1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 26 #include <asm/page.h> 27 #include <asm/ptrace.h> 28 #include <asm/cputime.h> 29 30 #include <linux/smp.h> 31 #include <linux/sem.h> 32 #include <linux/signal.h> 33 #include <linux/compiler.h> 34 #include <linux/completion.h> 35 #include <linux/pid.h> 36 #include <linux/percpu.h> 37 #include <linux/topology.h> 38 #include <linux/proportions.h> 39 #include <linux/seccomp.h> 40 #include <linux/rcupdate.h> 41 #include <linux/rculist.h> 42 #include <linux/rtmutex.h> 43 44 #include <linux/time.h> 45 #include <linux/param.h> 46 #include <linux/resource.h> 47 #include <linux/timer.h> 48 #include <linux/hrtimer.h> 49 #include <linux/task_io_accounting.h> 50 #include <linux/latencytop.h> 51 #include <linux/cred.h> 52 #include <linux/llist.h> 53 #include <linux/uidgid.h> 54 #include <linux/gfp.h> 55 56 #include <asm/processor.h> 57 58 struct exec_domain; 59 struct futex_pi_state; 60 struct robust_list_head; 61 struct bio_list; 62 struct fs_struct; 63 struct perf_event_context; 64 struct blk_plug; 65 66 /* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72 /* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82 extern unsigned long avenrun[]; /* Load averages */ 83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85 #define FSHIFT 11 /* nr of bits of precision */ 86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 90 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92 #define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97 extern unsigned long total_forks; 98 extern int nr_threads; 99 DECLARE_PER_CPU(unsigned long, process_counts); 100 extern int nr_processes(void); 101 extern unsigned long nr_running(void); 102 extern unsigned long nr_iowait(void); 103 extern unsigned long nr_iowait_cpu(int cpu); 104 extern unsigned long this_cpu_load(void); 105 106 107 extern void calc_global_load(unsigned long ticks); 108 extern void update_cpu_load_nohz(void); 109 110 /* Notifier for when a task gets migrated to a new CPU */ 111 struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115 }; 116 extern void register_task_migration_notifier(struct notifier_block *n); 117 118 extern unsigned long get_parent_ip(unsigned long addr); 119 120 extern void dump_cpu_task(int cpu); 121 122 struct seq_file; 123 struct cfs_rq; 124 struct task_group; 125 #ifdef CONFIG_SCHED_DEBUG 126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127 extern void proc_sched_set_task(struct task_struct *p); 128 extern void 129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130 #endif 131 132 /* 133 * Task state bitmask. NOTE! These bits are also 134 * encoded in fs/proc/array.c: get_task_state(). 135 * 136 * We have two separate sets of flags: task->state 137 * is about runnability, while task->exit_state are 138 * about the task exiting. Confusing, but this way 139 * modifying one set can't modify the other one by 140 * mistake. 141 */ 142 #define TASK_RUNNING 0 143 #define TASK_INTERRUPTIBLE 1 144 #define TASK_UNINTERRUPTIBLE 2 145 #define __TASK_STOPPED 4 146 #define __TASK_TRACED 8 147 /* in tsk->exit_state */ 148 #define EXIT_ZOMBIE 16 149 #define EXIT_DEAD 32 150 /* in tsk->state again */ 151 #define TASK_DEAD 64 152 #define TASK_WAKEKILL 128 153 #define TASK_WAKING 256 154 #define TASK_PARKED 512 155 #define TASK_STATE_MAX 1024 156 157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 158 159 extern char ___assert_task_state[1 - 2*!!( 160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 161 162 /* Convenience macros for the sake of set_task_state */ 163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 166 167 /* Convenience macros for the sake of wake_up */ 168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 170 171 /* get_task_state() */ 172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 174 __TASK_TRACED) 175 176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 178 #define task_is_dead(task) ((task)->exit_state != 0) 179 #define task_is_stopped_or_traced(task) \ 180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 181 #define task_contributes_to_load(task) \ 182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 183 (task->flags & PF_FROZEN) == 0) 184 185 #define __set_task_state(tsk, state_value) \ 186 do { (tsk)->state = (state_value); } while (0) 187 #define set_task_state(tsk, state_value) \ 188 set_mb((tsk)->state, (state_value)) 189 190 /* 191 * set_current_state() includes a barrier so that the write of current->state 192 * is correctly serialised wrt the caller's subsequent test of whether to 193 * actually sleep: 194 * 195 * set_current_state(TASK_UNINTERRUPTIBLE); 196 * if (do_i_need_to_sleep()) 197 * schedule(); 198 * 199 * If the caller does not need such serialisation then use __set_current_state() 200 */ 201 #define __set_current_state(state_value) \ 202 do { current->state = (state_value); } while (0) 203 #define set_current_state(state_value) \ 204 set_mb(current->state, (state_value)) 205 206 /* Task command name length */ 207 #define TASK_COMM_LEN 16 208 209 #include <linux/spinlock.h> 210 211 /* 212 * This serializes "schedule()" and also protects 213 * the run-queue from deletions/modifications (but 214 * _adding_ to the beginning of the run-queue has 215 * a separate lock). 216 */ 217 extern rwlock_t tasklist_lock; 218 extern spinlock_t mmlist_lock; 219 220 struct task_struct; 221 222 #ifdef CONFIG_PROVE_RCU 223 extern int lockdep_tasklist_lock_is_held(void); 224 #endif /* #ifdef CONFIG_PROVE_RCU */ 225 226 extern void sched_init(void); 227 extern void sched_init_smp(void); 228 extern asmlinkage void schedule_tail(struct task_struct *prev); 229 extern void init_idle(struct task_struct *idle, int cpu); 230 extern void init_idle_bootup_task(struct task_struct *idle); 231 232 extern int runqueue_is_locked(int cpu); 233 234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 235 extern void nohz_balance_enter_idle(int cpu); 236 extern void set_cpu_sd_state_idle(void); 237 extern int get_nohz_timer_target(void); 238 #else 239 static inline void nohz_balance_enter_idle(int cpu) { } 240 static inline void set_cpu_sd_state_idle(void) { } 241 #endif 242 243 /* 244 * Only dump TASK_* tasks. (0 for all tasks) 245 */ 246 extern void show_state_filter(unsigned long state_filter); 247 248 static inline void show_state(void) 249 { 250 show_state_filter(0); 251 } 252 253 extern void show_regs(struct pt_regs *); 254 255 /* 256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 257 * task), SP is the stack pointer of the first frame that should be shown in the back 258 * trace (or NULL if the entire call-chain of the task should be shown). 259 */ 260 extern void show_stack(struct task_struct *task, unsigned long *sp); 261 262 void io_schedule(void); 263 long io_schedule_timeout(long timeout); 264 265 extern void cpu_init (void); 266 extern void trap_init(void); 267 extern void update_process_times(int user); 268 extern void scheduler_tick(void); 269 270 extern void sched_show_task(struct task_struct *p); 271 272 #ifdef CONFIG_LOCKUP_DETECTOR 273 extern void touch_softlockup_watchdog(void); 274 extern void touch_softlockup_watchdog_sync(void); 275 extern void touch_all_softlockup_watchdogs(void); 276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 277 void __user *buffer, 278 size_t *lenp, loff_t *ppos); 279 extern unsigned int softlockup_panic; 280 void lockup_detector_init(void); 281 #else 282 static inline void touch_softlockup_watchdog(void) 283 { 284 } 285 static inline void touch_softlockup_watchdog_sync(void) 286 { 287 } 288 static inline void touch_all_softlockup_watchdogs(void) 289 { 290 } 291 static inline void lockup_detector_init(void) 292 { 293 } 294 #endif 295 296 /* Attach to any functions which should be ignored in wchan output. */ 297 #define __sched __attribute__((__section__(".sched.text"))) 298 299 /* Linker adds these: start and end of __sched functions */ 300 extern char __sched_text_start[], __sched_text_end[]; 301 302 /* Is this address in the __sched functions? */ 303 extern int in_sched_functions(unsigned long addr); 304 305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 306 extern signed long schedule_timeout(signed long timeout); 307 extern signed long schedule_timeout_interruptible(signed long timeout); 308 extern signed long schedule_timeout_killable(signed long timeout); 309 extern signed long schedule_timeout_uninterruptible(signed long timeout); 310 asmlinkage void schedule(void); 311 extern void schedule_preempt_disabled(void); 312 313 struct nsproxy; 314 struct user_namespace; 315 316 #ifdef CONFIG_MMU 317 extern void arch_pick_mmap_layout(struct mm_struct *mm); 318 extern unsigned long 319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 320 unsigned long, unsigned long); 321 extern unsigned long 322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 323 unsigned long len, unsigned long pgoff, 324 unsigned long flags); 325 extern void arch_unmap_area(struct mm_struct *, unsigned long); 326 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 327 #else 328 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 329 #endif 330 331 332 extern void set_dumpable(struct mm_struct *mm, int value); 333 extern int get_dumpable(struct mm_struct *mm); 334 335 /* mm flags */ 336 /* dumpable bits */ 337 #define MMF_DUMPABLE 0 /* core dump is permitted */ 338 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 339 340 #define MMF_DUMPABLE_BITS 2 341 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 342 343 /* coredump filter bits */ 344 #define MMF_DUMP_ANON_PRIVATE 2 345 #define MMF_DUMP_ANON_SHARED 3 346 #define MMF_DUMP_MAPPED_PRIVATE 4 347 #define MMF_DUMP_MAPPED_SHARED 5 348 #define MMF_DUMP_ELF_HEADERS 6 349 #define MMF_DUMP_HUGETLB_PRIVATE 7 350 #define MMF_DUMP_HUGETLB_SHARED 8 351 352 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 353 #define MMF_DUMP_FILTER_BITS 7 354 #define MMF_DUMP_FILTER_MASK \ 355 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 356 #define MMF_DUMP_FILTER_DEFAULT \ 357 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 358 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 359 360 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 361 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 362 #else 363 # define MMF_DUMP_MASK_DEFAULT_ELF 0 364 #endif 365 /* leave room for more dump flags */ 366 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 367 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 368 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 369 370 #define MMF_HAS_UPROBES 19 /* has uprobes */ 371 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 372 373 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 374 375 struct sighand_struct { 376 atomic_t count; 377 struct k_sigaction action[_NSIG]; 378 spinlock_t siglock; 379 wait_queue_head_t signalfd_wqh; 380 }; 381 382 struct pacct_struct { 383 int ac_flag; 384 long ac_exitcode; 385 unsigned long ac_mem; 386 cputime_t ac_utime, ac_stime; 387 unsigned long ac_minflt, ac_majflt; 388 }; 389 390 struct cpu_itimer { 391 cputime_t expires; 392 cputime_t incr; 393 u32 error; 394 u32 incr_error; 395 }; 396 397 /** 398 * struct cputime - snaphsot of system and user cputime 399 * @utime: time spent in user mode 400 * @stime: time spent in system mode 401 * 402 * Gathers a generic snapshot of user and system time. 403 */ 404 struct cputime { 405 cputime_t utime; 406 cputime_t stime; 407 }; 408 409 /** 410 * struct task_cputime - collected CPU time counts 411 * @utime: time spent in user mode, in &cputime_t units 412 * @stime: time spent in kernel mode, in &cputime_t units 413 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 414 * 415 * This is an extension of struct cputime that includes the total runtime 416 * spent by the task from the scheduler point of view. 417 * 418 * As a result, this structure groups together three kinds of CPU time 419 * that are tracked for threads and thread groups. Most things considering 420 * CPU time want to group these counts together and treat all three 421 * of them in parallel. 422 */ 423 struct task_cputime { 424 cputime_t utime; 425 cputime_t stime; 426 unsigned long long sum_exec_runtime; 427 }; 428 /* Alternate field names when used to cache expirations. */ 429 #define prof_exp stime 430 #define virt_exp utime 431 #define sched_exp sum_exec_runtime 432 433 #define INIT_CPUTIME \ 434 (struct task_cputime) { \ 435 .utime = 0, \ 436 .stime = 0, \ 437 .sum_exec_runtime = 0, \ 438 } 439 440 /* 441 * Disable preemption until the scheduler is running. 442 * Reset by start_kernel()->sched_init()->init_idle(). 443 * 444 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 445 * before the scheduler is active -- see should_resched(). 446 */ 447 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 448 449 /** 450 * struct thread_group_cputimer - thread group interval timer counts 451 * @cputime: thread group interval timers. 452 * @running: non-zero when there are timers running and 453 * @cputime receives updates. 454 * @lock: lock for fields in this struct. 455 * 456 * This structure contains the version of task_cputime, above, that is 457 * used for thread group CPU timer calculations. 458 */ 459 struct thread_group_cputimer { 460 struct task_cputime cputime; 461 int running; 462 raw_spinlock_t lock; 463 }; 464 465 #include <linux/rwsem.h> 466 struct autogroup; 467 468 /* 469 * NOTE! "signal_struct" does not have its own 470 * locking, because a shared signal_struct always 471 * implies a shared sighand_struct, so locking 472 * sighand_struct is always a proper superset of 473 * the locking of signal_struct. 474 */ 475 struct signal_struct { 476 atomic_t sigcnt; 477 atomic_t live; 478 int nr_threads; 479 480 wait_queue_head_t wait_chldexit; /* for wait4() */ 481 482 /* current thread group signal load-balancing target: */ 483 struct task_struct *curr_target; 484 485 /* shared signal handling: */ 486 struct sigpending shared_pending; 487 488 /* thread group exit support */ 489 int group_exit_code; 490 /* overloaded: 491 * - notify group_exit_task when ->count is equal to notify_count 492 * - everyone except group_exit_task is stopped during signal delivery 493 * of fatal signals, group_exit_task processes the signal. 494 */ 495 int notify_count; 496 struct task_struct *group_exit_task; 497 498 /* thread group stop support, overloads group_exit_code too */ 499 int group_stop_count; 500 unsigned int flags; /* see SIGNAL_* flags below */ 501 502 /* 503 * PR_SET_CHILD_SUBREAPER marks a process, like a service 504 * manager, to re-parent orphan (double-forking) child processes 505 * to this process instead of 'init'. The service manager is 506 * able to receive SIGCHLD signals and is able to investigate 507 * the process until it calls wait(). All children of this 508 * process will inherit a flag if they should look for a 509 * child_subreaper process at exit. 510 */ 511 unsigned int is_child_subreaper:1; 512 unsigned int has_child_subreaper:1; 513 514 /* POSIX.1b Interval Timers */ 515 int posix_timer_id; 516 struct list_head posix_timers; 517 518 /* ITIMER_REAL timer for the process */ 519 struct hrtimer real_timer; 520 struct pid *leader_pid; 521 ktime_t it_real_incr; 522 523 /* 524 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 525 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 526 * values are defined to 0 and 1 respectively 527 */ 528 struct cpu_itimer it[2]; 529 530 /* 531 * Thread group totals for process CPU timers. 532 * See thread_group_cputimer(), et al, for details. 533 */ 534 struct thread_group_cputimer cputimer; 535 536 /* Earliest-expiration cache. */ 537 struct task_cputime cputime_expires; 538 539 struct list_head cpu_timers[3]; 540 541 struct pid *tty_old_pgrp; 542 543 /* boolean value for session group leader */ 544 int leader; 545 546 struct tty_struct *tty; /* NULL if no tty */ 547 548 #ifdef CONFIG_SCHED_AUTOGROUP 549 struct autogroup *autogroup; 550 #endif 551 /* 552 * Cumulative resource counters for dead threads in the group, 553 * and for reaped dead child processes forked by this group. 554 * Live threads maintain their own counters and add to these 555 * in __exit_signal, except for the group leader. 556 */ 557 cputime_t utime, stime, cutime, cstime; 558 cputime_t gtime; 559 cputime_t cgtime; 560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 561 struct cputime prev_cputime; 562 #endif 563 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 564 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 565 unsigned long inblock, oublock, cinblock, coublock; 566 unsigned long maxrss, cmaxrss; 567 struct task_io_accounting ioac; 568 569 /* 570 * Cumulative ns of schedule CPU time fo dead threads in the 571 * group, not including a zombie group leader, (This only differs 572 * from jiffies_to_ns(utime + stime) if sched_clock uses something 573 * other than jiffies.) 574 */ 575 unsigned long long sum_sched_runtime; 576 577 /* 578 * We don't bother to synchronize most readers of this at all, 579 * because there is no reader checking a limit that actually needs 580 * to get both rlim_cur and rlim_max atomically, and either one 581 * alone is a single word that can safely be read normally. 582 * getrlimit/setrlimit use task_lock(current->group_leader) to 583 * protect this instead of the siglock, because they really 584 * have no need to disable irqs. 585 */ 586 struct rlimit rlim[RLIM_NLIMITS]; 587 588 #ifdef CONFIG_BSD_PROCESS_ACCT 589 struct pacct_struct pacct; /* per-process accounting information */ 590 #endif 591 #ifdef CONFIG_TASKSTATS 592 struct taskstats *stats; 593 #endif 594 #ifdef CONFIG_AUDIT 595 unsigned audit_tty; 596 unsigned audit_tty_log_passwd; 597 struct tty_audit_buf *tty_audit_buf; 598 #endif 599 #ifdef CONFIG_CGROUPS 600 /* 601 * group_rwsem prevents new tasks from entering the threadgroup and 602 * member tasks from exiting,a more specifically, setting of 603 * PF_EXITING. fork and exit paths are protected with this rwsem 604 * using threadgroup_change_begin/end(). Users which require 605 * threadgroup to remain stable should use threadgroup_[un]lock() 606 * which also takes care of exec path. Currently, cgroup is the 607 * only user. 608 */ 609 struct rw_semaphore group_rwsem; 610 #endif 611 612 oom_flags_t oom_flags; 613 short oom_score_adj; /* OOM kill score adjustment */ 614 short oom_score_adj_min; /* OOM kill score adjustment min value. 615 * Only settable by CAP_SYS_RESOURCE. */ 616 617 struct mutex cred_guard_mutex; /* guard against foreign influences on 618 * credential calculations 619 * (notably. ptrace) */ 620 }; 621 622 /* 623 * Bits in flags field of signal_struct. 624 */ 625 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 626 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 627 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 628 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 629 /* 630 * Pending notifications to parent. 631 */ 632 #define SIGNAL_CLD_STOPPED 0x00000010 633 #define SIGNAL_CLD_CONTINUED 0x00000020 634 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 635 636 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 637 638 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 639 static inline int signal_group_exit(const struct signal_struct *sig) 640 { 641 return (sig->flags & SIGNAL_GROUP_EXIT) || 642 (sig->group_exit_task != NULL); 643 } 644 645 /* 646 * Some day this will be a full-fledged user tracking system.. 647 */ 648 struct user_struct { 649 atomic_t __count; /* reference count */ 650 atomic_t processes; /* How many processes does this user have? */ 651 atomic_t files; /* How many open files does this user have? */ 652 atomic_t sigpending; /* How many pending signals does this user have? */ 653 #ifdef CONFIG_INOTIFY_USER 654 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 655 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 656 #endif 657 #ifdef CONFIG_FANOTIFY 658 atomic_t fanotify_listeners; 659 #endif 660 #ifdef CONFIG_EPOLL 661 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 662 #endif 663 #ifdef CONFIG_POSIX_MQUEUE 664 /* protected by mq_lock */ 665 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 666 #endif 667 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 668 669 #ifdef CONFIG_KEYS 670 struct key *uid_keyring; /* UID specific keyring */ 671 struct key *session_keyring; /* UID's default session keyring */ 672 #endif 673 674 /* Hash table maintenance information */ 675 struct hlist_node uidhash_node; 676 kuid_t uid; 677 678 #ifdef CONFIG_PERF_EVENTS 679 atomic_long_t locked_vm; 680 #endif 681 }; 682 683 extern int uids_sysfs_init(void); 684 685 extern struct user_struct *find_user(kuid_t); 686 687 extern struct user_struct root_user; 688 #define INIT_USER (&root_user) 689 690 691 struct backing_dev_info; 692 struct reclaim_state; 693 694 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 695 struct sched_info { 696 /* cumulative counters */ 697 unsigned long pcount; /* # of times run on this cpu */ 698 unsigned long long run_delay; /* time spent waiting on a runqueue */ 699 700 /* timestamps */ 701 unsigned long long last_arrival,/* when we last ran on a cpu */ 702 last_queued; /* when we were last queued to run */ 703 }; 704 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 705 706 #ifdef CONFIG_TASK_DELAY_ACCT 707 struct task_delay_info { 708 spinlock_t lock; 709 unsigned int flags; /* Private per-task flags */ 710 711 /* For each stat XXX, add following, aligned appropriately 712 * 713 * struct timespec XXX_start, XXX_end; 714 * u64 XXX_delay; 715 * u32 XXX_count; 716 * 717 * Atomicity of updates to XXX_delay, XXX_count protected by 718 * single lock above (split into XXX_lock if contention is an issue). 719 */ 720 721 /* 722 * XXX_count is incremented on every XXX operation, the delay 723 * associated with the operation is added to XXX_delay. 724 * XXX_delay contains the accumulated delay time in nanoseconds. 725 */ 726 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 727 u64 blkio_delay; /* wait for sync block io completion */ 728 u64 swapin_delay; /* wait for swapin block io completion */ 729 u32 blkio_count; /* total count of the number of sync block */ 730 /* io operations performed */ 731 u32 swapin_count; /* total count of the number of swapin block */ 732 /* io operations performed */ 733 734 struct timespec freepages_start, freepages_end; 735 u64 freepages_delay; /* wait for memory reclaim */ 736 u32 freepages_count; /* total count of memory reclaim */ 737 }; 738 #endif /* CONFIG_TASK_DELAY_ACCT */ 739 740 static inline int sched_info_on(void) 741 { 742 #ifdef CONFIG_SCHEDSTATS 743 return 1; 744 #elif defined(CONFIG_TASK_DELAY_ACCT) 745 extern int delayacct_on; 746 return delayacct_on; 747 #else 748 return 0; 749 #endif 750 } 751 752 enum cpu_idle_type { 753 CPU_IDLE, 754 CPU_NOT_IDLE, 755 CPU_NEWLY_IDLE, 756 CPU_MAX_IDLE_TYPES 757 }; 758 759 /* 760 * Increase resolution of cpu_power calculations 761 */ 762 #define SCHED_POWER_SHIFT 10 763 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 764 765 /* 766 * sched-domains (multiprocessor balancing) declarations: 767 */ 768 #ifdef CONFIG_SMP 769 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 770 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 771 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 772 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 773 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 774 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 775 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 776 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 777 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 778 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 779 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 780 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 781 782 extern int __weak arch_sd_sibiling_asym_packing(void); 783 784 struct sched_domain_attr { 785 int relax_domain_level; 786 }; 787 788 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 789 .relax_domain_level = -1, \ 790 } 791 792 extern int sched_domain_level_max; 793 794 struct sched_group; 795 796 struct sched_domain { 797 /* These fields must be setup */ 798 struct sched_domain *parent; /* top domain must be null terminated */ 799 struct sched_domain *child; /* bottom domain must be null terminated */ 800 struct sched_group *groups; /* the balancing groups of the domain */ 801 unsigned long min_interval; /* Minimum balance interval ms */ 802 unsigned long max_interval; /* Maximum balance interval ms */ 803 unsigned int busy_factor; /* less balancing by factor if busy */ 804 unsigned int imbalance_pct; /* No balance until over watermark */ 805 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 806 unsigned int busy_idx; 807 unsigned int idle_idx; 808 unsigned int newidle_idx; 809 unsigned int wake_idx; 810 unsigned int forkexec_idx; 811 unsigned int smt_gain; 812 813 int nohz_idle; /* NOHZ IDLE status */ 814 int flags; /* See SD_* */ 815 int level; 816 817 /* Runtime fields. */ 818 unsigned long last_balance; /* init to jiffies. units in jiffies */ 819 unsigned int balance_interval; /* initialise to 1. units in ms. */ 820 unsigned int nr_balance_failed; /* initialise to 0 */ 821 822 u64 last_update; 823 824 #ifdef CONFIG_SCHEDSTATS 825 /* load_balance() stats */ 826 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 827 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 828 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 829 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 830 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 831 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 832 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 833 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 834 835 /* Active load balancing */ 836 unsigned int alb_count; 837 unsigned int alb_failed; 838 unsigned int alb_pushed; 839 840 /* SD_BALANCE_EXEC stats */ 841 unsigned int sbe_count; 842 unsigned int sbe_balanced; 843 unsigned int sbe_pushed; 844 845 /* SD_BALANCE_FORK stats */ 846 unsigned int sbf_count; 847 unsigned int sbf_balanced; 848 unsigned int sbf_pushed; 849 850 /* try_to_wake_up() stats */ 851 unsigned int ttwu_wake_remote; 852 unsigned int ttwu_move_affine; 853 unsigned int ttwu_move_balance; 854 #endif 855 #ifdef CONFIG_SCHED_DEBUG 856 char *name; 857 #endif 858 union { 859 void *private; /* used during construction */ 860 struct rcu_head rcu; /* used during destruction */ 861 }; 862 863 unsigned int span_weight; 864 /* 865 * Span of all CPUs in this domain. 866 * 867 * NOTE: this field is variable length. (Allocated dynamically 868 * by attaching extra space to the end of the structure, 869 * depending on how many CPUs the kernel has booted up with) 870 */ 871 unsigned long span[0]; 872 }; 873 874 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 875 { 876 return to_cpumask(sd->span); 877 } 878 879 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 880 struct sched_domain_attr *dattr_new); 881 882 /* Allocate an array of sched domains, for partition_sched_domains(). */ 883 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 884 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 885 886 bool cpus_share_cache(int this_cpu, int that_cpu); 887 888 #else /* CONFIG_SMP */ 889 890 struct sched_domain_attr; 891 892 static inline void 893 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 894 struct sched_domain_attr *dattr_new) 895 { 896 } 897 898 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 899 { 900 return true; 901 } 902 903 #endif /* !CONFIG_SMP */ 904 905 906 struct io_context; /* See blkdev.h */ 907 908 909 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 910 extern void prefetch_stack(struct task_struct *t); 911 #else 912 static inline void prefetch_stack(struct task_struct *t) { } 913 #endif 914 915 struct audit_context; /* See audit.c */ 916 struct mempolicy; 917 struct pipe_inode_info; 918 struct uts_namespace; 919 920 struct load_weight { 921 unsigned long weight, inv_weight; 922 }; 923 924 struct sched_avg { 925 /* 926 * These sums represent an infinite geometric series and so are bound 927 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 928 * choices of y < 1-2^(-32)*1024. 929 */ 930 u32 runnable_avg_sum, runnable_avg_period; 931 u64 last_runnable_update; 932 s64 decay_count; 933 unsigned long load_avg_contrib; 934 }; 935 936 #ifdef CONFIG_SCHEDSTATS 937 struct sched_statistics { 938 u64 wait_start; 939 u64 wait_max; 940 u64 wait_count; 941 u64 wait_sum; 942 u64 iowait_count; 943 u64 iowait_sum; 944 945 u64 sleep_start; 946 u64 sleep_max; 947 s64 sum_sleep_runtime; 948 949 u64 block_start; 950 u64 block_max; 951 u64 exec_max; 952 u64 slice_max; 953 954 u64 nr_migrations_cold; 955 u64 nr_failed_migrations_affine; 956 u64 nr_failed_migrations_running; 957 u64 nr_failed_migrations_hot; 958 u64 nr_forced_migrations; 959 960 u64 nr_wakeups; 961 u64 nr_wakeups_sync; 962 u64 nr_wakeups_migrate; 963 u64 nr_wakeups_local; 964 u64 nr_wakeups_remote; 965 u64 nr_wakeups_affine; 966 u64 nr_wakeups_affine_attempts; 967 u64 nr_wakeups_passive; 968 u64 nr_wakeups_idle; 969 }; 970 #endif 971 972 struct sched_entity { 973 struct load_weight load; /* for load-balancing */ 974 struct rb_node run_node; 975 struct list_head group_node; 976 unsigned int on_rq; 977 978 u64 exec_start; 979 u64 sum_exec_runtime; 980 u64 vruntime; 981 u64 prev_sum_exec_runtime; 982 983 u64 nr_migrations; 984 985 #ifdef CONFIG_SCHEDSTATS 986 struct sched_statistics statistics; 987 #endif 988 989 #ifdef CONFIG_FAIR_GROUP_SCHED 990 struct sched_entity *parent; 991 /* rq on which this entity is (to be) queued: */ 992 struct cfs_rq *cfs_rq; 993 /* rq "owned" by this entity/group: */ 994 struct cfs_rq *my_q; 995 #endif 996 997 /* 998 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 999 * removed when useful for applications beyond shares distribution (e.g. 1000 * load-balance). 1001 */ 1002 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1003 /* Per-entity load-tracking */ 1004 struct sched_avg avg; 1005 #endif 1006 }; 1007 1008 struct sched_rt_entity { 1009 struct list_head run_list; 1010 unsigned long timeout; 1011 unsigned long watchdog_stamp; 1012 unsigned int time_slice; 1013 1014 struct sched_rt_entity *back; 1015 #ifdef CONFIG_RT_GROUP_SCHED 1016 struct sched_rt_entity *parent; 1017 /* rq on which this entity is (to be) queued: */ 1018 struct rt_rq *rt_rq; 1019 /* rq "owned" by this entity/group: */ 1020 struct rt_rq *my_q; 1021 #endif 1022 }; 1023 1024 1025 struct rcu_node; 1026 1027 enum perf_event_task_context { 1028 perf_invalid_context = -1, 1029 perf_hw_context = 0, 1030 perf_sw_context, 1031 perf_nr_task_contexts, 1032 }; 1033 1034 struct task_struct { 1035 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1036 void *stack; 1037 atomic_t usage; 1038 unsigned int flags; /* per process flags, defined below */ 1039 unsigned int ptrace; 1040 1041 #ifdef CONFIG_SMP 1042 struct llist_node wake_entry; 1043 int on_cpu; 1044 #endif 1045 int on_rq; 1046 1047 int prio, static_prio, normal_prio; 1048 unsigned int rt_priority; 1049 const struct sched_class *sched_class; 1050 struct sched_entity se; 1051 struct sched_rt_entity rt; 1052 #ifdef CONFIG_CGROUP_SCHED 1053 struct task_group *sched_task_group; 1054 #endif 1055 1056 #ifdef CONFIG_PREEMPT_NOTIFIERS 1057 /* list of struct preempt_notifier: */ 1058 struct hlist_head preempt_notifiers; 1059 #endif 1060 1061 /* 1062 * fpu_counter contains the number of consecutive context switches 1063 * that the FPU is used. If this is over a threshold, the lazy fpu 1064 * saving becomes unlazy to save the trap. This is an unsigned char 1065 * so that after 256 times the counter wraps and the behavior turns 1066 * lazy again; this to deal with bursty apps that only use FPU for 1067 * a short time 1068 */ 1069 unsigned char fpu_counter; 1070 #ifdef CONFIG_BLK_DEV_IO_TRACE 1071 unsigned int btrace_seq; 1072 #endif 1073 1074 unsigned int policy; 1075 int nr_cpus_allowed; 1076 cpumask_t cpus_allowed; 1077 1078 #ifdef CONFIG_PREEMPT_RCU 1079 int rcu_read_lock_nesting; 1080 char rcu_read_unlock_special; 1081 struct list_head rcu_node_entry; 1082 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1083 #ifdef CONFIG_TREE_PREEMPT_RCU 1084 struct rcu_node *rcu_blocked_node; 1085 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1086 #ifdef CONFIG_RCU_BOOST 1087 struct rt_mutex *rcu_boost_mutex; 1088 #endif /* #ifdef CONFIG_RCU_BOOST */ 1089 1090 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1091 struct sched_info sched_info; 1092 #endif 1093 1094 struct list_head tasks; 1095 #ifdef CONFIG_SMP 1096 struct plist_node pushable_tasks; 1097 #endif 1098 1099 struct mm_struct *mm, *active_mm; 1100 #ifdef CONFIG_COMPAT_BRK 1101 unsigned brk_randomized:1; 1102 #endif 1103 #if defined(SPLIT_RSS_COUNTING) 1104 struct task_rss_stat rss_stat; 1105 #endif 1106 /* task state */ 1107 int exit_state; 1108 int exit_code, exit_signal; 1109 int pdeath_signal; /* The signal sent when the parent dies */ 1110 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1111 1112 /* Used for emulating ABI behavior of previous Linux versions */ 1113 unsigned int personality; 1114 1115 unsigned did_exec:1; 1116 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1117 * execve */ 1118 unsigned in_iowait:1; 1119 1120 /* task may not gain privileges */ 1121 unsigned no_new_privs:1; 1122 1123 /* Revert to default priority/policy when forking */ 1124 unsigned sched_reset_on_fork:1; 1125 unsigned sched_contributes_to_load:1; 1126 1127 pid_t pid; 1128 pid_t tgid; 1129 1130 #ifdef CONFIG_CC_STACKPROTECTOR 1131 /* Canary value for the -fstack-protector gcc feature */ 1132 unsigned long stack_canary; 1133 #endif 1134 /* 1135 * pointers to (original) parent process, youngest child, younger sibling, 1136 * older sibling, respectively. (p->father can be replaced with 1137 * p->real_parent->pid) 1138 */ 1139 struct task_struct __rcu *real_parent; /* real parent process */ 1140 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1141 /* 1142 * children/sibling forms the list of my natural children 1143 */ 1144 struct list_head children; /* list of my children */ 1145 struct list_head sibling; /* linkage in my parent's children list */ 1146 struct task_struct *group_leader; /* threadgroup leader */ 1147 1148 /* 1149 * ptraced is the list of tasks this task is using ptrace on. 1150 * This includes both natural children and PTRACE_ATTACH targets. 1151 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1152 */ 1153 struct list_head ptraced; 1154 struct list_head ptrace_entry; 1155 1156 /* PID/PID hash table linkage. */ 1157 struct pid_link pids[PIDTYPE_MAX]; 1158 struct list_head thread_group; 1159 1160 struct completion *vfork_done; /* for vfork() */ 1161 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1162 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1163 1164 cputime_t utime, stime, utimescaled, stimescaled; 1165 cputime_t gtime; 1166 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1167 struct cputime prev_cputime; 1168 #endif 1169 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1170 seqlock_t vtime_seqlock; 1171 unsigned long long vtime_snap; 1172 enum { 1173 VTIME_SLEEPING = 0, 1174 VTIME_USER, 1175 VTIME_SYS, 1176 } vtime_snap_whence; 1177 #endif 1178 unsigned long nvcsw, nivcsw; /* context switch counts */ 1179 struct timespec start_time; /* monotonic time */ 1180 struct timespec real_start_time; /* boot based time */ 1181 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1182 unsigned long min_flt, maj_flt; 1183 1184 struct task_cputime cputime_expires; 1185 struct list_head cpu_timers[3]; 1186 1187 /* process credentials */ 1188 const struct cred __rcu *real_cred; /* objective and real subjective task 1189 * credentials (COW) */ 1190 const struct cred __rcu *cred; /* effective (overridable) subjective task 1191 * credentials (COW) */ 1192 char comm[TASK_COMM_LEN]; /* executable name excluding path 1193 - access with [gs]et_task_comm (which lock 1194 it with task_lock()) 1195 - initialized normally by setup_new_exec */ 1196 /* file system info */ 1197 int link_count, total_link_count; 1198 #ifdef CONFIG_SYSVIPC 1199 /* ipc stuff */ 1200 struct sysv_sem sysvsem; 1201 #endif 1202 #ifdef CONFIG_DETECT_HUNG_TASK 1203 /* hung task detection */ 1204 unsigned long last_switch_count; 1205 #endif 1206 /* CPU-specific state of this task */ 1207 struct thread_struct thread; 1208 /* filesystem information */ 1209 struct fs_struct *fs; 1210 /* open file information */ 1211 struct files_struct *files; 1212 /* namespaces */ 1213 struct nsproxy *nsproxy; 1214 /* signal handlers */ 1215 struct signal_struct *signal; 1216 struct sighand_struct *sighand; 1217 1218 sigset_t blocked, real_blocked; 1219 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1220 struct sigpending pending; 1221 1222 unsigned long sas_ss_sp; 1223 size_t sas_ss_size; 1224 int (*notifier)(void *priv); 1225 void *notifier_data; 1226 sigset_t *notifier_mask; 1227 struct callback_head *task_works; 1228 1229 struct audit_context *audit_context; 1230 #ifdef CONFIG_AUDITSYSCALL 1231 kuid_t loginuid; 1232 unsigned int sessionid; 1233 #endif 1234 struct seccomp seccomp; 1235 1236 /* Thread group tracking */ 1237 u32 parent_exec_id; 1238 u32 self_exec_id; 1239 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1240 * mempolicy */ 1241 spinlock_t alloc_lock; 1242 1243 /* Protection of the PI data structures: */ 1244 raw_spinlock_t pi_lock; 1245 1246 #ifdef CONFIG_RT_MUTEXES 1247 /* PI waiters blocked on a rt_mutex held by this task */ 1248 struct plist_head pi_waiters; 1249 /* Deadlock detection and priority inheritance handling */ 1250 struct rt_mutex_waiter *pi_blocked_on; 1251 #endif 1252 1253 #ifdef CONFIG_DEBUG_MUTEXES 1254 /* mutex deadlock detection */ 1255 struct mutex_waiter *blocked_on; 1256 #endif 1257 #ifdef CONFIG_TRACE_IRQFLAGS 1258 unsigned int irq_events; 1259 unsigned long hardirq_enable_ip; 1260 unsigned long hardirq_disable_ip; 1261 unsigned int hardirq_enable_event; 1262 unsigned int hardirq_disable_event; 1263 int hardirqs_enabled; 1264 int hardirq_context; 1265 unsigned long softirq_disable_ip; 1266 unsigned long softirq_enable_ip; 1267 unsigned int softirq_disable_event; 1268 unsigned int softirq_enable_event; 1269 int softirqs_enabled; 1270 int softirq_context; 1271 #endif 1272 #ifdef CONFIG_LOCKDEP 1273 # define MAX_LOCK_DEPTH 48UL 1274 u64 curr_chain_key; 1275 int lockdep_depth; 1276 unsigned int lockdep_recursion; 1277 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1278 gfp_t lockdep_reclaim_gfp; 1279 #endif 1280 1281 /* journalling filesystem info */ 1282 void *journal_info; 1283 1284 /* stacked block device info */ 1285 struct bio_list *bio_list; 1286 1287 #ifdef CONFIG_BLOCK 1288 /* stack plugging */ 1289 struct blk_plug *plug; 1290 #endif 1291 1292 /* VM state */ 1293 struct reclaim_state *reclaim_state; 1294 1295 struct backing_dev_info *backing_dev_info; 1296 1297 struct io_context *io_context; 1298 1299 unsigned long ptrace_message; 1300 siginfo_t *last_siginfo; /* For ptrace use. */ 1301 struct task_io_accounting ioac; 1302 #if defined(CONFIG_TASK_XACCT) 1303 u64 acct_rss_mem1; /* accumulated rss usage */ 1304 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1305 cputime_t acct_timexpd; /* stime + utime since last update */ 1306 #endif 1307 #ifdef CONFIG_CPUSETS 1308 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1309 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1310 int cpuset_mem_spread_rotor; 1311 int cpuset_slab_spread_rotor; 1312 #endif 1313 #ifdef CONFIG_CGROUPS 1314 /* Control Group info protected by css_set_lock */ 1315 struct css_set __rcu *cgroups; 1316 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1317 struct list_head cg_list; 1318 #endif 1319 #ifdef CONFIG_FUTEX 1320 struct robust_list_head __user *robust_list; 1321 #ifdef CONFIG_COMPAT 1322 struct compat_robust_list_head __user *compat_robust_list; 1323 #endif 1324 struct list_head pi_state_list; 1325 struct futex_pi_state *pi_state_cache; 1326 #endif 1327 #ifdef CONFIG_PERF_EVENTS 1328 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1329 struct mutex perf_event_mutex; 1330 struct list_head perf_event_list; 1331 #endif 1332 #ifdef CONFIG_NUMA 1333 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1334 short il_next; 1335 short pref_node_fork; 1336 #endif 1337 #ifdef CONFIG_NUMA_BALANCING 1338 int numa_scan_seq; 1339 int numa_migrate_seq; 1340 unsigned int numa_scan_period; 1341 u64 node_stamp; /* migration stamp */ 1342 struct callback_head numa_work; 1343 #endif /* CONFIG_NUMA_BALANCING */ 1344 1345 struct rcu_head rcu; 1346 1347 /* 1348 * cache last used pipe for splice 1349 */ 1350 struct pipe_inode_info *splice_pipe; 1351 1352 struct page_frag task_frag; 1353 1354 #ifdef CONFIG_TASK_DELAY_ACCT 1355 struct task_delay_info *delays; 1356 #endif 1357 #ifdef CONFIG_FAULT_INJECTION 1358 int make_it_fail; 1359 #endif 1360 /* 1361 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1362 * balance_dirty_pages() for some dirty throttling pause 1363 */ 1364 int nr_dirtied; 1365 int nr_dirtied_pause; 1366 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1367 1368 #ifdef CONFIG_LATENCYTOP 1369 int latency_record_count; 1370 struct latency_record latency_record[LT_SAVECOUNT]; 1371 #endif 1372 /* 1373 * time slack values; these are used to round up poll() and 1374 * select() etc timeout values. These are in nanoseconds. 1375 */ 1376 unsigned long timer_slack_ns; 1377 unsigned long default_timer_slack_ns; 1378 1379 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1380 /* Index of current stored address in ret_stack */ 1381 int curr_ret_stack; 1382 /* Stack of return addresses for return function tracing */ 1383 struct ftrace_ret_stack *ret_stack; 1384 /* time stamp for last schedule */ 1385 unsigned long long ftrace_timestamp; 1386 /* 1387 * Number of functions that haven't been traced 1388 * because of depth overrun. 1389 */ 1390 atomic_t trace_overrun; 1391 /* Pause for the tracing */ 1392 atomic_t tracing_graph_pause; 1393 #endif 1394 #ifdef CONFIG_TRACING 1395 /* state flags for use by tracers */ 1396 unsigned long trace; 1397 /* bitmask and counter of trace recursion */ 1398 unsigned long trace_recursion; 1399 #endif /* CONFIG_TRACING */ 1400 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1401 struct memcg_batch_info { 1402 int do_batch; /* incremented when batch uncharge started */ 1403 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1404 unsigned long nr_pages; /* uncharged usage */ 1405 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1406 } memcg_batch; 1407 unsigned int memcg_kmem_skip_account; 1408 #endif 1409 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1410 atomic_t ptrace_bp_refcnt; 1411 #endif 1412 #ifdef CONFIG_UPROBES 1413 struct uprobe_task *utask; 1414 #endif 1415 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1416 unsigned int sequential_io; 1417 unsigned int sequential_io_avg; 1418 #endif 1419 }; 1420 1421 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1422 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1423 1424 #ifdef CONFIG_NUMA_BALANCING 1425 extern void task_numa_fault(int node, int pages, bool migrated); 1426 extern void set_numabalancing_state(bool enabled); 1427 #else 1428 static inline void task_numa_fault(int node, int pages, bool migrated) 1429 { 1430 } 1431 static inline void set_numabalancing_state(bool enabled) 1432 { 1433 } 1434 #endif 1435 1436 static inline struct pid *task_pid(struct task_struct *task) 1437 { 1438 return task->pids[PIDTYPE_PID].pid; 1439 } 1440 1441 static inline struct pid *task_tgid(struct task_struct *task) 1442 { 1443 return task->group_leader->pids[PIDTYPE_PID].pid; 1444 } 1445 1446 /* 1447 * Without tasklist or rcu lock it is not safe to dereference 1448 * the result of task_pgrp/task_session even if task == current, 1449 * we can race with another thread doing sys_setsid/sys_setpgid. 1450 */ 1451 static inline struct pid *task_pgrp(struct task_struct *task) 1452 { 1453 return task->group_leader->pids[PIDTYPE_PGID].pid; 1454 } 1455 1456 static inline struct pid *task_session(struct task_struct *task) 1457 { 1458 return task->group_leader->pids[PIDTYPE_SID].pid; 1459 } 1460 1461 struct pid_namespace; 1462 1463 /* 1464 * the helpers to get the task's different pids as they are seen 1465 * from various namespaces 1466 * 1467 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1468 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1469 * current. 1470 * task_xid_nr_ns() : id seen from the ns specified; 1471 * 1472 * set_task_vxid() : assigns a virtual id to a task; 1473 * 1474 * see also pid_nr() etc in include/linux/pid.h 1475 */ 1476 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1477 struct pid_namespace *ns); 1478 1479 static inline pid_t task_pid_nr(struct task_struct *tsk) 1480 { 1481 return tsk->pid; 1482 } 1483 1484 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1485 struct pid_namespace *ns) 1486 { 1487 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1488 } 1489 1490 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1491 { 1492 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1493 } 1494 1495 1496 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1497 { 1498 return tsk->tgid; 1499 } 1500 1501 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1502 1503 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1504 { 1505 return pid_vnr(task_tgid(tsk)); 1506 } 1507 1508 1509 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1510 struct pid_namespace *ns) 1511 { 1512 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1513 } 1514 1515 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1516 { 1517 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1518 } 1519 1520 1521 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1522 struct pid_namespace *ns) 1523 { 1524 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1525 } 1526 1527 static inline pid_t task_session_vnr(struct task_struct *tsk) 1528 { 1529 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1530 } 1531 1532 /* obsolete, do not use */ 1533 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1534 { 1535 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1536 } 1537 1538 /** 1539 * pid_alive - check that a task structure is not stale 1540 * @p: Task structure to be checked. 1541 * 1542 * Test if a process is not yet dead (at most zombie state) 1543 * If pid_alive fails, then pointers within the task structure 1544 * can be stale and must not be dereferenced. 1545 */ 1546 static inline int pid_alive(struct task_struct *p) 1547 { 1548 return p->pids[PIDTYPE_PID].pid != NULL; 1549 } 1550 1551 /** 1552 * is_global_init - check if a task structure is init 1553 * @tsk: Task structure to be checked. 1554 * 1555 * Check if a task structure is the first user space task the kernel created. 1556 */ 1557 static inline int is_global_init(struct task_struct *tsk) 1558 { 1559 return tsk->pid == 1; 1560 } 1561 1562 extern struct pid *cad_pid; 1563 1564 extern void free_task(struct task_struct *tsk); 1565 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1566 1567 extern void __put_task_struct(struct task_struct *t); 1568 1569 static inline void put_task_struct(struct task_struct *t) 1570 { 1571 if (atomic_dec_and_test(&t->usage)) 1572 __put_task_struct(t); 1573 } 1574 1575 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1576 extern void task_cputime(struct task_struct *t, 1577 cputime_t *utime, cputime_t *stime); 1578 extern void task_cputime_scaled(struct task_struct *t, 1579 cputime_t *utimescaled, cputime_t *stimescaled); 1580 extern cputime_t task_gtime(struct task_struct *t); 1581 #else 1582 static inline void task_cputime(struct task_struct *t, 1583 cputime_t *utime, cputime_t *stime) 1584 { 1585 if (utime) 1586 *utime = t->utime; 1587 if (stime) 1588 *stime = t->stime; 1589 } 1590 1591 static inline void task_cputime_scaled(struct task_struct *t, 1592 cputime_t *utimescaled, 1593 cputime_t *stimescaled) 1594 { 1595 if (utimescaled) 1596 *utimescaled = t->utimescaled; 1597 if (stimescaled) 1598 *stimescaled = t->stimescaled; 1599 } 1600 1601 static inline cputime_t task_gtime(struct task_struct *t) 1602 { 1603 return t->gtime; 1604 } 1605 #endif 1606 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1607 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1608 1609 /* 1610 * Per process flags 1611 */ 1612 #define PF_EXITING 0x00000004 /* getting shut down */ 1613 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1614 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1615 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1616 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1617 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1618 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1619 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1620 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1621 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1622 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1623 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1624 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1625 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1626 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1627 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1628 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1629 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1630 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1631 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1632 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1633 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1634 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1635 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1636 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1637 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1638 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1639 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1640 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1641 1642 /* 1643 * Only the _current_ task can read/write to tsk->flags, but other 1644 * tasks can access tsk->flags in readonly mode for example 1645 * with tsk_used_math (like during threaded core dumping). 1646 * There is however an exception to this rule during ptrace 1647 * or during fork: the ptracer task is allowed to write to the 1648 * child->flags of its traced child (same goes for fork, the parent 1649 * can write to the child->flags), because we're guaranteed the 1650 * child is not running and in turn not changing child->flags 1651 * at the same time the parent does it. 1652 */ 1653 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1654 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1655 #define clear_used_math() clear_stopped_child_used_math(current) 1656 #define set_used_math() set_stopped_child_used_math(current) 1657 #define conditional_stopped_child_used_math(condition, child) \ 1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1659 #define conditional_used_math(condition) \ 1660 conditional_stopped_child_used_math(condition, current) 1661 #define copy_to_stopped_child_used_math(child) \ 1662 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1663 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1664 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1665 #define used_math() tsk_used_math(current) 1666 1667 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1668 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1669 { 1670 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1671 flags &= ~__GFP_IO; 1672 return flags; 1673 } 1674 1675 static inline unsigned int memalloc_noio_save(void) 1676 { 1677 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1678 current->flags |= PF_MEMALLOC_NOIO; 1679 return flags; 1680 } 1681 1682 static inline void memalloc_noio_restore(unsigned int flags) 1683 { 1684 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1685 } 1686 1687 /* 1688 * task->jobctl flags 1689 */ 1690 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1691 1692 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1693 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1694 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1695 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1696 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1697 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1698 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1699 1700 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1701 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1702 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1703 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1704 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1705 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1706 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1707 1708 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1709 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1710 1711 extern bool task_set_jobctl_pending(struct task_struct *task, 1712 unsigned int mask); 1713 extern void task_clear_jobctl_trapping(struct task_struct *task); 1714 extern void task_clear_jobctl_pending(struct task_struct *task, 1715 unsigned int mask); 1716 1717 #ifdef CONFIG_PREEMPT_RCU 1718 1719 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1720 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1721 1722 static inline void rcu_copy_process(struct task_struct *p) 1723 { 1724 p->rcu_read_lock_nesting = 0; 1725 p->rcu_read_unlock_special = 0; 1726 #ifdef CONFIG_TREE_PREEMPT_RCU 1727 p->rcu_blocked_node = NULL; 1728 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1729 #ifdef CONFIG_RCU_BOOST 1730 p->rcu_boost_mutex = NULL; 1731 #endif /* #ifdef CONFIG_RCU_BOOST */ 1732 INIT_LIST_HEAD(&p->rcu_node_entry); 1733 } 1734 1735 #else 1736 1737 static inline void rcu_copy_process(struct task_struct *p) 1738 { 1739 } 1740 1741 #endif 1742 1743 static inline void tsk_restore_flags(struct task_struct *task, 1744 unsigned long orig_flags, unsigned long flags) 1745 { 1746 task->flags &= ~flags; 1747 task->flags |= orig_flags & flags; 1748 } 1749 1750 #ifdef CONFIG_SMP 1751 extern void do_set_cpus_allowed(struct task_struct *p, 1752 const struct cpumask *new_mask); 1753 1754 extern int set_cpus_allowed_ptr(struct task_struct *p, 1755 const struct cpumask *new_mask); 1756 #else 1757 static inline void do_set_cpus_allowed(struct task_struct *p, 1758 const struct cpumask *new_mask) 1759 { 1760 } 1761 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1762 const struct cpumask *new_mask) 1763 { 1764 if (!cpumask_test_cpu(0, new_mask)) 1765 return -EINVAL; 1766 return 0; 1767 } 1768 #endif 1769 1770 #ifdef CONFIG_NO_HZ_COMMON 1771 void calc_load_enter_idle(void); 1772 void calc_load_exit_idle(void); 1773 #else 1774 static inline void calc_load_enter_idle(void) { } 1775 static inline void calc_load_exit_idle(void) { } 1776 #endif /* CONFIG_NO_HZ_COMMON */ 1777 1778 #ifndef CONFIG_CPUMASK_OFFSTACK 1779 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1780 { 1781 return set_cpus_allowed_ptr(p, &new_mask); 1782 } 1783 #endif 1784 1785 /* 1786 * Do not use outside of architecture code which knows its limitations. 1787 * 1788 * sched_clock() has no promise of monotonicity or bounded drift between 1789 * CPUs, use (which you should not) requires disabling IRQs. 1790 * 1791 * Please use one of the three interfaces below. 1792 */ 1793 extern unsigned long long notrace sched_clock(void); 1794 /* 1795 * See the comment in kernel/sched/clock.c 1796 */ 1797 extern u64 cpu_clock(int cpu); 1798 extern u64 local_clock(void); 1799 extern u64 sched_clock_cpu(int cpu); 1800 1801 1802 extern void sched_clock_init(void); 1803 1804 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1805 static inline void sched_clock_tick(void) 1806 { 1807 } 1808 1809 static inline void sched_clock_idle_sleep_event(void) 1810 { 1811 } 1812 1813 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1814 { 1815 } 1816 #else 1817 /* 1818 * Architectures can set this to 1 if they have specified 1819 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1820 * but then during bootup it turns out that sched_clock() 1821 * is reliable after all: 1822 */ 1823 extern int sched_clock_stable; 1824 1825 extern void sched_clock_tick(void); 1826 extern void sched_clock_idle_sleep_event(void); 1827 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1828 #endif 1829 1830 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1831 /* 1832 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1833 * The reason for this explicit opt-in is not to have perf penalty with 1834 * slow sched_clocks. 1835 */ 1836 extern void enable_sched_clock_irqtime(void); 1837 extern void disable_sched_clock_irqtime(void); 1838 #else 1839 static inline void enable_sched_clock_irqtime(void) {} 1840 static inline void disable_sched_clock_irqtime(void) {} 1841 #endif 1842 1843 extern unsigned long long 1844 task_sched_runtime(struct task_struct *task); 1845 1846 /* sched_exec is called by processes performing an exec */ 1847 #ifdef CONFIG_SMP 1848 extern void sched_exec(void); 1849 #else 1850 #define sched_exec() {} 1851 #endif 1852 1853 extern void sched_clock_idle_sleep_event(void); 1854 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1855 1856 #ifdef CONFIG_HOTPLUG_CPU 1857 extern void idle_task_exit(void); 1858 #else 1859 static inline void idle_task_exit(void) {} 1860 #endif 1861 1862 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1863 extern void wake_up_nohz_cpu(int cpu); 1864 #else 1865 static inline void wake_up_nohz_cpu(int cpu) { } 1866 #endif 1867 1868 #ifdef CONFIG_NO_HZ_FULL 1869 extern bool sched_can_stop_tick(void); 1870 extern u64 scheduler_tick_max_deferment(void); 1871 #else 1872 static inline bool sched_can_stop_tick(void) { return false; } 1873 #endif 1874 1875 #ifdef CONFIG_SCHED_AUTOGROUP 1876 extern void sched_autogroup_create_attach(struct task_struct *p); 1877 extern void sched_autogroup_detach(struct task_struct *p); 1878 extern void sched_autogroup_fork(struct signal_struct *sig); 1879 extern void sched_autogroup_exit(struct signal_struct *sig); 1880 #ifdef CONFIG_PROC_FS 1881 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1882 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1883 #endif 1884 #else 1885 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1886 static inline void sched_autogroup_detach(struct task_struct *p) { } 1887 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1888 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1889 #endif 1890 1891 extern bool yield_to(struct task_struct *p, bool preempt); 1892 extern void set_user_nice(struct task_struct *p, long nice); 1893 extern int task_prio(const struct task_struct *p); 1894 extern int task_nice(const struct task_struct *p); 1895 extern int can_nice(const struct task_struct *p, const int nice); 1896 extern int task_curr(const struct task_struct *p); 1897 extern int idle_cpu(int cpu); 1898 extern int sched_setscheduler(struct task_struct *, int, 1899 const struct sched_param *); 1900 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1901 const struct sched_param *); 1902 extern struct task_struct *idle_task(int cpu); 1903 /** 1904 * is_idle_task - is the specified task an idle task? 1905 * @p: the task in question. 1906 */ 1907 static inline bool is_idle_task(const struct task_struct *p) 1908 { 1909 return p->pid == 0; 1910 } 1911 extern struct task_struct *curr_task(int cpu); 1912 extern void set_curr_task(int cpu, struct task_struct *p); 1913 1914 void yield(void); 1915 1916 /* 1917 * The default (Linux) execution domain. 1918 */ 1919 extern struct exec_domain default_exec_domain; 1920 1921 union thread_union { 1922 struct thread_info thread_info; 1923 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1924 }; 1925 1926 #ifndef __HAVE_ARCH_KSTACK_END 1927 static inline int kstack_end(void *addr) 1928 { 1929 /* Reliable end of stack detection: 1930 * Some APM bios versions misalign the stack 1931 */ 1932 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1933 } 1934 #endif 1935 1936 extern union thread_union init_thread_union; 1937 extern struct task_struct init_task; 1938 1939 extern struct mm_struct init_mm; 1940 1941 extern struct pid_namespace init_pid_ns; 1942 1943 /* 1944 * find a task by one of its numerical ids 1945 * 1946 * find_task_by_pid_ns(): 1947 * finds a task by its pid in the specified namespace 1948 * find_task_by_vpid(): 1949 * finds a task by its virtual pid 1950 * 1951 * see also find_vpid() etc in include/linux/pid.h 1952 */ 1953 1954 extern struct task_struct *find_task_by_vpid(pid_t nr); 1955 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1956 struct pid_namespace *ns); 1957 1958 extern void __set_special_pids(struct pid *pid); 1959 1960 /* per-UID process charging. */ 1961 extern struct user_struct * alloc_uid(kuid_t); 1962 static inline struct user_struct *get_uid(struct user_struct *u) 1963 { 1964 atomic_inc(&u->__count); 1965 return u; 1966 } 1967 extern void free_uid(struct user_struct *); 1968 1969 #include <asm/current.h> 1970 1971 extern void xtime_update(unsigned long ticks); 1972 1973 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1974 extern int wake_up_process(struct task_struct *tsk); 1975 extern void wake_up_new_task(struct task_struct *tsk); 1976 #ifdef CONFIG_SMP 1977 extern void kick_process(struct task_struct *tsk); 1978 #else 1979 static inline void kick_process(struct task_struct *tsk) { } 1980 #endif 1981 extern void sched_fork(struct task_struct *p); 1982 extern void sched_dead(struct task_struct *p); 1983 1984 extern void proc_caches_init(void); 1985 extern void flush_signals(struct task_struct *); 1986 extern void __flush_signals(struct task_struct *); 1987 extern void ignore_signals(struct task_struct *); 1988 extern void flush_signal_handlers(struct task_struct *, int force_default); 1989 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1990 1991 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1992 { 1993 unsigned long flags; 1994 int ret; 1995 1996 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1997 ret = dequeue_signal(tsk, mask, info); 1998 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1999 2000 return ret; 2001 } 2002 2003 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2004 sigset_t *mask); 2005 extern void unblock_all_signals(void); 2006 extern void release_task(struct task_struct * p); 2007 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2008 extern int force_sigsegv(int, struct task_struct *); 2009 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2010 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2011 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2012 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2013 const struct cred *, u32); 2014 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2015 extern int kill_pid(struct pid *pid, int sig, int priv); 2016 extern int kill_proc_info(int, struct siginfo *, pid_t); 2017 extern __must_check bool do_notify_parent(struct task_struct *, int); 2018 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2019 extern void force_sig(int, struct task_struct *); 2020 extern int send_sig(int, struct task_struct *, int); 2021 extern int zap_other_threads(struct task_struct *p); 2022 extern struct sigqueue *sigqueue_alloc(void); 2023 extern void sigqueue_free(struct sigqueue *); 2024 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2025 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2026 2027 static inline void restore_saved_sigmask(void) 2028 { 2029 if (test_and_clear_restore_sigmask()) 2030 __set_current_blocked(¤t->saved_sigmask); 2031 } 2032 2033 static inline sigset_t *sigmask_to_save(void) 2034 { 2035 sigset_t *res = ¤t->blocked; 2036 if (unlikely(test_restore_sigmask())) 2037 res = ¤t->saved_sigmask; 2038 return res; 2039 } 2040 2041 static inline int kill_cad_pid(int sig, int priv) 2042 { 2043 return kill_pid(cad_pid, sig, priv); 2044 } 2045 2046 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2047 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2048 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2049 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2050 2051 /* 2052 * True if we are on the alternate signal stack. 2053 */ 2054 static inline int on_sig_stack(unsigned long sp) 2055 { 2056 #ifdef CONFIG_STACK_GROWSUP 2057 return sp >= current->sas_ss_sp && 2058 sp - current->sas_ss_sp < current->sas_ss_size; 2059 #else 2060 return sp > current->sas_ss_sp && 2061 sp - current->sas_ss_sp <= current->sas_ss_size; 2062 #endif 2063 } 2064 2065 static inline int sas_ss_flags(unsigned long sp) 2066 { 2067 return (current->sas_ss_size == 0 ? SS_DISABLE 2068 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2069 } 2070 2071 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2072 { 2073 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2074 #ifdef CONFIG_STACK_GROWSUP 2075 return current->sas_ss_sp; 2076 #else 2077 return current->sas_ss_sp + current->sas_ss_size; 2078 #endif 2079 return sp; 2080 } 2081 2082 /* 2083 * Routines for handling mm_structs 2084 */ 2085 extern struct mm_struct * mm_alloc(void); 2086 2087 /* mmdrop drops the mm and the page tables */ 2088 extern void __mmdrop(struct mm_struct *); 2089 static inline void mmdrop(struct mm_struct * mm) 2090 { 2091 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2092 __mmdrop(mm); 2093 } 2094 2095 /* mmput gets rid of the mappings and all user-space */ 2096 extern void mmput(struct mm_struct *); 2097 /* Grab a reference to a task's mm, if it is not already going away */ 2098 extern struct mm_struct *get_task_mm(struct task_struct *task); 2099 /* 2100 * Grab a reference to a task's mm, if it is not already going away 2101 * and ptrace_may_access with the mode parameter passed to it 2102 * succeeds. 2103 */ 2104 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2105 /* Remove the current tasks stale references to the old mm_struct */ 2106 extern void mm_release(struct task_struct *, struct mm_struct *); 2107 /* Allocate a new mm structure and copy contents from tsk->mm */ 2108 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2109 2110 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2111 struct task_struct *); 2112 extern void flush_thread(void); 2113 extern void exit_thread(void); 2114 2115 extern void exit_files(struct task_struct *); 2116 extern void __cleanup_sighand(struct sighand_struct *); 2117 2118 extern void exit_itimers(struct signal_struct *); 2119 extern void flush_itimer_signals(void); 2120 2121 extern void do_group_exit(int); 2122 2123 extern int allow_signal(int); 2124 extern int disallow_signal(int); 2125 2126 extern int do_execve(const char *, 2127 const char __user * const __user *, 2128 const char __user * const __user *); 2129 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2130 struct task_struct *fork_idle(int); 2131 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2132 2133 extern void set_task_comm(struct task_struct *tsk, char *from); 2134 extern char *get_task_comm(char *to, struct task_struct *tsk); 2135 2136 #ifdef CONFIG_SMP 2137 void scheduler_ipi(void); 2138 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2139 #else 2140 static inline void scheduler_ipi(void) { } 2141 static inline unsigned long wait_task_inactive(struct task_struct *p, 2142 long match_state) 2143 { 2144 return 1; 2145 } 2146 #endif 2147 2148 #define next_task(p) \ 2149 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2150 2151 #define for_each_process(p) \ 2152 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2153 2154 extern bool current_is_single_threaded(void); 2155 2156 /* 2157 * Careful: do_each_thread/while_each_thread is a double loop so 2158 * 'break' will not work as expected - use goto instead. 2159 */ 2160 #define do_each_thread(g, t) \ 2161 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2162 2163 #define while_each_thread(g, t) \ 2164 while ((t = next_thread(t)) != g) 2165 2166 static inline int get_nr_threads(struct task_struct *tsk) 2167 { 2168 return tsk->signal->nr_threads; 2169 } 2170 2171 static inline bool thread_group_leader(struct task_struct *p) 2172 { 2173 return p->exit_signal >= 0; 2174 } 2175 2176 /* Do to the insanities of de_thread it is possible for a process 2177 * to have the pid of the thread group leader without actually being 2178 * the thread group leader. For iteration through the pids in proc 2179 * all we care about is that we have a task with the appropriate 2180 * pid, we don't actually care if we have the right task. 2181 */ 2182 static inline int has_group_leader_pid(struct task_struct *p) 2183 { 2184 return p->pid == p->tgid; 2185 } 2186 2187 static inline 2188 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2189 { 2190 return p1->tgid == p2->tgid; 2191 } 2192 2193 static inline struct task_struct *next_thread(const struct task_struct *p) 2194 { 2195 return list_entry_rcu(p->thread_group.next, 2196 struct task_struct, thread_group); 2197 } 2198 2199 static inline int thread_group_empty(struct task_struct *p) 2200 { 2201 return list_empty(&p->thread_group); 2202 } 2203 2204 #define delay_group_leader(p) \ 2205 (thread_group_leader(p) && !thread_group_empty(p)) 2206 2207 /* 2208 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2209 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2210 * pins the final release of task.io_context. Also protects ->cpuset and 2211 * ->cgroup.subsys[]. And ->vfork_done. 2212 * 2213 * Nests both inside and outside of read_lock(&tasklist_lock). 2214 * It must not be nested with write_lock_irq(&tasklist_lock), 2215 * neither inside nor outside. 2216 */ 2217 static inline void task_lock(struct task_struct *p) 2218 { 2219 spin_lock(&p->alloc_lock); 2220 } 2221 2222 static inline void task_unlock(struct task_struct *p) 2223 { 2224 spin_unlock(&p->alloc_lock); 2225 } 2226 2227 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2228 unsigned long *flags); 2229 2230 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2231 unsigned long *flags) 2232 { 2233 struct sighand_struct *ret; 2234 2235 ret = __lock_task_sighand(tsk, flags); 2236 (void)__cond_lock(&tsk->sighand->siglock, ret); 2237 return ret; 2238 } 2239 2240 static inline void unlock_task_sighand(struct task_struct *tsk, 2241 unsigned long *flags) 2242 { 2243 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2244 } 2245 2246 #ifdef CONFIG_CGROUPS 2247 static inline void threadgroup_change_begin(struct task_struct *tsk) 2248 { 2249 down_read(&tsk->signal->group_rwsem); 2250 } 2251 static inline void threadgroup_change_end(struct task_struct *tsk) 2252 { 2253 up_read(&tsk->signal->group_rwsem); 2254 } 2255 2256 /** 2257 * threadgroup_lock - lock threadgroup 2258 * @tsk: member task of the threadgroup to lock 2259 * 2260 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2261 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2262 * change ->group_leader/pid. This is useful for cases where the threadgroup 2263 * needs to stay stable across blockable operations. 2264 * 2265 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2266 * synchronization. While held, no new task will be added to threadgroup 2267 * and no existing live task will have its PF_EXITING set. 2268 * 2269 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2270 * sub-thread becomes a new leader. 2271 */ 2272 static inline void threadgroup_lock(struct task_struct *tsk) 2273 { 2274 down_write(&tsk->signal->group_rwsem); 2275 } 2276 2277 /** 2278 * threadgroup_unlock - unlock threadgroup 2279 * @tsk: member task of the threadgroup to unlock 2280 * 2281 * Reverse threadgroup_lock(). 2282 */ 2283 static inline void threadgroup_unlock(struct task_struct *tsk) 2284 { 2285 up_write(&tsk->signal->group_rwsem); 2286 } 2287 #else 2288 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2289 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2290 static inline void threadgroup_lock(struct task_struct *tsk) {} 2291 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2292 #endif 2293 2294 #ifndef __HAVE_THREAD_FUNCTIONS 2295 2296 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2297 #define task_stack_page(task) ((task)->stack) 2298 2299 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2300 { 2301 *task_thread_info(p) = *task_thread_info(org); 2302 task_thread_info(p)->task = p; 2303 } 2304 2305 static inline unsigned long *end_of_stack(struct task_struct *p) 2306 { 2307 return (unsigned long *)(task_thread_info(p) + 1); 2308 } 2309 2310 #endif 2311 2312 static inline int object_is_on_stack(void *obj) 2313 { 2314 void *stack = task_stack_page(current); 2315 2316 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2317 } 2318 2319 extern void thread_info_cache_init(void); 2320 2321 #ifdef CONFIG_DEBUG_STACK_USAGE 2322 static inline unsigned long stack_not_used(struct task_struct *p) 2323 { 2324 unsigned long *n = end_of_stack(p); 2325 2326 do { /* Skip over canary */ 2327 n++; 2328 } while (!*n); 2329 2330 return (unsigned long)n - (unsigned long)end_of_stack(p); 2331 } 2332 #endif 2333 2334 /* set thread flags in other task's structures 2335 * - see asm/thread_info.h for TIF_xxxx flags available 2336 */ 2337 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2338 { 2339 set_ti_thread_flag(task_thread_info(tsk), flag); 2340 } 2341 2342 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2343 { 2344 clear_ti_thread_flag(task_thread_info(tsk), flag); 2345 } 2346 2347 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2348 { 2349 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2350 } 2351 2352 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2353 { 2354 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2355 } 2356 2357 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2358 { 2359 return test_ti_thread_flag(task_thread_info(tsk), flag); 2360 } 2361 2362 static inline void set_tsk_need_resched(struct task_struct *tsk) 2363 { 2364 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2365 } 2366 2367 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2368 { 2369 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2370 } 2371 2372 static inline int test_tsk_need_resched(struct task_struct *tsk) 2373 { 2374 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2375 } 2376 2377 static inline int restart_syscall(void) 2378 { 2379 set_tsk_thread_flag(current, TIF_SIGPENDING); 2380 return -ERESTARTNOINTR; 2381 } 2382 2383 static inline int signal_pending(struct task_struct *p) 2384 { 2385 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2386 } 2387 2388 static inline int __fatal_signal_pending(struct task_struct *p) 2389 { 2390 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2391 } 2392 2393 static inline int fatal_signal_pending(struct task_struct *p) 2394 { 2395 return signal_pending(p) && __fatal_signal_pending(p); 2396 } 2397 2398 static inline int signal_pending_state(long state, struct task_struct *p) 2399 { 2400 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2401 return 0; 2402 if (!signal_pending(p)) 2403 return 0; 2404 2405 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2406 } 2407 2408 static inline int need_resched(void) 2409 { 2410 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2411 } 2412 2413 /* 2414 * cond_resched() and cond_resched_lock(): latency reduction via 2415 * explicit rescheduling in places that are safe. The return 2416 * value indicates whether a reschedule was done in fact. 2417 * cond_resched_lock() will drop the spinlock before scheduling, 2418 * cond_resched_softirq() will enable bhs before scheduling. 2419 */ 2420 extern int _cond_resched(void); 2421 2422 #define cond_resched() ({ \ 2423 __might_sleep(__FILE__, __LINE__, 0); \ 2424 _cond_resched(); \ 2425 }) 2426 2427 extern int __cond_resched_lock(spinlock_t *lock); 2428 2429 #ifdef CONFIG_PREEMPT_COUNT 2430 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2431 #else 2432 #define PREEMPT_LOCK_OFFSET 0 2433 #endif 2434 2435 #define cond_resched_lock(lock) ({ \ 2436 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2437 __cond_resched_lock(lock); \ 2438 }) 2439 2440 extern int __cond_resched_softirq(void); 2441 2442 #define cond_resched_softirq() ({ \ 2443 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2444 __cond_resched_softirq(); \ 2445 }) 2446 2447 /* 2448 * Does a critical section need to be broken due to another 2449 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2450 * but a general need for low latency) 2451 */ 2452 static inline int spin_needbreak(spinlock_t *lock) 2453 { 2454 #ifdef CONFIG_PREEMPT 2455 return spin_is_contended(lock); 2456 #else 2457 return 0; 2458 #endif 2459 } 2460 2461 /* 2462 * Idle thread specific functions to determine the need_resched 2463 * polling state. We have two versions, one based on TS_POLLING in 2464 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2465 * thread_info.flags 2466 */ 2467 #ifdef TS_POLLING 2468 static inline int tsk_is_polling(struct task_struct *p) 2469 { 2470 return task_thread_info(p)->status & TS_POLLING; 2471 } 2472 static inline void current_set_polling(void) 2473 { 2474 current_thread_info()->status |= TS_POLLING; 2475 } 2476 2477 static inline void current_clr_polling(void) 2478 { 2479 current_thread_info()->status &= ~TS_POLLING; 2480 smp_mb__after_clear_bit(); 2481 } 2482 #elif defined(TIF_POLLING_NRFLAG) 2483 static inline int tsk_is_polling(struct task_struct *p) 2484 { 2485 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2486 } 2487 static inline void current_set_polling(void) 2488 { 2489 set_thread_flag(TIF_POLLING_NRFLAG); 2490 } 2491 2492 static inline void current_clr_polling(void) 2493 { 2494 clear_thread_flag(TIF_POLLING_NRFLAG); 2495 } 2496 #else 2497 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2498 static inline void current_set_polling(void) { } 2499 static inline void current_clr_polling(void) { } 2500 #endif 2501 2502 /* 2503 * Thread group CPU time accounting. 2504 */ 2505 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2506 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2507 2508 static inline void thread_group_cputime_init(struct signal_struct *sig) 2509 { 2510 raw_spin_lock_init(&sig->cputimer.lock); 2511 } 2512 2513 /* 2514 * Reevaluate whether the task has signals pending delivery. 2515 * Wake the task if so. 2516 * This is required every time the blocked sigset_t changes. 2517 * callers must hold sighand->siglock. 2518 */ 2519 extern void recalc_sigpending_and_wake(struct task_struct *t); 2520 extern void recalc_sigpending(void); 2521 2522 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2523 2524 static inline void signal_wake_up(struct task_struct *t, bool resume) 2525 { 2526 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2527 } 2528 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2529 { 2530 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2531 } 2532 2533 /* 2534 * Wrappers for p->thread_info->cpu access. No-op on UP. 2535 */ 2536 #ifdef CONFIG_SMP 2537 2538 static inline unsigned int task_cpu(const struct task_struct *p) 2539 { 2540 return task_thread_info(p)->cpu; 2541 } 2542 2543 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2544 2545 #else 2546 2547 static inline unsigned int task_cpu(const struct task_struct *p) 2548 { 2549 return 0; 2550 } 2551 2552 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2553 { 2554 } 2555 2556 #endif /* CONFIG_SMP */ 2557 2558 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2559 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2560 2561 #ifdef CONFIG_CGROUP_SCHED 2562 extern struct task_group root_task_group; 2563 #endif /* CONFIG_CGROUP_SCHED */ 2564 2565 extern int task_can_switch_user(struct user_struct *up, 2566 struct task_struct *tsk); 2567 2568 #ifdef CONFIG_TASK_XACCT 2569 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2570 { 2571 tsk->ioac.rchar += amt; 2572 } 2573 2574 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2575 { 2576 tsk->ioac.wchar += amt; 2577 } 2578 2579 static inline void inc_syscr(struct task_struct *tsk) 2580 { 2581 tsk->ioac.syscr++; 2582 } 2583 2584 static inline void inc_syscw(struct task_struct *tsk) 2585 { 2586 tsk->ioac.syscw++; 2587 } 2588 #else 2589 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2590 { 2591 } 2592 2593 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2594 { 2595 } 2596 2597 static inline void inc_syscr(struct task_struct *tsk) 2598 { 2599 } 2600 2601 static inline void inc_syscw(struct task_struct *tsk) 2602 { 2603 } 2604 #endif 2605 2606 #ifndef TASK_SIZE_OF 2607 #define TASK_SIZE_OF(tsk) TASK_SIZE 2608 #endif 2609 2610 #ifdef CONFIG_MM_OWNER 2611 extern void mm_update_next_owner(struct mm_struct *mm); 2612 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2613 #else 2614 static inline void mm_update_next_owner(struct mm_struct *mm) 2615 { 2616 } 2617 2618 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2619 { 2620 } 2621 #endif /* CONFIG_MM_OWNER */ 2622 2623 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2624 unsigned int limit) 2625 { 2626 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2627 } 2628 2629 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2630 unsigned int limit) 2631 { 2632 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2633 } 2634 2635 static inline unsigned long rlimit(unsigned int limit) 2636 { 2637 return task_rlimit(current, limit); 2638 } 2639 2640 static inline unsigned long rlimit_max(unsigned int limit) 2641 { 2642 return task_rlimit_max(current, limit); 2643 } 2644 2645 #endif 2646