xref: /linux/include/linux/sched.h (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
8 	int sched_priority;
9 };
10 
11 #include <asm/param.h>	/* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29 
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43 
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/processor.h>
57 
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65 
66 /*
67  * List of flags we want to share for kernel threads,
68  * if only because they are not used by them anyway.
69  */
70 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71 
72 /*
73  * These are the constant used to fake the fixed-point load-average
74  * counting. Some notes:
75  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
76  *    a load-average precision of 10 bits integer + 11 bits fractional
77  *  - if you want to count load-averages more often, you need more
78  *    precision, or rounding will get you. With 2-second counting freq,
79  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
80  *    11 bit fractions.
81  */
82 extern unsigned long avenrun[];		/* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84 
85 #define FSHIFT		11		/* nr of bits of precision */
86 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
87 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
88 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5		2014		/* 1/exp(5sec/5min) */
90 #define EXP_15		2037		/* 1/exp(5sec/15min) */
91 
92 #define CALC_LOAD(load,exp,n) \
93 	load *= exp; \
94 	load += n*(FIXED_1-exp); \
95 	load >>= FSHIFT;
96 
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105 
106 
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109 
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 	struct task_struct *task;
113 	int from_cpu;
114 	int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117 
118 extern unsigned long get_parent_ip(unsigned long addr);
119 
120 extern void dump_cpu_task(int cpu);
121 
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131 
132 /*
133  * Task state bitmask. NOTE! These bits are also
134  * encoded in fs/proc/array.c: get_task_state().
135  *
136  * We have two separate sets of flags: task->state
137  * is about runnability, while task->exit_state are
138  * about the task exiting. Confusing, but this way
139  * modifying one set can't modify the other one by
140  * mistake.
141  */
142 #define TASK_RUNNING		0
143 #define TASK_INTERRUPTIBLE	1
144 #define TASK_UNINTERRUPTIBLE	2
145 #define __TASK_STOPPED		4
146 #define __TASK_TRACED		8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE		16
149 #define EXIT_DEAD		32
150 /* in tsk->state again */
151 #define TASK_DEAD		64
152 #define TASK_WAKEKILL		128
153 #define TASK_WAKING		256
154 #define TASK_PARKED		512
155 #define TASK_STATE_MAX		1024
156 
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158 
159 extern char ___assert_task_state[1 - 2*!!(
160 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161 
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
166 
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170 
171 /* get_task_state() */
172 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 				 __TASK_TRACED)
175 
176 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task)	((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task)	\
180 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task)	\
182 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 				 (task->flags & PF_FROZEN) == 0)
184 
185 #define __set_task_state(tsk, state_value)		\
186 	do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value)		\
188 	set_mb((tsk)->state, (state_value))
189 
190 /*
191  * set_current_state() includes a barrier so that the write of current->state
192  * is correctly serialised wrt the caller's subsequent test of whether to
193  * actually sleep:
194  *
195  *	set_current_state(TASK_UNINTERRUPTIBLE);
196  *	if (do_i_need_to_sleep())
197  *		schedule();
198  *
199  * If the caller does not need such serialisation then use __set_current_state()
200  */
201 #define __set_current_state(state_value)			\
202 	do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value)		\
204 	set_mb(current->state, (state_value))
205 
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208 
209 #include <linux/spinlock.h>
210 
211 /*
212  * This serializes "schedule()" and also protects
213  * the run-queue from deletions/modifications (but
214  * _adding_ to the beginning of the run-queue has
215  * a separate lock).
216  */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219 
220 struct task_struct;
221 
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225 
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231 
232 extern int runqueue_is_locked(int cpu);
233 
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242 
243 /*
244  * Only dump TASK_* tasks. (0 for all tasks)
245  */
246 extern void show_state_filter(unsigned long state_filter);
247 
248 static inline void show_state(void)
249 {
250 	show_state_filter(0);
251 }
252 
253 extern void show_regs(struct pt_regs *);
254 
255 /*
256  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257  * task), SP is the stack pointer of the first frame that should be shown in the back
258  * trace (or NULL if the entire call-chain of the task should be shown).
259  */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261 
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264 
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269 
270 extern void sched_show_task(struct task_struct *p);
271 
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 				  void __user *buffer,
278 				  size_t *lenp, loff_t *ppos);
279 extern unsigned int  softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295 
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched		__attribute__((__section__(".sched.text")))
298 
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301 
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304 
305 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312 
313 struct nsproxy;
314 struct user_namespace;
315 
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 		       unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 			  unsigned long len, unsigned long pgoff,
324 			  unsigned long flags);
325 extern void arch_unmap_area(struct mm_struct *, unsigned long);
326 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
327 #else
328 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
329 #endif
330 
331 
332 extern void set_dumpable(struct mm_struct *mm, int value);
333 extern int get_dumpable(struct mm_struct *mm);
334 
335 /* mm flags */
336 /* dumpable bits */
337 #define MMF_DUMPABLE      0  /* core dump is permitted */
338 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
339 
340 #define MMF_DUMPABLE_BITS 2
341 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
342 
343 /* coredump filter bits */
344 #define MMF_DUMP_ANON_PRIVATE	2
345 #define MMF_DUMP_ANON_SHARED	3
346 #define MMF_DUMP_MAPPED_PRIVATE	4
347 #define MMF_DUMP_MAPPED_SHARED	5
348 #define MMF_DUMP_ELF_HEADERS	6
349 #define MMF_DUMP_HUGETLB_PRIVATE 7
350 #define MMF_DUMP_HUGETLB_SHARED  8
351 
352 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
353 #define MMF_DUMP_FILTER_BITS	7
354 #define MMF_DUMP_FILTER_MASK \
355 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
356 #define MMF_DUMP_FILTER_DEFAULT \
357 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
358 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
359 
360 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
361 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
362 #else
363 # define MMF_DUMP_MASK_DEFAULT_ELF	0
364 #endif
365 					/* leave room for more dump flags */
366 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
367 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
368 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
369 
370 #define MMF_HAS_UPROBES		19	/* has uprobes */
371 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
372 
373 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
374 
375 struct sighand_struct {
376 	atomic_t		count;
377 	struct k_sigaction	action[_NSIG];
378 	spinlock_t		siglock;
379 	wait_queue_head_t	signalfd_wqh;
380 };
381 
382 struct pacct_struct {
383 	int			ac_flag;
384 	long			ac_exitcode;
385 	unsigned long		ac_mem;
386 	cputime_t		ac_utime, ac_stime;
387 	unsigned long		ac_minflt, ac_majflt;
388 };
389 
390 struct cpu_itimer {
391 	cputime_t expires;
392 	cputime_t incr;
393 	u32 error;
394 	u32 incr_error;
395 };
396 
397 /**
398  * struct cputime - snaphsot of system and user cputime
399  * @utime: time spent in user mode
400  * @stime: time spent in system mode
401  *
402  * Gathers a generic snapshot of user and system time.
403  */
404 struct cputime {
405 	cputime_t utime;
406 	cputime_t stime;
407 };
408 
409 /**
410  * struct task_cputime - collected CPU time counts
411  * @utime:		time spent in user mode, in &cputime_t units
412  * @stime:		time spent in kernel mode, in &cputime_t units
413  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
414  *
415  * This is an extension of struct cputime that includes the total runtime
416  * spent by the task from the scheduler point of view.
417  *
418  * As a result, this structure groups together three kinds of CPU time
419  * that are tracked for threads and thread groups.  Most things considering
420  * CPU time want to group these counts together and treat all three
421  * of them in parallel.
422  */
423 struct task_cputime {
424 	cputime_t utime;
425 	cputime_t stime;
426 	unsigned long long sum_exec_runtime;
427 };
428 /* Alternate field names when used to cache expirations. */
429 #define prof_exp	stime
430 #define virt_exp	utime
431 #define sched_exp	sum_exec_runtime
432 
433 #define INIT_CPUTIME	\
434 	(struct task_cputime) {					\
435 		.utime = 0,					\
436 		.stime = 0,					\
437 		.sum_exec_runtime = 0,				\
438 	}
439 
440 /*
441  * Disable preemption until the scheduler is running.
442  * Reset by start_kernel()->sched_init()->init_idle().
443  *
444  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
445  * before the scheduler is active -- see should_resched().
446  */
447 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
448 
449 /**
450  * struct thread_group_cputimer - thread group interval timer counts
451  * @cputime:		thread group interval timers.
452  * @running:		non-zero when there are timers running and
453  * 			@cputime receives updates.
454  * @lock:		lock for fields in this struct.
455  *
456  * This structure contains the version of task_cputime, above, that is
457  * used for thread group CPU timer calculations.
458  */
459 struct thread_group_cputimer {
460 	struct task_cputime cputime;
461 	int running;
462 	raw_spinlock_t lock;
463 };
464 
465 #include <linux/rwsem.h>
466 struct autogroup;
467 
468 /*
469  * NOTE! "signal_struct" does not have its own
470  * locking, because a shared signal_struct always
471  * implies a shared sighand_struct, so locking
472  * sighand_struct is always a proper superset of
473  * the locking of signal_struct.
474  */
475 struct signal_struct {
476 	atomic_t		sigcnt;
477 	atomic_t		live;
478 	int			nr_threads;
479 
480 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
481 
482 	/* current thread group signal load-balancing target: */
483 	struct task_struct	*curr_target;
484 
485 	/* shared signal handling: */
486 	struct sigpending	shared_pending;
487 
488 	/* thread group exit support */
489 	int			group_exit_code;
490 	/* overloaded:
491 	 * - notify group_exit_task when ->count is equal to notify_count
492 	 * - everyone except group_exit_task is stopped during signal delivery
493 	 *   of fatal signals, group_exit_task processes the signal.
494 	 */
495 	int			notify_count;
496 	struct task_struct	*group_exit_task;
497 
498 	/* thread group stop support, overloads group_exit_code too */
499 	int			group_stop_count;
500 	unsigned int		flags; /* see SIGNAL_* flags below */
501 
502 	/*
503 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
504 	 * manager, to re-parent orphan (double-forking) child processes
505 	 * to this process instead of 'init'. The service manager is
506 	 * able to receive SIGCHLD signals and is able to investigate
507 	 * the process until it calls wait(). All children of this
508 	 * process will inherit a flag if they should look for a
509 	 * child_subreaper process at exit.
510 	 */
511 	unsigned int		is_child_subreaper:1;
512 	unsigned int		has_child_subreaper:1;
513 
514 	/* POSIX.1b Interval Timers */
515 	int			posix_timer_id;
516 	struct list_head	posix_timers;
517 
518 	/* ITIMER_REAL timer for the process */
519 	struct hrtimer real_timer;
520 	struct pid *leader_pid;
521 	ktime_t it_real_incr;
522 
523 	/*
524 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
525 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
526 	 * values are defined to 0 and 1 respectively
527 	 */
528 	struct cpu_itimer it[2];
529 
530 	/*
531 	 * Thread group totals for process CPU timers.
532 	 * See thread_group_cputimer(), et al, for details.
533 	 */
534 	struct thread_group_cputimer cputimer;
535 
536 	/* Earliest-expiration cache. */
537 	struct task_cputime cputime_expires;
538 
539 	struct list_head cpu_timers[3];
540 
541 	struct pid *tty_old_pgrp;
542 
543 	/* boolean value for session group leader */
544 	int leader;
545 
546 	struct tty_struct *tty; /* NULL if no tty */
547 
548 #ifdef CONFIG_SCHED_AUTOGROUP
549 	struct autogroup *autogroup;
550 #endif
551 	/*
552 	 * Cumulative resource counters for dead threads in the group,
553 	 * and for reaped dead child processes forked by this group.
554 	 * Live threads maintain their own counters and add to these
555 	 * in __exit_signal, except for the group leader.
556 	 */
557 	cputime_t utime, stime, cutime, cstime;
558 	cputime_t gtime;
559 	cputime_t cgtime;
560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
561 	struct cputime prev_cputime;
562 #endif
563 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
564 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
565 	unsigned long inblock, oublock, cinblock, coublock;
566 	unsigned long maxrss, cmaxrss;
567 	struct task_io_accounting ioac;
568 
569 	/*
570 	 * Cumulative ns of schedule CPU time fo dead threads in the
571 	 * group, not including a zombie group leader, (This only differs
572 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
573 	 * other than jiffies.)
574 	 */
575 	unsigned long long sum_sched_runtime;
576 
577 	/*
578 	 * We don't bother to synchronize most readers of this at all,
579 	 * because there is no reader checking a limit that actually needs
580 	 * to get both rlim_cur and rlim_max atomically, and either one
581 	 * alone is a single word that can safely be read normally.
582 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
583 	 * protect this instead of the siglock, because they really
584 	 * have no need to disable irqs.
585 	 */
586 	struct rlimit rlim[RLIM_NLIMITS];
587 
588 #ifdef CONFIG_BSD_PROCESS_ACCT
589 	struct pacct_struct pacct;	/* per-process accounting information */
590 #endif
591 #ifdef CONFIG_TASKSTATS
592 	struct taskstats *stats;
593 #endif
594 #ifdef CONFIG_AUDIT
595 	unsigned audit_tty;
596 	unsigned audit_tty_log_passwd;
597 	struct tty_audit_buf *tty_audit_buf;
598 #endif
599 #ifdef CONFIG_CGROUPS
600 	/*
601 	 * group_rwsem prevents new tasks from entering the threadgroup and
602 	 * member tasks from exiting,a more specifically, setting of
603 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
604 	 * using threadgroup_change_begin/end().  Users which require
605 	 * threadgroup to remain stable should use threadgroup_[un]lock()
606 	 * which also takes care of exec path.  Currently, cgroup is the
607 	 * only user.
608 	 */
609 	struct rw_semaphore group_rwsem;
610 #endif
611 
612 	oom_flags_t oom_flags;
613 	short oom_score_adj;		/* OOM kill score adjustment */
614 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
615 					 * Only settable by CAP_SYS_RESOURCE. */
616 
617 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
618 					 * credential calculations
619 					 * (notably. ptrace) */
620 };
621 
622 /*
623  * Bits in flags field of signal_struct.
624  */
625 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
626 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
627 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
628 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
629 /*
630  * Pending notifications to parent.
631  */
632 #define SIGNAL_CLD_STOPPED	0x00000010
633 #define SIGNAL_CLD_CONTINUED	0x00000020
634 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
635 
636 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
637 
638 /* If true, all threads except ->group_exit_task have pending SIGKILL */
639 static inline int signal_group_exit(const struct signal_struct *sig)
640 {
641 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
642 		(sig->group_exit_task != NULL);
643 }
644 
645 /*
646  * Some day this will be a full-fledged user tracking system..
647  */
648 struct user_struct {
649 	atomic_t __count;	/* reference count */
650 	atomic_t processes;	/* How many processes does this user have? */
651 	atomic_t files;		/* How many open files does this user have? */
652 	atomic_t sigpending;	/* How many pending signals does this user have? */
653 #ifdef CONFIG_INOTIFY_USER
654 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
655 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
656 #endif
657 #ifdef CONFIG_FANOTIFY
658 	atomic_t fanotify_listeners;
659 #endif
660 #ifdef CONFIG_EPOLL
661 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
662 #endif
663 #ifdef CONFIG_POSIX_MQUEUE
664 	/* protected by mq_lock	*/
665 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
666 #endif
667 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
668 
669 #ifdef CONFIG_KEYS
670 	struct key *uid_keyring;	/* UID specific keyring */
671 	struct key *session_keyring;	/* UID's default session keyring */
672 #endif
673 
674 	/* Hash table maintenance information */
675 	struct hlist_node uidhash_node;
676 	kuid_t uid;
677 
678 #ifdef CONFIG_PERF_EVENTS
679 	atomic_long_t locked_vm;
680 #endif
681 };
682 
683 extern int uids_sysfs_init(void);
684 
685 extern struct user_struct *find_user(kuid_t);
686 
687 extern struct user_struct root_user;
688 #define INIT_USER (&root_user)
689 
690 
691 struct backing_dev_info;
692 struct reclaim_state;
693 
694 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
695 struct sched_info {
696 	/* cumulative counters */
697 	unsigned long pcount;	      /* # of times run on this cpu */
698 	unsigned long long run_delay; /* time spent waiting on a runqueue */
699 
700 	/* timestamps */
701 	unsigned long long last_arrival,/* when we last ran on a cpu */
702 			   last_queued;	/* when we were last queued to run */
703 };
704 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
705 
706 #ifdef CONFIG_TASK_DELAY_ACCT
707 struct task_delay_info {
708 	spinlock_t	lock;
709 	unsigned int	flags;	/* Private per-task flags */
710 
711 	/* For each stat XXX, add following, aligned appropriately
712 	 *
713 	 * struct timespec XXX_start, XXX_end;
714 	 * u64 XXX_delay;
715 	 * u32 XXX_count;
716 	 *
717 	 * Atomicity of updates to XXX_delay, XXX_count protected by
718 	 * single lock above (split into XXX_lock if contention is an issue).
719 	 */
720 
721 	/*
722 	 * XXX_count is incremented on every XXX operation, the delay
723 	 * associated with the operation is added to XXX_delay.
724 	 * XXX_delay contains the accumulated delay time in nanoseconds.
725 	 */
726 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
727 	u64 blkio_delay;	/* wait for sync block io completion */
728 	u64 swapin_delay;	/* wait for swapin block io completion */
729 	u32 blkio_count;	/* total count of the number of sync block */
730 				/* io operations performed */
731 	u32 swapin_count;	/* total count of the number of swapin block */
732 				/* io operations performed */
733 
734 	struct timespec freepages_start, freepages_end;
735 	u64 freepages_delay;	/* wait for memory reclaim */
736 	u32 freepages_count;	/* total count of memory reclaim */
737 };
738 #endif	/* CONFIG_TASK_DELAY_ACCT */
739 
740 static inline int sched_info_on(void)
741 {
742 #ifdef CONFIG_SCHEDSTATS
743 	return 1;
744 #elif defined(CONFIG_TASK_DELAY_ACCT)
745 	extern int delayacct_on;
746 	return delayacct_on;
747 #else
748 	return 0;
749 #endif
750 }
751 
752 enum cpu_idle_type {
753 	CPU_IDLE,
754 	CPU_NOT_IDLE,
755 	CPU_NEWLY_IDLE,
756 	CPU_MAX_IDLE_TYPES
757 };
758 
759 /*
760  * Increase resolution of cpu_power calculations
761  */
762 #define SCHED_POWER_SHIFT	10
763 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
764 
765 /*
766  * sched-domains (multiprocessor balancing) declarations:
767  */
768 #ifdef CONFIG_SMP
769 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
770 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
771 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
772 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
773 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
774 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
775 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
776 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
777 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
778 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
779 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
780 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
781 
782 extern int __weak arch_sd_sibiling_asym_packing(void);
783 
784 struct sched_domain_attr {
785 	int relax_domain_level;
786 };
787 
788 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
789 	.relax_domain_level = -1,			\
790 }
791 
792 extern int sched_domain_level_max;
793 
794 struct sched_group;
795 
796 struct sched_domain {
797 	/* These fields must be setup */
798 	struct sched_domain *parent;	/* top domain must be null terminated */
799 	struct sched_domain *child;	/* bottom domain must be null terminated */
800 	struct sched_group *groups;	/* the balancing groups of the domain */
801 	unsigned long min_interval;	/* Minimum balance interval ms */
802 	unsigned long max_interval;	/* Maximum balance interval ms */
803 	unsigned int busy_factor;	/* less balancing by factor if busy */
804 	unsigned int imbalance_pct;	/* No balance until over watermark */
805 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
806 	unsigned int busy_idx;
807 	unsigned int idle_idx;
808 	unsigned int newidle_idx;
809 	unsigned int wake_idx;
810 	unsigned int forkexec_idx;
811 	unsigned int smt_gain;
812 
813 	int nohz_idle;			/* NOHZ IDLE status */
814 	int flags;			/* See SD_* */
815 	int level;
816 
817 	/* Runtime fields. */
818 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
819 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
820 	unsigned int nr_balance_failed; /* initialise to 0 */
821 
822 	u64 last_update;
823 
824 #ifdef CONFIG_SCHEDSTATS
825 	/* load_balance() stats */
826 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
827 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
828 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
829 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
830 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
831 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
832 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
833 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
834 
835 	/* Active load balancing */
836 	unsigned int alb_count;
837 	unsigned int alb_failed;
838 	unsigned int alb_pushed;
839 
840 	/* SD_BALANCE_EXEC stats */
841 	unsigned int sbe_count;
842 	unsigned int sbe_balanced;
843 	unsigned int sbe_pushed;
844 
845 	/* SD_BALANCE_FORK stats */
846 	unsigned int sbf_count;
847 	unsigned int sbf_balanced;
848 	unsigned int sbf_pushed;
849 
850 	/* try_to_wake_up() stats */
851 	unsigned int ttwu_wake_remote;
852 	unsigned int ttwu_move_affine;
853 	unsigned int ttwu_move_balance;
854 #endif
855 #ifdef CONFIG_SCHED_DEBUG
856 	char *name;
857 #endif
858 	union {
859 		void *private;		/* used during construction */
860 		struct rcu_head rcu;	/* used during destruction */
861 	};
862 
863 	unsigned int span_weight;
864 	/*
865 	 * Span of all CPUs in this domain.
866 	 *
867 	 * NOTE: this field is variable length. (Allocated dynamically
868 	 * by attaching extra space to the end of the structure,
869 	 * depending on how many CPUs the kernel has booted up with)
870 	 */
871 	unsigned long span[0];
872 };
873 
874 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
875 {
876 	return to_cpumask(sd->span);
877 }
878 
879 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
880 				    struct sched_domain_attr *dattr_new);
881 
882 /* Allocate an array of sched domains, for partition_sched_domains(). */
883 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
884 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
885 
886 bool cpus_share_cache(int this_cpu, int that_cpu);
887 
888 #else /* CONFIG_SMP */
889 
890 struct sched_domain_attr;
891 
892 static inline void
893 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
894 			struct sched_domain_attr *dattr_new)
895 {
896 }
897 
898 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
899 {
900 	return true;
901 }
902 
903 #endif	/* !CONFIG_SMP */
904 
905 
906 struct io_context;			/* See blkdev.h */
907 
908 
909 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
910 extern void prefetch_stack(struct task_struct *t);
911 #else
912 static inline void prefetch_stack(struct task_struct *t) { }
913 #endif
914 
915 struct audit_context;		/* See audit.c */
916 struct mempolicy;
917 struct pipe_inode_info;
918 struct uts_namespace;
919 
920 struct load_weight {
921 	unsigned long weight, inv_weight;
922 };
923 
924 struct sched_avg {
925 	/*
926 	 * These sums represent an infinite geometric series and so are bound
927 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for for all
928 	 * choices of y < 1-2^(-32)*1024.
929 	 */
930 	u32 runnable_avg_sum, runnable_avg_period;
931 	u64 last_runnable_update;
932 	s64 decay_count;
933 	unsigned long load_avg_contrib;
934 };
935 
936 #ifdef CONFIG_SCHEDSTATS
937 struct sched_statistics {
938 	u64			wait_start;
939 	u64			wait_max;
940 	u64			wait_count;
941 	u64			wait_sum;
942 	u64			iowait_count;
943 	u64			iowait_sum;
944 
945 	u64			sleep_start;
946 	u64			sleep_max;
947 	s64			sum_sleep_runtime;
948 
949 	u64			block_start;
950 	u64			block_max;
951 	u64			exec_max;
952 	u64			slice_max;
953 
954 	u64			nr_migrations_cold;
955 	u64			nr_failed_migrations_affine;
956 	u64			nr_failed_migrations_running;
957 	u64			nr_failed_migrations_hot;
958 	u64			nr_forced_migrations;
959 
960 	u64			nr_wakeups;
961 	u64			nr_wakeups_sync;
962 	u64			nr_wakeups_migrate;
963 	u64			nr_wakeups_local;
964 	u64			nr_wakeups_remote;
965 	u64			nr_wakeups_affine;
966 	u64			nr_wakeups_affine_attempts;
967 	u64			nr_wakeups_passive;
968 	u64			nr_wakeups_idle;
969 };
970 #endif
971 
972 struct sched_entity {
973 	struct load_weight	load;		/* for load-balancing */
974 	struct rb_node		run_node;
975 	struct list_head	group_node;
976 	unsigned int		on_rq;
977 
978 	u64			exec_start;
979 	u64			sum_exec_runtime;
980 	u64			vruntime;
981 	u64			prev_sum_exec_runtime;
982 
983 	u64			nr_migrations;
984 
985 #ifdef CONFIG_SCHEDSTATS
986 	struct sched_statistics statistics;
987 #endif
988 
989 #ifdef CONFIG_FAIR_GROUP_SCHED
990 	struct sched_entity	*parent;
991 	/* rq on which this entity is (to be) queued: */
992 	struct cfs_rq		*cfs_rq;
993 	/* rq "owned" by this entity/group: */
994 	struct cfs_rq		*my_q;
995 #endif
996 
997 /*
998  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
999  * removed when useful for applications beyond shares distribution (e.g.
1000  * load-balance).
1001  */
1002 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1003 	/* Per-entity load-tracking */
1004 	struct sched_avg	avg;
1005 #endif
1006 };
1007 
1008 struct sched_rt_entity {
1009 	struct list_head run_list;
1010 	unsigned long timeout;
1011 	unsigned long watchdog_stamp;
1012 	unsigned int time_slice;
1013 
1014 	struct sched_rt_entity *back;
1015 #ifdef CONFIG_RT_GROUP_SCHED
1016 	struct sched_rt_entity	*parent;
1017 	/* rq on which this entity is (to be) queued: */
1018 	struct rt_rq		*rt_rq;
1019 	/* rq "owned" by this entity/group: */
1020 	struct rt_rq		*my_q;
1021 #endif
1022 };
1023 
1024 
1025 struct rcu_node;
1026 
1027 enum perf_event_task_context {
1028 	perf_invalid_context = -1,
1029 	perf_hw_context = 0,
1030 	perf_sw_context,
1031 	perf_nr_task_contexts,
1032 };
1033 
1034 struct task_struct {
1035 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1036 	void *stack;
1037 	atomic_t usage;
1038 	unsigned int flags;	/* per process flags, defined below */
1039 	unsigned int ptrace;
1040 
1041 #ifdef CONFIG_SMP
1042 	struct llist_node wake_entry;
1043 	int on_cpu;
1044 #endif
1045 	int on_rq;
1046 
1047 	int prio, static_prio, normal_prio;
1048 	unsigned int rt_priority;
1049 	const struct sched_class *sched_class;
1050 	struct sched_entity se;
1051 	struct sched_rt_entity rt;
1052 #ifdef CONFIG_CGROUP_SCHED
1053 	struct task_group *sched_task_group;
1054 #endif
1055 
1056 #ifdef CONFIG_PREEMPT_NOTIFIERS
1057 	/* list of struct preempt_notifier: */
1058 	struct hlist_head preempt_notifiers;
1059 #endif
1060 
1061 	/*
1062 	 * fpu_counter contains the number of consecutive context switches
1063 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1064 	 * saving becomes unlazy to save the trap. This is an unsigned char
1065 	 * so that after 256 times the counter wraps and the behavior turns
1066 	 * lazy again; this to deal with bursty apps that only use FPU for
1067 	 * a short time
1068 	 */
1069 	unsigned char fpu_counter;
1070 #ifdef CONFIG_BLK_DEV_IO_TRACE
1071 	unsigned int btrace_seq;
1072 #endif
1073 
1074 	unsigned int policy;
1075 	int nr_cpus_allowed;
1076 	cpumask_t cpus_allowed;
1077 
1078 #ifdef CONFIG_PREEMPT_RCU
1079 	int rcu_read_lock_nesting;
1080 	char rcu_read_unlock_special;
1081 	struct list_head rcu_node_entry;
1082 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1083 #ifdef CONFIG_TREE_PREEMPT_RCU
1084 	struct rcu_node *rcu_blocked_node;
1085 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1086 #ifdef CONFIG_RCU_BOOST
1087 	struct rt_mutex *rcu_boost_mutex;
1088 #endif /* #ifdef CONFIG_RCU_BOOST */
1089 
1090 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1091 	struct sched_info sched_info;
1092 #endif
1093 
1094 	struct list_head tasks;
1095 #ifdef CONFIG_SMP
1096 	struct plist_node pushable_tasks;
1097 #endif
1098 
1099 	struct mm_struct *mm, *active_mm;
1100 #ifdef CONFIG_COMPAT_BRK
1101 	unsigned brk_randomized:1;
1102 #endif
1103 #if defined(SPLIT_RSS_COUNTING)
1104 	struct task_rss_stat	rss_stat;
1105 #endif
1106 /* task state */
1107 	int exit_state;
1108 	int exit_code, exit_signal;
1109 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1110 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1111 
1112 	/* Used for emulating ABI behavior of previous Linux versions */
1113 	unsigned int personality;
1114 
1115 	unsigned did_exec:1;
1116 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1117 				 * execve */
1118 	unsigned in_iowait:1;
1119 
1120 	/* task may not gain privileges */
1121 	unsigned no_new_privs:1;
1122 
1123 	/* Revert to default priority/policy when forking */
1124 	unsigned sched_reset_on_fork:1;
1125 	unsigned sched_contributes_to_load:1;
1126 
1127 	pid_t pid;
1128 	pid_t tgid;
1129 
1130 #ifdef CONFIG_CC_STACKPROTECTOR
1131 	/* Canary value for the -fstack-protector gcc feature */
1132 	unsigned long stack_canary;
1133 #endif
1134 	/*
1135 	 * pointers to (original) parent process, youngest child, younger sibling,
1136 	 * older sibling, respectively.  (p->father can be replaced with
1137 	 * p->real_parent->pid)
1138 	 */
1139 	struct task_struct __rcu *real_parent; /* real parent process */
1140 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1141 	/*
1142 	 * children/sibling forms the list of my natural children
1143 	 */
1144 	struct list_head children;	/* list of my children */
1145 	struct list_head sibling;	/* linkage in my parent's children list */
1146 	struct task_struct *group_leader;	/* threadgroup leader */
1147 
1148 	/*
1149 	 * ptraced is the list of tasks this task is using ptrace on.
1150 	 * This includes both natural children and PTRACE_ATTACH targets.
1151 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1152 	 */
1153 	struct list_head ptraced;
1154 	struct list_head ptrace_entry;
1155 
1156 	/* PID/PID hash table linkage. */
1157 	struct pid_link pids[PIDTYPE_MAX];
1158 	struct list_head thread_group;
1159 
1160 	struct completion *vfork_done;		/* for vfork() */
1161 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1162 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1163 
1164 	cputime_t utime, stime, utimescaled, stimescaled;
1165 	cputime_t gtime;
1166 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1167 	struct cputime prev_cputime;
1168 #endif
1169 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1170 	seqlock_t vtime_seqlock;
1171 	unsigned long long vtime_snap;
1172 	enum {
1173 		VTIME_SLEEPING = 0,
1174 		VTIME_USER,
1175 		VTIME_SYS,
1176 	} vtime_snap_whence;
1177 #endif
1178 	unsigned long nvcsw, nivcsw; /* context switch counts */
1179 	struct timespec start_time; 		/* monotonic time */
1180 	struct timespec real_start_time;	/* boot based time */
1181 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1182 	unsigned long min_flt, maj_flt;
1183 
1184 	struct task_cputime cputime_expires;
1185 	struct list_head cpu_timers[3];
1186 
1187 /* process credentials */
1188 	const struct cred __rcu *real_cred; /* objective and real subjective task
1189 					 * credentials (COW) */
1190 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1191 					 * credentials (COW) */
1192 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1193 				     - access with [gs]et_task_comm (which lock
1194 				       it with task_lock())
1195 				     - initialized normally by setup_new_exec */
1196 /* file system info */
1197 	int link_count, total_link_count;
1198 #ifdef CONFIG_SYSVIPC
1199 /* ipc stuff */
1200 	struct sysv_sem sysvsem;
1201 #endif
1202 #ifdef CONFIG_DETECT_HUNG_TASK
1203 /* hung task detection */
1204 	unsigned long last_switch_count;
1205 #endif
1206 /* CPU-specific state of this task */
1207 	struct thread_struct thread;
1208 /* filesystem information */
1209 	struct fs_struct *fs;
1210 /* open file information */
1211 	struct files_struct *files;
1212 /* namespaces */
1213 	struct nsproxy *nsproxy;
1214 /* signal handlers */
1215 	struct signal_struct *signal;
1216 	struct sighand_struct *sighand;
1217 
1218 	sigset_t blocked, real_blocked;
1219 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1220 	struct sigpending pending;
1221 
1222 	unsigned long sas_ss_sp;
1223 	size_t sas_ss_size;
1224 	int (*notifier)(void *priv);
1225 	void *notifier_data;
1226 	sigset_t *notifier_mask;
1227 	struct callback_head *task_works;
1228 
1229 	struct audit_context *audit_context;
1230 #ifdef CONFIG_AUDITSYSCALL
1231 	kuid_t loginuid;
1232 	unsigned int sessionid;
1233 #endif
1234 	struct seccomp seccomp;
1235 
1236 /* Thread group tracking */
1237    	u32 parent_exec_id;
1238    	u32 self_exec_id;
1239 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1240  * mempolicy */
1241 	spinlock_t alloc_lock;
1242 
1243 	/* Protection of the PI data structures: */
1244 	raw_spinlock_t pi_lock;
1245 
1246 #ifdef CONFIG_RT_MUTEXES
1247 	/* PI waiters blocked on a rt_mutex held by this task */
1248 	struct plist_head pi_waiters;
1249 	/* Deadlock detection and priority inheritance handling */
1250 	struct rt_mutex_waiter *pi_blocked_on;
1251 #endif
1252 
1253 #ifdef CONFIG_DEBUG_MUTEXES
1254 	/* mutex deadlock detection */
1255 	struct mutex_waiter *blocked_on;
1256 #endif
1257 #ifdef CONFIG_TRACE_IRQFLAGS
1258 	unsigned int irq_events;
1259 	unsigned long hardirq_enable_ip;
1260 	unsigned long hardirq_disable_ip;
1261 	unsigned int hardirq_enable_event;
1262 	unsigned int hardirq_disable_event;
1263 	int hardirqs_enabled;
1264 	int hardirq_context;
1265 	unsigned long softirq_disable_ip;
1266 	unsigned long softirq_enable_ip;
1267 	unsigned int softirq_disable_event;
1268 	unsigned int softirq_enable_event;
1269 	int softirqs_enabled;
1270 	int softirq_context;
1271 #endif
1272 #ifdef CONFIG_LOCKDEP
1273 # define MAX_LOCK_DEPTH 48UL
1274 	u64 curr_chain_key;
1275 	int lockdep_depth;
1276 	unsigned int lockdep_recursion;
1277 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1278 	gfp_t lockdep_reclaim_gfp;
1279 #endif
1280 
1281 /* journalling filesystem info */
1282 	void *journal_info;
1283 
1284 /* stacked block device info */
1285 	struct bio_list *bio_list;
1286 
1287 #ifdef CONFIG_BLOCK
1288 /* stack plugging */
1289 	struct blk_plug *plug;
1290 #endif
1291 
1292 /* VM state */
1293 	struct reclaim_state *reclaim_state;
1294 
1295 	struct backing_dev_info *backing_dev_info;
1296 
1297 	struct io_context *io_context;
1298 
1299 	unsigned long ptrace_message;
1300 	siginfo_t *last_siginfo; /* For ptrace use.  */
1301 	struct task_io_accounting ioac;
1302 #if defined(CONFIG_TASK_XACCT)
1303 	u64 acct_rss_mem1;	/* accumulated rss usage */
1304 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1305 	cputime_t acct_timexpd;	/* stime + utime since last update */
1306 #endif
1307 #ifdef CONFIG_CPUSETS
1308 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1309 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1310 	int cpuset_mem_spread_rotor;
1311 	int cpuset_slab_spread_rotor;
1312 #endif
1313 #ifdef CONFIG_CGROUPS
1314 	/* Control Group info protected by css_set_lock */
1315 	struct css_set __rcu *cgroups;
1316 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1317 	struct list_head cg_list;
1318 #endif
1319 #ifdef CONFIG_FUTEX
1320 	struct robust_list_head __user *robust_list;
1321 #ifdef CONFIG_COMPAT
1322 	struct compat_robust_list_head __user *compat_robust_list;
1323 #endif
1324 	struct list_head pi_state_list;
1325 	struct futex_pi_state *pi_state_cache;
1326 #endif
1327 #ifdef CONFIG_PERF_EVENTS
1328 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1329 	struct mutex perf_event_mutex;
1330 	struct list_head perf_event_list;
1331 #endif
1332 #ifdef CONFIG_NUMA
1333 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1334 	short il_next;
1335 	short pref_node_fork;
1336 #endif
1337 #ifdef CONFIG_NUMA_BALANCING
1338 	int numa_scan_seq;
1339 	int numa_migrate_seq;
1340 	unsigned int numa_scan_period;
1341 	u64 node_stamp;			/* migration stamp  */
1342 	struct callback_head numa_work;
1343 #endif /* CONFIG_NUMA_BALANCING */
1344 
1345 	struct rcu_head rcu;
1346 
1347 	/*
1348 	 * cache last used pipe for splice
1349 	 */
1350 	struct pipe_inode_info *splice_pipe;
1351 
1352 	struct page_frag task_frag;
1353 
1354 #ifdef	CONFIG_TASK_DELAY_ACCT
1355 	struct task_delay_info *delays;
1356 #endif
1357 #ifdef CONFIG_FAULT_INJECTION
1358 	int make_it_fail;
1359 #endif
1360 	/*
1361 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1362 	 * balance_dirty_pages() for some dirty throttling pause
1363 	 */
1364 	int nr_dirtied;
1365 	int nr_dirtied_pause;
1366 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1367 
1368 #ifdef CONFIG_LATENCYTOP
1369 	int latency_record_count;
1370 	struct latency_record latency_record[LT_SAVECOUNT];
1371 #endif
1372 	/*
1373 	 * time slack values; these are used to round up poll() and
1374 	 * select() etc timeout values. These are in nanoseconds.
1375 	 */
1376 	unsigned long timer_slack_ns;
1377 	unsigned long default_timer_slack_ns;
1378 
1379 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1380 	/* Index of current stored address in ret_stack */
1381 	int curr_ret_stack;
1382 	/* Stack of return addresses for return function tracing */
1383 	struct ftrace_ret_stack	*ret_stack;
1384 	/* time stamp for last schedule */
1385 	unsigned long long ftrace_timestamp;
1386 	/*
1387 	 * Number of functions that haven't been traced
1388 	 * because of depth overrun.
1389 	 */
1390 	atomic_t trace_overrun;
1391 	/* Pause for the tracing */
1392 	atomic_t tracing_graph_pause;
1393 #endif
1394 #ifdef CONFIG_TRACING
1395 	/* state flags for use by tracers */
1396 	unsigned long trace;
1397 	/* bitmask and counter of trace recursion */
1398 	unsigned long trace_recursion;
1399 #endif /* CONFIG_TRACING */
1400 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1401 	struct memcg_batch_info {
1402 		int do_batch;	/* incremented when batch uncharge started */
1403 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1404 		unsigned long nr_pages;	/* uncharged usage */
1405 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1406 	} memcg_batch;
1407 	unsigned int memcg_kmem_skip_account;
1408 #endif
1409 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1410 	atomic_t ptrace_bp_refcnt;
1411 #endif
1412 #ifdef CONFIG_UPROBES
1413 	struct uprobe_task *utask;
1414 #endif
1415 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1416 	unsigned int	sequential_io;
1417 	unsigned int	sequential_io_avg;
1418 #endif
1419 };
1420 
1421 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1422 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1423 
1424 #ifdef CONFIG_NUMA_BALANCING
1425 extern void task_numa_fault(int node, int pages, bool migrated);
1426 extern void set_numabalancing_state(bool enabled);
1427 #else
1428 static inline void task_numa_fault(int node, int pages, bool migrated)
1429 {
1430 }
1431 static inline void set_numabalancing_state(bool enabled)
1432 {
1433 }
1434 #endif
1435 
1436 static inline struct pid *task_pid(struct task_struct *task)
1437 {
1438 	return task->pids[PIDTYPE_PID].pid;
1439 }
1440 
1441 static inline struct pid *task_tgid(struct task_struct *task)
1442 {
1443 	return task->group_leader->pids[PIDTYPE_PID].pid;
1444 }
1445 
1446 /*
1447  * Without tasklist or rcu lock it is not safe to dereference
1448  * the result of task_pgrp/task_session even if task == current,
1449  * we can race with another thread doing sys_setsid/sys_setpgid.
1450  */
1451 static inline struct pid *task_pgrp(struct task_struct *task)
1452 {
1453 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1454 }
1455 
1456 static inline struct pid *task_session(struct task_struct *task)
1457 {
1458 	return task->group_leader->pids[PIDTYPE_SID].pid;
1459 }
1460 
1461 struct pid_namespace;
1462 
1463 /*
1464  * the helpers to get the task's different pids as they are seen
1465  * from various namespaces
1466  *
1467  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1468  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1469  *                     current.
1470  * task_xid_nr_ns()  : id seen from the ns specified;
1471  *
1472  * set_task_vxid()   : assigns a virtual id to a task;
1473  *
1474  * see also pid_nr() etc in include/linux/pid.h
1475  */
1476 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1477 			struct pid_namespace *ns);
1478 
1479 static inline pid_t task_pid_nr(struct task_struct *tsk)
1480 {
1481 	return tsk->pid;
1482 }
1483 
1484 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1485 					struct pid_namespace *ns)
1486 {
1487 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1488 }
1489 
1490 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1491 {
1492 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1493 }
1494 
1495 
1496 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1497 {
1498 	return tsk->tgid;
1499 }
1500 
1501 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1502 
1503 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1504 {
1505 	return pid_vnr(task_tgid(tsk));
1506 }
1507 
1508 
1509 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1510 					struct pid_namespace *ns)
1511 {
1512 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1513 }
1514 
1515 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1516 {
1517 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1518 }
1519 
1520 
1521 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1522 					struct pid_namespace *ns)
1523 {
1524 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1525 }
1526 
1527 static inline pid_t task_session_vnr(struct task_struct *tsk)
1528 {
1529 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1530 }
1531 
1532 /* obsolete, do not use */
1533 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1534 {
1535 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1536 }
1537 
1538 /**
1539  * pid_alive - check that a task structure is not stale
1540  * @p: Task structure to be checked.
1541  *
1542  * Test if a process is not yet dead (at most zombie state)
1543  * If pid_alive fails, then pointers within the task structure
1544  * can be stale and must not be dereferenced.
1545  */
1546 static inline int pid_alive(struct task_struct *p)
1547 {
1548 	return p->pids[PIDTYPE_PID].pid != NULL;
1549 }
1550 
1551 /**
1552  * is_global_init - check if a task structure is init
1553  * @tsk: Task structure to be checked.
1554  *
1555  * Check if a task structure is the first user space task the kernel created.
1556  */
1557 static inline int is_global_init(struct task_struct *tsk)
1558 {
1559 	return tsk->pid == 1;
1560 }
1561 
1562 extern struct pid *cad_pid;
1563 
1564 extern void free_task(struct task_struct *tsk);
1565 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1566 
1567 extern void __put_task_struct(struct task_struct *t);
1568 
1569 static inline void put_task_struct(struct task_struct *t)
1570 {
1571 	if (atomic_dec_and_test(&t->usage))
1572 		__put_task_struct(t);
1573 }
1574 
1575 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1576 extern void task_cputime(struct task_struct *t,
1577 			 cputime_t *utime, cputime_t *stime);
1578 extern void task_cputime_scaled(struct task_struct *t,
1579 				cputime_t *utimescaled, cputime_t *stimescaled);
1580 extern cputime_t task_gtime(struct task_struct *t);
1581 #else
1582 static inline void task_cputime(struct task_struct *t,
1583 				cputime_t *utime, cputime_t *stime)
1584 {
1585 	if (utime)
1586 		*utime = t->utime;
1587 	if (stime)
1588 		*stime = t->stime;
1589 }
1590 
1591 static inline void task_cputime_scaled(struct task_struct *t,
1592 				       cputime_t *utimescaled,
1593 				       cputime_t *stimescaled)
1594 {
1595 	if (utimescaled)
1596 		*utimescaled = t->utimescaled;
1597 	if (stimescaled)
1598 		*stimescaled = t->stimescaled;
1599 }
1600 
1601 static inline cputime_t task_gtime(struct task_struct *t)
1602 {
1603 	return t->gtime;
1604 }
1605 #endif
1606 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1607 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1608 
1609 /*
1610  * Per process flags
1611  */
1612 #define PF_EXITING	0x00000004	/* getting shut down */
1613 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1614 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1615 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1616 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1617 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1618 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1619 #define PF_DUMPCORE	0x00000200	/* dumped core */
1620 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1621 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1622 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1623 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1624 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1625 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1626 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1627 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1628 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1629 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1630 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1631 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1632 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1633 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1634 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1635 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1636 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1637 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1638 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1639 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1640 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1641 
1642 /*
1643  * Only the _current_ task can read/write to tsk->flags, but other
1644  * tasks can access tsk->flags in readonly mode for example
1645  * with tsk_used_math (like during threaded core dumping).
1646  * There is however an exception to this rule during ptrace
1647  * or during fork: the ptracer task is allowed to write to the
1648  * child->flags of its traced child (same goes for fork, the parent
1649  * can write to the child->flags), because we're guaranteed the
1650  * child is not running and in turn not changing child->flags
1651  * at the same time the parent does it.
1652  */
1653 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1654 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1655 #define clear_used_math() clear_stopped_child_used_math(current)
1656 #define set_used_math() set_stopped_child_used_math(current)
1657 #define conditional_stopped_child_used_math(condition, child) \
1658 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1659 #define conditional_used_math(condition) \
1660 	conditional_stopped_child_used_math(condition, current)
1661 #define copy_to_stopped_child_used_math(child) \
1662 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1663 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1664 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1665 #define used_math() tsk_used_math(current)
1666 
1667 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1668 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1669 {
1670 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1671 		flags &= ~__GFP_IO;
1672 	return flags;
1673 }
1674 
1675 static inline unsigned int memalloc_noio_save(void)
1676 {
1677 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1678 	current->flags |= PF_MEMALLOC_NOIO;
1679 	return flags;
1680 }
1681 
1682 static inline void memalloc_noio_restore(unsigned int flags)
1683 {
1684 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1685 }
1686 
1687 /*
1688  * task->jobctl flags
1689  */
1690 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1691 
1692 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1693 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1694 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1695 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1696 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1697 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1698 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1699 
1700 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1701 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1702 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1703 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1704 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1705 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1706 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1707 
1708 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1709 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1710 
1711 extern bool task_set_jobctl_pending(struct task_struct *task,
1712 				    unsigned int mask);
1713 extern void task_clear_jobctl_trapping(struct task_struct *task);
1714 extern void task_clear_jobctl_pending(struct task_struct *task,
1715 				      unsigned int mask);
1716 
1717 #ifdef CONFIG_PREEMPT_RCU
1718 
1719 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1720 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1721 
1722 static inline void rcu_copy_process(struct task_struct *p)
1723 {
1724 	p->rcu_read_lock_nesting = 0;
1725 	p->rcu_read_unlock_special = 0;
1726 #ifdef CONFIG_TREE_PREEMPT_RCU
1727 	p->rcu_blocked_node = NULL;
1728 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1729 #ifdef CONFIG_RCU_BOOST
1730 	p->rcu_boost_mutex = NULL;
1731 #endif /* #ifdef CONFIG_RCU_BOOST */
1732 	INIT_LIST_HEAD(&p->rcu_node_entry);
1733 }
1734 
1735 #else
1736 
1737 static inline void rcu_copy_process(struct task_struct *p)
1738 {
1739 }
1740 
1741 #endif
1742 
1743 static inline void tsk_restore_flags(struct task_struct *task,
1744 				unsigned long orig_flags, unsigned long flags)
1745 {
1746 	task->flags &= ~flags;
1747 	task->flags |= orig_flags & flags;
1748 }
1749 
1750 #ifdef CONFIG_SMP
1751 extern void do_set_cpus_allowed(struct task_struct *p,
1752 			       const struct cpumask *new_mask);
1753 
1754 extern int set_cpus_allowed_ptr(struct task_struct *p,
1755 				const struct cpumask *new_mask);
1756 #else
1757 static inline void do_set_cpus_allowed(struct task_struct *p,
1758 				      const struct cpumask *new_mask)
1759 {
1760 }
1761 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1762 				       const struct cpumask *new_mask)
1763 {
1764 	if (!cpumask_test_cpu(0, new_mask))
1765 		return -EINVAL;
1766 	return 0;
1767 }
1768 #endif
1769 
1770 #ifdef CONFIG_NO_HZ_COMMON
1771 void calc_load_enter_idle(void);
1772 void calc_load_exit_idle(void);
1773 #else
1774 static inline void calc_load_enter_idle(void) { }
1775 static inline void calc_load_exit_idle(void) { }
1776 #endif /* CONFIG_NO_HZ_COMMON */
1777 
1778 #ifndef CONFIG_CPUMASK_OFFSTACK
1779 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1780 {
1781 	return set_cpus_allowed_ptr(p, &new_mask);
1782 }
1783 #endif
1784 
1785 /*
1786  * Do not use outside of architecture code which knows its limitations.
1787  *
1788  * sched_clock() has no promise of monotonicity or bounded drift between
1789  * CPUs, use (which you should not) requires disabling IRQs.
1790  *
1791  * Please use one of the three interfaces below.
1792  */
1793 extern unsigned long long notrace sched_clock(void);
1794 /*
1795  * See the comment in kernel/sched/clock.c
1796  */
1797 extern u64 cpu_clock(int cpu);
1798 extern u64 local_clock(void);
1799 extern u64 sched_clock_cpu(int cpu);
1800 
1801 
1802 extern void sched_clock_init(void);
1803 
1804 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1805 static inline void sched_clock_tick(void)
1806 {
1807 }
1808 
1809 static inline void sched_clock_idle_sleep_event(void)
1810 {
1811 }
1812 
1813 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1814 {
1815 }
1816 #else
1817 /*
1818  * Architectures can set this to 1 if they have specified
1819  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1820  * but then during bootup it turns out that sched_clock()
1821  * is reliable after all:
1822  */
1823 extern int sched_clock_stable;
1824 
1825 extern void sched_clock_tick(void);
1826 extern void sched_clock_idle_sleep_event(void);
1827 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1828 #endif
1829 
1830 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1831 /*
1832  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1833  * The reason for this explicit opt-in is not to have perf penalty with
1834  * slow sched_clocks.
1835  */
1836 extern void enable_sched_clock_irqtime(void);
1837 extern void disable_sched_clock_irqtime(void);
1838 #else
1839 static inline void enable_sched_clock_irqtime(void) {}
1840 static inline void disable_sched_clock_irqtime(void) {}
1841 #endif
1842 
1843 extern unsigned long long
1844 task_sched_runtime(struct task_struct *task);
1845 
1846 /* sched_exec is called by processes performing an exec */
1847 #ifdef CONFIG_SMP
1848 extern void sched_exec(void);
1849 #else
1850 #define sched_exec()   {}
1851 #endif
1852 
1853 extern void sched_clock_idle_sleep_event(void);
1854 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1855 
1856 #ifdef CONFIG_HOTPLUG_CPU
1857 extern void idle_task_exit(void);
1858 #else
1859 static inline void idle_task_exit(void) {}
1860 #endif
1861 
1862 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1863 extern void wake_up_nohz_cpu(int cpu);
1864 #else
1865 static inline void wake_up_nohz_cpu(int cpu) { }
1866 #endif
1867 
1868 #ifdef CONFIG_NO_HZ_FULL
1869 extern bool sched_can_stop_tick(void);
1870 extern u64 scheduler_tick_max_deferment(void);
1871 #else
1872 static inline bool sched_can_stop_tick(void) { return false; }
1873 #endif
1874 
1875 #ifdef CONFIG_SCHED_AUTOGROUP
1876 extern void sched_autogroup_create_attach(struct task_struct *p);
1877 extern void sched_autogroup_detach(struct task_struct *p);
1878 extern void sched_autogroup_fork(struct signal_struct *sig);
1879 extern void sched_autogroup_exit(struct signal_struct *sig);
1880 #ifdef CONFIG_PROC_FS
1881 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1882 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1883 #endif
1884 #else
1885 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1886 static inline void sched_autogroup_detach(struct task_struct *p) { }
1887 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1888 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1889 #endif
1890 
1891 extern bool yield_to(struct task_struct *p, bool preempt);
1892 extern void set_user_nice(struct task_struct *p, long nice);
1893 extern int task_prio(const struct task_struct *p);
1894 extern int task_nice(const struct task_struct *p);
1895 extern int can_nice(const struct task_struct *p, const int nice);
1896 extern int task_curr(const struct task_struct *p);
1897 extern int idle_cpu(int cpu);
1898 extern int sched_setscheduler(struct task_struct *, int,
1899 			      const struct sched_param *);
1900 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1901 				      const struct sched_param *);
1902 extern struct task_struct *idle_task(int cpu);
1903 /**
1904  * is_idle_task - is the specified task an idle task?
1905  * @p: the task in question.
1906  */
1907 static inline bool is_idle_task(const struct task_struct *p)
1908 {
1909 	return p->pid == 0;
1910 }
1911 extern struct task_struct *curr_task(int cpu);
1912 extern void set_curr_task(int cpu, struct task_struct *p);
1913 
1914 void yield(void);
1915 
1916 /*
1917  * The default (Linux) execution domain.
1918  */
1919 extern struct exec_domain	default_exec_domain;
1920 
1921 union thread_union {
1922 	struct thread_info thread_info;
1923 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1924 };
1925 
1926 #ifndef __HAVE_ARCH_KSTACK_END
1927 static inline int kstack_end(void *addr)
1928 {
1929 	/* Reliable end of stack detection:
1930 	 * Some APM bios versions misalign the stack
1931 	 */
1932 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1933 }
1934 #endif
1935 
1936 extern union thread_union init_thread_union;
1937 extern struct task_struct init_task;
1938 
1939 extern struct   mm_struct init_mm;
1940 
1941 extern struct pid_namespace init_pid_ns;
1942 
1943 /*
1944  * find a task by one of its numerical ids
1945  *
1946  * find_task_by_pid_ns():
1947  *      finds a task by its pid in the specified namespace
1948  * find_task_by_vpid():
1949  *      finds a task by its virtual pid
1950  *
1951  * see also find_vpid() etc in include/linux/pid.h
1952  */
1953 
1954 extern struct task_struct *find_task_by_vpid(pid_t nr);
1955 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1956 		struct pid_namespace *ns);
1957 
1958 extern void __set_special_pids(struct pid *pid);
1959 
1960 /* per-UID process charging. */
1961 extern struct user_struct * alloc_uid(kuid_t);
1962 static inline struct user_struct *get_uid(struct user_struct *u)
1963 {
1964 	atomic_inc(&u->__count);
1965 	return u;
1966 }
1967 extern void free_uid(struct user_struct *);
1968 
1969 #include <asm/current.h>
1970 
1971 extern void xtime_update(unsigned long ticks);
1972 
1973 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1974 extern int wake_up_process(struct task_struct *tsk);
1975 extern void wake_up_new_task(struct task_struct *tsk);
1976 #ifdef CONFIG_SMP
1977  extern void kick_process(struct task_struct *tsk);
1978 #else
1979  static inline void kick_process(struct task_struct *tsk) { }
1980 #endif
1981 extern void sched_fork(struct task_struct *p);
1982 extern void sched_dead(struct task_struct *p);
1983 
1984 extern void proc_caches_init(void);
1985 extern void flush_signals(struct task_struct *);
1986 extern void __flush_signals(struct task_struct *);
1987 extern void ignore_signals(struct task_struct *);
1988 extern void flush_signal_handlers(struct task_struct *, int force_default);
1989 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1990 
1991 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1992 {
1993 	unsigned long flags;
1994 	int ret;
1995 
1996 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1997 	ret = dequeue_signal(tsk, mask, info);
1998 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1999 
2000 	return ret;
2001 }
2002 
2003 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2004 			      sigset_t *mask);
2005 extern void unblock_all_signals(void);
2006 extern void release_task(struct task_struct * p);
2007 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2008 extern int force_sigsegv(int, struct task_struct *);
2009 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2010 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2011 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2012 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2013 				const struct cred *, u32);
2014 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2015 extern int kill_pid(struct pid *pid, int sig, int priv);
2016 extern int kill_proc_info(int, struct siginfo *, pid_t);
2017 extern __must_check bool do_notify_parent(struct task_struct *, int);
2018 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2019 extern void force_sig(int, struct task_struct *);
2020 extern int send_sig(int, struct task_struct *, int);
2021 extern int zap_other_threads(struct task_struct *p);
2022 extern struct sigqueue *sigqueue_alloc(void);
2023 extern void sigqueue_free(struct sigqueue *);
2024 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2025 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2026 
2027 static inline void restore_saved_sigmask(void)
2028 {
2029 	if (test_and_clear_restore_sigmask())
2030 		__set_current_blocked(&current->saved_sigmask);
2031 }
2032 
2033 static inline sigset_t *sigmask_to_save(void)
2034 {
2035 	sigset_t *res = &current->blocked;
2036 	if (unlikely(test_restore_sigmask()))
2037 		res = &current->saved_sigmask;
2038 	return res;
2039 }
2040 
2041 static inline int kill_cad_pid(int sig, int priv)
2042 {
2043 	return kill_pid(cad_pid, sig, priv);
2044 }
2045 
2046 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2047 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2048 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2049 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2050 
2051 /*
2052  * True if we are on the alternate signal stack.
2053  */
2054 static inline int on_sig_stack(unsigned long sp)
2055 {
2056 #ifdef CONFIG_STACK_GROWSUP
2057 	return sp >= current->sas_ss_sp &&
2058 		sp - current->sas_ss_sp < current->sas_ss_size;
2059 #else
2060 	return sp > current->sas_ss_sp &&
2061 		sp - current->sas_ss_sp <= current->sas_ss_size;
2062 #endif
2063 }
2064 
2065 static inline int sas_ss_flags(unsigned long sp)
2066 {
2067 	return (current->sas_ss_size == 0 ? SS_DISABLE
2068 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2069 }
2070 
2071 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2072 {
2073 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2074 #ifdef CONFIG_STACK_GROWSUP
2075 		return current->sas_ss_sp;
2076 #else
2077 		return current->sas_ss_sp + current->sas_ss_size;
2078 #endif
2079 	return sp;
2080 }
2081 
2082 /*
2083  * Routines for handling mm_structs
2084  */
2085 extern struct mm_struct * mm_alloc(void);
2086 
2087 /* mmdrop drops the mm and the page tables */
2088 extern void __mmdrop(struct mm_struct *);
2089 static inline void mmdrop(struct mm_struct * mm)
2090 {
2091 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2092 		__mmdrop(mm);
2093 }
2094 
2095 /* mmput gets rid of the mappings and all user-space */
2096 extern void mmput(struct mm_struct *);
2097 /* Grab a reference to a task's mm, if it is not already going away */
2098 extern struct mm_struct *get_task_mm(struct task_struct *task);
2099 /*
2100  * Grab a reference to a task's mm, if it is not already going away
2101  * and ptrace_may_access with the mode parameter passed to it
2102  * succeeds.
2103  */
2104 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2105 /* Remove the current tasks stale references to the old mm_struct */
2106 extern void mm_release(struct task_struct *, struct mm_struct *);
2107 /* Allocate a new mm structure and copy contents from tsk->mm */
2108 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2109 
2110 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2111 			struct task_struct *);
2112 extern void flush_thread(void);
2113 extern void exit_thread(void);
2114 
2115 extern void exit_files(struct task_struct *);
2116 extern void __cleanup_sighand(struct sighand_struct *);
2117 
2118 extern void exit_itimers(struct signal_struct *);
2119 extern void flush_itimer_signals(void);
2120 
2121 extern void do_group_exit(int);
2122 
2123 extern int allow_signal(int);
2124 extern int disallow_signal(int);
2125 
2126 extern int do_execve(const char *,
2127 		     const char __user * const __user *,
2128 		     const char __user * const __user *);
2129 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2130 struct task_struct *fork_idle(int);
2131 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2132 
2133 extern void set_task_comm(struct task_struct *tsk, char *from);
2134 extern char *get_task_comm(char *to, struct task_struct *tsk);
2135 
2136 #ifdef CONFIG_SMP
2137 void scheduler_ipi(void);
2138 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2139 #else
2140 static inline void scheduler_ipi(void) { }
2141 static inline unsigned long wait_task_inactive(struct task_struct *p,
2142 					       long match_state)
2143 {
2144 	return 1;
2145 }
2146 #endif
2147 
2148 #define next_task(p) \
2149 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2150 
2151 #define for_each_process(p) \
2152 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2153 
2154 extern bool current_is_single_threaded(void);
2155 
2156 /*
2157  * Careful: do_each_thread/while_each_thread is a double loop so
2158  *          'break' will not work as expected - use goto instead.
2159  */
2160 #define do_each_thread(g, t) \
2161 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2162 
2163 #define while_each_thread(g, t) \
2164 	while ((t = next_thread(t)) != g)
2165 
2166 static inline int get_nr_threads(struct task_struct *tsk)
2167 {
2168 	return tsk->signal->nr_threads;
2169 }
2170 
2171 static inline bool thread_group_leader(struct task_struct *p)
2172 {
2173 	return p->exit_signal >= 0;
2174 }
2175 
2176 /* Do to the insanities of de_thread it is possible for a process
2177  * to have the pid of the thread group leader without actually being
2178  * the thread group leader.  For iteration through the pids in proc
2179  * all we care about is that we have a task with the appropriate
2180  * pid, we don't actually care if we have the right task.
2181  */
2182 static inline int has_group_leader_pid(struct task_struct *p)
2183 {
2184 	return p->pid == p->tgid;
2185 }
2186 
2187 static inline
2188 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2189 {
2190 	return p1->tgid == p2->tgid;
2191 }
2192 
2193 static inline struct task_struct *next_thread(const struct task_struct *p)
2194 {
2195 	return list_entry_rcu(p->thread_group.next,
2196 			      struct task_struct, thread_group);
2197 }
2198 
2199 static inline int thread_group_empty(struct task_struct *p)
2200 {
2201 	return list_empty(&p->thread_group);
2202 }
2203 
2204 #define delay_group_leader(p) \
2205 		(thread_group_leader(p) && !thread_group_empty(p))
2206 
2207 /*
2208  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2209  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2210  * pins the final release of task.io_context.  Also protects ->cpuset and
2211  * ->cgroup.subsys[]. And ->vfork_done.
2212  *
2213  * Nests both inside and outside of read_lock(&tasklist_lock).
2214  * It must not be nested with write_lock_irq(&tasklist_lock),
2215  * neither inside nor outside.
2216  */
2217 static inline void task_lock(struct task_struct *p)
2218 {
2219 	spin_lock(&p->alloc_lock);
2220 }
2221 
2222 static inline void task_unlock(struct task_struct *p)
2223 {
2224 	spin_unlock(&p->alloc_lock);
2225 }
2226 
2227 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2228 							unsigned long *flags);
2229 
2230 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2231 						       unsigned long *flags)
2232 {
2233 	struct sighand_struct *ret;
2234 
2235 	ret = __lock_task_sighand(tsk, flags);
2236 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2237 	return ret;
2238 }
2239 
2240 static inline void unlock_task_sighand(struct task_struct *tsk,
2241 						unsigned long *flags)
2242 {
2243 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2244 }
2245 
2246 #ifdef CONFIG_CGROUPS
2247 static inline void threadgroup_change_begin(struct task_struct *tsk)
2248 {
2249 	down_read(&tsk->signal->group_rwsem);
2250 }
2251 static inline void threadgroup_change_end(struct task_struct *tsk)
2252 {
2253 	up_read(&tsk->signal->group_rwsem);
2254 }
2255 
2256 /**
2257  * threadgroup_lock - lock threadgroup
2258  * @tsk: member task of the threadgroup to lock
2259  *
2260  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2261  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2262  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2263  * needs to stay stable across blockable operations.
2264  *
2265  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2266  * synchronization.  While held, no new task will be added to threadgroup
2267  * and no existing live task will have its PF_EXITING set.
2268  *
2269  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2270  * sub-thread becomes a new leader.
2271  */
2272 static inline void threadgroup_lock(struct task_struct *tsk)
2273 {
2274 	down_write(&tsk->signal->group_rwsem);
2275 }
2276 
2277 /**
2278  * threadgroup_unlock - unlock threadgroup
2279  * @tsk: member task of the threadgroup to unlock
2280  *
2281  * Reverse threadgroup_lock().
2282  */
2283 static inline void threadgroup_unlock(struct task_struct *tsk)
2284 {
2285 	up_write(&tsk->signal->group_rwsem);
2286 }
2287 #else
2288 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2289 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2290 static inline void threadgroup_lock(struct task_struct *tsk) {}
2291 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2292 #endif
2293 
2294 #ifndef __HAVE_THREAD_FUNCTIONS
2295 
2296 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2297 #define task_stack_page(task)	((task)->stack)
2298 
2299 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2300 {
2301 	*task_thread_info(p) = *task_thread_info(org);
2302 	task_thread_info(p)->task = p;
2303 }
2304 
2305 static inline unsigned long *end_of_stack(struct task_struct *p)
2306 {
2307 	return (unsigned long *)(task_thread_info(p) + 1);
2308 }
2309 
2310 #endif
2311 
2312 static inline int object_is_on_stack(void *obj)
2313 {
2314 	void *stack = task_stack_page(current);
2315 
2316 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2317 }
2318 
2319 extern void thread_info_cache_init(void);
2320 
2321 #ifdef CONFIG_DEBUG_STACK_USAGE
2322 static inline unsigned long stack_not_used(struct task_struct *p)
2323 {
2324 	unsigned long *n = end_of_stack(p);
2325 
2326 	do { 	/* Skip over canary */
2327 		n++;
2328 	} while (!*n);
2329 
2330 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2331 }
2332 #endif
2333 
2334 /* set thread flags in other task's structures
2335  * - see asm/thread_info.h for TIF_xxxx flags available
2336  */
2337 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339 	set_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341 
2342 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346 
2347 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2348 {
2349 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2350 }
2351 
2352 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2353 {
2354 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2355 }
2356 
2357 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2358 {
2359 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2360 }
2361 
2362 static inline void set_tsk_need_resched(struct task_struct *tsk)
2363 {
2364 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2365 }
2366 
2367 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2368 {
2369 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2370 }
2371 
2372 static inline int test_tsk_need_resched(struct task_struct *tsk)
2373 {
2374 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2375 }
2376 
2377 static inline int restart_syscall(void)
2378 {
2379 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2380 	return -ERESTARTNOINTR;
2381 }
2382 
2383 static inline int signal_pending(struct task_struct *p)
2384 {
2385 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2386 }
2387 
2388 static inline int __fatal_signal_pending(struct task_struct *p)
2389 {
2390 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2391 }
2392 
2393 static inline int fatal_signal_pending(struct task_struct *p)
2394 {
2395 	return signal_pending(p) && __fatal_signal_pending(p);
2396 }
2397 
2398 static inline int signal_pending_state(long state, struct task_struct *p)
2399 {
2400 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2401 		return 0;
2402 	if (!signal_pending(p))
2403 		return 0;
2404 
2405 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2406 }
2407 
2408 static inline int need_resched(void)
2409 {
2410 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2411 }
2412 
2413 /*
2414  * cond_resched() and cond_resched_lock(): latency reduction via
2415  * explicit rescheduling in places that are safe. The return
2416  * value indicates whether a reschedule was done in fact.
2417  * cond_resched_lock() will drop the spinlock before scheduling,
2418  * cond_resched_softirq() will enable bhs before scheduling.
2419  */
2420 extern int _cond_resched(void);
2421 
2422 #define cond_resched() ({			\
2423 	__might_sleep(__FILE__, __LINE__, 0);	\
2424 	_cond_resched();			\
2425 })
2426 
2427 extern int __cond_resched_lock(spinlock_t *lock);
2428 
2429 #ifdef CONFIG_PREEMPT_COUNT
2430 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2431 #else
2432 #define PREEMPT_LOCK_OFFSET	0
2433 #endif
2434 
2435 #define cond_resched_lock(lock) ({				\
2436 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2437 	__cond_resched_lock(lock);				\
2438 })
2439 
2440 extern int __cond_resched_softirq(void);
2441 
2442 #define cond_resched_softirq() ({					\
2443 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2444 	__cond_resched_softirq();					\
2445 })
2446 
2447 /*
2448  * Does a critical section need to be broken due to another
2449  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2450  * but a general need for low latency)
2451  */
2452 static inline int spin_needbreak(spinlock_t *lock)
2453 {
2454 #ifdef CONFIG_PREEMPT
2455 	return spin_is_contended(lock);
2456 #else
2457 	return 0;
2458 #endif
2459 }
2460 
2461 /*
2462  * Idle thread specific functions to determine the need_resched
2463  * polling state. We have two versions, one based on TS_POLLING in
2464  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2465  * thread_info.flags
2466  */
2467 #ifdef TS_POLLING
2468 static inline int tsk_is_polling(struct task_struct *p)
2469 {
2470 	return task_thread_info(p)->status & TS_POLLING;
2471 }
2472 static inline void current_set_polling(void)
2473 {
2474 	current_thread_info()->status |= TS_POLLING;
2475 }
2476 
2477 static inline void current_clr_polling(void)
2478 {
2479 	current_thread_info()->status &= ~TS_POLLING;
2480 	smp_mb__after_clear_bit();
2481 }
2482 #elif defined(TIF_POLLING_NRFLAG)
2483 static inline int tsk_is_polling(struct task_struct *p)
2484 {
2485 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2486 }
2487 static inline void current_set_polling(void)
2488 {
2489 	set_thread_flag(TIF_POLLING_NRFLAG);
2490 }
2491 
2492 static inline void current_clr_polling(void)
2493 {
2494 	clear_thread_flag(TIF_POLLING_NRFLAG);
2495 }
2496 #else
2497 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2498 static inline void current_set_polling(void) { }
2499 static inline void current_clr_polling(void) { }
2500 #endif
2501 
2502 /*
2503  * Thread group CPU time accounting.
2504  */
2505 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2506 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2507 
2508 static inline void thread_group_cputime_init(struct signal_struct *sig)
2509 {
2510 	raw_spin_lock_init(&sig->cputimer.lock);
2511 }
2512 
2513 /*
2514  * Reevaluate whether the task has signals pending delivery.
2515  * Wake the task if so.
2516  * This is required every time the blocked sigset_t changes.
2517  * callers must hold sighand->siglock.
2518  */
2519 extern void recalc_sigpending_and_wake(struct task_struct *t);
2520 extern void recalc_sigpending(void);
2521 
2522 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2523 
2524 static inline void signal_wake_up(struct task_struct *t, bool resume)
2525 {
2526 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2527 }
2528 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2529 {
2530 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2531 }
2532 
2533 /*
2534  * Wrappers for p->thread_info->cpu access. No-op on UP.
2535  */
2536 #ifdef CONFIG_SMP
2537 
2538 static inline unsigned int task_cpu(const struct task_struct *p)
2539 {
2540 	return task_thread_info(p)->cpu;
2541 }
2542 
2543 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2544 
2545 #else
2546 
2547 static inline unsigned int task_cpu(const struct task_struct *p)
2548 {
2549 	return 0;
2550 }
2551 
2552 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2553 {
2554 }
2555 
2556 #endif /* CONFIG_SMP */
2557 
2558 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2559 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2560 
2561 #ifdef CONFIG_CGROUP_SCHED
2562 extern struct task_group root_task_group;
2563 #endif /* CONFIG_CGROUP_SCHED */
2564 
2565 extern int task_can_switch_user(struct user_struct *up,
2566 					struct task_struct *tsk);
2567 
2568 #ifdef CONFIG_TASK_XACCT
2569 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2570 {
2571 	tsk->ioac.rchar += amt;
2572 }
2573 
2574 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2575 {
2576 	tsk->ioac.wchar += amt;
2577 }
2578 
2579 static inline void inc_syscr(struct task_struct *tsk)
2580 {
2581 	tsk->ioac.syscr++;
2582 }
2583 
2584 static inline void inc_syscw(struct task_struct *tsk)
2585 {
2586 	tsk->ioac.syscw++;
2587 }
2588 #else
2589 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2590 {
2591 }
2592 
2593 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2594 {
2595 }
2596 
2597 static inline void inc_syscr(struct task_struct *tsk)
2598 {
2599 }
2600 
2601 static inline void inc_syscw(struct task_struct *tsk)
2602 {
2603 }
2604 #endif
2605 
2606 #ifndef TASK_SIZE_OF
2607 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2608 #endif
2609 
2610 #ifdef CONFIG_MM_OWNER
2611 extern void mm_update_next_owner(struct mm_struct *mm);
2612 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2613 #else
2614 static inline void mm_update_next_owner(struct mm_struct *mm)
2615 {
2616 }
2617 
2618 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2619 {
2620 }
2621 #endif /* CONFIG_MM_OWNER */
2622 
2623 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2624 		unsigned int limit)
2625 {
2626 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2627 }
2628 
2629 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2630 		unsigned int limit)
2631 {
2632 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2633 }
2634 
2635 static inline unsigned long rlimit(unsigned int limit)
2636 {
2637 	return task_rlimit(current, limit);
2638 }
2639 
2640 static inline unsigned long rlimit_max(unsigned int limit)
2641 {
2642 	return task_rlimit_max(current, limit);
2643 }
2644 
2645 #endif
2646