenced.
1564  *
1565  * Return: 1 if the process is alive. 0 otherwise.
1566  */
1567 static inline int pid_alive(const struct task_struct *p)
1568 {
1569 	return p->thread_pid != NULL;
1570 }
1571 
1572 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1573 {
1574 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1575 }
1576 
1577 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1578 {
1579 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1580 }
1581 
1582 
1583 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1584 {
1585 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1586 }
1587 
1588 static inline pid_t task_session_vnr(struct task_struct *tsk)
1589 {
1590 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1591 }
1592 
1593 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1594 {
1595 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1596 }
1597 
1598 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1599 {
1600 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1601 }
1602 
1603 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1604 {
1605 	pid_t pid = 0;
1606 
1607 	rcu_read_lock();
1608 	if (pid_alive(tsk))
1609 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1610 	rcu_read_unlock();
1611 
1612 	return pid;
1613 }
1614 
1615 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1616 {
1617 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1618 }
1619 
1620 /* Obsolete, do not use: */
1621 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1622 {
1623 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1624 }
1625 
1626 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1627 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1628 
1629 static inline unsigned int __task_state_index(unsigned int tsk_state,
1630 					      unsigned int tsk_exit_state)
1631 {
1632 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1633 
1634 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1635 
1636 	if (tsk_state == TASK_IDLE)
1637 		state = TASK_REPORT_IDLE;
1638 
1639 	/*
1640 	 * We're lying here, but rather than expose a completely new task state
1641 	 * to userspace, we can make this appear as if the task has gone through
1642 	 * a regular rt_mutex_lock() call.
1643 	 */
1644 	if (tsk_state == TASK_RTLOCK_WAIT)
1645 		state = TASK_UNINTERRUPTIBLE;
1646 
1647 	return fls(state);
1648 }
1649 
1650 static inline unsigned int task_state_index(struct task_struct *tsk)
1651 {
1652 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1653 }
1654 
1655 static inline char task_index_to_char(unsigned int state)
1656 {
1657 	static const char state_char[] = "RSDTtXZPI";
1658 
1659 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1660 
1661 	return state_char[state];
1662 }
1663 
1664 static inline char task_state_to_char(struct task_struct *tsk)
1665 {
1666 	return task_index_to_char(task_state_index(tsk));
1667 }
1668 
1669 /**
1670  * is_global_init - check if a task structure is init. Since init
1671  * is free to have sub-threads we need to check tgid.
1672  * @tsk: Task structure to be checked.
1673  *
1674  * Check if a task structure is the first user space task the kernel created.
1675  *
1676  * Return: 1 if the task structure is init. 0 otherwise.
1677  */
1678 static inline int is_global_init(struct task_struct *tsk)
1679 {
1680 	return task_tgid_nr(tsk) == 1;
1681 }
1682 
1683 extern struct pid *cad_pid;
1684 
1685 /*
1686  * Per process flags
1687  */
1688 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1689 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1690 #define PF_EXITING		0x00000004	/* Getting shut down */
1691 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1692 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1693 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1694 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1695 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1696 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1697 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1698 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1699 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1700 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1701 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1702 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1703 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1704 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1705 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1706 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1707 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1708 						 * I am cleaning dirty pages from some other bdi. */
1709 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1710 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1711 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1712 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1713 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1714 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1715 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1716 
1717 /*
1718  * Only the _current_ task can read/write to tsk->flags, but other
1719  * tasks can access tsk->flags in readonly mode for example
1720  * with tsk_used_math (like during threaded core dumping).
1721  * There is however an exception to this rule during ptrace
1722  * or during fork: the ptracer task is allowed to write to the
1723  * child->flags of its traced child (same goes for fork, the parent
1724  * can write to the child->flags), because we're guaranteed the
1725  * child is not running and in turn not changing child->flags
1726  * at the same time the parent does it.
1727  */
1728 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1729 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1730 #define clear_used_math()			clear_stopped_child_used_math(current)
1731 #define set_used_math()				set_stopped_child_used_math(current)
1732 
1733 #define conditional_stopped_child_used_math(condition, child) \
1734 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1735 
1736 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1737 
1738 #define copy_to_stopped_child_used_math(child) \
1739 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1740 
1741 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1742 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1743 #define used_math()				tsk_used_math(current)
1744 
1745 static __always_inline bool is_percpu_thread(void)
1746 {
1747 #ifdef CONFIG_SMP
1748 	return (current->flags & PF_NO_SETAFFINITY) &&
1749 		(current->nr_cpus_allowed  == 1);
1750 #else
1751 	return true;
1752 #endif
1753 }
1754 
1755 /* Per-process atomic flags. */
1756 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1757 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1758 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1759 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1760 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1761 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1762 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1763 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1764 
1765 #define TASK_PFA_TEST(name, func)					\
1766 	static inline bool task_##func(struct task_struct *p)		\
1767 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1768 
1769 #define TASK_PFA_SET(name, func)					\
1770 	static inline void task_set_##func(struct task_struct *p)	\
1771 	{ set_bit(PFA_##name, &p->atomic_flags); }
1772 
1773 #define TASK_PFA_CLEAR(name, func)					\
1774 	static inline void task_clear_##func(struct task_struct *p)	\
1775 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1776 
1777 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1778 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1779 
1780 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1781 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1782 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1783 
1784 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1785 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1786 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1787 
1788 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1789 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1790 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1791 
1792 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1793 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1794 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1795 
1796 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1797 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1798 
1799 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1800 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1801 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1802 
1803 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1804 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1805 
1806 static inline void
1807 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1808 {
1809 	current->flags &= ~flags;
1810 	current->flags |= orig_flags & flags;
1811 }
1812 
1813 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1814 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1815 #ifdef CONFIG_SMP
1816 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1817 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1818 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1819 extern void release_user_cpus_ptr(struct task_struct *p);
1820 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1821 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1822 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1823 #else
1824 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1825 {
1826 }
1827 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1828 {
1829 	if (!cpumask_test_cpu(0, new_mask))
1830 		return -EINVAL;
1831 	return 0;
1832 }
1833 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1834 {
1835 	if (src->user_cpus_ptr)
1836 		return -EINVAL;
1837 	return 0;
1838 }
1839 static inline void release_user_cpus_ptr(struct task_struct *p)
1840 {
1841 	WARN_ON(p->user_cpus_ptr);
1842 }
1843 
1844 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1845 {
1846 	return 0;
1847 }
1848 #endif
1849 
1850 extern int yield_to(struct task_struct *p, bool preempt);
1851 extern void set_user_nice(struct task_struct *p, long nice);
1852 extern int task_prio(const struct task_struct *p);
1853 
1854 /**
1855  * task_nice - return the nice value of a given task.
1856  * @p: the task in question.
1857  *
1858  * Return: The nice value [ -20 ... 0 ... 19 ].
1859  */
1860 static inline int task_nice(const struct task_struct *p)
1861 {
1862 	return PRIO_TO_NICE((p)->static_prio);
1863 }
1864 
1865 extern int can_nice(const struct task_struct *p, const int nice);
1866 extern int task_curr(const struct task_struct *p);
1867 extern int idle_cpu(int cpu);
1868 extern int available_idle_cpu(int cpu);
1869 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1870 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1871 extern void sched_set_fifo(struct task_struct *p);
1872 extern void sched_set_fifo_low(struct task_struct *p);
1873 extern void sched_set_normal(struct task_struct *p, int nice);
1874 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1875 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1876 extern struct task_struct *idle_task(int cpu);
1877 
1878 /**
1879  * is_idle_task - is the specified task an idle task?
1880  * @p: the task in question.
1881  *
1882  * Return: 1 if @p is an idle task. 0 otherwise.
1883  */
1884 static __always_inline bool is_idle_task(const struct task_struct *p)
1885 {
1886 	return !!(p->flags & PF_IDLE);
1887 }
1888 
1889 extern struct task_struct *curr_task(int cpu);
1890 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1891 
1892 void yield(void);
1893 
1894 union thread_union {
1895 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1896 	struct task_struct task;
1897 #endif
1898 #ifndef CONFIG_THREAD_INFO_IN_TASK
1899 	struct thread_info thread_info;
1900 #endif
1901 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1902 };
1903 
1904 #ifndef CONFIG_THREAD_INFO_IN_TASK
1905 extern struct thread_info init_thread_info;
1906 #endif
1907 
1908 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1909 
1910 #ifdef CONFIG_THREAD_INFO_IN_TASK
1911 # define task_thread_info(task)	(&(task)->thread_info)
1912 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1913 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1914 #endif
1915 
1916 /*
1917  * find a task by one of its numerical ids
1918  *
1919  * find_task_by_pid_ns():
1920  *      finds a task by its pid in the specified namespace
1921  * find_task_by_vpid():
1922  *      finds a task by its virtual pid
1923  *
1924  * see also find_vpid() etc in include/linux/pid.h
1925  */
1926 
1927 extern struct task_struct *find_task_by_vpid(pid_t nr);
1928 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1929 
1930 /*
1931  * find a task by its virtual pid and get the task struct
1932  */
1933 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1934 
1935 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1936 extern int wake_up_process(struct task_struct *tsk);
1937 extern void wake_up_new_task(struct task_struct *tsk);
1938 
1939 #ifdef CONFIG_SMP
1940 extern void kick_process(struct task_struct *tsk);
1941 #else
1942 static inline void kick_process(struct task_struct *tsk) { }
1943 #endif
1944 
1945 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1946 
1947 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1948 {
1949 	__set_task_comm(tsk, from, false);
1950 }
1951 
1952 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1953 #define get_task_comm(buf, tsk) ({			\
1954 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1955 	__get_task_comm(buf, sizeof(buf), tsk);		\
1956 })
1957 
1958 #ifdef CONFIG_SMP
1959 static __always_inline void scheduler_ipi(void)
1960 {
1961 	/*
1962 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1963 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1964 	 * this IPI.
1965 	 */
1966 	preempt_fold_need_resched();
1967 }
1968 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1969 #else
1970 static inline void scheduler_ipi(void) { }
1971 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1972 {
1973 	return 1;
1974 }
1975 #endif
1976 
1977 /*
1978  * Set thread flags in other task's structures.
1979  * See asm/thread_info.h for TIF_xxxx flags available:
1980  */
1981 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1982 {
1983 	set_ti_thread_flag(task_thread_info(tsk), flag);
1984 }
1985 
1986 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1987 {
1988 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1989 }
1990 
1991 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1992 					  bool value)
1993 {
1994 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1995 }
1996 
1997 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1998 {
1999 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2000 }
2001 
2002 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2003 {
2004 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2005 }
2006 
2007 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2008 {
2009 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2010 }
2011 
2012 static inline void set_tsk_need_resched(struct task_struct *tsk)
2013 {
2014 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2015 }
2016 
2017 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2018 {
2019 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2020 }
2021 
2022 static inline int test_tsk_need_resched(struct task_struct *tsk)
2023 {
2024 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2025 }
2026 
2027 /*
2028  * cond_resched() and cond_resched_lock(): latency reduction via
2029  * explicit rescheduling in places that are safe. The return
2030  * value indicates whether a reschedule was done in fact.
2031  * cond_resched_lock() will drop the spinlock before scheduling,
2032  */
2033 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2034 extern int __cond_resched(void);
2035 
2036 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2037 
2038 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2039 
2040 static __always_inline int _cond_resched(void)
2041 {
2042 	return static_call_mod(cond_resched)();
2043 }
2044 
2045 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2046 extern int dynamic_cond_resched(void);
2047 
2048 static __always_inline int _cond_resched(void)
2049 {
2050 	return dynamic_cond_resched();
2051 }
2052 
2053 #else
2054 
2055 static inline int _cond_resched(void)
2056 {
2057 	return __cond_resched();
2058 }
2059 
2060 #endif /* CONFIG_PREEMPT_DYNAMIC */
2061 
2062 #else
2063 
2064 static inline int _cond_resched(void) { return 0; }
2065 
2066 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2067 
2068 #define cond_resched() ({			\
2069 	__might_resched(__FILE__, __LINE__, 0);	\
2070 	_cond_resched();			\
2071 })
2072 
2073 extern int __cond_resched_lock(spinlock_t *lock);
2074 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2075 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2076 
2077 #define MIGHT_RESCHED_RCU_SHIFT		8
2078 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2079 
2080 #ifndef CONFIG_PREEMPT_RT
2081 /*
2082  * Non RT kernels have an elevated preempt count due to the held lock,
2083  * but are not allowed to be inside a RCU read side critical section
2084  */
2085 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2086 #else
2087 /*
2088  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2089  * cond_resched*lock() has to take that into account because it checks for
2090  * preempt_count() and rcu_preempt_depth().
2091  */
2092 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2093 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2094 #endif
2095 
2096 #define cond_resched_lock(lock) ({						\
2097 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2098 	__cond_resched_lock(lock);						\
2099 })
2100 
2101 #define cond_resched_rwlock_read(lock) ({					\
2102 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2103 	__cond_resched_rwlock_read(lock);					\
2104 })
2105 
2106 #define cond_resched_rwlock_write(lock) ({					\
2107 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2108 	__cond_resched_rwlock_write(lock);					\
2109 })
2110 
2111 static inline void cond_resched_rcu(void)
2112 {
2113 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2114 	rcu_read_unlock();
2115 	cond_resched();
2116 	rcu_read_lock();
2117 #endif
2118 }
2119 
2120 /*
2121  * Does a critical section need to be broken due to another
2122  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2123  * but a general need for low latency)
2124  */
2125 static inline int spin_needbreak(spinlock_t *lock)
2126 {
2127 #ifdef CONFIG_PREEMPTION
2128 	return spin_is_contended(lock);
2129 #else
2130 	return 0;
2131 #endif
2132 }
2133 
2134 /*
2135  * Check if a rwlock is contended.
2136  * Returns non-zero if there is another task waiting on the rwlock.
2137  * Returns zero if the lock is not contended or the system / underlying
2138  * rwlock implementation does not support contention detection.
2139  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2140  * for low latency.
2141  */
2142 static inline int rwlock_needbreak(rwlock_t *lock)
2143 {
2144 #ifdef CONFIG_PREEMPTION
2145 	return rwlock_is_contended(lock);
2146 #else
2147 	return 0;
2148 #endif
2149 }
2150 
2151 static __always_inline bool need_resched(void)
2152 {
2153 	return unlikely(tif_need_resched());
2154 }
2155 
2156 /*
2157  * Wrappers for p->thread_info->cpu access. No-op on UP.
2158  */
2159 #ifdef CONFIG_SMP
2160 
2161 static inline unsigned int task_cpu(const struct task_struct *p)
2162 {
2163 	return READ_ONCE(task_thread_info(p)->cpu);
2164 }
2165 
2166 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2167 
2168 #else
2169 
2170 static inline unsigned int task_cpu(const struct task_struct *p)
2171 {
2172 	return 0;
2173 }
2174 
2175 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2176 {
2177 }
2178 
2179 #endif /* CONFIG_SMP */
2180 
2181 extern bool sched_task_on_rq(struct task_struct *p);
2182 extern unsigned long get_wchan(struct task_struct *p);
2183 
2184 /*
2185  * In order to reduce various lock holder preemption latencies provide an
2186  * interface to see if a vCPU is currently running or not.
2187  *
2188  * This allows us to terminate optimistic spin loops and block, analogous to
2189  * the native optimistic spin heuristic of testing if the lock owner task is
2190  * running or not.
2191  */
2192 #ifndef vcpu_is_preempted
2193 static inline bool vcpu_is_preempted(int cpu)
2194 {
2195 	return false;
2196 }
2197 #endif
2198 
2199 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2200 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2201 
2202 #ifndef TASK_SIZE_OF
2203 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2204 #endif
2205 
2206 #ifdef CONFIG_SMP
2207 static inline bool owner_on_cpu(struct task_struct *owner)
2208 {
2209 	/*
2210 	 * As lock holder preemption issue, we both skip spinning if
2211 	 * task is not on cpu or its cpu is preempted
2212 	 */
2213 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2214 }
2215 
2216 /* Returns effective CPU energy utilization, as seen by the scheduler */
2217 unsigned long sched_cpu_util(int cpu, unsigned long max);
2218 #endif /* CONFIG_SMP */
2219 
2220 #ifdef CONFIG_RSEQ
2221 
2222 /*
2223  * Map the event mask on the user-space ABI enum rseq_cs_flags
2224  * for direct mask checks.
2225  */
2226 enum rseq_event_mask_bits {
2227 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2228 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2229 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2230 };
2231 
2232 enum rseq_event_mask {
2233 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2234 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2235 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2236 };
2237 
2238 static inline void rseq_set_notify_resume(struct task_struct *t)
2239 {
2240 	if (t->rseq)
2241 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2242 }
2243 
2244 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2245 
2246 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2247 					     struct pt_regs *regs)
2248 {
2249 	if (current->rseq)
2250 		__rseq_handle_notify_resume(ksig, regs);
2251 }
2252 
2253 static inline void rseq_signal_deliver(struct ksignal *ksig,
2254 				       struct pt_regs *regs)
2255 {
2256 	preempt_disable();
2257 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2258 	preempt_enable();
2259 	rseq_handle_notify_resume(ksig, regs);
2260 }
2261 
2262 /* rseq_preempt() requires preemption to be disabled. */
2263 static inline void rseq_preempt(struct task_struct *t)
2264 {
2265 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2266 	rseq_set_notify_resume(t);
2267 }
2268 
2269 /* rseq_migrate() requires preemption to be disabled. */
2270 static inline void rseq_migrate(struct task_struct *t)
2271 {
2272 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2273 	rseq_set_notify_resume(t);
2274 }
2275 
2276 /*
2277  * If parent process has a registered restartable sequences area, the
2278  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2279  */
2280 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2281 {
2282 	if (clone_flags & CLONE_VM) {
2283 		t->rseq = NULL;
2284 		t->rseq_sig = 0;
2285 		t->rseq_event_mask = 0;
2286 	} else {
2287 		t->rseq = current->rseq;
2288 		t->rseq_sig = current->rseq_sig;
2289 		t->rseq_event_mask = current->rseq_event_mask;
2290 	}
2291 }
2292 
2293 static inline void rseq_execve(struct task_struct *t)
2294 {
2295 	t->rseq = NULL;
2296 	t->rseq_sig = 0;
2297 	t->rseq_event_mask = 0;
2298 }
2299 
2300 #else
2301 
2302 static inline void rseq_set_notify_resume(struct task_struct *t)
2303 {
2304 }
2305 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2306 					     struct pt_regs *regs)
2307 {
2308 }
2309 static inline void rseq_signal_deliver(struct ksignal *ksig,
2310 				       struct pt_regs *regs)
2311 {
2312 }
2313 static inline void rseq_preempt(struct task_struct *t)
2314 {
2315 }
2316 static inline void rseq_migrate(struct task_struct *t)
2317 {
2318 }
2319 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2320 {
2321 }
2322 static inline void rseq_execve(struct task_struct *t)
2323 {
2324 }
2325 
2326 #endif
2327 
2328 #ifdef CONFIG_DEBUG_RSEQ
2329 
2330 void rseq_syscall(struct pt_regs *regs);
2331 
2332 #else
2333 
2334 static inline void rseq_syscall(struct pt_regs *regs)
2335 {
2336 }
2337 
2338 #endif
2339 
2340 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2341 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2342 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2343 
2344 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2345 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2346 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2347 
2348 int sched_trace_rq_cpu(struct rq *rq);
2349 int sched_trace_rq_cpu_capacity(struct rq *rq);
2350 int sched_trace_rq_nr_running(struct rq *rq);
2351 
2352 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2353 
2354 #ifdef CONFIG_SCHED_CORE
2355 extern void sched_core_free(struct task_struct *tsk);
2356 extern void sched_core_fork(struct task_struct *p);
2357 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2358 				unsigned long uaddr);
2359 #else
2360 static inline void sched_core_free(struct task_struct *tsk) { }
2361 static inline void sched_core_fork(struct task_struct *p) { }
2362 #endif
2363 
2364 #endif
2365